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Introduction

This course builds directly on ECON 6190, the material will not be revised. If you need to catch up on
the material, especially probability and statistics, see the Hansen and Durrett textbooks. If there’s one
econometrics book to actually own, it’s the Hansen. These notes will often reference results in either Hansen
or Hayashi.

See the syllabus for how we will be assessed – homework is 30%, prelim is 30%, and the final is 40%. For
homework, you are invited (and highly recommended) to form study groups! It’s completely okay to work
on the homeworks in study groups, but you will submit individual write-ups.

Roughly, in the first few weeks, we will start with the linear model in some detail. We will then generalize to
IV, TSLS, and go rapidly to the Generalized Method of Moments (GMM) and extremum (or m-) estimation.
We will also cover some nonparametrics as well as bootstrap.

You can think of us starting in the most specific case and moving outwards. OLS is a special case of IV, which
is a special case of TSLS, which is a special case of GMM, which is a special case of extremum estimation.
We will also think about Maximum Likelihood (ML) as a special case of extremum estimation, and panel
data as a special case of GMM. Studying this tree will cover half of the course, and then we will have some
time to cover nonparametric methods like kernel density and kernel mean, as well as bootstrapping. This
may seem like we are doing some old school stuff, since the other ML (machine learning) has overtaken these
methods, but theoretically they are very similar.

1 The Linear Model

We have, of course, already encountered the
Definition. Ordinary Least Squares (OLS) estimator:

β̂ = (X ′X)
−1

X ′Y Data Matrix

= (EnXX ′)
−1 EnXY Sample Expectation

=

󰀣
1

n

n󰁛

i=1

XiX
′
i

󰀤
1

n

n󰁛

i=1

XiYi Sample Average

=

󰀣
n󰁛

i=1

XiX
′
i

󰀤
n󰁛

i=1

XiYi Clean Sample Average

All of these notations are equivalent, but helpful in different concepts. Data matrix notation is extremely
useful for proving results. The sample expectation is useful because it reminds us of the empirical context
– this is a shorthand for sample average, which is written in two ways depending on context – essentially,
when we care about the asymptotic behavior in different ways.

The interpretation of β̂ depends on context:

1. In any given sample, it just projects Y onto X

2. Under weak assumptions, it converges to the population analog β󰂏 ≡ (EXX ′)−1EXY , which is the
population projection coefficient and characterizes the best linear predictor under square loss

3. Under stronger assumptions, it estimates a causal effect of X on Y .

We will elaborate these in order, and develop the classic theory of Least Squares estimation.
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Recall that β̂ can be derived as the minimization (in b) of

n󰁛

i=1

(Yi −X ′
ib)

2 = (Y −Xb)′(Y −Xb)

which is of course where the name comes from. However, recall that also this minimization defined b such
that Xb is the point in the span of X that is closest to Y in Euclidean distance. Basically, we projected Y
onto X.

We can see this with the illustration in Figure 1, which uses demeaned vectors, and defines the projection
Ŷ ≡ Xβ = β1X1 + β2X2 and the residual ε̂ ≡ Y − Ŷ .

Y

Ŷ

X2

X1

ε̂

Figure 1: Illustration of OLS as Projection

Corollary 1.1. Sum of Squares Decomposition It immediately follows from Pythagoras that

Y ′Y = Ŷ ′Ŷ + ε̂′ε̂

Equivalently, SST = SSE + SSR or
n󰁛

i=1

Y 2
i =

n󰁛

i=1

Ŷ 2
i +

n󰁛

i=1

ε̂2i

It follows immediately that R2 = SSE / SST ∈ [0, 1]. The extreme values of R2 correspond to Ŷ = 0 and
ε̂ = 0 respectively. It also follows that ε̂ is by construction orthogonal to Ŷ .

We will recap this and basic related facts in the first homework.
Question. What happens with collinear X?

With collinear X, the set on which we project is of lower dimension. The projection Ŷ is still unique, but
the projection coefficient is not.
Definition. The projection coefficient β̂ is defined as

β̂ ≡ argmin
b

󰁛

i

(Yi −X ′
ib)

2 = argmin
b

(Y −Xb)′(Y −Xb)
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and can be characterized by the first order condition

∂

∂b
(Y −Xb)′(Y −Xb) = −2X ′Y + 2X ′Xb

!
= 0

=⇒ β̂ = (X ′X)−1X ′Y

The fitted values and residuals equal

Ŷ = Xβ̂ = X(X ′X)−1X ′
󰁿 󰁾󰁽 󰂀

PX , the projection matrix

Y = PXY

ε̂ = Y − Ŷ = (In −X(X ′X)−1X ′
󰁿 󰁾󰁽 󰂀

annihilator matrix

)Y

Example. Frisch-Waugh(-Lovell) The projection of Y on X can be decomposed, giving rise to some impor-
tant results. To fix ideas, consider projecting Y :

• on the scalar X1 (plus a constant), getting slope coefficient β̃1, versus

• on the scalars (X1, X2) (plus a constant), getting slope coefficients (β̂1, β̂2).

Can we interestingly relate β̃1 to β̂1? Yes! To do so, consider projecting X1 on X2, getting slope coefficient
γ̂. To simplify, assume all variables are demeaned. Across regressions, this leads to the first order conditions:

0 = En

󰀓
X1

󰀓
Y − β̂1X1 − β̂2X2

󰀔󰀔

0 = En

󰀓
X2

󰀓
Y − β̂1X1 − β̂2X2

󰀔󰀔

0 = En (X2 (X1 − γ̂X2))

We can combine the first two, and use the third to get

0 = En(X1 − γ̂X2)
󰀓
Y − β̂1X1 − β̂2X2

󰀔

= En(X1 − γ̂X2)
󰀓
Y − β̂1X1 − β̂1γ̂X2

󰀔

= En(X1 − γ̂X2)
󰀓
Y − β̂1(X1 − γ̂X2)

󰀔

The last line is the first order condition from regressing Y on the residuals of the regression of X1 on X2.
Thus, β̂1 is the slope coefficient from that regression. We can extend this argument to show that Y can be
residualized as well.
Remark. If we think about this as if X1 is schooling and X2 is family income, we are essentially including
only the uncorrelated parts of those variables through this method, and don’t need to worry about the
correlation between the two.

When thinking about Omitted Variable Bias, we can similarly characterize the projection of X2 on X1 by

0 = En(X1(X2 − γ̃X1)) = En

󰀓
X1

󰀓
β̂2X2 − β̂2γ̃X1

󰀔󰀔

We can then substitute the first order condition from above, and get

0 = En

󰀓
X1

󰀓
Y − β̂1X1 − β̂2X2

󰀔󰀔
= En

󰀓
X1

󰀓
Y − β̂1X1 − β̂2γ̃X1

󰀔󰀔

So we have the first order condition from regression Y on X1 only. We can conclude that the slope coefficient
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from that regression is
β̃ = β̂1 + γ̃β̂2

If there is a causal interpretation of the projection of Y onto (X1, X2), then the difference term γ̃β̂2 is (the
sample analog of) the omitted variable bias incurred by omitting X2.
Remark. We haven’t even really introduced the idea of random variables and expectation yet. The word
bias here is really loose, and doesn’t make sense in the world of projection. However, in the real economic
word, it makes a lot of sense in most contexts – in that case, you are saying that the omitted variables
systematically bias the estimator in some direction.
Example. Frisch-Waugh(-Lovell) General Statement We can now do the same thing, more generally. Par-
tition as follows:

X =

󰀕
X1

X2

󰀖
; EXX ′ ≡ Q =

󰀕
Q11 Q12

Q21 Q22

󰀖
=

󰀕
EX1X

′
1 EX1X

′
2

EX2X
′
1 EX2X

′
2

󰀖

EXY ≡ QXY =

󰀕
Q1Y

Q2Y

󰀖
=

󰀕
EX1Y
EX2Y

󰀖

and use notation Q̂11 (etc) for sample analogs. Then, it can be shown that

β̂ =

󰀳

󰁅󰁃

󰀓
Q̂11 − Q̂12Q̂

−1
22 Q̂21

󰀔−1 󰀓
Q̂1Y − Q̂12Q̂

−1
22 Q̂2Y

󰀔

󰀓
Q̂22 − Q̂21Q̂

−1
11 Q̂12

󰀔−1 󰀓
Q̂2Y − Q̂21Q̂

−1
11 Q̂1Y

󰀔

󰀴

󰁆󰁄

Regressing X1 on X2 would yield coefficients γ̂ ≡ Q̂−1
22 Q̂21 and residuals η̂ ≡ X1 − X2Q̂

−1
22 Q̂21. Hence, we

have that

Enη̂
2 = EnX

2
1 + Q̂12Q̂

−1
22 EnX

2
2 Q̂

−1
22 Q̂21 − 2EnX1X2Q̂

−1
22 Q̂21

= Q̂11 − Q̂12Q̂
−1
22 Q̂21

By similar algebra, Enη̂Y = Q̂1Y − Q̂12Q̂
−1
22 Q̂2Y . It follows that if we projected Y on the residual from

regressing X1 on X2, we would get coefficient β̃, where

β̃1 =
󰀓
Q̂11 − Q̂12Q̂

−1
22 Q̂21

󰀔−1 󰀓
Q̂1Y − Q̂12Q̂

−1
22 Q̂2Y

󰀔
= β̂1

Remark. Verbally, the multivariate OLS coefficient on X1 is the coefficient one would get by regressing Y
on the residual from regressing X1 on all other covariates. We can show that this statement remains true if
we replace Y with the residual Y −PX2(Y ), where PX2 is the population projection onto X2. This may look
like a curiosity now, but is an important starting point for partially linear models and other such things.
An immediate payoff is that if you recall it, you’ll never forget the own-variance formula for multivariate
regression coefficients.

There are two ways to interpret OLS. Neither of them are uniquely ‘right’, but you should always be clear
about which one you are appealing to. The Best Linear Prediction is an interpretation that makes sense under
extremely general conditions. It’s the notion of a linear model that is generalized in most predictive (notably,
data science / statistical learning) applications. The Causal (or Structural) Linear Model is more demanding,
but allows for causal interpretation. It’s the notion of linear model that is generalized in most causal (for
example, Instrumental Variables) applications. Note that this does not preclude predictive application of
linear models as a component of causal inference. A salient example is the “first stage” in IV regression.

Best Linear Prediction. Write Y = m(X) + ε, where m(x) ≡ E(Y | X = x). That E(ε | X) = 0
is now a tautology. We can show that b󰂏 ≡ (EXX ′)−1E(XY ), if it exists, minimizes E(Y − X ′b)2. That
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is, Ŷ ≡ PXY ≡ X ′b󰂏 is the best linear predictor under square loss. Furthermore, under these conditions,
EXe = 0, where e ≡ Y − PX(Y ), meaning that the projection error e is not correlated with X.
Theorem 1.1. If a weak law of large numbers applies to both 1

n

󰁓n
i=1 XiX

′
i and 1

n

󰁓n
i=1 XiYi and EXX ′ is

nonsingular, then b󰂏 is uniquely defined and β̂
p→ b󰂏.

Remark. The best linear predictor Ŷ is uniquely defined even if EXX ′ is singular. In that case, b󰂏 is not
unique. This is really important for models with lots of covariates – think in statistical learning / machine
learning.

The (Causal/Structural) Linear Model Write Y = X ′β + ε, where E(ε | X) = 0. Equivalently,
m(x) = E(Y | X = x) = x′β. In this version, E(ε | X) = 0 is not tautological! Our assumptions become
much stronger. To be precise, we are assuming that (i) ε is mean-independent of X, and (ii) the mean of ε is
zero. These are new assumptions! We pay a large cost, but there are also large benefits. This model allows
for causal interpretation of the estimand: in expectation, a change ∆X causes a corresponding change ∆X ′β
in Y . Importantly, this difference isn’t just about interpretation – some important results are only available
under the stronger assumptions.
Remark. Remember that within limits, a linear model can capture nonlinearities. Some examples:

1. Polynomial expansion:
Y = β0 + β1H + β2H

2 + · · ·+ ε

2. Log or log-log regression:

lnY = lnA+ α lnK + (1− α) lnL+ · · ·+ ε

(Note! This changes the necessary assumption on ε, as in the primal it is now multiplied by the
covariates)

3. Treatment effects with interactions:

Y = β + δ · treatment + γ · female · treatment + · · ·+ ε

Indeed, many “big data” models are high-dimensional but linear! Think of basically any machine learning
context.

OLS as a Random Variable. The central questions are: What can we say about the estimator as a
random variable? Are there conditions under which it has desirable properties, notably if our objective is to
learn about β (or possibly the population PX(Y ))?

Consider drawing n samples and taking βi, for i ∈ {1, . . . , n} to be a random variable. If we show the
histogram (in the slides) of these {βi}, we can see that as n increases they tend to look normal! However,
this is not necessarily a central limit theorem. Actually, the distribution of the estimators will approach
the distribution of the error terms as n increases, under weaker assumptions. However, we assume normally
distributed errors a lot.
Remark. We had a small aside to wonder whether we think of the vertical squared distance between each
point and the line, or the shortest distance between the point and the line squared. The second is actually
different from OLS – it’s precisely principal component analysis!
Remark. What if we minimized the horizontal distance? Then we would get the projection of X onto Y
rather than vice versa – called reverse regression. This is expanded on a lot in the first homework – basically,
the coefficients are normalized to the variances of X and Y respectively. They are the same if and only if
Var(X) = Var(Y ).
Remark. What if we minimize absolute values instead of squares? That would be median regression – at
a population level, the median will solve this problem. By using other loss functions, we could tease out the
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other quantiles, and by using all of them we would get quantile regression, where we treat the quantiles as
being heterogeneously treated.

For finite sample theory, we will make the following assumptions:
Assumption 1.1. In data matrix notation, we have that

1. Y = Xβ + ε ‘linearity’

2. E(ε | X) = 0 ‘strong exogeneity’

3. rank(X) = K a.s., where X ∈ Rn×K ‘rank condition’ (equivalent: X ′X nonsingular a.s.)

4. E(εε′ | X) = σ2In ‘spherical error’

The first two assumptions together imply a causal linear model. Assumptions that are natural when con-
sidering OLS as the ‘best linear predictor’ do not suffice to attain unbiasedness of β̂. These further imply
that ε is zero in expectation conditional on all covariates – including past and future realizations. That’s
quite strong, but matters a lot more in time series econometrics. If we assume the data are i.i.d., this is not
stronger than the earlier assumption that they are independent vector-wise.

The third assumption is an identification condition, and will fail if any covariates are linearly dependent on
each other. We already talked about this previously, but note that in finite samples we are immediately
excluding discrete covariates! Though the probability may be small, it doesn’t meet the criterion for almost
surely. We may describe β̂ as ‘conditionally unbiased’, where we are conditioning on X.

Assumption four combines conditional uncorrelatedness and homoskedasticity of errors. The latter makes
sense only in the causal model because, even if the true regression error ε = Y − m(X) is homoskedastic,
the projection error

e = Y − PX(Y ) = Y −m(X) +m(X)− PX(Y ) = ε+m(X)− PX(Y )

is not.

We have a hidden assumption that E󰀂X󰀂2 < ∞. This is an existence result, and not so strong generally –
if we assume X is non-stochastic, nothing here relies on it. It is an assumption, however.

These assumptions give us the following theorems:
Theorem 1.2. Finite Sample Bias and Variance Under Assumptions 1.1, we have that

1. E
󰀓
β̂ | X

󰀔
= β

2. Var
󰀓
β̂ | X

󰀔
= σ2(X ′X)−1

i.e. β̂ is unbiased and its variance is determined.

Proof. We first observe that

β̂ = (X ′X)−1X ′Y = (X ′X)−1X ′(Xβ + ε) = β + (X ′X)−1X ′ε󰁿 󰁾󰁽 󰂀
= estimation error

Therefore, the first two claims are that

E
󰀓
(X ′X)

−1
X ′ε | X

󰀔
= 0

Var
󰀓
(X ′X)

−1
X ′ε | X

󰀔
= σ2(X ′X)−1
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We have directly that
E
󰀓
(X ′X)

−1
X ′ε | X

󰀔
= (X ′X)

−1
X ′ E(ε | X)󰁿 󰁾󰁽 󰂀

=0

= 0

Var
󰀓
(X ′X)

−1
X ′ε | X

󰀔
= (X ′X)−1X ′σ2InX

′(X ′X)−1 = σ2(X ′X)−1

Theorem 1.3. Gauss-Markov Theorem Under Assumptions 1.1, if an estimator β̃ is linear (in Y ) and
unbiased, then

Var(β̃ | X) ≥ σ2(X ′X)−1

Proof. We assume that β̃ = CY for some C (that may depend on X). Define D ≡ C − (X ′X)−1X ′, and
we have that

β = E
󰀃
((X ′X)−1X ′ +D)Y | X

󰀄
(Unbiased)

= β + E (DY | X)

= β + E (D(Xβ + ε) | X)

= β + E (DXβ | X) +DE(ε | X)󰁿 󰁾󰁽 󰂀
=0

=⇒ E(DXβ | X) = 0

This result is only possible if conditional on X the expression DXβ is non-stochastic – we have that DXβ = 0
for any β! This holds only if DX = 0. So finally, we have

Var(β̃ | X) = Var
󰀃
((X ′X)−1X ′ +D)Y | X

󰀄

= Var
󰀃
((X ′X)−1X ′ +D)(Xβ0 + ε) | X

󰀄

= Var
󰀃
((X ′X)−1X ′ +D)ε | X

󰀄

= σ2((X ′X)−1X ′ +D)((X ′X)−1X ′ +D)′

= σ2
󰀃
(X ′X)−1X ′X(X ′X)−1 +DX(X ′X)−1 + (X ′X)−1X ′D′ +DD′󰀄

≥ σ2(X ′X)−1 = Var(β̂)

where the conclusion follows from the fact that DD′ is positive semi-definite.
Question. Is homoskedasticity necessary for this result?
Answer. Yes! Consider the case where Eεε′ = Ω is known and diagonal but its diagonal entries are not the
same. Then the Gauss-Markov assumptions apply to the transformed model

Ω− 1
2Y = Ω− 1

2X + Ω− 1
2 ε

so the estimator
β̂WLS = (X ′Ω−1X)−1X ′Ω−1Y

is the best linear unbiased estimator. However, β̂WLS = β̂ if and only if Ω = σ2In for some σ2. This is called
the Weighted Least Squares estimator, which in this case would perform better than OLS.

Some important closed-form expressions Consider a simple linear regression Y = α+ βX + ε. Then
we have that:

β̂ =

󰁓n
i=1(Xi − X̄)(Yi − Ȳ )󰁓n

i=1(Xi − X̄)2
=

󰁓n
i=1(Xi − X̄)Yi󰁓n
i=1(Xi − X̄)Xi
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Var
󰀓
β̂ | X

󰀔
=

σ2

󰁓n
i=1(Xi − X̄)2

where σ2 is the variance of ε. In a multivariate regression, the variance of the kth component of β̂ is

Var
󰀓
β̂k | X

󰀔
=

σ2

(1−R2
k)

󰁓n
i=1(Xki − X̄k)2

where R2
k is the R2 of the regression of Xk on the other covariates. Why is this obvious? Frisch-Waugh-Lovell,

of course! The factor 1/(1−R2
k) is sometimes called the variance inflation factor (VIF).

Remark. Know the expression for the variance of the kth component of β̂ by heart! You should internalize
it from Frisch-Waugh-Lovell.

We also have sample analogs and estimators for σ2: The sample analog (which is a method of moments
estimator) of σ2 is

σ̂2 ≡ 1

n
ε̂′ε̂ =

1

n

n󰁛

i=1

ε̂2i

However, we can also show (exercise?) that E(σ̂2 | X) = n−K
n σ2. Why? Heuristically, the random variable

ε̂ has only (n − K) degrees of freedom because it is constrained by the K equations X ′ε̂ = 0. It is more
common to use the unbiased

s2 ≡ 1

n−K

n󰁛

i=1

ε̂2i

Estimators of the standard deviation are often important. We will call them standard errors.
√
s2 is the

standard error of the regression, and SE(β̂) = (s2
󰀅
(X ′X)−1

󰀆
kk
)1/2 is the standard error of β̂k.

Remark. We cannot claim that these estimators are unbiased! Further, the use of ‘standard error’ is
dominant in econometrics, but other disciplines1 ‘standard error’ and ‘[sampling] standard deviation’ may
be synonyms. In this case, we use ‘estimated standard errors’.
Remark. The spherical error assumption was only (fully) used for the variance expressions (and Gauss-
Markov). Recall that from the algebra:

β̂ = β + (X ′X)−1X ′ε󰁿 󰁾󰁽 󰂀
=estimation error

=⇒ Var(β̂ | X) = (X ′X)−1X ′ E(εε′ | X)󰁿 󰁾󰁽 󰂀
=D

X(X ′X)−1

Spherical error (D = σ2In) leads to simplification, but as long as we can estimate D, it is not necessary.
Recall that

Var(β̂ | X) = (X ′X)−1

󰀣
n󰁛

i=1

XiX
′
iε

2
i

󰀤
(X ′X)−1

Assuming only heteroskedasticity (i.e. D remains diagonal), we have the oracle estimator

V̂aroracle(β̂ | X) ≡ (X ′X)−1

󰀣
n󰁛

i=1

XiX
′
iε

2
i

󰀤
(X ′X)−1

1Statistics...
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This is an unbiased estimator, but is not available. Plugging in ε̂i leads to a plausible estimator:

V̂arHC0(β̂ | X) ≡ (X ′X)−1

󰀣
n󰁛

i=1

XiX
′
i ε̂

2
i

󰀤
(X ′X)−1

This is biased, which motivates a degree of freedom adjustment:

V̂arHC1(β̂ | X) ≡ n

n−K
(X ′X)−1

󰀣
n󰁛

i=1

XiX
′
i ε̂

2
i

󰀤
(X ′X)−1

There are a ton of similar estimators. HC0 is the original (Eicker-White) heteroskedasticity robust variance
estimator, and HC1 is the industry standard (i.e. it is the STATA default). Neither is obviously best, and
Hansen has some other options. In applied work, these are dominant because homoskedasticity is rarely
plausible. Using weighted least squares is technically possible, but rarely used because it requires knowing
ex ante the structure of the heteroskedasticity. Clustered standard errors are similar to this, though we omit
them for now.

From here on, we will make the following (strong) assumption:
Assumption 1.2. ε has a normal distribution:

(ε | X) ∼ N (0,σ2In)

With this, we have the following:
Theorem 1.4. Define s2 = (Y−Xβ)′(Y−Xβ)

n−K and let the matrix R ∈ Rr×K have maximal rank r ≤ K. Under
Assumptions 1.1 and 1.2, we then have

(β̂ − β) | X ∼ N (0,σ2(X ′X)−1)

and:

t–ratio = t ≡ β̂k − βk
󰀃
s2

󰀅
(X ′X)−1

󰀆
kk

󰀄1/2 ∼ tn−K

F–statistic = F ≡ (Rβ̂ −Rβ)′(R(X ′X)−1R′)−1(Rβ̂ −Rβ)

s2r
∼ Fr,n−K

Thus, the null hypothesis H0 : Rβ = r can be tested with exact size control by comparing

(Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r)

s2r

to the relevant quantiles of Fr,n−K , etc.

Proof. The first part, from section: We showed earlier that β̂ = β + (X ′X)−1X ′ε, so

E[β̂ − β | X] = E[β̂ | X]− β = β + (X ′X)−1X ′ E[ε | X]󰁿 󰁾󰁽 󰂀
=0

−β = 0

and
Var(β̂ − β | X) = Var(β̂ | X) = σ2(X ′X)−1

Conclusion follows by also noting that the sum of normally-distributed random variables.

The rest follows directly from the definitions of the relevant distributions, and our assumptions on R.
Remark. Recall that the t-distribution converges quickly to the standard normal as degrees of freedom
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increase, but the quantiles (and thus associated critical values) can be quite different under small degrees of
freedom.
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2 The Linear Model in Large Samples

We will now look at large sample (asymptotic) theory; results will be weaker in that they maximally only
hold almost surely (i.e. we care about stochastic convergence). However, our assumptions are also a lot
weaker:
Assumption 2.1. (X,Y ) are i.i.d., EY 2 < ∞ and E󰀂X󰀂2 < ∞, and E(XX ′) is positive definite.
Remark. These assumptions suffice for the projection coefficient to be well-defined: b󰂏 ≡ (EXX ′)−1EXY .
We have:
Theorem 2.1. Under Assumptions 2.1, we have:

β̂ ≡ (EnXX ′)−1EXY
p→ b󰂏

Proof. By the weak law of large numbers, we have that EnXX ′ p→ EXX ′ and EnXY
p→ EXY . By the

Continuous Mapping Theorem, it follows that (EnXX ′)−1 p→ (EXX ′)−1, since as n increases EnXX ′ is
nonsingular with probability approaching 1. The claim follows directly from Slutsky’s Theorem.

We have not yet used any assumptions that set the structural linear model apart from the best linear predictor
under square loss interpretation, but we’ve made no causal claims. However, the asymptotics apply to both!

We must assume the following to make causal claims, if the linear model Y = X ′β + ε is maintained:
Assumption 2.2. EXε = 0, also called predetermination. Additionally, we strengthen the moment assump-
tion: EY 4 < ∞ and E󰀂X󰀂4 < ∞.
Remark. This is significantly weaker than the unbiasedness assumption – we only need that ε is uncorrelated
with the contemporaneous regressors. This ensures that b󰂏 = β (and, by implication, consistency):

b󰂏 = (EXX ′)−1EXY = (EXX ′)−1EX(X ′β + ε) = β + (EXX ′)−1EXε = β

We could alternatively show consistency from scratch using this assumption, the way Hayashi does.

To look at the asymptotic distribution, note that

β̂ = (EnXX ′)−1EnXY = (EnXX ′)−1EnX(Xb󰂏 + e)

=⇒ β̂ − b󰂏 = (EnXX ′)−1EnXe

where b󰂏 is the population projection coefficient and e is the (true underlying) projection error. By prede-
termination, (EnXX ′)−1EnXe

p→ 0. However, there is the suggestion of an asymptotic result – it seems
natural that √

n(EnXe)
d→ N (0,Ω) = N (0,E(XX ′e2))

where the last equality just defines Ω. If that were the case, we would easily have that

√
n(β̂ − b󰂏)

d→ N (0, (EXX ′)−1Ω(EXX ′)−1)

This derivation is basically true.2 We just need to ensure that all terms exist. For this, our stronger
Assumptions 2.2 suffice. If the kurtosis exists, we can argue that Ω is finite, by repeatedly using Cauchy-
Schwartz. For any one element of Ω,

|E(XkXℓe
2)| ≤ E|XkXℓe

2| = E(|Xk||Xℓ||e2|)
≤ (EX2

kX
2
ℓ )

1/2(Ee4)1/2 ≤ (EX4
k)

1/4(EX4
ℓ )

1/4(Ee4)1/2 < ∞
2‘Morally true’ - Jörg
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we finish by writing

√
n(β̂ − b󰂏)

d→ (EXX ′)−1N (0,Ω) = N (0, (EXX ′)−1Ω(EXX ′)−1)

where we again use Slutsky and the properties of normal distributions. Formally, we have:
Theorem 2.2. With Assumptions 2.1 and Assumptions 2.2, we have that

√
n(β̂ − b󰂏)

d→ N (0, aVar(β̂))

where aVar(β̂) = (EXX ′)−1Ω(EXX ′)−1)

[ = Q−1
XXΩQ−1

XX = Σ−1
XXΩΣ−1

XX ]

Proof. A generalization of above.
Remark. Note that we are not assuming a linear model here! We actually get this result under relatively
limited assumptions, we only need that the moment conditions exist. If we want to get inference results, we
need more, but as a projection result this still holds.
Definition. aVar is the asymptotic variance, the variance of the limiting distribution. In general, this is not
necessarily the asymptotic limit of an estimator’s squared variance, though the current assumptions suffice.
Remark. This theorem provides the joint asymptotic distribution of estimates. The information contained
in joint normality is relevant for:

1. Inference on a linear combination of estimates, e.g. their sum or difference. This could also be achieved
by reparameterization, but that’s impractical.

2. Joint inference, i.e. confidence ellipsoids, on several coefficients

3. Inference on a known, differentiable function of β through the Delta method (conceptually straightfor-
ward, but very important in practice! See the textbook for an example worked through)

4. Conservative inference on a known, nondifferentiable function of β through projection (i.e. operate
the function on ever b in the confidence ellipsoid). In structured cases, you may be able to improve on
this – ask Jörg if this question arises in your research!

Remark. Results in this course hold pointwise as n → ∞ for given parameter values, not uniformly over
parameter values. How big of a problem is this? With some more effort, most results in this course are
available uniformly in ‘nice’ cases. However, there are several cases that are not nice and are empirically
relevant: (i) estimators that can be corner solutions of their problems, (ii) estimation of maxima, (iii) rare
events, and (iv) post-model selection estimation and inference. In these, pointwise perspectives can be quite
misleading.
Theorem 2.3. Under Assumptions 2.1 and Assumptions 2.2, we have that

ˆaVarHC0 ≡ (EnXX ′)−1Ω̂(EnXX ′)−1 p→ aVar(β̂)

where Ω̂ := En[XX ′ε̂2], and similarly for HC1, and so on. Basically, all of these are consistent.

Proof. (Sketch) The bottleneck is the consistency of Ω̂. Write:

Ω̂ =
1

n

n󰁛

i=1

XiXiê
2
i =

1

n

n󰁛

i=1

XiX
′
ie

2
i

󰁿 󰁾󰁽 󰂀
p→Ω

+
1

n

n󰁛

i=1

XiXi(ê
2
i − e2i )

󰁿 󰁾󰁽 󰂀
p→0

That the rightmost term disappears can be shown through (tedious) repeated use of Cauchy-Schwartz and
Hölder.
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Proof. (Assuming Homoskedasticity) If we assume that E(e2 | X) = σ2, then we have the simplification

aVar(β̂) = (EXX ′)−1σ2

and showing the consistency of
ˆaVar(β̂) = (EXX ′)−1s2

is simple, and requires weaker assumptions (specifically, second moments suffices). However, recall that this
makes sense only for a structural linear model (and is still restrictive).

Inference. Let r : Rk → R be a continuously differentiable function with ∇r(·) = R(·) (the easiest
example is where r extracts a component of β). Define θ = r(β) and θ̂ = r(β̂). By Delta Method, standard
convergence results, and Slutsky, we have

√
n(θ̂ − θ)

d→ N (0, aVar(θ̂))

aVar(θ̂) = R(β) aVar(β̂)R(β)′

ˆaVar(θ̂) ≡ R(β̂) aVar(β̂)R(β̂)′
p→ R(β) aVar(β̂)R(β)

=⇒ t(θ) ≡ θ̂ − θ

SE(θ̂)
≡

√
n(θ̂ − θ)

󰀓
R(β̂) ˆaVar(β̂)R(β̂)′

󰀔1/2

d→ N (0, 1)

This is the asymptotic t-statistic. For this to hold, we need that aVar(θ̂) is finite. A sufficient condition is
that R(β) ∕= 0 and that aVar(β̂) has full rank.
Definition. Dividing by the standard error like this is called studentization. It ensures that the asymp-
totic distribution does not depend on unknown parameters, ensuring that the t-statistic (and others) are
asymptotic pivots.

The previous result lets us create hypothesis tests and confidence intervals where the asymptotic sizes
converge. Let Φ(·) denote the standard normal cdf and define the quantiles Φ−1(1− α) := cα. Then

P{|t(θ)| ≤ cα/2}
p→ 1− α

P{t(θ) ∈ CIα(θ)}
p→ 1− α

CIα(θ) =
󰁫
θ̂ − cα/2 · SE(θ̂), θ̂ + cα/2 · SE(θ̂)

󰁬

and we compute one-sided confidence intervals similarly. If r(β) = p′β for some known vector p, then
R(·) = p′ and the t-statistic simplifies to

t(θ) ≡ θ̂ − θ

SE(θ̂)
=

√
n(θ̂ − θ)

󰀓
p′ ˆaVar(β̂)p

󰀔1/2

If p is a basis vector, this further simplifies the t-statistic for an individual coefficient. Choices like p =
(0, 1,−1, 0, . . . , 0) lets us test the equality of two coefficients.

Under the causal linear model, another application is to p = x, in which case θ = E(Y | X = x), which is
called a regression interval. Note that the standard error depends on x and will be smaller for more central
values of x.
Remark. The regression interval is not a forecast confidence interval! For forecast intervals, we must take
εt into account.

We can generalize this to θ = r(β) where r : Rk → Rq is vector-valued. With this, R(·) is now the Jacobian

14



of r, we have that

√
n(θ̂ − θ)

d→ N (0, aVar(θ̂))

aVar(θ̂) = R(β) aVar(β̂)R(β)′

ˆaVar(θ̂) ≡ R(β̂) aVar(β̂)R(β̂)′
p→ R(β) aVar(β̂)R(β)

=⇒ W (θ) ≡
√
n(θ̂ − θ)′( ˆaVar(θ̂))−1

√
n(θ̂ − θ)

d→ χ2
q

This is the Wald statistic. It can induce confidence regions similarly to the confidence intervals above
– however these are ellipsoids. These will be appropriate if one is genuinely interested in simultaneous
inference of several scalars, and their projections onto the axes will be valid but (possibly very) conservative
confidence intervals.
Remark. A sufficient condition for this to hold is that both R(β) and aVar(β̂) are full-rank, which would
mean that the hypotheses must be (locally) linearly independent at the truth – for linear hypotheses, this is
easy to check and a global property.
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3 Instrumental Variables

Remark. Instrumental variables are of huge importance across economics, and are one of the greatest
contributions of econometrics to empirical methods across science. They are actively used in causal inference
across disciplines, specifically in biostatistics. Their appeal is that they allow for causally interpretable
estimates if we think that (i) the linear model (or generalizations) is structural so β has causal interpretation,
but (ii) ε correlates with X, because it absorbs relevant omitted variables. Of course, this remarkable result
requires strong assumptions.
Model. For simplicity, consider simple linear regression

Y = β0 + β1X + ε

where we cannot assets that EXε = 0. The interpretation is that β1 has a causal interpretation, but we
could not estimate all relevant covariates. Now suppose that we have a random variable Z with the following
properties:

cov(Z,X) ∕= 0󰁿 󰁾󰁽 󰂀
Relevance

and cov(Z, ε) = 0󰁿 󰁾󰁽 󰂀
Validity

This implies that
cov(Z, Y )

cov(Z,X)
=

β1 cov(Z,X) + cov(Z, ε)

cov(Z,X)
= β1

Example. (Ginburgh & van Ours (2003)) Y is the career success of a classical musician, X is their placement
in a prestigious competition for young musicians, and Z is the order of appearance at the competition. The
effect of X on Y is interesting, but ‘talent’ impacts both. However, appearing late in the competition
(verifiably) predicts success! Since order of appearance is random, it serves as an instrumental variable (or
just instrument).
Definition. Relevance requires that cov(Z,X) ∕= 0. We need there to be some instrument-induced variation
to play around with. Otherwise, we could pay a research assistant to flip coins all day and use that as an
instrument.

Relevance must be testable. The covariance is consistently estimated with its sample analog. Indeed, it is
standard practice to report the F -statistic from a ‘first-stage regression’ of X on Z.
Definition. Validity requires that cov(Z, ε) = 0. We need the instrument-induced variation to be exogenous.
Otherwise, we could just use X as an instrument for itself.

Validity is not testable. This will change once we have more instruments than regressors.
Definition. We can illustrate causal models using Directed Acyclic Graphs (DAG). Arrows read as ‘causes...’.
The traditional OLS graph is Figure 2.

Z

Y

εX

Figure 2: OLS DAG. The r.v. Z plays no role, and cov(X, ε) = 0.

If X is endogenous, the DAG may look like Figure 3.
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Z

Y

εX

Figure 3: OLS DAG. The r.v. Z plays no role, but cov(X, ε) ∕= 0.

The typical DAG representation of instrumental variables is Figure 4.

Z

Y

εX

Figure 4: IV DAG. cov(Z,X) ∕= 0, cov(Z, ε) = 0, and cov(X, ε) ∕= 0.

Example. Instrumental variables in medical statistics: Mendelian randomization is an instrumental vari-
ables technique. The idea is that, in our terminology, genetic variation exogenous. Think about Y = coronary
disease, X = HDL cholesterol level, and ε = confounders (of which there are many – diet and lifestyle heavily
affect HDL cholesterol level). If we have some genetic variant Z that increases HDL cholesterol level, we
can use that as an instrument. The bottleneck assumption is that Z affects only HDL cholesterol level, not
coronary disease.
Example. Some famous3 examples:

1. Wright (1928) was the first example – he wanted to estimate supply and demand elasticities for veg-
etable oils, but realized that quantities and prices are equilibrium quantities and prices, so endogenous.
He used demand shifters (price changes of substitutes) and supply shifters (weather) as instruments.
He averaged the estimators, which is something we would do now.

2. Angrist & Krueger (1991) aim to estimate the returns to compulsory schooling, but selection into
schooling is correlated. They instrument it by quarter of birth, where a different quarter may lead to
another year ‘exposed’ to compulsory schooling.

3. Angrist & Evans (1998) want to estimate the effect of having children on female labor force participa-
tion, but the decision to have children is endogenous. They instrument with gender of children – this
is clearly random, but some parents prefer to have children of both genders so if they have two of the
same, they are more likely to have a third than if the two are different genders.

4. Card (1993,5) looks to estimate the returns to college education, but college attendance is endogenous.
He instruments college attendance with distance from a college growing up, which may be pivotal in
attendance decisions.

Definition. We will derive the IV estimator as a Generalized Method of Moments (GMM) estimator. Recall
3Note! Famous ∕= good!
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the method of moments: If we assume

Y = X ′β + ε,EXε = 0 =⇒ E(X(Y −X ′β)) = 0

then a natural idea for estimating β is to solve the empirical moment condition

En(X(Y −X ′β̂)) = 0

which clearly yields the OLS estimator (as the above is the FOC of the minimization problem). However,
if we assume that EXε ∕= 0, then OLS will be inconsistent for β because it will estimate the projection
coefficient

b󰂏 = (EXX ′)−1EXY = β + (EXX ′)−1EXε

However, if we also observe a random k-vector Z with EZε = 0 and rank(EZX ′) = k, then we have the
moment condition

E(Z(Y −X ′β)) = 0 =⇒ β = (EZX ′)−1EZY

where the assumptions assume that this is well-defined. Naturally, the estimator is

β̂IV = (EnZX ′)−1EnZY

Note that
β̂IV = (EnZX ′)−1EnZY = (EnZX ′)−1EnZ(X ′β + ε) = β + (EnZX ′)−1EnZε󰁿 󰁾󰁽 󰂀

= estimation error

From here, consistency follows essentially directly as EnZε
p→ 0. However, we cannot claim unbiasedness,

even if we assume the stronger that E(ε | Z) = 0. We will defer asymptotic theory until later. Note that
some components of Z may also appear in X, because if some elements of X are unassociated with ε, they
can act as their own instruments. By setting Z = X, we consider OLS as the special case of X instrumenting
itself.

In the simple linear model, when X and Z are scalars, the IV slope estimator can be expressed as
󰁓n

i=1(Zi − Z̄)(Yi − Ȳ )󰁓n
i=1(Zi − Z̄)(Xi − X̄)

The data matrix expression is, naturally, β̂IV = (Z ′X)−1Z ′Y . For an application, consider regressing X on
Z and then Y on X̂. In data matrix notation, we have

β̃ = (X̂ ′X̂)−1X̂ ′Y

= ((Z(Z ′Z)−1Z ′X)′(Z(Z ′Z)−1Z ′X))−1(Z(Z ′Z)−1Z ′X)′Y

= (X ′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y

= (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y

= (Z ′X)−1Z ′Z(X ′Z)−1X ′Z(Z ′Z)−1Z ′Y

= (Z ′X)−1Z ′Y = β̂IV

Remark. The IV estimator can be thought of as a two-stage model where we project X onto Z and then
project Y onto the fitted values X̂. This gives some straightforward intuition – we exploit only the variation
in X that is due to4 variation in Z. This interpretation is closely related to the DAG interpretation, and it’s
why the regression of X on Z is often called the first-stage regression. It is usually reported and should be
highly significant – a rule of thumb is that F ≥ 10 for the overall first-stage regression.

4In a correlative sense, we have not made causal claims. We will return to this when thinking about machine learning and
optimal instruments.
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Also note that this does not require Z and X to be the same length – we can use more instruments than
regressors. However, a caveat:
Definition. If Z ′X is not square (but assuming it still has maximal rank!) the algebraic deviation becomes

β̃ = (X̂ ′X̂)−1X̂ ′Y

= ((Z(Z ′Z)−1Z ′X)′(Z(Z ′Z)−1Z ′X))−1(Z(Z ′Z)−1Z ′X)′Y

= (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y = β̂TSLS

where we can go no further than the last step. This is the two-stage least squares (TSLS) estimator.
Remark. A major difference in the estimators is that for IV, Z ′ε̂ = Z ′(Y −Xβ̂) = 0 by construction. Can
this also be true in TSLS? No! With ℓ > k instruments, this is ℓ linear equations in k unknowns. This has
some major implications: the estimator cannot set Z ′ε = 0, but we can show that the estimator minimizes
(in b) 󰀂Z ′(Y − Xb)󰀂 for some norm, not necessarily the best norm. However, the validity of instruments
becomes testable – in large samples, we should have that 1

nZ
′ε̂ ≈ 0. These considerations lead us from two-

stage least squares to the generalized method of moments. Detailed asymptotic characterization of TSLS
follows from GMM.

We can think about asymptotics of the simple instrumental variable case, where

Y = β0 + β1X + ε

where (Y,X, z) are scalars, and we make the further assumption of homoskedasticity.5 From previous algebra,
we get that

√
n(β̂IV

1 − β1) =

√
n 1

n

󰁓n
i=1(Zi − Z̄)εi

1
n

󰁓n
i=1(Zi − Z̄)(Xi − X̄)

=

√
n 1

n

󰁓n
i=1(Zi − EZ)εi

1
n

󰁓n
i=1(Zi − EZ)(Xi − EX)

+ oP (1)

d→ N (0,σ2
Zσ

2)

ρσZσX
= N

󰀕
0,

σ2

ρ2σ2
X

󰀖

We can compare this directly to
√
n(β̂OLS

1 − β1)
d→ N

󰀕
0,

σ2

σ2
X

󰀖

So the asymptotic variance of the IV estimator has the first stage explained variation in the denominator.
Remark. This is not a result about finite sample variance! In fact, the finite sample variance of the IV
estimator does not exist.

A corollary of this result is that the IV estimator has higher asymptotic variance, as a trade-off to bias.
If ρ2 = 1, the two asymptotic variances coincide (in fact, the estimators algebraically coincide – this is
equivalent to using X as an instrument for itself). The asymptotic variance diverges to ∞ as ρ → 0, which
suggests some intuition about weak instruments.
Definition. A weak instrument is an instrument Z where corr(Z,X) ≈ 0, meaning that the instruments
explain very little of the variation in X.
Example. (Following Staiger & Stock (1997)) To formally model a weak instrument, set ρn = ρ√

n
. Asymp-

totic approximation is powerful – it allows us to invoke CLT and other results. However, in a pointwise
perspective as it trivializes the problem as previous asymptotics hold for any ρ ∕= 0. Parameter drift allows
us to invoke asymptotic approximations without approximating away the problem. Compare to Pitman Drift
for analyzing the local power of hypothesis tests. The idea is not that parameters actually change with n.

5We make this assumption because (i) the asymptotic variance is instructive, and (ii) it allows us to formally characterize
weak instruments.
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Rather, the idea is to internalize the intuition that whether an instrument is weak depends on ρ in relation
to n. See Goldberger on micronumerosity for more on this.

We will develop this for scalar (X,Z). See Hayashi for a general statement. The first- and second stage
regressions are

Y = β0 + β1X + ε

X = γ0 +
γ1√
n
Z + η

Then

β̂1 − β1 =

√
nEn(Z − Z̄)ε√

nEn(Z − Z̄)(X − X̄)

but

√
nEn(Z − Z̄)(X − X̄) =

√
nEn(Z − Z̄)

󰀕
γ0 +

γ1√
n
Z + η

󰀖

= γ1En(Z − Z̄)Z󰁿 󰁾󰁽 󰂀
p→γ1σ2

Z

+
√
nEn(Z − Z̄)η

Assuming CLT applies, we attain that

β̂1 − β1
d→ a

γ1σ2
Z + b

where
󰀕
a
b

󰀖
∼ N (0,Ω)

where Ω is the variance-covariance matrix of (Zε, Zη). This estimator is inconsistent! Indeed, it converges to
a distribution. Observe that the extent of this problem scales inversely with |γ1| – as |γ1| → ∞, the problem
vanishes.
Remark. One of the examples referenced above, Angrist & Krueger (1991), has an instrument that is
arguably weak, though n is large. Bound, Jaeger, & Baker (1993) replicated some of their tables with a
random ‘instrument’ they added to the data. This spawned a large literature in weak instruments. Here at
Cornell, Pepe has done a lot of work on weak instruments.
Remark. We might think about using many instruments instead of one strong instrument. In fact, if we
let the number of instruments grow as n grows, Hansen has a formalization of the fact that that estimator
is inconsistent.
Remark. We can also encounter issues with ‘too-strong’ instruments. These do not exist in theory, but
consider the example where (i) we think that X is endogenous, and (ii) corr(Z,X) = 0.99. Theoretically
there’s no issue with this, as long as cov(Z, ε) = 0. However, that’s not testable, and intuitively it would
be very strange if Z and X were so correlated and Z would not at all be covariant with the errors. So in
practice, we often want F ≤ 25, even though in theory higher F is better.
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4 Generalized Method of Moments

The Generalized Method of Moments (GMM) and its relatives like the Method of Simulated Moments and
Indirect Inference are of great importance in applied work. This statement (and the name!) are due to
Hansen (1982), and contributed to his Nobel Prize. There were precursors to a large part of this theory,
but we will develop a fairly general statement, though we restrict attention to linear moment conditions.
Nonlinear GMM will be developed as a special case of extremum estimation.

We can think of GMM as extending TSLS in several ways:

1. Since we cannot set sample moments exactly to zero, we must choose a norm to minimize. Is there a
best norm?

2. We allow for heteroskedasticity also in the estimation stage (Heteroskedasticity robust standard errors
for TSLS are straightforward and standardly used, but we will see that in the estimation stage, TSLS
can be argued to presume homoskedasticity.)

3. We consider testing instrument validity

4. It will become clear that restricting to linear moment conditions simplifies the math but is not essential
Remark. The generalized in GMM refers to the fact that we allow for (and explore the implications of!)
overidentification, when we have more moment equations than parameters.
Definition. We know that

Eg(Y,X,Z; θ) = 0

where θ ∈ Rk and g(·) is a known smooth function mapping into Rℓ, with ℓ ≥ k. The case of ℓ > k will be
called overidentified. We will assume g(·) is linear. This is not essential.
Remark. This yields OLS, IV, TSLS, and (after generalizing to multiple outcomes) seemingly unrelated
regression equations (SURE) and simple panel data estimators as special cases. For future reference, consider
also probabilistic regression (probit) where E[X(Y −Φ(X ′β))] = 0, and best-response conditions such as Euler
equations (this was the original application of GMM, from Hansen & Singleton (1983)).

The GMM estimator is

θ̂(W ) = argmin
θ

Jn(θ)

Jn(θ) = nḡn(θ)
′Wḡn(θ)

ḡn(θ) ≡
1

n

n󰁛

i=1

g(θ; ·)

where W is a weight matrix defining the norm that we minimize. Recall that if we are overidentified, we
cannot set Jn(θ) to zero. We therefore have a family of estimators, and will think about how we optimally
choose W . The scale factor in Jn(·) is for convenience, ensuring that it converges to a non-degenerate limit.
Example. We begin with the linear case, where

g(β, ·) = Z(Y −X ′β)

This covers all of the estimators we’ve seen so far, where we might have Z = X. In data matrix notation,
the estimator minimizes

(Z ′Y − Z ′Xβ)′W (Z ′Y − Z ′Xβ)
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so the first order condition is:

−2X ′ZW (Z ′Y − Z ′Xβ̂) = 0

=⇒ X ′ZWZ ′Xβ̂ = X ′ZWZ ′Y

=⇒ β̂ = (X ′ZWZ ′X)−1X ′ZWZ ′Y
󰁫
= (S′

XZWSXZ)
−1S′

XZWsXY

󰁬

where the last line is the same in Hayashi’s notation. More instructively, if we set µ = Z ′Y and G = Z ′X,
we want to minimize

(µ−Gβ)′W (µ−Gβ)

which looks exactly like weighted least squares with k regressors, ℓ observations, and weights W , so that

β̂ = (G′WG)−1G′Wµ

We can additionally directly compare

β̂GMM (W ) = (X ′ZWZ ′X)−1X ′ZWZ ′Y

β̂TSLS = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y

so the TSLS estimator is GMM with weights (Z ′Z)−1 This raises two immediate questions: Since we have
a family of weight matrices, which one is the best? When, if ever, is that best weight (Z ′Z)−1?

We can think about the WLS example – what are the best weights in WLS? With i.i.d. data6 they are the
inverse standard deviation. More generally, the ideal W is the variance-covariance matrix of errors ε.

This raises the idea of estimating the optimal W . But didn’t we have earlier than generalized least squares is
rarely used in practice? Yes! But this example has limitations. The variance-covariance matrix of ε is n×n,
and estimating it comes with a number of additional assumptions (and/or nonparametric convergence rates).
In our WLS example, the error is η ≡ µ − Gβ, where the variance-covariance matrix is ℓ × ℓ. Estimating
that is plausible.

This result motivates two-state (efficient) GMM :

1. Compute a preliminary estimate of β to get residuals

2. Use residuals to estimate the optimal weight matrix Ŵ

3. Report a final estimate β̂GMM (Ŵ )

We will show that this procedure minimizes asymptotic variance, and if we assume homoskedasticity the
TSLS weights (Z ′Z)−1 will indeed be optimal.
Assumption 4.1. We have the following assumptions for GMM:

1. We observe i.i.d. realizations (Yi, Xi, Zi), i = 1, 2, . . .

2. E(Z(Y −X ′β)) = 0

3. E|Y 4| < ∞, E󰀂X󰀂4 < ∞, E󰀂Z󰀂4 < ∞

4. Q ≡ E(ZX ′) has full rank k

5. W is positive definite

6. Ω ≡ E(ZZ ′ε2) is positive definite.
Remark. Assumptions 4.1 are also the assumptions for TSLS, which will emerge as a special case.

6Note: excludes panel estimators!
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The GMM estimator has the following asymptotic distribution (a generalization of the algebra from OLS):

β̂GMM (W ) = (X ′ZWZ ′X)−1X ′ZWZ ′Y

= β + (X ′ZWZ ′X)−1X ′ZWZ ′ε

= β +

󰀕
1

n
X ′ZW

1

n
Z ′X

󰀖−1
1

n
X ′ZW

1

n
Z ′ε

= β + (E(XZ ′)WE(ZX ′))
−1 E(XZ ′)W

1

n
Z ′ε+ oP (1)

= β + (Q′WQ)−1Q′W
1

n
Z ′ε+ oP (1)

=⇒ β̂GMM (W )− β
p→ 0

√
n(β̂GMM (W )− β)

d→ N (0, (Q′WQ)−1Q′WΩWQ(Q′WQ)−1)

Remark. This only requires second moments, not fourth moments.

The matrix Ω = E(ZZ ′ε2) is really the variance-covariance matrix of the moment conditions. Intuitively, a
condition under which Ω has larger variance across the diagonal is noisier. In fact, in the WLS example from
before, Ω parameterizes the heteroskedasticity in our regression with ℓ observations and k parameters. This
suggests Ω−1 as the efficient weighting matrix – which we do not know, but can estimate using residuals
from a preliminary regression. Furthermore, the earlier results hold if Ŵ p→ W .
Theorem 4.1. Let Assumptions 4.1 hold, and let Ŵ p→ W 󰂏 ≡ Ω−1. Then:

1. The asymptotic variance becomes

V 󰂏 = (Q′W 󰂏Q)−1Q′W 󰂏ΩW 󰂏Q(Q′W 󰂏Q)−1

which simplifies to
V 󰂏 = (Q′Ω−1Q)−1

2. V 󰂏 as defined in (1) is the best asymptotic variance: V ≥ V 󰂏 for any other estimator (meaning that
V − V 󰂏 is positive semi-definite)7

3. V 󰂏 is only attained by estimators that are asymptotically equivalent to β̂(Ω−1).

Proof. We will show that (i) with efficient weighting, V simplifies to V 󰂏, (ii) V ≥ V 󰂏, and (iii) the inequality
is strict unless the estimators are (asymptotically) equivalent. First, write:

V = A′ΩA, where A = WQ(Q′WQ)−1

V 󰂏 = B′ΩB, where B = Ω−1Q(Q′Ω−1Q)−1

and observe that

B′ΩA = (Q′Ω−1Q)−1Q′Ω−1ΩWQ(Q′WQ)−1 = V 󰂏 = B′ΩB =⇒ B′Ω(A−B) = 0

Thus,

V = A′ΩA = (B + (A−B))′Ω(B + (A−B)) = B′ΩB󰁿 󰁾󰁽 󰂀
V 󰂏

+(A−B)′ΩB󰁿 󰁾󰁽 󰂀
0

+B′Ω(A−B)󰁿 󰁾󰁽 󰂀
0

+(A−B)′Ω(A−B)󰁿 󰁾󰁽 󰂀
p.s.d.

7This ordering is very strong! The efficient estimator will also minimize the variance of any p′θ, through linearity of the
quadratic form.
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Remark. This motivates the efficient (two-stage) GMM estimator:

β̂TSGMM ≡ β̂(Ŵ )

Ŵ ≡
󰀃
En(ZZ ′ε̂2)

󰀄−1

ε̂ = Y −Xβ̂

where β̂ is any consistent estimator of β, for example a GMM estimator with any reasonable weighting
matrix. The industry standard is TSLS.
Remark. We could also use the centered estimator

Ŵ = [En ((Z ε̂− En(Z ε̂))(Z ε̂− En(Z ε̂))′)]
−1

which literally estimates the variance, rather than the uncentered second moment of Z. The two are the
same if EZε = 0, but the centered estimator is consistent for variance even if the model is misspecified.
Remark. If we further assume homoskedasticity, so that

E(ε2 | Z) = σ2 =⇒ Ω = E(ZZ ′ε2) = σ2E(ZZ ′)

the estimator with the ideal weighting matrix simplifies:

β̂GMM (Ω−1) = (X ′Zσ−2(EZZ ′)−1Z ′X)−1X ′Zσ−2(EZZ ′)−1Z ′Y

= (X ′Z(EZZ ′)−1Z ′X)−1X ′Z(EZZ ′)−1Z ′Y

but EZZ ′ can be estimated by EnZZ ′ = 1
nZ

′Z. Because 1
n cancels from the expression, we can succinctly

write
β̂GMM (Ω−1) = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′Y = β̂TSLS

So under homoskedasticity, the efficient estimator is the two-stage least squares estimator!
Question. Should we always do Efficient GMM?

The case for efficient GMM is more compelling than for FGLS, and some results (notably specification
testing) require efficient GMM. In practice, efficient GMM is quite common. However, there are some
caveats. In finite sample, estimating Ω introduces noise. Monte Carlo simulations suggest that with small
samples and moderate heteroskedasticity, TSLS may perform better. On the other hand, estimation of Ω
could in principle be iterated, which (under conditions that guarantee convergence at least asymptotically)
removes path dependency. Implementations for this exist, but asymptotic analysis does not suggest a gain
and we might be concerned about error propagation.
Definition. With modern computing power, we could also directly compute

β̂cGMM ≡ 8 argmin
β

ḡn(β)
′Ŵ ḡn(β)

where we optimize over the criterion function and the weighting matrix at the same time. This is called
Continuous Updating GMM , and while not numerically the same estimator has the same asymptotic distri-
bution.
Question. Should we use all the instruments we can think of?

Now that we can use more instruments than regressors, we might be tempted to use all instruments we can
think of, including ‘technical instruments’ (polynomials of instruments, etc). Intuitively, we shouldn’t do
that. But what is the formal argument against? First, every instrument must be justified, so the ‘cost of
assumptions’ will increase (especially the exclusion restriction). Second, estimating another weight matrix
introduces more finite sample noise. Third, even without weighting it can be shown that TSLS is inconsistent

8Unique result under conditions, which we just assume here.
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if there are many instruments in the sense that ℓn/n → α > 0. For this, the instruments don’t even need to be
weak. Actually, in practice we should only invoke asymptotics if n ≫ ℓ, limiting the number of instruments
we can use.
Definition. What is qualitatively true in overidentified (ℓ > k) models is that the model itself can be tested!
We can actually introduce the joint validity of moments test . This works because we can (empirically) test
the assumption that the instruments are orthogonal to the sample.
Theorem 4.2. Under Assumptions 4.1, assuming the model is overspecified, then

Jn ≡ J(β̂TSGMM )
d→ χ2

ℓ−k

Remark. The intuition here is that we try and set an ℓ-vector to zero but only have k free parameters to do
so. This means we have a residual with ℓ− k degrees of freedom. If the model is well specified, the residual
is of order O(n−1/2). If (and only if!) we use the efficient weighting matrix, it is further asymptotically
multivariate standard normal in a certain (ℓ− k)-subspace. Then its square is is χ2

ℓ−k.

Proof. Previous results imply that 1
nZ

′ε = OP (n
−1/2), so we write9

Jn = n

󰀕
1

n
Z ′ε̂

󰀖′
Ω̂−1

󰀕
1

n
Z ′ε̂

󰀖

≈ n

󰀕
1

n
Z ′ε̂

󰀖′
Ω−1

󰀕
1

n
Z ′ε̂

󰀖

= n

󰀕
C ′ 1

n
Z ′ε̂

󰀖′
(C ′ΩC)−1

󰀕
C ′ 1

n
Z ′ε̂

󰀖

= n

󰀕
C ′ 1

n
Z ′ε̂

󰀖′ 󰀕
C ′ 1

n
Z ′ε̂

󰀖

where Ω−1 = CC ′ ⇐⇒ Ω(C ′)−1C−1, meaning that C is the Cholesky Root of Ω−1. Next, we have that
󰀕
C ′ 1

n
Z ′ε̂

󰀖
= C ′ 1

n
Z ′(ε−X(β̂ − β))

= C ′ 1

n
Z ′

󰀥
ε−X

󰀕󰀕
1

n
X ′Z

󰀖
Ω̂−1

󰀕
1

n
Z ′X

󰀖󰀖−1 󰀕󰀕
1

n
X ′Z

󰀖
Ω̂−1

󰀕
1

n
Z ′ε

󰀖󰀖󰀦

=

󰀥
Iℓ − C ′

󰀕
1

n
Z ′X

󰀖󰀥󰀕󰀕
1

n
X ′Z

󰀖
Ω̂−1

󰀕
1

n
Z ′X

󰀖󰀖−1 󰀕󰀕
1

n
X ′Z

󰀖
Ω̂−1

󰀕
1

n
Z ′C

󰀖󰀖󰀦󰀦
C ′ 1

n
Z ′ε

≈

󰀵

󰀹󰀹󰀹󰀷
Iℓ − C ′

󰀕
1

n
Z ′X

󰀖

󰁿 󰁾󰁽 󰂀
:=R̂

󰀥󰀕󰀕
1

n
X ′Z

󰀖
CC ′

󰀕
1

n
Z ′X

󰀖󰀖−1 󰀕󰀕
1

n
X ′Z

󰀖
CC ′

󰀕
1

n
Z ′C

󰀖󰀖󰀦
󰀶

󰀺󰀺󰀺󰀸
C ′ 1

n
Z ′ε

=
󰀓
Iℓ − R̂(R̂′R̂)−1R̂′

󰀔
C ′ 1

n
Z ′ε

≈
󰀃
Iℓ −R(R′R)−1R′󰀄C ′ 1

n
Z ′ε, where R ≡ C ′E(ZX ′)

We so far have

Jn ≈ n

󰀕
C ′ 1

n
Z ′ε̂

󰀖′ 󰀕
C ′ 1

n
Z ′ε̂

󰀖
and

󰀕
C ′ 1

n
Z ′ε̂

󰀖
≈

󰀃
Iℓ −R(R′R)−1R′󰀄C ′ 1

n
Z ′ε

9In this proof, ≈ means that we drop an oP (1) term.
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and observe that

√
nC ′

󰀕
1

n
Z ′ε

󰀖
d→ N (0, C ′ΩC) = N (0, C ′(C ′)−1C−1C) = N (0, Iℓ)

Define the random variable u ∼ N (0, Iℓ), then it follows that

Jn
d→
󰀃
Iℓ −R(R′R)−1R′󰀄′ 󰀃Iℓ −R(R′R)−1R′󰀄u ∼ χ2

ℓ−k

because Iℓ−R(R′R)−1R′ projects u onto a lower dimensional subspace. It remains to show that the subspace
is of dimension ℓ− k. This follows from the fact that Iℓ −R(R′R)−1R′ is the annihilator matrix associated
with R = C ′E(ZX ′), which has rank k and null space of rank ℓ−k. (You could use the rank-nullity condition
of idempotent matrices to prove this statement directly).
Example. Visualization of the above theorem. Consider a situation with k = 1 endogenous regressor and
ℓ = 2 instruments, where:

Ω =

󰀗
4 0
0 1

󰀘
=⇒ Ω−1 =

󰀗
1/4 0
0 1

󰀘
, C =

󰀗
1/2 0
0 1

󰀘

EZX ′ =

󰀗
1
1

󰀘
=⇒ R =

󰀗
1/2
1

󰀘

The first moment condition has four times the variance of the second, so in the WLS analogy it should be
given half of the weight. The column space of R is the line spanned by

󰀅
1/2 1

󰀆′, so its null space is the line
spanned by

󰀅
−1 1/2

󰀆′. Visually, we have Figure 5.

Figure 5: Column Space and Null Space of R in a simple example. An element is projected onto the column
space, leaving residuals in the null space that are also standard normal.

Definition. Let θ = r(β) and θ̂ = r(β̂) for some function r : Rk → Rq, where r ∈ C1. Suppose also that
R(β) = ∂r(β)

∂β′ has full rank of q at the true value of β. Then we can construct a Wald test :

W ≡ n(θ̂ − θ)
󰀓
R(β̂)′V̂βR(β̂)

󰀔−1

(θ̂ − θ)
d→ χ2

q

We will later develop other tests in a more general setting.
Remark. We can extend this analysis to multiple equations, where

Ym = Xmβm + εm m = 1, . . . ,M

EZmεm = 0 m = 1, . . . ,M
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The Xm may be the same (like in seemingly unrelated regression equations), or they may overlap (like in
panel data with some time invariant regressors) – coefficients are not restricted across equations in a general
setting, but they are in many applications.
Example. In Seemingly Unrelated Regressions (this example from Griliches, 1976), we may have that

LW69 = α1 + β1 · schooling69 + γ1 · IQ + δ1 · experience69 + ε1

KWW = α2 + β2 · schooling69 + γ2 · IQ + ε2

where LW69 is the logged wage, and KWW is a measure of ability (as are IQ and experience69 ). We can
think of this as regressing the two outcomes on the same regressor but assuming a priori that δ1 = 0.
That alone makes this model overidentified, and jointly estimating both equations leads to a more efficient
estimate (if we believe the assumptions!). We can construct a (fictitious) version of this with panel data, and
get

LW69 = α1 + β1 · schooling69 + γ1 · IQ + δ1 · experience69 + ε1

LW80 = α2 + β2 · schooling80 + γ2 · IQ + δ2 · experience80 + ε2

We can define

Ȳ =

󰀵

󰀹󰀷
Y1

...
YM

󰀶

󰀺󰀸 X̄ =

󰀵

󰀹󰀹󰀹󰀷

X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XM

󰀶

󰀺󰀺󰀺󰀸

β̄ =

󰀵

󰀹󰀷
β1

...
βM

󰀶

󰀺󰀸 Z̄ =

󰀵

󰀹󰀹󰀹󰀷

Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZM

󰀶

󰀺󰀺󰀺󰀸

and we have the moment condition
E(Z̄(Ȳ − X̄ ′β̄)) = 0

and estimator
β̂(W ) =

󰀃
En(X̄Z̄ ′)WEn(Z̄X̄ ′)

󰀄−1 󰀃En(X̄Z̄ ′)WEn(Z̄Ȳ )
󰀄

The estimator is the same as before, except that the data matrix notation becomes unwieldy. Assuming that
(Ȳ , X̄, Z̄) fulfill Assumptions 4.1, we have that

√
n(β̂(W )− β)

d→ N (0, Vβ)

Vβ = (Q̄′WQ̄)−1Q̄′W Ω̄WQ̄(Q̄′WQ̄)−1

Q̄ = E(Z̄X̄ ′)

Ω̄ = E(Z̄εεZ̄ ′)

and results on efficient GMM are also the same as before.
Remark. This is extremely powerful! We just derived a collection of historically distinct estimators. A
small caveat is that we must think very carefully about what the assumptions on the new objects actually
mean. We’ve made the assumption that (X1, . . . , XM , Y1, . . . , YM , Z1, . . . , ZM ) are all i.i.d., which is stronger
than assuming that equation-by-equation.
Remark. This is the same as estimating the equations separately (i.e. will lead to the same result) if (i)
everything is just identified or (ii) W is block diagonal, where its blocks correspond to equations. It can be

27

https://www.jstor.org/stable/1831103?seq=1


instructive to write out the estimator for M = 2:

β̂(Ŵ ) =

󰀗󰀗
En(X1Z

′
1) 0

0 En(X2Z
′
2)

󰀘 󰀗
W11 W12

W21 W22

󰀘 󰀗
En(X1Z

′
1) 0

0 En(X2Z
′
2)

󰀘󰀘−1

·
󰀗
En(X1Z

′
1) 0

0 En(X2Z
′
2)

󰀘 󰀗
W11 W12

W21 W22

󰀘 󰀗
En(Z1Y1)
En(Z2Y2)

󰀘

=

󰀗
En(X1Z

′
1)W11En(Z1X

′
1) En(X1Z

′
1)W12En(Z2X

′
2)

En(X2Z
′
2)W21En(Z1X

′
1) En(X2Z

′
2)W22En(Z2X

′
2)

󰀘
·
󰀗
En(X1Z

′
1)W11En(Z1Y1) + En(X1Z

′
1)W12En(Z2Y2)

En(X2Z
′
2)W21En(Z1Y1) + En(X2Z

′
2)W22En(Z2Y2)

󰀘

What happens if W12 = W21 = 0? We get the simplification:

=

󰀗
En(X1Z

′
1)W11En(Z1X

′
1) 0

0 En(X2Z
′
2)W22En(Z2X

′
2)

󰀘
·
󰀗
En(X1Z

′
1)W11En(Z1Y1)

En(X2Z
′
2)W22En(Z2Y2)

󰀘

=

󰀗
(En(X1Z

′
1)W11En(Z1X

′
1))

−1En(X1Z
′
1)W11En(Z1Y1)

(En(X2Z
′
2)W22En(Z2X

′
2))

−1En(X2Z
′
2)W22En(Z2Y2)

󰀘

=

󰀗
β̂1(W11)

β̂2(W22)

󰀘

So when we assume that the cross-equation weights are zero, the multi-equation GMM just stacks the single
equation estimators!
Question. When should we estimate equations jointly?
Answer. If we naively interpret this result, we could estimate all of the equations in the world jointly – if
they’re actually unrelated, the weighting matrix will pick that up. This seems intuitively untrue, but how
do we show it formally? Well, we face an escalating number of nuisance parameters (entries of W ). More
importantly, model misspecification is contagious – the estimator’s probability limit equals

plim β̂(W ) = β +
󰀃
E(X̄Z̄ ′)WE(Z̄X̄ ′)

󰀄−1 E(X̄Z̄ ′)WE(Z̄ε)

If any one entry of E(Z̄ε) is nonzero, then every entry of the matrix product is nonzero. This holds unless
W is block diagonal in the equations. In that case (and only that case!) the joint estimation is efficient.
Example. Multiple Regression vs. Seemingly Unrelated Regression If X1 = · · · = XM = Z1 = · · · = ZM ,
then this is just multiple regression – that is, we regress different Y1, . . . , YM on the same exogenous regressors.
We can verify that the estimator just stacks OLS in this case.

Alternatively, suppose that some regressors are dropped from some equations, meaning that we think their
coefficients are zero. However, we still consider them exogenous in all equations, so we can use them as
overidentifying instruments. Formally, let Z1 = · · · = ZM =

󰁖M
m=1 Xm and the Xm are not all the same.

This is the Seemingly Unrelated Regression (SUR) estimator.10
Remark. As we add assumptions to the basic model, we can recover some classic estimators that were
developed independently. These assumptions typically allow us to simplify expressions. See Hayashi for
more detail.

• If we assume homoskedasticity, we get Full Information Instrumental Variables Efficient (FIVE) esti-
mation (from Brundy & Jorgenson, 1971)

• If we additionally assume that Z1 = · · · = ZM , we get Three-Stage Least Squares (3SLS)11 (from
Zellner & Theil, 1962)

• SUR is the final specialization, where we set Z1 = · · · = ZM =
󰁖M

m=1 Xm

10Historically, it would also require homoskedasticity, but that’s actually a distinct issue.
11In modern terminology, this is a two-stage estimator. However, it could be expressed as TSLS with ‘pre-pre-estimation’ of

cross-equation correlation of errors, hence the name.
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Remark. Next, we can think about common coefficients. Consider the following specification:

Ym = Xmβ + εm, EZmεm = 0 ∀ m = 1, . . . ,M

The main intuition here is that an essentially the same (but not constant) covariate is observed across
equations. We do not need to revisit every covariate in every equation: some components of Xm could be
zero almost surely. If we define

Ȳ =

󰀵

󰀹󰀷
Y1

...
YM

󰀶

󰀺󰀸 ; X̄ =
󰀅
X1 · · · XM

󰀆
; Z̄ =

󰀵

󰀹󰀹󰀹󰀷

Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZM

󰀶

󰀺󰀺󰀺󰀸

then we have moment condition E(Z̄(Ȳ − X̄ ′β)) = 0 and estimator

β̂(W ) =
󰀃
En(X̄Z̄ ′)WEn(Z̄X̄ ′)

󰀄−1 En(X̄Z̄ ′)WEn(Z̄Ȳ )

This looks like what we had before, but the different definition of X̄ changes identification: that E(Z̄X̄ ′) has
full rank is implied by E(ZmX ′

m) having full rank for each m = 1, . . . ,M .

Common coefficients allow for estimation of many parameters that would not otherwise be identifiable. An
important application is panel data:

• If we impose the assumptions that characterized SUR before, we get the Random Effects estimator

• If we furthermore assume that εm is uncorrelated across m, then this simplifies to Pooled OLS

The difference between those estimators is about efficiency, not identification. We will revisit random effects
and pooled OLS soon.
Remark. Efficient GMM vaguely resembles WLS or Feasible Generalized Least Squares (FGLS). As a
reminder, weighted least squares minimizes

(Y −Xβ)′W (W −Xβ)

where the weighting matrix W gives differential weights to different observations. If we know that E(εε′ |
X) = σ2 · Ω for known Ω, then setting W = Ω−1 is variance minimizing, and the resulting estimator is
the BLUE by Gauss-Markov. To see the analogy to WLS as undergraduates learn it, note that we can
equivalently minimize

(C(Y −Xβ))′(C(Y −Xβ))

where C is the Cholesky root of W . In particular, if observations are uncorrelated,

Ω =

󰀵

󰀹󰀹󰀹󰀷

σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

󰀶

󰀺󰀺󰀺󰀸
; Ω−1 =

󰀵

󰀹󰀹󰀹󰀷

1/σ2
1 0 · · · 0

0 1/σ2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/σ2
n

󰀶

󰀺󰀺󰀺󰀸
; C =

󰀵

󰀹󰀹󰀹󰀷

1/σ1 0 · · · 0
0 1/σ2 · · · 0
...

...
. . .

...
0 0 · · · 1/σn

󰀶

󰀺󰀺󰀺󰀸

and the minimand can be expressed as
󰁓n

i=1((yi − x′
iβ)/σi)

2.
Question. What do we do if we don’t know Ω? We could estimate it, but estimating an n× n matrix from
n data points seems absurd.

There’s two possible paths: (i) if we have a specific parameter model for how E(ε2 | X = x) changes with x,
we could estimate it; and (ii) we could run a general flexible regression of µ̂2

i on X. The latter regressions are
often run to construct Breusch-Pagan or other heteroskedasticity tests. However, (i) is rare and for (ii) we
incur a lot of effort (and error propogation!) for reweighting that only matters if weights are very different
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than even. This explains why the latter approach has a name (Feasible Generalized Least Squares) but is
extremely uncommon in practice.

So what does this have to do with GMM? We can write the GMM estimator as the weighted OLS estimator
in a fictitious regression, where we set µ = Z ′Y and G = Z ′X, then we want to minimize

(µ−Gβ)′W (µ−Gβ)

and this looks like WLS with k regressors, ℓ observations, and weight matrix W . The closed-form WLS
estimator

β̂WLS = (G′WG)−1G′Wµ

precisely recovers the GMM estimator (once we substitute back the transformations). So if GMM is similar
to FGLS, why is it so much more common? The analogy is useful but has limitations. Every moment
condition in the original problem is an ‘observation’ in the fictitious regression. In our WLS analogy, the
‘error’ is η ≡ µ − Gβ, with variance-covariance matrix of size ℓ × ℓ, so we are estimating a much smaller
matrix, which becomes a lot more precise as n grows! We can also see this in the objective functions:

(Y −Xβ)′ W󰁿󰁾󰁽󰂀
n×n

(Y −Xβ) vs. (µ−Gβ)′ W󰁿󰁾󰁽󰂀
ℓ×ℓ

(µ−Gβ)
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5 Panel Data

Remark. An extremely quick and non-exhaustive treatment.
Definition. Panel data are data that come in a two-dimensional array, most commonly in ‘time’ and ‘units
of observation’. We have sample size n and number of waves T . With a balanced panel, we have nT
observations.12 We call a short panel one where in practice T ≪ n, and the asymptotics require that we fix
T and let n → ∞. Alternatively, we have a long panel, where we fix n and let T → ∞. This is really a
multivariate time series. Some applications require analyses where we send n → ∞ and T → ∞ at the same
or different rates. Here, we consider only short panels.
Remark. All estimators in this section are variations on multiple equation common coefficients GMM. We
will develop from specific to general here, starting with

Yit = X ′
itβ + εit where E(Xitεit) = 0

From there, we get:
Definition. The pooled OLS estimator is defined as

β̂pool ≡
󰀣

n󰁛

i=1

X ′
iXi

󰀤−1 n󰁛

i=1

X ′
iYi = (X ′X)−1X ′Y

p→ β

This is unbiased and consistent under the assumptions that confirm that previously (where X and Y are
pooled data matrices). It also has the same asymptotics if we make the same assumptions as above. However,
the homoskedasticity assumption is incredibly strong here. At the very least, we need to use a cluster-robust
variance estimator

V̂pool = (X ′X)−1

󰀣
n󰁛

i=1

X ′
i ε̂iε̂iXi

󰀤
(X ′X)−1

We had previously omitted cluster-dependent errors, but note the analogy to FGLS: the central term es-
timates the (T × T )-matrix E(X ′

i ε̂iε̂iXi). However, we could do even better! As previously, the variance
matrix is ‘small’, which raises the possibility of using an FGLS-like approach for estimation. In fact, we are
precisely doing efficient (multi-equation) GMM.
Definition. A popular model is the Random Effects Model, where we assume cross-sectional homoskedas-
ticity but with the specific structure

E(εiε′i | Xi) =

󰀵

󰀹󰀹󰀹󰀷

σ2
u + σ2

󰂃 σ2
u · · · σ2

u

σ2
u σ2

u + σ2
󰂃 · · · σ2

u
...

...
. . .

...
σ2
u σ2

u · · · σ2
u + σ2

󰂃

󰀶

󰀺󰀺󰀺󰀸

which has only two degrees of freedom. The assumption here is that εit = ui + 󰂃it where ui and 󰂃it are
uncorrelated. In other words, our structural equation becomes the model

Yit = X ′
itβ + ui + 󰂃it where E(Xitui) = E(Xit󰂃it) = 0

Remark. The random effects estimator can be thought of as the feasible GLS estimator for this model,
where we pre-estimate σu and σ󰂃. We will get more details later, under some theory yet to come. Note
that Hayashi defines the random effects estimator as a two-stage GMM assuming homoskedasticity, which is
similar to three-stage least squares. This treatment has more degrees of freedom.

What’s important is that (i) random effects has the same identifying assumptions as pooled OLS, and (ii) it
adds a FGLS/TSGMM step, and since within-unit correlation of ε is both salient and easily modeled (note:

12We will consider only balanced panels.
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in short panels only!), this is often desirable.
Remark. In the random effects model, the condition that EXitui = 0 is very restrictive. If we think of
ui as unobserved, time-invariant covariates, we are saying that these cannot at all be correlated with the
observed. If this fails, do we have anything else to estimate?

Consider the Fixed Effects (FE) equation

Yit − Yi,t−1 = (Xit −Xi,t−1)
′β + 󰂃it − 󰂃i,t−1

When can we estimate this by OLS? We need that (i) 󰂃it is uncorrelated with past and future 󰂃t, and (ii)
that (Xit −Xi,t−1) fulfills a rank condition (this will fail with time-invariant regressors). This is the basic
idea of fixed effects estimation, where we can ‘difference away’ the fixed effects in one of three ways: (i) first
differencing (between estimator), (ii) demeaning (within estimator), and (iii) adding an indicator of each unit
(dummy variable regression). Demeaning and dummy variables are numerically the same, and correspond to
the ‘classic’ fixed effects estimator. From the point of view of identification, the methods are the same, but
they imply different weighting matrices. If the weighting matrix is pre-estimated, they are asymptotically
the same.

We additionally have that:

1. The implied weighting matrix M = 1(1′1)−11′ is efficient if the idiosyncratic error 󰂃it is homoskedastic
and uncorrelated. (for the between estimator, we need that 󰂃it follows a random walk in direction t.
This is less salient)

2. We can actually show that FE equals TSLS (or really SUR), thinking of the cross-equation restrictions
in

EXis󰂃it = 0 ∀ s, t

as overidentifying restrictions / instruments

3. The estimator necessarily has higher (asymptotic) variance than pooled OLS. This is because OLS
algebra applies, but demeaning reduces the sum of squared deviations of any random variable

4. For variance estimation, a degrees of freedom adjustment of T (T − 1) is not negligible for realistic T
and is therefore recommended for including under asymptotic justification

5. In the formal model that motivates the random effects model, the FE estimator can be used to estimate
σ2
󰂃 . Doing this first and then backing out σ2

u is the standard approach
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