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Introduction

“We have all of this administrative crap to do. Let’s get that out of the way” – L. Blume

Grading is the least important part of this class – you can just tank it, and as long as you pass the Q you’ll
be fine! (There is correlation, but unsure if there’s causation).

We will begin by talking about linear programming, which is the best way to understand duality. Linear
programming is a shockingly useful tool, and duality is essential (see Myerson for a cutting-edge example).
We will use the tools Tak taught – specifically, Convex Analysis. Then we will apply these tools to talk about
linear production models, including the non-substitution theorem, which drove a lot of macroeconomics in
the late 20th and early 21st century. We will go on to talk about some other uses of constant returns to
scale production, including in international trade.

We will then go through some of the issues with welfare economics, which Larry believes is an interesting
area of research. We will talk about uncertainty, matching, and (if we have time) some mechanism design
in market settings.

Grading: Participation is 40%. Problem sets will be 10%. One prelim will be worth 10%, and by implication
the final is additionally 40%.

1 Linear Programming

This part of the course will have more proofs than the rest of the course – convexity in general, and linear
programming specifically, are about geometry.
Lemma 1.1. Farkas’ Lemma Given a matrix A and a vector b, exactly one of the following is true:

1. Ax = b, x ≥ 0 has a solution

2. The system yA ≥ 0, yb < 0 has a solution

Proof. (Intuition) Consider the set
{z : z = Ax, x ≥ 0}

This set is convex. Interestingly, it is not necessarily closed, though the difference is subtle. More specifically,
it is closed, but not for the reason you think it’s closed. It’s actually a polyhedron, and more specifically
a convex polyhedral cone. What Farkas’ Lemma says geometrically is that a vector is either in the convex
polyhedral cone, or that b can be separated by the cone by a hyperplane – specifically the hyperplane y.
Remark. Quick notation break – x ≥ 0 means that each xi ≥ 0. x > 0 means that x is semipositive, so
x ≥ 0 and some xi > 0. x ≫ 0 means that each xi > 0. Additionally, if we say that x 󰂏 y, then we are saying
that x− y 󰂏 0 for any relationship 󰂏.
Definition. A polyhedron is the intersection of finite halfspaces. A polytope is a bounded polyhedron.
Remark. Any convex set is the intersection of (any number of) halfspaces. Polyhedra have more properties.
Definition. The canonical form of a linear program is written

max c · x
s.t. Ax ≤ b

x ≥ 0
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The standard form of a linear program is written

max c · x
s.t. A′x = b′

x ≥ 0

Definition. x is a vertex of a polyhedron F if and only if there is no y ∕= 0 such that x + y and x − y are
both in F .
Theorem 1.1. Vertex Theorem If a linear program in standard form has feasible solutions, then

1. It has a feasible vertex

2. If vP (b) < ∞ and x is feasible, then there is a feasible vertex x′ such that c · x′ ≥ c · x
Remark. By implication, if a standard form problem has an optimal solution then it has an optimal vertex
solution.

Proof.

1. Let F denote the feasible set. We will describe an algorithm for finding a vertex and show that it
always succeeds. Choose x ∈ F . If x is a vertex, done! If not, there exists y ∕= 0 such that x± y ∈ F .
For any such y, Ay = 0. Let λ󰂏 ≥ 0 solve sup{λ : x ± λy ∈ F}. Since x is not a vertex, λ󰂏 > 0, and
since F is closed x ± λ󰂏y ∈ F . However, this is on a border. At least one of x ± λ󰂏y has more zeros
than x does. Assign that x1. If x1 is a vertex, done! If not, repeat to get x2, and so on. Eventually,
at least xn will have all zeros and we will be done.

2. Left as exercise, but exact same basic form as (1)

Definition. The support of a feasible solution x is the set of all indices j such that xj > 0

supp(x) = {j : xj > 0}

Definition. The jth column of A is denoted Aj . A feasible solution is basic if {Aj : j ∈ supp(x)} is linearly
independent.
Theorem 1.2. A feasible solution x is a vertex if and only if it is basic.

Proof. If x is not a vertex, then ∃ y ∕= 0 s.t. x± y is feasible, and Ay = 0 such that if xj = 0, yj = 0. This
implies that Ay is a linear combination of the columns Aj , and since it is equal to zero and y ∕= 0, then x is
not basic since Aj are linearly dependent.

If x is not basic, then Aj are linearly dependent, so there exists y ∕= 0 such that if xj = 0, yj = 0 and Ay = 0.
For λ ∈ R such that |λ| sufficiently small, x± λy ≥ 0, meaning that x± λy feasible, so x is not a vertex.
Proposition 1.1. Suppose x is a feasible solution, y is a feasible solution, x ∕= y, and supp(y) ⊆ supp(x).
Then x is not basic.

Proof. Ax = b, Ay = b, A(x− y) = 0, x ∕= y, =⇒ Aj linearly dependent.
Theorem 1.3. The Fundamental Theorem of Linear Programming If a problem in standard form has a
feasible solution, then it has a basic feasible solution. If it has an optimal solution, it has a basic optimal
solution.

Proof. Left as exercise.
Definition. We define the primal problem as follows:

vP (b) = max c · x
s.t. Ax ≤ b

x ≥ 0
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The dual problem is:

vD(c) = min y · b
s.t. yA ≥ c

y ≥ 0

Exercise. Suppose that we have the following primal problem:

max c · x
s.t. Ax ≤ b

A′x = b′

x ≥ 0

Prove that the dual can be expressed

min y · b+ z · b′

s.t. yA+ zA′ ≥ c

y ≥ 0

Note that there are no sign constraints on the z variables.
Theorem 1.4. Weak Duality For the primal and dual problems, vP (b) ≤ vD(c)

Proof. For feasible solutions x and y of the primal and dual respectively, we must have that (yA− c)x ≥ 0
and y(b−Ax) ≥ 0, so for all feasible solutions x and y, we must have that c · x ≤ y · b.
Theorem 1.5. Duality For the primal problem and the dual problem, exactly one of the following must hold:

1. Both are feasible, both have optimal solutions, and the optimal solutions coincide

2. One is unbounded and the other is infeasible

3. Both are infeasible

Proof. Long, left out. Straightforward, but annoying.
Theorem 1.6. Complimentary Slackness Suppose that x󰂏 and y󰂏 are feasible for the primal and dual re-
spectively. Then they are optimal solutions if and only if for each constraint i in the primal problem and j
in the dual problem,

y󰂏(b−Ax󰂏) = 0 and (y󰂏A− c)x󰂏 = 0

Proof. In notes, out of time.
Lemma 1.2. vP (b) is concave, and vD(c) is convex, and the domains of each are closed convex sets.

Consider the following restatement of the Duality Theorem:
Theorem 1.7. If vP (b) or vD(c) is finite,

1. Both are finite

2. Both programs have optimal solutions

3. ∂vD(c)1 is the set of solutions to the primal, and ∂vP (b) is the set of solutions to the dual

Proof. (Just of Part 3, only one part. Other is parallel) (⇒): Assume y󰂏b = vD(c) and y󰂏b = vP (b) by
finite. Then for any problem with the same feasible set and objective b′, y󰂏 is feasible and not optimal.
Thus, we have

y󰂏b′ − vP (b
′) ≥ y󰂏b− vP (b)

1The subgradient of vD at c.
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which implies the subgradient inequality.

2 Polyhedral Models

Model. The Open Leontief Model (sometimes Input-Output Model, from Leontief) We have N produced
goods, and production is described by a matrix A =

󰀅
aij

󰀆
N×N

∈ RN×N where aij is the amount of good i

necessary to produce good j. Specifically, we have Leontief isoquants – if a11 = 1
2 and a12 = 1, then in the

N = 2 model the isoquants look like Figure 1.

Figure 1: Leontief Isoquants

We have one good that is not produced – a0 = (a01, a02, . . . , a0N ). We have a labor endowment of L, and
we call gross output x and y ≤ x net output.

Call the vector (a0j , · · · , aNj) a technique for producing good j. Note that to produce some vector x =
(x1, . . . , xN ), we need Ax of the inputs. Then, of course, y = x − Ax. The question we’ll face next time:
Given our technology, can we produce anything?
Definition. A is productive if ∃ x󰂏 ≫ 0 s.t. x󰂏 ≫ Ax󰂏 (equivalently: if y = x󰂏 − x󰂏, y ≫ 0).
Theorem 2.1. If A is productive, any y ≥ 0 can be produced ( i.e. for any y ≥ 0, ∃ x ≥ 0 s.t. (I −A)x = y)

Proof.
Lemma 2.1. If A is productive, and x ≥ Ax, then x ≥ 0.

Proof. Suppose ∃ x ∕≥ 0 s.t. x ≥ Ax. Define λ′ = inf{λ : x + λx󰂏 ≥ 0}, where x󰂏 ≫ Ax󰂏 exists by
productivity, and define x′ = x+ λ′x󰂏. Then

x+ λ′x󰂏 ≫ Ax+ λ′Ax󰂏 = A(x+ λ′x󰂏) ≥ 0

so λ′ is not the infimum.
Corollary 2.1. If A is productive, then I −A has full rank.

Proof. Suppose (I − A)x = 0. Then x ≥ Ax and x ≥ 0. Since (I − A)(−x) = 0 then −x ≥ A(−x) and
−x ≥ 0. Thus, x = 0 and (I −A) has a rank 0 null space.

Since I −A is invertible, for any y ≥ 0 there is an x such that (I −A)x = y, then by the Lemma x ≥ 0.
Theorem 2.2. If (I −A)−1 has non-negative columns and is non-singular, then A is productive.

Proof. For any y ≥ 0, (I − A)−1y ≥ 0. Since (I − A)−1 is non-singular, it has no zero column, so every
column is semi-positive. Therefore x󰂏 = (I −A)−1e ≫ 0, and x󰂏 ≫ Ax󰂏.
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Remark. There are other conditions that work.
Theorem 2.3. Hawkins-Simon A is productive ⇐⇒ all leading principal minors are positive
Theorem 2.4. If A is productive, then Anx → 0 (at a geometric rate).

Proof. Since A is productive, x󰂏 ≫ Ax󰂏 for some x󰂏 ≫ 0, and there is λ ∈ (0, 1) such that λx󰂏 ≫ x󰂏. Then
Ax󰂏 ≪ λAx󰂏 ≪ λ2x󰂏, and for all n λnx󰂏 ≫ Anx󰂏, so Anx󰂏 → 0 and An → 0.
Corollary 2.2. If A is productive, then limn→∞(I +A+A2 + · · ·+An) = (I −A)−1

Proof. (I −A)(I +A+A2 + · · ·+An) = I −An+1 → I.

Suppose that the economy is endowed with L units of the (non-produced) primary good. What net output
bundles can we make? To produce y, we need (I−A)−1y units of gross output, which requires a0(I−A)−1y
of the primary factor. Thus, our production possibility set is

P (L) = {y : a0(I −A)−1y ≤ L}

Definition. A price vector (p0, p1, . . . , pN ) = (p0, p) ∈ RN+1
+ where p0 is the price of the primary input and

pi is the price of produced good i. The cost of producing one unit of good j is

cj = p0a0j + pAj

and the profit from producing one unit of good j is

πj = pj − cj = pj −
󰁛

m

pmamj =⇒ π = p(I −A)− p0a0

Definition. An equilibrium is a tuple 〈x, y, p, p0〉, such that (i) y ≤ (I − A)x, (ii) a0x < L =⇒ p0 = 0, (iii)
ym < xm − amx =⇒ pm = 0, (iv) π ≤ 0, (v) πx = 0, and (vi) a0x ≤ L.
Assumption 2.1. We set p0 = 1 almost always, and deal with prices relative to labor. The exception is
when we have excess labor. See condition (ii) of equilibrium above.
Theorem 2.5. If A is productive and a0 ≫ 0, an equilibrium exists in which y ≫ 0, p ≫ 0, and all profits
are 0.

Proof. Per-unit profits are π = p(I − A) − a0. If A is productive, then (I − A) is invertible, so take
p = (I −A)−1a0, so π = 0. Next, choose any y. The required labor input is a0(I −A)−1y, and we can scale
y directly so that this equals L. Strict positivity of p follows from the fact that (I − A)−1 is non-negative
and since it is non-singular, it has at least one non-zero element in each column. Conclusion follows from
the hypothesis that a0 ≫ 0.
Remark. That A is productive is, of course, necessary. The condition that a0 ≫ 0 can be relaxed, and
that’s very contemporary research. Specifically, we need that the product

a0

󰁱
I +A+A2 + · · ·+An+1 + · · ·

󰁲
≫ 0

This would reduce the condition to a0 ≥ 0 and a0 ∕= 0, and a sufficient condition for that is the graph
described by A being irreducible – i.e. that if we draw a directed graph where an arrow from i to j means
‘i is used in the production of j’, that graph being irreducible implies that for sufficiently large m, Am is
always strictly positive, which suffices to show that (I − A)−1 is strictly positive. Note that we can reach
the entirety of the indirect reach of labor with only the first n − 1 matrix products, where n is the size of
the matrix.
Definition. A convex support function for a set C is defined by the maximization problem

vC(q) = max{q · x : x ∈ C}

This function is convex and homogeneous of degree 1. The concave indicator function of a convex set C is
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the function

1C(x) =

󰀫
0 x ∈ C

−∞ x ∕∈ C

(and the convex indicator function is defined analogously, with +∞).
Question. What does the set of convex support functions actually look like? It sits in C1, which is a
normed vector space. In fact, it is precisely the set of continuous, homogeneous of degree 1, and convex
functions, which is a convex cone! We can, in fact, even put a measure on this space and regress over it.
This means that we can put a measure over all convex sets, and even prove central limit theorems and laws
of large numbers over them.
Example. Consider the production possibility set of our economy, where we have the production matrix
A, the labor requirement vector a0, and labor endowment L. The set is described by the constraints: (i)
y − (I −A)x ≤ 0, (ii) a0x ≤ L, and (iii) x, y ≥ 0. We can define its convex support function as

vC(q) = max q · y

subject to

y − (I −A)x ≤ 0

a0x ≤ L

x, y ≥ 0

The dual of this problem is
min
p0,p

p0 · L

subject to

p ≥ q

−p(I −A) + p0a0 ≥ 0

p0, p ≥ 0

Remark. We can interpret q as ‘world prices’ in a market where only final goods are shipped.
Remark. Complimentary slackness of p − q implies that pm > qm ⇐⇒ we produce 0 of good m, and that
either we use a positive amount of good i in production or we make positive profit on good i. Formally:
Corollary 2.3. At an optimal primal-dual quadruple (y󰂏, x󰂏, p󰂏, p󰂏0), we have that:

1. p󰂏y󰂏 − p󰂏(I −A)x󰂏 = 0, so if good m is in excess supply then p󰂏m = 0.

2. p󰂏0(a0x
󰂏 − L) = 0, so if labor supply is not exhausted then wage p󰂏0 = 0.

3. (p󰂏 − q)y󰂏 = 0, so if the net output of good m is positive, then p󰂏m = qm.

4. p󰂏(I −A)x󰂏 + p󰂏0a0x
󰂏 = 0, so if good m is produced, profits πm = 0.

Remark. These complementary slackness conditions precisely define the equilibrium we defined above.
Theorem 2.6. If A is productive and a0 ≫ 0, then both the primal and dual have optimal solutions. If
(x󰂏, y󰂏) solves the primal problem and (p󰂏, p󰂏0) solves the dual, then (x󰂏, y󰂏, p󰂏, p󰂏0) is an equilibrium.

Proof. If A is productive, the feasible set is nonempty, as the first primal inequality has at least one solution.
If a0 ≫ 0, then it is bounded, so the primal problem attains a maximum. Conclusion follows from strong
duality.
Model. Activity Analysis Model of Production We have N goods, M activities, M ≥ N , a matrix A ∈ RN×M

where amn is the amount of good n needed to run activity m at unit level, and a0m the amount of ‘labor’
required to run activity m at unit level. The only difference, besides A no longer being square, is that we
now have B ∈ RN×M , where the column Bm is the output vector of goods 1, . . . , n from running activity m
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at unit level.

The vector x ∈ Rm
+ is now the vector of levels at which the different activities are run. For activity vector

x ≥ 0, the input requirements are Ax and the output levels are Bx.
Definition. The model is productive if there exists x󰂏 ≥ 0 such that Bx󰂏 ≫ Ax󰂏. The production possibility
set of the economy is

Y = {y ≥ 0 : (B −A)x ≥ y, a0x ≤ L, x ≥ 0}

Remark. The general Leontief model is a special case of the Activity Analysis Model, where we assume
that there is no joint production.
Definition. A technology τ is a set of N activities in {1, . . . ,M} such that through those activities alone
every good is produced.

The problem, therefore, is to characterize the production possibility set. Define the cost functions

λ(y) = min{a0x : (B −A)x ≥ y, x ≥ 0}
λτ (y) = min{a0x : (I −Aτ )x ≥ y, x ≥ 0}

that gave the minimum amount of the primary factor needed to produce net output y in (first) the general
model and (second) the technology τ . Define their respective production possibility sets as

P (L) = {y : (B −A)x ≥ y, x ≥ 0, a0x ≤ L}
P τ (L) = {y : (I −Aτ )x ≥ y, x ≥ 0, a0x ≤ L}

Note that for any τ , P τ (L) ⊆ P (L).
Theorem 2.7. Non-Substitution Theorem There is a technology τ󰂏 such that for all y ≥ 0, λ(y) = λτ󰂏

(y).
Corollary 2.4. P τ󰂏

(L) = P (L).

Proof. First, to produce the vector 1, we solve the problem

λ(1) = min a0x s.t. (B −A)x ≥ 1, x ≥ 0

Productivity of A,B implies that the feasible set is nonempty, so this problem has a solution. This means
that it has a basic optimal solution, and we call the set of its columns a technology τ󰂏.

Recall that for any technology τ , cost is linear in y

λτ (y) = a0(I −Aτ )−1y

To show that λτ󰂏

(y) = λ(y), it suffices to show that λτ󰂏

(y) ≤ λτ (y) for any other τ .
Lemma 2.2. For each 1m and for all τ , λτ󰂏

(1m) ≤ λτ (1m).

Proof. FSOC, assume that there is a cheaper technology θ for producing 11. Then

λ(1) ≤ λθ(11) +
󰁛

m≥2

λτ󰂏

(1m) <
󰁛

m≥1

λτ󰂏

(1m) = λτ󰂏

(1)

which is a contradiction.

To conclude the proof, observe that any y can be produced at minimum cost by some technology, and for
any technology τ ,

λτ (y) =
󰁛

m

ymλτ (1m) ≥
󰁛

m

ymλτ󰂏

(1m) = λτ󰂏

(y)
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A Brief Aside on Modeling. A model is an abstraction of the world. A model is a set of objects and a
set of relationships. In Economics, we have agents, goods, beliefs, preferences as the objects; states such as
prices and capital; and relationships such as behavioral relationships (between any objects) and consistency
conditions.

3 The Hecksher-Ohlin-Vanek Model

Model. Leontief Version Consider a small country with immobile capital stock K and labor endowment
L that trades final products clothing c and food f on world markets at prices pc and pf . The production
technology for good g is described by input requirement coefficients akg and alg. Assume:
Assumption 3.1. Clothing is capital-intensive, food is labor-intensive: akc

alc
>

akf

alf

The PPS is the set {(xc, xf ) : akcxc + akfxf ≤ K, alcxc + alfxf ≤ L, x ≥ 0}. This set is convex, and (as
before) we can characterize it with its concave support function. The support function is

vP (K,L) = max
x

pcxc + pfxf

s.t. ackxc + afkxf ≤ K

aclxc + aflxf ≤ L

x ≥ 0

The dual is

vD(pc, pf ) = min
r,w

rK + wL

s.t. rack + wacl ≥ pc

rafk + wafl ≥ pf

r, w ≥ 0

The complimentary slackness conditions are

(r󰂏akc + w󰂏alc − pc)x
󰂏
c = 0

(r󰂏akf + w󰂏alf − pf )x
󰂏
f = 0

r󰂏(akcx
󰂏
c + akfx

󰂏
f −K) = 0

w󰂏(alcx
󰂏
c − alfx

󰂏
f − L) = 0

We can solve this model with a few assumptions on structure. Consider:

Case 1: x ≫ 0. Let A denote the matrix whose rows are input requirements, A =

󰀕
akc akf
alc alf

󰀖
. Assump-

tion 3.1 implies that A is non-singular. For a solution where xc, xf ≫ 0, complementary slackness requires
that 󰀅

r󰂏 w󰂏
󰀆
A =

󰀅
pc pf

󰀆

meaning that price is equal to marginal cost. A positive solution will exist if and only if:
Assumption 3.2. Prices are interior:

akc
akf

>
pc
pf

>
alc
alf

which is satisfiable under the assumptions. If the price ratio equalities are strict, then the dual solution
(r󰂏, w󰂏) is strictly positive. If so, complementary slackness implies that Ax󰂏 =

󰀅
K L

󰀆′. A strictly positive
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solution requires that:
Assumption 3.3. (K,L) is in the interior of the span of the columns of A.
Theorem 3.1. Suppose Assumptions 3.1, 3.2, and 3.3 hold. Then the primal and dual have unique strictly
positive solutions.
Remark. x󰂏 maximizes GDP, and r󰂏 and w󰂏 are shadow prices for resource constraints. At those prices,
all per-unit profits are non-positive and operating industries make 0 profits.

Note that as K and L change within the cone, factor prices do not change.
Theorem 3.2. Factor Price Equalization Theorem In a diversified equilibrium, for all (K,L) ∈ {y : y =
Ax, x ≥ 0} factor prices are those prices satisfying Assumption 3.2, which does not depend on (K,L).
Remark. Two different countries with identical technologies but different capital-labor ratios will have the
same factor prices.
Question. What is the effect of an increase in the price of good c?
Answer. Assumption 3.1 implies that the determinant of A is positive, and A−1 will have the sign pattern

sgnA−1 =

󰀕
+ −
− +

󰀖
. This means that an increase in pc will increase the rental rate r and lower the wage

rate w.
Theorem 3.3. Stolper-Samuelson Theorem In a diversified equilibrium, an increase in the world price of a
commodity raises the price of the factor in which it is intensive and lowers the price of the other factor.

The Picture. This is entirely illustrated in Figure 2

r

w

r󰂏

w󰂏

r󰂏󰂏

w󰂏󰂏

K

L

K

L

K ′′/L′′

K ′/L′

: r · afk + w · afl = pf

: r · ack + w · acl = pc

Figure 2: A Diversified Equilibrium
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The Story The dot at (w󰂏, r󰂏) is a diversified equilibrium – both goods are produced. The vectors are
input requirements describing per-unit cost as a function of r and w. The dual feasible factor prices are those
above the food and clothing isocost lines. The K − L axes taking the intersections as their origin measure
the primary factor endowment, and the cyan vector is the factor endowment. The (K ′, L′) endowment is in
the cone spanned by the input requirement vectors. The requirements for the diversified equilibria are that
K ′, L′ are in the cone and that the factor price vector sits on the intersection between the isocost lines for
the capital- and labor-intensive industries respectively..

Case 2: xc = 0. Then we have that xf > 0 and rafk +wafl = pf . There are three subcases. There is the
knife-edge case where the factor endowment vector is the same as the inputs requirement vector for some
good. Equilibrium factor prices will be (w󰂏, r󰂏), but nothing will be produced.

Alternatively, if the red isocost line lies below the blue isocost line everywhere, then only food will be
produced, and one factor will be entirely exhausted. If there is excess K, then r = 0 and w =

pf

afl
. If

K
L =

afl

afk
, any (r, w) pair on the blue isocost line is optimal. If there is excess L, then w = 0 and r =

pf

afk
.

The most interesting case is if the red and blue isocost lines cross. Suppose that K is in excess supply,
so afkxf < K. Then r = 0, so w =

pf

afl
, so aflxf = L. This solution is the w-intercept of the blue line.

However, it’s clear that this is infeasible since the solution lies below the red isocost line.
Remark. The blue dot is a specialized equilibrium. The (K ′′, L′′) endowment is below the cone, so equilib-
rium is at the upper corner. Output xf is such that capital is just exhausted, and labor is in excess supply.
Factor prices are (0, r󰂏󰂏) and equilibrium factor demand is the other cyan arrow.

Trade. Suppose that we now have two countries with identical technologies. Country A has relatively more
labor and country B has relatively more capital. World prices are established in a competitive equilibrium.
What is the pattern of trade?
Theorem 3.4. Rybczynski Theorem The country with a higher ratio of capital to labor will produce relatively
more of the capital-intensive good, and the country with a higher ratio of labor to capital will produce relatively
more of the labor-intensive good.

Proof can be seen straightforwardly from the picture. If one country is entirely specialized, then the pattern
is even stronger since they’ll entirely specialize in the good they have an endowment advantage in.
Model. Smooth Version Consider a single small country with immobile capital stock K and labor endowment
L, that trades final products a and b on world markets at world prices pa and pb. The production technology
for good g is described by a production function fg(k, ℓ).
Assumption 3.4. The production function satisfies the following:

1. fg ∈ C2

2. fg is concave

3. fg has constant returns to scale

4. fg satisfies the Inada Conditions at 0:

lim
k→0

∇kfg(k, ℓ
′) = lim

ℓ→0
∇ℓfg(k

′, ℓ) = ∞ for all k′, ℓ′ > 0

The profit function for industry g is found by the maximization problem

πg(pg, r, w) = max
kg,ℓg,xg

pgxg − rkg − wℓg s.t. xg ≤ fg(kg, ℓg)

The solution to this problem gives both the output and factor demands at the output and factor market
prices. Equilibrium requires that (i) outputs and factor demands are both profit maximizing, and (ii) all

11



factor markets clear.

Since production is CRS (by Assumptions 3.4), cost functions are of the form cg(r, w)xg. Profit maximization
requires zero profit for producers, so pg = cg(r, w). This gives

cf (r, w) = pf and cc(r, w) = pc

so Shephard’s Lemma gives factor demands

∂cf (r, w)

∂r
xf +

∂cc(r, w)

∂r
xc = K and

∂cf (r, w)

∂ℓ
xf +

∂cc(r, w)

∂ℓ
xc = L

We have similar results to above: If (K,L) is in the cone spanned by the gradients of the unit cost functions,
then a diversified equilibrium would exist. Moving (K,L) around inside the cone changes outputs but
does not change factor prices since the first two equations are unperturbed. The gradient ∇c(r, w) is (by
Shephard’s Lemma) the input requirement vector. In the smooth model, the picture is Figure 3.

w

r

K ′/L′

K ′′/L′′

cc(r, w) = pc

cf (r, w) = pf

Figure 3: The Smooth Hecksher-Ohlin-Vanek Model

Remark. To demonstrate the Stolper-Samuelson Theorem in this model, we can apply the Implicit Function
Theorem to the map

F (r, w, pf , pc) =

󰀕
cf (r, w)− pf
cc(r, w)− pc

󰀖

where the equilibria are the tuples for which F (·) = 0. The Jacobian of F is

DF (·) =
󰀅
Dr,wF (·)Dpf ,pc

󰀆
F (·) =

󰀕
∇cf (·) −1 0
∇cc(·) 0 −1

󰀖
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If we assume the hypothesis that Dr,wF (·) is non-singular, we have that
󰀳

󰁅󰁃

∂r
∂pf

∂r
∂pc

∂w
∂pf

∂w
∂pc

󰀴

󰁆󰁄 = −
󰀕
∇cf (·)
∇cc(·)

󰀖
·
󰀕
−1 0
0 −1

󰀖
=

1
∂cf
∂r

∂cc
∂w − ∂cc

∂r
∂cf
∂w

·

󰀳

󰁃
∂cc
∂w −∂cf

∂w

−∂cc
∂r

∂cf
∂r

󰀴

󰁄

The hypothesis that c is capital-intensive implies that the determinant is positive, so an increase in pc lowers
w and raises r, and an increase in pf raises w and lowers r.

4 Walrasian Equilibrium

Remark. Think of the diamond-water paradox (appears in Smith, due to Plato). Nothing is more useful
than water but it’s incredibly cheap, nothing is less useful than a diamond but it’s amazingly expensive.
Question. What does the value of something actually denote? A lot of people have tried to answer this,
and there’s a good rundown in Larry’s notes.
Definition. The marginal utility theory (from Jevons) is that the ratio of prices is equal to the ratio of
marginal utilities:

MUx

MUy
=

px
py

We can think of the different theories as a difference between classical economists, who tend to think about
production and growth; and neoclassical economists, who are more interested in questions of allocation and
distribution. We will think of two schools of general equilibrium theory. The Walras-Cassel model begins
with demand functions, supply functions, and a classical production model. This leads to the two-sector
model and the Hecksher-Ohlin-Vanek model. This entire process is about equating supply and demand.
On the other hand, Edgeworth-Pareto use optimization – utility maximization, profit maximization, welfare
economics, etc. This leads to the modern way of conceptualizing general equilibrium theory – especially in
macroeconomics.

An aside on the integrability of demand.
Question. Why are indifference surfaces ‘more general’ than utility functions?

To go from demand to utility, we use a budget balance, indirect utility, and the expenditure function:

v0 = V (p0, w0) = U(xM (p0, w0)) ; µ(p, p0, w0) = e(p, V (p0,m0)) ; µ(p0, p0,m0) = m0

where µ(p, p0, w0) = e(p, V (p0,m0)) is the income compensation function. Together, we have that

∂µ(p, p0,m0)

∂pi
=

∂e(p, V (p0,m0))

∂pi
= xH

i (p, v0) = xM
i (p, e(p, v0)) = xM

i (p, µ(p, p0, w0))

In summary, we define e(p) = µ(p, p0, w0), which solves the differential equation

Dµ(p) = xM
i (p, e(p)) s.t. e(p0) = w0

Fix a p󰂏 and notice that µ(p󰂏, p, w) is an indirect utility function. We can invert Marshallian demand to get
χm : x → (p, w), and U(c) = µ(p󰂏,χm(x)).

Can we carry out this program? If we have two or less goods, definitely! With three or more, it becomes an

13



issue. Suppose we are given a Marshallian demand function xM . Define the Slutsky substitution coefficients

σij(p, w) =
∂xM

i

∂pj
+ xM

j

∂xM
i

∂w

Theorem 4.1. Let xM : Rn
+ × R+ → Rn

+ be a Marshallian demand. If:

1. Budgets are exhausted, so p · xM (p, w) = w

2. xM is differentiable throughout its domain

3. The Slutsky coefficients are symmetric, so σij(p, w) = σji(p, w)

4. The Slutsky matrix is negative semidefinite

5. The magnitude of Dwx
M is bounded on compact subsets of strictly positive prices

then there is a utility function U on the range of xM that rationalizes demand.

Behavioral General Equilibrium. Walras and Cassel posit demand functions, firm profit maximization,
and search for prices that equilibrate the system. This is behavioral because individual demands are simply
decision rules.
Definition. A behavior is a rule that maps environments into actions. In GE models, an environment for a
consumer is a budget set. An environment for a firm is a price vector and a production possibility set. This
is straightforward in an Arrow-Debreu economy, but is more complicated in an exchange economy.
Model. Market Equilibrium from Demand We consider an I-person exchange economy with N goods. Price
vectors are p ∈ RN

+ . Each individual i is described by an endowment vector ωi ∈ RN
+ \ {0} and a demand

function di : RN
+ × RN

+ \ {0} → RN
+ . The endowment allocation is ω = {ωi}i∈I and aggregate endowment is

ω =
󰁓

i ωi.
Definition. Individual excess demand is zi(p,ωi) = di(p,ωi)−ωi and aggregate excess demand is a function
Z : RN

+ \ {0}××i∈I
RN

+ \ {0} → RN , where

Z(p,ω) =
󰁛

i

di(p,ωi)− ω

Equilibrium is market clearing , meaning that there is no aggregate excess demand. Formally, a price vector
p ∈ RN

+ \ {0} is an equilibrium price vector if if Z(p,ω) ≤ 0 and p ·Z(p,ω) = 0, so no commodity is in excess
demand and if a commodity is in excess supply it has price zero.
Assumption 4.1. We make the following assumptions on the excess demand function:

1. Z(p,ω) is homogeneous of degree 0 in prices

2. For all p ∈ RN
+ \ {0}, p · Z(p,ω) = 0 (Walras’ Law)

3. For all ω, Z(p,ω) is continuous in p

These can all be justified by reference to individual demand.
Theorem 4.2. If Z(p,ω) satisfies Assumption 4.1, an equilibrium price vector exists.
Corollary 4.1. If the correspondence Z(p,ω) is upper hemi-continuous in p and convex-valued, then an
equilibrium price vector exists.

Before we prove these, we first define the two best theorems of all time:
Theorem 4.3. Brouwer If C is a convex, compact, and non-empty set and f : C → C is a continuous
function, ∃ x ∈ C such that x = f(x).
Theorem 4.4. Kakutani If C is a convex, compact, and non-empty set and F : C 󰃃 C is a nonempty,
convex, and closed-valued correspondence, then ∃ x ∈ C such that x ∈ F (x).
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Proof. (Of Theorem 4.2) The concept here is to ‘simulate’ a price adjustment process and show that it has
a fixed point. Homogeneity implies that we can restrict the price space to the unit simplex, ∆ = {p ∈ RN

+ :󰁓
n pn = 1}. Define f(p) such that fi(p) = max{−pi, Zi(p)}. Define the map φ : ∆ → ∆ by

φ(p) =
1

(p+ f(p)) · e (p+ f(p))

To see what this does, look at
φm(p)

φn(p)
=

pm + fm(p)

pn + fn(p)

If Zm · Zn > 0, we can’t tell the relationship. If Zm > 0 and Zn...
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