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1 Julieta Caunedo

1.1 Introduction

Administration Homeworks are due at the beginning of the lecture, and no late homework will be ac-
cepted. However, only N − 1 will be evaluated. Please feel free to work in groups, but turn in your own
write-up. The midterm (like last semester, the final for this portion of the course) will be on Tuesday, March
11. Julieta will look for a room so we can take a full two hours. This course will occasionally refer to the
notes by Dirk Krueger, as well as the same textbooks as last semester, Recursive Methods in Macroeconomic
Dynamics (SLP) and Recursive Macroeconomic Theory (LS).

This first week will be somewhat review, but the pace will pick up quickly. You need to do the homeworks.
Homeworks will be heavy, but that’s because the way you study is by doing them. Remember: at this
point in your career, the grades are completely useless. They function as a progress marker, but in and of
themselves they don’t matter at all. They don’t make you a good economist.

Motivation Why are people in the US today much richer than they were in 1800? Why are Germany
and France much richer than Argentina and Kenya? Does growth generate inequality? What is the role of
frictions in hindering growth?

Macroeconomists aim at answering these questions building quantitative models – models that can be con-
tested with empirical facts. “The weight of evidence for an extraordinary claim must be proportioned to its
strangeness” – Laplace, 1812. We will think about abstractions, yes, but useful (read: empirically testable)
abstractions.

The main questions in this course are:

1. Why are some countries richer than others?

2. Why do some countries grow faster than others?

3. What is the effect of wealth and consumption inequality for cross-country differences in income per
capita?

4. What is the role of financial frictions?

5. What is the role of education for long-run growth?

6. How do firms innovate, and what’s their impact on economic growth?

7. Why do some firms operate older technologies while better ones are available?

Broadly, we will consider (in order):

1. One-sector growth model (Ramsey-Cass-Koopmans)

(a) Computation

(b) Extensions to multiple sectors

2. Competitive equilibrium

(a) Heterogeneity and aggregation

(b) The income fluctuations problem, incomplete markets

3. Overlapping generations

(a) Recursive representation
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(b) Dynamic inefficiencies

4. Long-run growth

(a) Human capital

(b) AK model

(c) Endogenous growth: externalities and innovation

Macroeconomics, more than anything, is a course on the long-term. It’s not necessarily about monetary
policy, or trade, or anything specific, but more the study of behavior over a long time horizon. It’s the only
field able to study topics like climate change and demographic change for that reason.

1.2 Growth Model

“Who does what, when” – Sargent, on models. Consider: Time, Preferences, Technology.
Model. One-sector Growth Model (redux)

• Time: Discrete, infinite horizon

• Preferences: representative dynasty preferences

∞󰁛

t=0

βtu(ct)

where β ∈ (0, 1) and u strictly concave, increasing, and differentiable

• Technology:
ct + xt + gt ≤ f(kt)

kt+1 ≤ xt + (1− δ)kt

where xt is investment, gt is government spending, and f(kt) is output. f(kt) is concave, strictly
increasing, and f(0) = 0. We also have the following two conditions: limk→0 f

′(kt) >
1
β − (1− δ), and

limk→∞ f ′(kt) <
1
β − (1− δ)

Question. Why is this called a one-sector growth model? It looks like there are two sectors!

Because the marginal rate of transformation between consumption and next-period capital (investment) is
one-to-one.
Assumption 1.1. All quantities must be non-negative.

We have the following maximization problem, given a sequence of {gt} and a k0:

max
{ct,xt,kt+1}

∞󰁛

t=0

βtu(ct) subject to

ct + xt + gt ≤ f(kt)

kt+1 ≤ xt + (1− δ)kt

(ct, xt, kt+1) ≥ (0, 0, 0)

Definition. An allocation is a set of sequences {ct, xt, kt+1}. An allocation is feasible if it satisfies

ct + xt + gt ≤ f(kt)

kt+1 ≤ xt + (1− δ)kt
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(ct, xt, kt+1) ≥ (0, 0, 0)

How will we solve this? We consider it as a finite horizon problem, and then derive (and apply) a transversality
condition. We will solve the finite problem by an application of the KKT conditions, where the Lagrangian
is

L(c, x, k,λ, θ, γ) =
T󰁛

t=0

βt {u(ct) + λt[f(kt)− (ct + xt + gt)] + θt[xt + (1− δ)kt − kt+1] + . . .}

where . . . are the non-negativity conditions with γ multipliers (trivially will hold).

The first-order necessary conditions are:

ct : u
′(ct)− λt + γ1t = 0 t = 0, 1, . . . , T

xt : −λt + θt + γ2t = 0 t = 0, 1, . . . , T

kt+1 : −θt + γ3t + βλt+1f
′(kt+1) + β(1− δ)θt+1 = 0 t = 0, 1, . . . , T

kT+1 : −θT + γ3T = 0

as well as complimentary slackness conditions. The region we think about the finite horizon is that this
last period is different – you’re going to die, so there is no payoff for accumulating capital. We will use the
complimentary slackness condition for time t = T to construct the transversality condition. We need the
agent to not want to accrue capital forever, for some payoff long in the future. The complimentary slackness
condition is that βT kT+1γ3T = 0. We can convert this to βT θT kT+1, and the transversality condition will
hold as long as limT→∞ βT θT kT+1 = 0.
Remark. Most importantly!! Never repeat this approach outside of this course.

Our first order necessary conditions are now:

ct : u
′(ct) = λt

xt : θt = λt

kt+1 : βλt+1[f
′(kt+1 + (1− δ)] = λt

TC : lim
T→∞

βT θT kT+1 = 0

f : ct + xt + gt ≤ f(kt)

kt : kt+1 ≤ xt + (1− δ)kt

Rearranging, we get

kt+1 : βu′(ct+1)[f
′(kt+1) + (1− δ)] = u′(ct)

TC : lim
T→∞

βT θT kT+1 = 0

From Micro 101, we can recognize that

u′(ct)

βu′(ct+1)
= [f ′(kt+1) + (1− δ)]

MRS = MRT

Now suppose that gt = g ∀ t. We have the following:
Definition. A steady state is an allocation such that, for all t, ct = c, xt = x, and kt+1 = k. At the steady
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state, our first order necessary conditions become

ct : u
′(c󰂏) = λ󰂏

kt+1 : β[f ′(k󰂏) + (1− δ)] = 1

f : c󰂏 + x󰂏 + g = f(k󰂏)

kt : δk
󰂏 = x󰂏

Simplifying, we have that

β[f ′(k󰂏) + (1− δ)] = 1 (Euler)
c󰂏 + δk󰂏 + g = f(k󰂏) (Feasibility)

Essentially, the level of capital is fully determined by the production technology. To know consumption, we
just need the feasible consumption rate.
Question. Does this steady state necessarily exist? If so, is it unique?
Solution. Define L(k) = β[f ′(k󰂏)+(1−δ)]. We know from the assumptions (way above) that limk→0 L(k) >
1 and limk→∞ L(k) < 1. So what else do we need? Just continuity! Which we have from our assumption
that this was a constant returns to scale production function in capital and labor, so decreasing in labor,
so f ′ is decreasing! Conclusion follows from the Intermediate Value Theorem – we have both existence and
uniqueness.

Are we done yet? We need to check feasibility! Is c󰂏 > 0? Suppose that g = 0. We need to check f ′(k) < δ

at the point k̂ such that f(k̂) = δk̂, which implies that ĉ = 0. However, for all k < k̂, f(k) > δk. It remains
to show that k󰂏 < k̂, which follows directly because:

f ′(k󰂏) =
1

β
− (1− δ) > δ

for β ∈ (0, 1).

1.3 Dynamics in the One-Sector Growth Model

Suppose now that we have a technology level z so that output is zf(k), which is analogous to total factor
productivity. Our first order conditions are now

ct : u
′(ct) = λt

kt+1 : βλt+1[zf
′(kt+1) + (1− δ)] = λt

TC : lim
t→∞

βTλT kT+1 = 0

f : ct + xt + gt ≤ zf(kt)

kt : kt+1 ≤ xt + (1− δ)kt

Remark. One could describe the dynamics in terms of consumption, which is what most books do, or in
terms of shadow value, which is what we will do.

We define u′(c(λ)) ≡ λ and will assume gt = g sufficiently ‘small’1 for now. Our key conditions are, as before

βλt+1[zf
′(kt+1) + (1− δ)] = λt (Euler)

ct + kt+1 − (1− δ)kt + gt) ≤ zf(kt) (Feasibility)

1Basically, that we will not run into the non-negativity constraint on consumption.
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We can solve this using a phase diagram, which we saw last semester. We can’t explicitly solve an infinite
system of non-linear equations explicitly, but we can do it using programs – specifically, for this QuantEcon
has a good codebase.

In this case, we will use finite difference methods – specifically, the shooting algorithm. We will approximate
k and c (or λ, in our case) with N discrete points in the time dimension. Denote the distance between grid
points as ∆t. Let (kn, cn) be a point on the grid, and use the equations that characterize the optimum with
k0 given:

cn+1 = βcn[zf
′(f(kn)− (1− δ)kn − cn) + (1− δ)]

kn+1 = f(kn)− (1− δ)kn − cn

Remark. Why is this linear in c? We are explicitly assuming log utility here, that’s how we convert it. Any
CARA utility would have an exponent, but we assume log for simplicity.

Explicitly, we have:
Algorithm. Shooting Method

1. Guess c0

2. Obtain (cn, kn) for n = 1, . . . , N by running the equations above forward

3. If the sequence converges to (c󰂏, k󰂏) then you have the correct saddle path. If not, update c0 and go
back to 1

This will converge because the solution is unique – there is explicitly only one steady state, and since the
problem is convex there’s a unique path to that steady state.

Now take the sequential planner’s problem, which is

max
{ct,kt+1}

∞󰁛

t=0

βtu(ct)

subject to
ct + kt+1 = f(kt) + (1− δ)kt

ct, kt+1 ≥ 0 and k0 > 0 given

We have the value function

V (k0) = max
{(ct,kt+1)∈Γ(kt)}∞

t=0

∞󰁛

t=0

βtu(ct)

where
Γ(kt) = {(ct, kt+1) : ct ≥ 0, kt+1 ≥ 0, ct + kt+1 ≤ f(kt) + (1− δ)kt}

Our recursive formulation is
V (k0) = max

(c0,k1)∈Γ(k0)
u(c0) + βV (k1)

In general,
V (k) = max

(c,k′)∈Γ(k)
u(c) + βV (k′)

where k is the state variable (or set of state variables). As long as u is differentiable, the solution to this
problem satisfies

k′ = f(k) + (1− δ)k − c and
∂u(c)

∂c
= β

∂V (k′)

∂k
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From the envelope condition, we can recover the Euler equation:

∂V (k′)

∂k
=

∂u(c′)

∂c

󰀗
z
∂f(k′)

∂k
+ (1− δ)

󰀘

As we saw last semester, the solution to this problem is a policy function g : K → K such that k′ = g(k) and a
value function V 󰂏 : K → R+. We will approximate g and V 󰂏 numerically, with methods that differ depending
on the characteristics of the problem. In general, our algorithm will be either value function iteration, or
finding policy functions from the Euler equations. Both of these should give us the same solutions.

Numerical Solutions. We have a set of non-linear equations to be solved over the state space K (these
are our Euler equations):

∂u(c)

∂c
= β

∂u(c′)

∂c

󰀗
z
∂f(k′)

∂k
+ (1− δ)

󰀘

=⇒ ∂u(f(k) + (1− δ)k − k′)

∂c
= βu′(f(k′) + (1− δ)k′ − k′′)

󰀗
∂f(k′)

∂k
+ (1− δ)

󰀘

We will discretize K into N nodes, and solve the system of equations: (and then make sure k = k󰂏 belongs
to the set K)

∂u(f(k) + (1− δ)k − g(k))

∂c
= βu′(f(g(k)) + (1− δ)g(k)− g(g(k)))

󰀗
∂f(g(k))

∂k
+ (1− δ)

󰀘

Algorithm. Value Function Iteration

1. Discretize the state space K

2. Make a guess for the value function V0(k)

3. Use the optimization algorithm to solve for k′(k)

4. Compute2

V1(k) = u(f(k) + k(1− δ)− k′(k)) + βV0(k
′(k))

5. Check the distance between V0(k) and V1(k). If larger than the tolerance, update V0(k) = V1(k) and
go back to 3. Otherwise, stop!

Remark. With full depreciation (δ = 1) and log utility, you can (and we did!) do this by hand!
Example. Suppose we want to know the answer to questions of the following form:

1. What is the role of the capital output ratio...

2. What is the role of productivity...

for differences in output per capita across countries?

We will choose functional forms for technology and preferences where parameters have clear economic inter-
pretations, i.e.

u(ct) =
c1−σ
t − 1

1− σ
and f(k) = zkαt

We will set z = 1 in the US for now, and have four free parameters: σ, δ, β, and α. The literature suggests
two approaches: estimation and calibration.

2There are various methods to approximate V0(k′) for ‘off-grid’ points.
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Question. Why not always estimate? The model is an abstraction in which we’ve deliberately abstracted
away from some features. Standard formal statistical procedures for estimation use criteria that may not
make economic sense. This was a big discussion in the 80s and 90s.

Alternative: choose the aspects of the data that your model was designed to capture.

The key idea of calibration is that choosing parameters boils down to choosing moments in the data to match.
You can think of calibration as an exactly identified generalized method of moments (GMM) estimation.

This model is designed to explain the capital accumulation process. The key statistics that we care about
are k/y, x/y, and r. Think of the modern US as fluctuations around the steady state (i.e. take averages
to calculate the steady state). If we take one period as one year, we get that k/y ≈ 2.5, x/y ≈ 0.2, and
r ≈ 0.04.
Remark. Note that we have three moments, but four parameters! That’s because σ does not affect the
steady state, so it cannot be identified from the steady state. Estimates in the data have that σ ∈ [1, 2.5].
We will use σ = 1, corresponds to log utility.

Our steady state conditions give us that

x

y
= δ

k

y
=⇒ δ ≈ 0.08 ; r = α

y

k
=⇒ α ≈ 0.1 ; β[r + (1− δ)] = 1 =⇒ β ≈ 1

How much of the observed differences in income per capita are accounted for by differences in z, or by
differences in k/y? Recall that Yt = zKα

t H
1−α
t . Taking logs, we get

ln(Yt) = α󰁿󰁾󰁽󰂀
βk

ln(Kt) + (1− α)󰁿 󰁾󰁽 󰂀
βH

ln(Ht) + ln(At)󰁿 󰁾󰁽 󰂀
ε

Remark. We could estimate this as a regression directly... but orthogonality between TFP and the covariates
is extremely unlikely. This condition will not be satisfied. Julieta gave a full lecture on this, if you are
interested.

An important take-away from the one sector growth model: differences in TFP induce differences in K, but
K
Y is independent from TFP in steady state! We have from the Euler equation that

1 = discount

󰀵

󰀹󰀷α
Y

K󰁿󰁾󰁽󰂀
MPK

+(1− depreciation)

󰀶

󰀺󰀸

So output per worker is
Y

L
= Z

󰀕
K

Y

󰀖 α
1−α H

L
where Z = A

1
1−α

in logs:

ln

󰀕
Y

L

󰀖
= ln(Z) +

α

1− α
ln

󰀕
K

Y

󰀖
+ ln

󰀕
H

L

󰀖

If you want to play with these data to see the relationships yourself, Julieta has a Github repo with some
broad growth data and code.
Remark. In accounting exercises, we very often get that TFP explains most of the difference in output
per capita. That’s really unsatisfying – it’s basically a residual. However, macroeconomists are constantly
looking under the hood of TFP to find the actual paths for that difference.
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1.4 Equilibria

1.4.1 Competitive Equilibria

Question. How many markets are open?

In the most simple case, all markets are open, but this is unwieldy and not so realistic – recall that agents
live forever in many models. Instead, we will look at a (recursive) market structure.
Model. Competitive Equilibrium Firms rent inputs in spot markets, and specifically do not own capital.
They solve

max
{kt,nt}

ct + pktxt − rtkt − wtnt

subject to
ct + xt ≤ F (kt, nt) t = 0, 1, . . .

and a bunch of non-negativity constraints.
Assumption 1.2. F is strictly increasing in each argument, concave, twice continuously differentiable, and
homogeneous of degree 1.

This means we have constant returns to scale for production, meaning that the size of the firm does not
matter. In an interior solution, pkt = 1, and rt = Fk(kt, nt) and wt = Fn(kt, nt). Let f(k) = F (k, 1).
Equilibrium factor prices satisfy rt = f ′(kt) and wt = f(kt)−ktf

′(kt). Firms choose the level of employment.

Households solve the problem

max
{ct,xt,kt+1,bt+1}

∞󰁛

t=0

βtu(ct)

subject to

ct + pkt
xt + bt+1 ≤ wt + rtkt +Rtbt t = 0, 1, . . .

kt+1 ≤ xt + kt(1− δ) t = 0, 1, . . .

0 = lim
T→∞

βTu(cT )bT+1

0 ≤ ct, xt, kt+1 t = 0, 1, . . .

Why do we need a no-ponzi-scheme condition on bt? We don’t want agents carrying debt forward forever,
in order to maximize consumption.
Remark. This is not a transversality condition – the transversality condition is an optimality condition,
this is a restriction on the problem structure itself. As we can see from real life – Ponzi, Madoff, etc. – this
can happen, and would be optimal for maximizing consumption. We could alternatively impose bt ≥ b for
some b ∈ (−∞, 0).

The Lagrangian of this problem is:

L =

∞󰁛

t=0

βt
󰁱
u(ct)+

+ λt [wt + rtkt +Rtbt − ct − pkt
xt − bt+1]

+ θt [(1− δ)kt + xt − kt+1]

+ γ1tct + γ2txt + γ3tkt+1

󰁲
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The first order conditions are similar to before, but have some new conditions:

ct : u
′(ct) = λt

xt : λt = θt

kt+1 : θt = β[θt+1(1− δ) + λt+1rt+1

bt+1 : λt = βRt+1λt+1

TV Ck : lim
T→∞

βTλT kT+1 = 0

TV Cb : lim
T→∞

βTλT bT+1 = 0

We end up with one main Euler equation:

u′(ct) = βu′(ct+1)[1− δ + rt+1]

We can also use the FOC on the choice of capital to obtain

u′(ct) = βu′(ct+1)[1− δ + f ′(kt+1)]

The Euler equation for bonds is
u′(ct) = βu′(ct+1)Rt+1

Note that one of these two (capital and bonds) Euler equations implies the other!
Definition. A recursive competitive equilibrium (RCE) is a colelction of price sequences {{w󰂏

t , r
󰂏
t , p

󰂏
kt
, R󰂏

t },
an allocation {c󰂏t , x󰂏

t , k
󰂏
t+1}, and a sequence of bond holdings {bt+1} such that

1. Given prices, the allocation and sequence of bonds is utility maximizing.

2. Given prices, the allocation is profit maximizing

3. Markets clear

4. b󰂏0 = b0 = 0, k󰂏0 = k0 > 0 is given.
Proposition 1.1. Any budget feasible allocation must satisfy

∞󰁛

t=0

qtct =

∞󰁛

t=0

qtwt + q0[1− δ + r0]k0 + q0R0b0

where qt/q0 =
󰁔t

j=1 R
−1
j for t ≥ 1.

Remark. qt/q0 is the price of consumption at time t, in terms of consumption at time 0. These are the
prices in an Arrow-Debreu economy with time zero trading.

Proof. Our budget constraint at time t = 0 is

b1 = w0 + r0k0 − c0 − x0

while at time t = 1 it is
c1 + x1 + b2 = w1 + r1k1 +R1b1

We can combine these, and get

c0 + x0 +R−1
1 (c1 + x1) = w0 + r0k0 +R−1

1 (w1 + r1k1) +R0b0 −R−1
1 b2
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Repeating, we get that for any finite T ,

T󰁛

t=0

qt(ct + xt) =

T󰁛

t=0

qt(wt + rtkt) + q0R0b0 − qT bT+1

No Ponzi implies that we can take T to ∞, and use the Euler equation for bonds to get

∞󰁛

t=0

qt(ct + xt) =

∞󰁛

t=0

qt(wt + rtkt) + q0R0b0

We want to show that
∞󰁛

t=0

qt(rtkt − xt) =

∞󰁛

t=0

qt(rtkt − kt+1 + (1− δ)kt) = q0[1− δ + r0]k0

We can rearrange the terms of the second sum to read

lim
T→∞

q0[1− δ + r0]k0 + k1[−q0 + q1(1− δ + r1)] + · · ·+ kT [−qT−1 + qT (1− δ + rT )]

And conclusion follows from the Transversality Condition
Proposition 1.2. In an equilibrium, b󰂏t = 0 for all t

Proof. From the household budget constraint,

w󰂏
t + r󰂏t k

󰂏
t +R󰂏

t b
󰂏
t = c󰂏t + x󰂏

t + b󰂏t+1

and using the equilibrium conditions for wt, rt we have that

f(k󰂏t )− k󰂏t f
′(k󰂏t ) +R󰂏

t b
󰂏
t = c󰂏t + x󰂏

t + b󰂏t+1

And conclusion follows from noting that market clearing implies that f(k󰂏t ) = c󰂏t+x󰂏
t , so the budget constraint

for the private sector becomes
R󰂏

t + b󰂏t = b󰂏t+1

and conclusion follows from b󰂏0 = 0.

1.4.2 Taxes

Question. How do deficits affect the economy?
Theorem 1.1. Ricardian Equivalence

1. Budget policy does not matter – for any given sequence {gt} all non-distortionary tax structures that
raise the appropriate level of revenue are associated to the same real allocation

2. Timing of the tax collection is irrelevant, in the sense that prices and allocations are independent of
the timing. This result is often described as the Ricardian proposition

Proof. Let g = {gt} be a sequence of expenditure. Define φ = {τt} the sequence of lump-sum taxes to
finance g and any initial debt. Consider an alternative sequence of taxes φ̂ such that τ̂0 < τ0. Then

∞󰁛

t=0

qtct =

∞󰁛

t=0

qt(wt − τt) + q0[1− δ + r0]k0 + q0R0b0
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and assume that Rtbt + gt = τt + bt+1. This implies that

∞󰁛

t=0

qt(τt − gt) = q0R0b0 − qT bT+1

Impose a No-Ponzi condition, so limT→∞ qT bT+1 = 0. Then
󰁓∞

t=0 qtτt =
󰁓∞

t=0 qtτ̂t, and

∞󰁛

t=0

qtct =

∞󰁛

t=0

qt(wt − gt) + q0[1− δ + r0]k0

Guess that prices did not change after the tax change. Given that the budget constraint of the household is
the same, it chose the same investment and consumption sequences, and firms chose the same allocations to
maximize profits as before. Market clearing requires that

ct + kt+1 = f(kt) + (1− δ)kt − gt

which is the same since gt did not change!
Question. Why does the higher deficit not generate shifts in the interest rate?

For τ̂0 < τ0,
b1 + τ0 = g0 +R0b0 = b̂1 + τ̂0 =⇒ b̂1 − b1 = τ̂0 − τ0

So debt goes up! However, households understand that lower taxes today will be compensated with higher
taxes tomorrow. Households increase saving, at exactly the same rate as the government will increase taxes
in the future. Since everyone is perfectly forward-looking, they do not change their habits at all.
Model. Distortionary Taxes We have a representative household, which solves

max
{ct,nt,xt,kt+1,bt+1}

∞󰁛

t=0

βtu(ct, 1− nt)

subject to, for t = 0, 1, 2, . . .

(1 + τ ct )ct + (1 + τxt )xt + bt+1 ≤ (1 + τnt )wtnt + rtkt − τkt (rt − δt)kt + (1 + (1− τ bt r
b
t )bt

kt+1 ≤ xt + kt(1− δ)

0 = lim
T→∞

βTu′(cT )bT+1

0 ≤ ct, xt, kt+1

The representative firm’s problem is

max
kt,nt

F (kt, nt)− rtkt − wtnt

The first order conditions for the household are

u′
c(ct, 1− nt) = λt(1 + τ ct ) (ct)

(1 + τxt )λt = βλt+1

󰀅
(1− δk)(1 + τxt+1) + (1− τkt+1)rt+1 + τkt+1δk

󰀆
(kt+1)

λt = βλt+1

󰀅
1 + (1− τ bt+1)r

b
t+1

󰀆
(bt+1)

u′
n(ct, 1− nt) = λt(1− τwt )wt (nt)

0 = lim
T→∞

βTλT kT+1 (TVC)

0 = lim
T→∞

βtλT bT+1 (No Ponzi)
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And the first order conditions for the firm are

Fk(kt, nt) = rt ; Fn(kt, nt) = wt

So in steady state, we have

ρ+ τx(ρ+ δk) = (1− τk)(Fk(k, n)− δk) (k)

1 = β[1 + ρ] (b)

u′
n(c, 1− n) = u′

c(c, 1− n)
1− τw

1 + τ c
Fn(k, n) (n)

F (k, n) = c+ g + δkk (Feasibility)

where ρ ≡ (1− τ b)rb. Thus, we have that taxes on bonds just change rb. Similarly, consumption and income
taxes are equivalent, and investment and capital taxes are equivalent. This leads to two extremely famous
results:
Theorem 1.2. First Welfare Theorem If [(w󰂏, r󰂏, p󰂏k, R

󰂏), (c󰂏, x󰂏, k󰂏), b󰂏] is an interior competitive equilib-
rium, then (c󰂏, x󰂏, k󰂏) solves the planner’s problem.

Proof. Since b󰂏 = 0 in any equilibrium, the household budget constraint is

f(k󰂏) = c󰂏 + x󰂏 ; (k󰂏)′ = (1− δ)k󰂏 + x󰂏

where (k󰂏)′ is a vector of capital stock with first element k󰂏1 . Also, the optimality conditions for the firm
and the household together imply that

u′(ct) = βu′(ct+1)[(1− δ) + f ′(kt+1)]

0 = lim
T→∞

βTu′(cT )kT+1

Theorem 1.3. Second Welfare Theorem If (c󰂏, x󰂏, k󰂏) is an interior solution to the planner’s problem, then
there exist prices (w󰂏, r󰂏, p󰂏k, R

󰂏) and a sequence of bond holdings b󰂏 such that [(w󰂏, r󰂏, p󰂏k, R
󰂏), (c󰂏, x󰂏, k󰂏), b󰂏]

is a competitive equilibrium of an economy with a representative agent who has initial wealth b0 = 0 and
initial capital holdings k0 > 0 equal to the initial endowment of capital in the economy.

Proof. Let b󰂏 = 0. Since the solution to the planner’s problem is feasible, we need to define prices and
ensure that the optimality conditions (including transversality conditions) are met. Define

w󰂏 = f(k󰂏)− f ′(k󰂏)k󰂏

r󰂏 = f ′(k󰂏)

R󰂏 = (1− δ) + f ′(k󰂏)

At these prices, the optimality conditions of the firms and households are satisfied. Finally, we check the
transversality conditions. The condition on bonds is trivially met since b󰂏 = 0. If we set λt = u′(ct), the
transversality condition of the consumer problem in capital is the same as the one the planner faces. This
will be a competitive equilibrium.

1.5 Overlapping Generations Model

There are three models you should know to read macroeconomic papers: growth models (like we’ve been
doing), overlapping generations models, and partial equilibrium models. This will be a primer on OLG, which
is the second major workhorse of modern macroeconomics. Why do we use this model? Well, individuals
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don’t actually live forever. In what sense is a model where people live for finite time equivalent to infinite
lifecycles model? We want models (that macroeconomists call altruistic bequest motive models) where agents
have interesting life-cycles: born, education, labor income, plan for retirement, partner, have children, retire,
and die. This integration of micro data into macro models is very modern.
Model. Overlapping Generations (OLG) Time is discrete (t = 1, 2, . . . ) and the economy lasts forever.
There is a single non-storable consumption good in each period. A new generation is born each period,
indexed by the year born. People live for two periods and then die.3 What happens to the population?

Generation t is endowed with the consumption good in periods 1 and 2 of life, (ett, e
t
t+1). Generation t’s

consumption in those periods is (ctt, c
t
t+1). At each point in time t, there are two generations alive: an

old generation with endowment and consumption (et−1
t , ct−1

t ) and a young generation with endowment and
consumption (ett, c

t
t). At time 0, there is one old generation (e01, c

0
1). We also have exponential population

growth where L0 = 1 and Lt = (1 + n)tL0.

We assume that the only endowment is labor (time) – one unit supplied inelastically when young in return
for wt (i.e. you retire in year 2). We have constant returns to supply (CRS) technology for production
Yt = F (Kt, Lt) and competitive factor markets. We will assume that δ = 1, define k ≡ K

L , f(k) ≡ F (k, 1),
and the gross return on savings and wage rates

1 + rt = Rt = f ′(kt) and wt = f(kt)− ktf
′(kt)

Each generation solves the problem
max

ctt,c
t
t+1,st

u(ctt) + βu(ctt+1)

subject to
ctt + st ≤ wt and ctt+1 ≤ Rt+1st

So old agents rent their savings to firms as capital, and as long as u is strictly increasing with Inada, the
constraints hold with equality. We need no non-negativity constraints – why?

The Euler equation is
u′(ctt) = βRt+1u

′(ctt+1)

and since the individual problem is concave, this suffices. We obtain a savings function s : R2 → R with
st = s(wt, Rt+1), where s is increasing in w and increasing or decreasing in R. Aggregate savings are
St = Ltst, and with full depreciation capital stock is Kt+1 = Lts(wt, Rt+1).
Definition. An OLG competitive equilibrium is a sequence of aggregate capital stocks, individual consump-
tion, and factor prices {Kt, (c

t
t, c

t
t+1), Rt, wt}∞t=0 such that the factor price sequence satisfies the first two

conditions, individual consumption decisions are given by the Euler equation, and the savings function, and
the aggregate capital stocks follow the law of motion.

Steady state is defined as normal, holding k ≡ K
L constant, and the equilibrium characterization requires

normalizing by the size of the population Lt+1 = (1 + n)Lt. We have that

kt+1 =
Kt+1

Lt+1
=

Lt

Lt+1
s(wt, Rt+1)

and combining with the above, we get

kt+1 =
s(f(kt)− ktf

′(kt), f
′(kt+1))

n+ 1

Steady state is a fixed point of this expression. Note that since s can take any form, in principle multiple
steady states (as well as complicated dynamics) are possible. If we assume CRRA utility and Cobb-Douglas

3Alternatively, death can be stochastic. See Blanchard 1985.
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production:

Ut =
(ctt)

1−σ − 1

1− σ
+ β

(ctt+1)
1−σ − 1

1− σ
; f(k) = kα

for θ > 0, α,β ∈ (0, 1). The key outcome is the Euler equation

ctt+1

ctt
= (βRt+1)

1
θ

Rewritten in terms of savings rate, we have

sθtβR
1−θ
t+1 = (wt − st)

−θ =⇒ st =
wt

φt+1
where φt+1 ≡

󰁫
1 + β− 1

θR
− 1−θ

θ
t+1

󰁬
> 1 =⇒ st < wt

We have comparative statics for savings with respect to wages

sw =
∂s

∂w
=

1

φt+1
∈ (0, 1)

and with respect to capital

sR =
∂s

∂R
=

1− θ

θ
(βRt+1)

− 1
θ

st
φt+1

where the sign depends on θ, the intertemporal elasticity of substitution. By combining the above, we can
define a steady state implicitly by

k󰂏 =
f(k󰂏)− k󰂏f ′(k󰂏)

(1 + n)
󰁫
1 + β− 1

θ f ′(k󰂏)−
1−θ
θ

󰁬

We could also solve for the interest rate R󰂏 = α(k󰂏)α−1, and get

(1 + n)
󰁫
1 + β− 1

θ (R󰂏)−
1−θ
θ

󰁬
=

1− α

α
R󰂏

and finally, dynamics are given by the difference equation

kt+1 =
(1− α)kαt

(1 + n)
󰁫
1 + β− 1

θ (αkα−1
t+1 )

− 1−θ
θ

󰁬

Proposition 1.3. In the OLG model with generations that live for two periods, Cobb-Douglas technology,
and CRRA preferences, there exists a unique and stable steady state for all k(0) > 0.
Remark. In this specific well-behaved case, equilibrium dynamics ≈ the Solow Model. Even with CRRA
and Cobb-Douglas the model can get quite messy – the canonical model assumes log preferences.

The social planner solves
∞󰁛

t=0

βt
sUt ≡

∞󰁛

t=0

βt
s(u(c

t
t) + βu(ctt+1))

subject to
F (Kt, Lt) = Kt+1 + cttLt + ct−1

t Lt−1

where βs is the planner’s discount factor across generations. Dividing by Lt, we get

f(kt) = (1 + n)kt+1 + ctt +
ct−1
t

1 + n
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We have the Lagrangian

L =

∞󰁛

t=0

βt
s

󰀗
(u(ctt) + βu(ctt+1)) + λt

󰀕
f(kt)− (1 + n)kt+1 + ctt +

ct−1
t

1 + n

󰀖󰀘

The Euler equation comes from the first order necessary conditions:

u′(ctt) = βf ′(kt+1)u
′(ctt+1)

Since f ′(kt+1) = Rt+1, the intertemporal consumption decisions are identical to the household, meaning
that there is no distortion in consumption allocation over time when shifting to the social planner’s problem.
However, there may be differences across generations – the social planner may weight them differently. The
steady state gives us

f ′(k󰂏)− (1 + n)k󰂏 =

c󰂏󰁽 󰂀󰁿 󰁾
c󰂏1 +

c󰂏2
1 + n

where c1 and c2 are consumption when young and old respectively. We maximize overall consumption when

∂c󰂏

∂k󰂏
= f ′(k󰂏)− (1 + n) = 0 =⇒ ∃ kgold s.t. f ′(kgold) = (1 + n)

so kgold is the steady state capital that maximizes consumption (golden rule capital). Importantly, since f
is concave, if k󰂏 > kgold, then f ′(k󰂏) < 1 + n =⇒ ∂c󰂏

∂k󰂏 < 0, so lower savings would increase consumption for
everyone. This is depicted in Figure 1.

c

k

f(k)

(1 + n)k

kgold k󰂏

Figure 1: Golden Rule Capital

Definition. The economy is dynamically inefficient if it involves overaccumulation (i.e. if k󰂏 > kgold). An
alternative to this condition is R󰂏 < 1+n ⇐⇒ r󰂏 < n. Transversality in a standard one-sector growth model
requires r > g + n, but we do not impose transversality in the OLG model, since agents live for two periods
and solve finite problems.
Remark. Individuals born at time t face prices determined by the stock of capital chosen by the previous
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generation. Pecuniary externality: actions of the previous generation affect those further on. These typically
do not matter for welfare (because they are second order), but these affect an infinite stream of newborn
agents. These pecuniary externalities can be exploited, and we will see this in the application.
Proposition 1.4. In the baseline OLD, the compaetitive equilibrium is not necessarily Pareto optimal.
Whenever r󰂏 < n the economy is dynamically inefficient. Hence, it is possible to reduce the capital stock in
the steady state and increase consumption for all generations.

Proof. Consider changing next period’s capital stock so that ∆k < 0, and then move towards the steady
state. This will lead to lower savings in the first period, so ∆cT = (1 + n)∆k > 0, meaning that everyone is
happier. Further, since k󰂏 > kgold, for small ∆k,

∆ct = −(f ′(k󰂏 −∆k)− (1 + n))∆k =⇒ f ′(k󰂏 −∆k)− (1 + n) < 0 =⇒ ∆ct > 0 ∀ t > T

Thus, we’ve improved consumption in all future periods, showing a Pareto improvement.
Remark. We can think about two types of systems to deal with dynamic inefficiencies:

1. Fully funded (social security): Young make contributions to the social security system, which are paid
back when they are old

2. Unfunded (pay-as-you-go): Transfers go directly from the young to the current old

Pay-as-you-go discourages savings, so it may lead to a Pareto improvement.
Example. Fully-Funded Social Security The household’s problem is

max
ctt,c

t
t+1,st,dt

u(ctt) + βu(ctt+1)

subject to
ctt + st + dt ≤ wt and ctt+1 ≤ Rt+1(st + dt)

The government raises dt from the young, invests it in the capital stock, and pays it back when they are
old. Market clearing for capital requires st+dt = (1+n)kt+1, but the household does not necessarily choose
st > 0. If st is unconstrained, then given a (feasible) sequence {dt}∞t=0, the set of competitive equilibria
without social security is the set of competitive equilibria with social security if st > 0. If you impose st ≥ 0
(no borrowing), then a (feasible) sequence {dt}∞t=0 is a competitive equilibrium if the equilibrium savings is
such that st > 0 for all t. This implies that there cannot be a Pareto improvement if we impose st ≥ 0.
Example. Unfunded Social Security The household’s problem is

max
ctt,c

t
t+1,st

u(ctt) + βu(ctt+1)

subject to
ctt + st + dt ≤ wt and ctt+1 ≤ Rt+1st + (1 + n)dt+1

The government raises dt from the young and distributed (1 + n)dt to the old. The rate of return on social
security is 1 + n rather than Rt+1, and only st goes to capital accumulation.
Remark. Unfunded social security reduces capital accumulation! What effect will that have on growth and
welfare? If the economy is dynamically inefficient, this may be good... however most poorer countries have
capital accumulation that is too low rather than too high. However, social security transfers resources from
future generations to the initial old generation. With no dynamic inefficiency, this will make some future
generation worse off!
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1.6 Heterogeneity

We will talk about heterogeneity and consumption distribution, Gorman aggregation, and variance of con-
sumption. We will typically take income as exogenous, and consider differences in consumption as the objects
of interest with respect to the heterogeneity.

Piketty talked in capital about how capital growth, when wages are stagnant, can lead to increases in
inequality. Specifically, recent automation is a large concern here. This is a recent question – in older
history, growth was associated with sharp declines in inequality, rather than increases. Weirdly, inequality
in the 20th century seemed to decline until the 1960s, when inequality in the U.S. increased by massive
amounts.
Question. Is the one-sector growth model consistent with some degree of heterogeneity across households?

Under some conditions, we can show that heterogeneity in initial wealth, effective labor (i.e. human capital),
and (limited) differences in utility do not affect equilibrium. Why? Because the ‘averages’ remain the same
across the economy, which is identical to the representative agent economy. The basic ideas go back to
Gorman on aggregation.
Model. Heterogeneity We have N households, each characterized by a vector (θi, ai, ei) where ai are assets
and ei endowments of labor, and individual utility

ui(c) =
(c+ θi)

η

1− η

where η > 0 and θi can be either positive or negative. The household problem is

max
{ci,t,ai,t+1}

∞󰁛

t=0

βtui(ci,t)

subject to

ci,t + ai,t+1 ≤ wtei +Rtai,t ∀ t = 0, 1, . . . and lim
T→∞

βTu′
i(ci,T )ai,T+1 = u

with ai,0 given. We also have a present value budget constraint, where

∞󰁛

t=0

qtci,t ≤
∞󰁛

t=0

qtwtei + q0ai,0 where qt ≡
t󰁜

j=1

R−1
j

The representative firm solves the standard problem

max
ct,xt

ct + pktxt − wtet − rtkt

subject to
ct + xt = F (kt, et) and kt+1 = (1− δ)kt + xt

Let N be the number of households in the economy. For any variable zit, let zt = N−1
󰁓

i≤N zi,t, meaning
the population average. We have first and second moments (including covariance) as usual, and we define
θ ≡ N−1

󰁓N
i=1 θi, at ≡ N−1

󰁓N
i=1 ait, and e ≡ N−1

󰁓N
i=1 ei.

Definition. A competitive equilibrium is a collection of price sequences {qt, wt, rt, Rt}, an allocation {xt, kt, {cit}}
and a sequence of asset holdings {ait} such that

1. Given prices, the allocation and sequence of assets maximizes utility

2. Given the equilibrium prices, the allocation maximizes profits
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3. The allocation is feasible: market clearing and aggregate law of motion for capital

4. a0 = k0 > 0 given
Proposition 1.5. Average quantities corresponding to a competitive equilibrium also solve the planner’s
problem:

max
{ct,xt,kt+1}

∞󰁛

t=0

βt (ct + θ)1−η

1− η

subject to ct + xt ≤ F (kt, et) and kt+1 = (1− δ)kt + xt.

Proof. Assume an interior solution. Thef irst order condition for the planner’s problem is just

(ct + θ)−η = β(ct+1 + θ)−η[1− δ + Fk(kt+1, et+1)]

The Euler equation for family i is

(cit + θi)
−η = β(cit+1 + θi)

−ηRt+1

but Rt+1 = [1− δ + Fk(kt+1, et+1)], which implies that

(cit + θi) = β−1/η(cit+1 + θi)[1− δ + Fk(kt+1, et+1)]
−1/η

Averaging each side, we get

N−1
N󰁛

i=1

(cit + θi) = N−1
N󰁛

i=1

β−1/η(cit+1 + θi)[1− δ + Fk(kt+1, et+1)]
−1/η

Question. What are the implications in this model for consumption mobility and cross-sectional dispersion
of consumption?

If we write the FOC of the household with the present-value budget constraint, we get

cit + θi)
−η = λi

qt
βt

=⇒ cit + θi) =

󰀕
λi

qt
βt

󰀖−1/η

We can use this expression in the budget constraint to solve for λi:

λ
−1/η
i

∞󰁛

t=0

qt

󰀕
qt
βt

󰀖−1/η

= ei

∞󰁛

t=0

qtwt + θi

∞󰁛

t=0

qt + q0ai0

For any sequence zt, let v(z, q) =
󰁓∞

t=0 qtzt. Then we have

λ
−1/η
i v

󰀣󰀕
qt
βt

󰀖−1/η

, q

󰀤
= eiv(w, q) + θiv(1, q) + q0ai0

Let Φt =
qt
βt

and Φ0 = 1. Then we have

λ
−1/η
i =

eiv(w, q) + θiv(1, q) + ai0

v(Φ
−1/η
t , q)
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Using this multiplier in the FOC of the household, we get

cit =
eiv(w, q) + θiv(1, q) + ai0

v(Φ
−1/η
t , q)

Φ
−1/η
t − θi

Note that consumption for each household is a linear function of ei, θi, ai0. Let Mi be such that

Mi ≡ meei +mθθi +maai0

where me = v(w,q)

v(Φ
−1/η
t ,q)

, mθ = v(1,q)

v(Φ
−1/η
t ,q)

, and ma = 1

v(Φ
−1/η
t ,q)

. Also, let M = mee+mθθ +maa0. Then we
have that

cit = MiΦ
−1/η
t − θi and ct = MΦ

−1/η
t − θ

Remark. Key features here: all individuals face the same prices, aggregate demand functions are indepen-
dent of the distribution of the personal characteristics, and a necessary and sufficient condition is that the
Engel curves be affine.

Household i’s relative consumption is cRit =
cit
ct

.
Proposition 1.6. The long-run distribution of consumption is non-degenerate ( i.e. it is not true that as
t → ∞, cRit = 1).

Proof. We know that ct → c󰂏, and if k0 < k󰂏 then ct is monotonically increasing. Thus, Φ
−1/η
t →

(Φ󰂏)−1/η > 0 for some Φ󰂏, and

cR
󰂏

i =
Mi(Φ

󰂏)−1/η − θi
M(Φ󰂏)−1/η − θ

∕= 1

Question. When do we observe cR
󰂏

i < 1? Well,

cR
󰂏

i < 1 ⇐⇒ Mi(Φ
󰂏)−1/η − θi < M(Φ󰂏)−1/η − θ

which holds if
(Φ󰂏)−1/η [me(ei − e) +ma(ai0 − a0)] < (θi − θ)

󰀓
1− (Φ󰂏)−1/ηmθ

󰀔

Remark. Some comparative statics: higher ei or ai0 leads to higher cR
󰂏

i ; lower θi leads to lower cR
󰂏

i . We
also have the (painful) second moments:

σ2(cR
󰂏

i ) =
1

󰀅
M(Φ󰂏)−1/η − θi

󰀆2

󰀫
(Φ󰂏)−2/η

󰀅
m2

eσ
2(e) +m2

aσ
2(a0)

󰀆
+
󰀓
(Φ󰂏)−1/ηmθ − 1

󰀔2

σ2(θ)

+ 2(Φ󰂏)−1/η [memaσ(e, a0) + (mθ − 1)(meσ(e, θ) +maσ(a0, θ))]

󰀬

Notice that σ2(c󰂏i ) = σ2(cR
󰂏

i )
󰀅
M(Φ󰂏)−1/η − θi

󰀆2
, so even if we have two economies A and B with σ2

A(e) =
σ2
B(e) and σ2

A(a0) = σ2
B(a0), we will have differences in consumption variance. A positive covariance between

any two of the elements that make up a household’s type increases long-run variance in consumption.
Question. What do you think of the statement ‘Controlling for initial wealth inequality, all countries display
the same amount of consumption inequality’?
Model. Bewley Economies We have that agents are ex ante identical, where the only source of heterogeneity
is income risk. Agents cannot insure against these shocks due to incomplete markets. We have discrete time
and no aggregate uncertainty, so the aggregate endowment ē is constant. We have a measure 1 of infinitely-
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lived households, with preferences

E0

∞󰁛

t=0

βtu(cit)

We have random endowments eit ∈ E where |E| < ∞, and transition matrix π(eit+1, eit) with stationary
distribution Π(e), where Π(e) = the measure of households with endowment e. The households solve

max
cit,ait+1

E0

∞󰁛

t=0

βtu(cit)

subject to a budget constraint and a borrowing constraint:

cit + ait+1 = eit + (1 + r)ait and ait+1 ≥ −b, where b ∈ R+

In recursive form, we have that

v(a, e) = max
c

u(c) + β
󰁛

e′

π(e′, e)v(a′, e′)

subject to
c+ a′ = e+ (1 + r)a and a′ ≥ −b

Remark. We need to be careful here! The borrowing constraint may bind here.

This Bellman equation becomes

v(a, e) = max
a′

u(e+ (1 + r)a− a′) + β
󰁛

e′

π(e′ | e)v(a′, e′) + µ(a′ + b)

Sufficient conditions for optimality are

∂u(c)

∂c
= β

󰁛

e′

π(e′ | e)∂v(a
′, e′)

∂a′
+ µ (a′)

∂v(a, e)

∂a
=

∂u(c)

∂c
(1 + r) (a)

µ(a′ + b) = 0 (CS)

The Euler equation is
∂u(c)

∂c
≥ β

󰁛

e′

π(e′ | e)∂u(c
′)

∂c′
(1 + r)

with equality whenever a′ > −b (i.e. when µ = 0). Solutions to the household problem are functions v(a, e),
a′(a, e) that satisfy the sufficient conditions, for a given r.

Assume shocks are i.i.d. Then consumption and savings decisions depend on the current value of income
x ≡ e + (1 + r)a, and savings are increasing in the current value of income ∂a′/∂x > 0. If x is sufficiently
high, choose a′ > −b and the Euler equation will hold with equality. If not, choose a′ = −b and let the Euler
equation be violated. Essentially, current consumption is lower than optimal whenever the constraint binds.

The aggregate state is the joint distribution of assets and endowments Φ(a, e). In a stationary recursive
competitive equilibrium, aggregate quantities and prices are constant over time.
Definition. A stationary equilibrium is an allocation and prices such that

1. Households maximize utility per v(a, e), a′(a, e)

2. Markets clear
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3. Φ(a, e) is time invariant

For market clearing, we need aggregate consumption:

C =

󰁝

a

󰁝

e

c(a, e)Φ(da, de) =

󰁝 1

0

eΠ(de) = e

and aggregate assets: 󰁝

a

󰁝

e

a′(a, e)Φ(da, de) = 0

(since the households borrow from each other). We define a transition function Q((a, e), (A,E)) which denotes
the probability (or mass of households) in state (a, e) that transition to state (a′, e′) ∈ (A,E) tomorrow – so

Q((a, e), (A,E)) =

󰀫󰁓
e′∈E π(e′ | e) if a′(a, e) ∈ A

0 otherwise

Note that a′ is determined today. Finally, we have the law of motion for Φ

Φ′(A,E) =

󰁝

e

󰁝

e

Q((a, e), (A,E))Φ(da, de)

Algorithm. To solve for the stationary equilibrium:

1. Given the interest rate, solve for the policy function of the household.

2. Given the policy function, iterate over the law of motion of the aggregate state until Φ′ = Φ.

3. Using the stationary distribution, check market clearing.

4. If aggregate asset positions are positive, lower the interest rate and go back to 1.

5. If aggregate asset positions are negative, raise the interest rate and go back to 1.

6. Iterate until market clearing is satisfied.
Example. Huggett (1993) used six periods per year, a time discount β = 0.661/6 = 0.993 per period, CRRA
utility, a two-state Markov chain with yH = 1, yL = 0.1, and transition probabilities π(H | H) = 0.925,
π(L | L) = 0.5, solved on a grid of borrowing constraints ā. The asset policy was basically linear, with
optimal for the high types being almost exactly the 45◦ line, and the low types close to a linear downward
shift from them. The consumption policy looked as usual, high types always above low types, with the
difference being large when asset levels are low and small when asset levels are high. Finally, excess demand
is clearly a decreasing, continuous function of the bond price, and so is an increasing and continuous function
of the interest rate.

He additionally assumed complete risk-sharing so cit = C = Y , bond price (interest rate) q ≡ 1
1+r = β, and

asset dynamics ait+1 = (1 + r)(ait + eit − Y ). He found with low risk-aversion, the risk-free rates were

ā r q
−2 −7.1% 1.0124
−4 2.3% 0.9962
−6 3.4% 0.9944
−8 4.0% 0.9935

So a tighter borrowing constraint (higher ā) led to higher demands for savings (↑ q, ↓ r), and looser borrowing
constraint (lower ā) led to lower demands for savings (↓ q, ↑ r), with convergence to complete market
equilibrium. With high risk-aversion, the risk-free rates were
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ā r q
−2 −23% 1.0448
−4 −2.6% 1.0045
−6 1.8% 0.9970
−8 3.7% 0.9940

Higher risk aversion α leads to higher demand for savings, meaning lower r for all ā.
Example. Numerical Tools for Incomplete Markets We want to solve the problem

V (a, ε) = max
a′,c̃≥0

u(c̃) + βE [V (a′, ε′)]

subject to

c̃+ a′ = wε+ (1 + r)a

a′ ≥ a

ε′ = ρε+ 󰂃

󰂃 ∼ i.i.d

where 󰂃 are errors from the autoregressive process. We will solve this using the Collocation method, where
we say that V (a, ε) ≈ B(a, ε)c where B are basis functions and c are collocation coefficients. Our objective
is to find f̂ that minimizes

󰀂f − f̂󰀂∞ ≡ sup
x∈D

|f(x)− f̂(x)|

where a standard function interpolation would have that f̂(x, c) is a linear combination of polynomials with
coefficients c, where we choose c to minimize |f − f̂ | at a finite number of nodes. The key is our choice of
polynomial and nodes.
Algorithm. Collocation Method

1. Choose basis functions b1(x), . . . , bn(x)
Remark. bn(x) = xn typically a bad idea. Often better are Chebyshev orthogonal polynomials or
Splines k-th order polynomials spliced together (popular choice for linear models).

2. Choose nodes x = x1, . . . , xn

Remark. Equidistant typically are bad. Chebyshev nodes, the roots of the n-th degree Chebyshev
polynomial, are optimal.

The Chebyshev polynomial has a certain number of waves, depending on the basis. Equidistant nodes will
lead to massive tail errors, as n increases. However, using Chebyshev nodes the approximation error decreases
as n increases, and we can get a really good approximation of most smooth functions.

Splines basis functions are basically indicator functions, each has a peak at a certain point among the domain.
A nice feature of these is that they are shape-preserving, and can be combined to span basically any function
you want. Splines can be non-linear, but linear splines actually tend to do a good job.
Algorithm. Collocation Method Computation

1. Choose order n of polynomial

2. Choose m ≥ n nodes

3. Evaluate at nodes B(x)

4. Find c using F = Bc, then compute c = B \ F (where F is also evaluated on x).
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The nodes B(x) are defined as

B(x) =

󰀵

󰀹󰀹󰀹󰀷

b1(x1) b2(x1) · · · bn(x1)
b1(x2) b2(x2) · · · bn(x2)

...
...

. . .
...

b1(xm) b2(xm) · · · bn(xm)

󰀶

󰀺󰀺󰀺󰀸

If we are approximating a multidimensional function f(x, y), we generate x and y nodes, choose basis
functions bxi , b

y
i , and approximate

F =

nx󰁛

i=1

ny󰁛

i=1

bxi (x)b
y
i (y)cij

Finally, we find c with c = B \ F , where B = Bm ⊗Bm−1 ⊗ · · ·⊗B1.

Back to the incomplete markets model, we will discretize the shock process and solve it using the collocation
method, where V (a, ε) ≈ B(a, ε)c. Commonly, people use Tauchen or Rouwenhorst to do this discretization.
A common assumption is that 󰂃 ∼ N (0,σ2). In broad strokes, we will:

1. Choose the parameters and grid

2. Define the space, meaning B and BE

Remark. Note that BE can be computed using B and c:

E[V (a, ε)] = B(a, ε)cE =
󰁛

ωi

ωiV (a, ρε+󰂃i) =
󰁛

ωi

ωiB(a, ρε+󰂃i)c =⇒ cE = B(a, ε)−1
󰁛

ωi

ωiB(a, ρε+ 󰂃i)c

󰁿 󰁾󰁽 󰂀
BE

3. Then we guess c0 and solve the following linear equation until convergence:

B(a, ε)cj+1 = max
a′≥0

u(wε+ (1 + r)a− a′) + (a′, ε)BEcj

Aggregate assets are A =
󰁓

ε a · φ(a, ε), and we will assume A = K in equilibrium, and find r such that
markets clear. To aggregate we need to compute the Transition Probability Matrix (TPM) P using the policy
functions. We have a complete ergodic distribution φ(a, ε) such that P is a fixed point: φ(a, ε)P = φ(a, ε).
We can solve it by computing the TPM and fining the eigenvectors.
Remark. A quick detour on Markov processes. A stochastic process is a sequence of random vectors,
indexed by time. A stochastic process has the Markov property if for all t and k ≥ 1,

P(xt+1 | xt, . . . , xt−k) = P(xt+1 | xt)

Assuming the Markov property, we can characterize a process by a Markov chain, where π0 is the initial
distribution, P is the transition matrix where

Pij = P(xt+1 = ej | xt = ei),
󰁛

j

Pij = 1

and ei is a vector of zeros except for 1 in entry i. The probability of being in state j in two periods is:

P 2
ij = P(xt+2 = ej | xt = ei) =

n󰁛

h=1

P(xt+2 = ej | xt+1 = eh)P(xt+1 = eh | xt+1 = ei)
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Therefore, unconditional probabilities are determined by

π′
1 = P(x1) = π′

0P and π′
2 = P(x2) = π′

0P
2

A stationary distribution satisfies π′ = π′P =⇒ π′(I − P ) = 0 =⇒ (I − P ′)π = 0. Does this distribution
necessarily exist? Yes! P has at least one eigenvalue and at least one eigenvector π, which we can normalize
such that

󰁓
i πi = 1. Multiplicity is possible, however. For a given π0, it might be the case that

lim
t→∞

πt = π∞

If this equation holds and π∞ ⊥⊥ π0, then the process is asymptotically stationary with a unique distribution
π∞, called the asymptotic (or invariant) distribution of P .
Remark. Some examples that are interesting to work through:4

1. Discrete and continuous choice problems

2. Heterogeneous firm models

3. Panel simulations:

(a) We can also simulate many households over time

(b) For example: Select a very long period of time and N agents, draw ε many times, use the policy
function to compute the consumption and assets of each agent, for initial conditions to remain
irrelevant, remove the first periods of the simulations, and the simulation can either be discrete
or continuous.

(c) We can study micro behavior of consumption and income jointly, checking if the distribution
converges to to the one we compute by inverting the TPM, etc

(d) Further notes on how to do this in the slides.

1.7 Continuous Time Growth

Some facts about continuous time growth (assuming that production technology is Cobb-Douglas, where
Yt = AtMtK

α
t H

1−α
t for Ht human capital, Mt is a measure of uncertainty, and At is the level of technology):

1. Mathematically, we have that

Yt

Lt
= Zt

Ht

Lt

󰀕
Kt

Yt

󰀖 α
1−α

and Zt = (AtMt)
1

1−α

So all long-term growth in the Ramsay-Cass-Koopmans model is from either A or population L, which
is exogenous!

2. From the one-sector growth model, we have that (i) Yt

Lt
and Kt

Lt
grow over time at roughly constant

equal rates (implication: Kt

Yt
constant over time), (ii) that It

Yt
is constant, and (iii) that RtKt

Yt
and WtLt

Yt

constant.

3. These predictions are consistent with the Kaldor facts!

4. They also are consistent with some catch-up dynamics, but transitions are too fast.
Model. Ramsay-Cass-Koopmans (RCK) We have a representative, infinitely-lived family (or dynasty),
with population growth n > 0, labor force L(t) = exp(nt) where L(0) = 1 by assumption, constant returns

4CompEcon is very flexible and has some very handy computational tools!
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technology Y (t) = F (K(t), A(t)L(t)), and capital dynamics:

K̇(t) + δK(t) = F (K(t), A(t)L(t))− C(t)

define ct =
C(t)
L(t) , ζ(t) =

C(t)
A(t)L(t) , and κ(t) = K(t)

A(t)L(t) (this is in efficiency units). We have that

K̇(t)

A(t)L(t)
+

δK(t)

A(t)L(t)
= F

󰀕
K(t)

A(t)L(t)
, 1

󰀖
− C(t)

A(t)L(t)

which simplifies to
κ̇(t) = F (κ(t))− ζ(t)− (n+ g + δ)κ(t)

and thus

κ̇(t) =

󰀣
˙K(t)

A(t)L(t)

󰀤
=

K̇(t)

A(t)L(t)
− nκ(t)− gκ(t)

Note the intuition here: we have that 1
A(t)

∂A(t)
∂t = g, and that 1

L(t)
∂L(t)
∂t = n. We can show this by using

Ekaterina’s trick of converting to logarithmic forms, taking derivatives, and showing that those partials are
equivalent to the (more complicated) fractions.

Problem: F is decreasing in capital, meaning no endogenous long-run growth!

Solution: Constant returns to capital! See below.
Model. The AK Model. The simplest version of this assumes that Y (t) = A(t)K(t), capital per capital is
K(t)
L(t) , and feasibility is

k̇(t) = Ak(t)− c(t)− δk(t)

or, with population growth,
k̇(t) = Ak(t)− c(t)− (n+ δ)k(t)

The family values per capita consumption as

u(c) =

󰁝 ∞

0

exp(−ρt)U(c(t))dt

where ρ is the time discount factor, and U(c(t)) is a CRRA function, so U(c) = c1−σ

1−σ . We can show that an
allocation (k, c) is Pareto optimal if and only if it solve the social planner’s problem, which is

max
k,c≥0

󰁝 ∞

0

exp(−ρt)U(c(t))dt

subject to
k̇(t) = Ak(t)− c(t)− (n+ δ)k(t) with k(0) = k0

We can solve this problem using Pontryagin’s Maximum Principle, with control variable c, state variable k,
and co-state variable λ. The present-value Hamiltonian is

H(t, k, c,λ) = exp(−ρt)U(c(t)) + λ(t) [f(k(t))− c(t)− (n+ δ)k(t)]

which admits sufficient conditions

0 = exp(−ρt)U ′(c(t))− λ(t) (c)

λ̇(t) = − [f ′(k(t))− (n+ δ)]λ(t) (k)

0 = lim
t→∞

λ(t)k(t) (TV C)
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plus the constraint
k̇(t) = Ak(t)− c(t)− (n+ δ)k(t)

We can get rid of the co-state variable by differentiating

λ̇(t) = exp(−ρt)U ′′(c(t))ċ(t)− ρ exp(−ρt)U ′(c(t)) =⇒ λ̇(t)

λ(t)
=

U ′′(c(t))

U ′(c(t))
ċ(t)− ρ

where we replace

− [f(k(t))− (n+ δ + ρ)] c(t) =
U ′′(c(t))

U ′(c(t))
c(t)ċ(t)

and because U is CRRA,
σċ(t) = [A− (n+ δ + ρ)] c(t)

Definition. A balanced growth path (BGP) is an allocation such that consumption, capital, and output
grow at a constant (possibly different) growth rate

ẋ(t)

x(t)
= γx > 0 for any variable x

In this particular problem, the consumption dynamics are independent of capital:5

c(t) = exp

󰀕
1

σ
[A− (n+ δ + ρ)] t

󰀖
c(0)

So consumption grows at a constant rate from the beginning. Capital dynamics are

k̇(t)

k(t)
= A− c(t)

k(t)
− (n+ δ)

Along the BGP, consumption and capital grow at the same rate, so the economy is on the BGP from time
t = 0. We need an additional condition so that utility does not blow up, so U remains well-defined. Observe
that: 󰁝 ∞

0

exp(−ρt)U(c(t))dt = c(0)
1−σ
σ

󰁝 ∞

0

exp(−ρt)
exp

󰀃
1−σ
σ [A− (n+ δ + ρ)] t

󰀄
dt

1− σ

So we need that
1− σ

σ

󰀗
A− (n+ δ)− ρ

1− σ

󰀘
< 0

Remark. The main implication is that no country can ever catch up. However, we see some of that in the
data – how do we reconcile that? What would happen if we added labor? With increasing returns to scale,
we don’t have a well-defined equilibrium in the standard AK model. Romer (1986) argued for increasing
returns to scale but the agents in the economy behave as if constant returns to scale.
Question. Why do we consider discounting rather than no discount factor and maximize mean consumption
in each period rather than have discounting?
Answer. We don’t exactly have a Permanent Income Hypothesis here, as this is a production economy. We
essentially, in most cases, have a single optimal path, and it’s always worth it to get on the optimal path as
quickly as possible. See the Turnpike Theorem.

5Note not true in the standard RCK model, remember the sequential economy.
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Model. RCK with Productivity Growth Recall that the optimal allocation satisfies

ζ̇(t) =
1

σ
[f ′(κ(t))− (n+ σg + δ + ρ)] ζ(t)

κ̇(t) = f(κ(t))− ζ(t)− (n+ g + δ)κ(t)

0 = lim
t→∞

exp(−ρ̂t)U ′(ζ(t))κ(t)

where g is exogenous growth of technology, and κ(t) = K(t)
A(t)L(t) , ζ(t) =

C(t)
A(t)L(t) . We have steady state analysis

x󰂏 = (ζ󰂏,κ󰂏), and saddle paths. From the theory of linear approximation, we know that when the path is
“nice” (this condition is quite important! think of it as a convex problem that is everywhere differentiable),
the behavior around the steady state is well-approximated by the behavior of a linear system around the
steady state. We use the first-order Taylor approximation

f(x) = f(x󰂏) +∇f(x󰂏) · (x− x󰂏)

where ∇f(x󰂏) is the Rn gradient to f at x󰂏. In our case, x󰂏 = (ζ󰂏,κ󰂏) and we have g1 and g2 that solve

g1(ζ(t),κ(t)) = ζ̇(t) =
1

σ
[f ′(κ(t))− (n+ g + δ + ρ)] ζ(t)

g2(ζ(t),κ(t)) = κ̇(t) = f(κ(t))− ζ(t)− (n+ g + δ)κ(t)

where g1(ζ
󰂏,κ󰂏) = g2(ζ

󰂏,κ󰂏) = 0. From our linear approximation, we have
󰀗
ζ̇(t)
κ̇(t)

󰀘
≈

󰀗
− 1

σ [f
′(κ(t))− (n+ g + δ + ρ)] − 1

σf
′′(κ(t))ζ(t)

−1 f ′(κ(t))− (n+ g + δ)

󰀘

(ζ󰂏,κ󰂏)

󰀗
ζ(t)− ζ󰂏

κ(t)− κ󰂏

󰀘

which becomes 󰀗
ζ̇(t)
κ̇(t)

󰀘
≈

󰀗
0 − 1

σf
′′(κ󰂏)ζ󰂏

−1 ρ

󰀘

(ζ󰂏,κ󰂏)

󰀗
ζ(t)− ζ󰂏

κ(t)− κ󰂏

󰀘

This is a two-dimensional difference equation that can be solved analytically. We look at the eigenvalues of
∇f(ζ󰂏,κ󰂏), λ, which satisfy

0 = det(∇f(ζ󰂏,κ󰂏)− λI) = −λ(ρ− λ) +
1

σ
f ′′(κ󰂏)ζ󰂏

This quadratic equation has two roots, one negative and one positive. Let l be the number of negative
eigenvalues, and let m be the number of state variables of the problem. Stability comes directly from these:
if l = m, we are saddle-path stable, we have a unique optimal trajectory (the negative eigenvalue governs the
speed of convergence), if l < m, unstable, no convergence to the steady state, and if l > m, indeterminacy,
multiple optimal trajectories.

The speed of convergence is
κ(t)− κ󰂏 ≈ e−|λ1|t(κ(0)− κ󰂏)

with half-life
κ(t1/2)− κ󰂏 ≈ 1

2
(κ(0)− κ󰂏) hence t1/2 =

ln(2)

|λ1|
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1.8 Endogenous Growth Theory

1.8.1 Externalities

The AK model generates long-term growth. Typically, we think about this as either spillovers or learning
by doing. How do we endogenize growth?
Remark. First, what worked in the AK model? Constant returns in a reproducible factor (capital), and we
left out the non-reproducible factor (labor). The dilemma is that we left out the non-reproducible factor.
Paul Romer had an elegant solution.
Model. Endogenous Growth Model (from Romer (1986)) The economy is the same as the AK model setup
but we have a continuum of firms that produce output with technology

yi(t) = F (ki(t), li(t)K(t))

where firms are indexed with i ∈ [0, 1], ki, li are capital and labor at firm i, K(t) =
󰁕
ki(t)di is aggregate

capital, and F (·) has constant returns to scale with respect to ki and li. This gives us an externality, where
firms do not understand that requesting more capital will increase the aggregate capital, they just take that
as given.6 The firm’s problem is

max
ki,li

F (ki(t), li(t)K(t))− w(t)li(t)− r(t)ki(t)

where K(t) is exogenous to the firm. Note that there are increasing returns to scale overall:

F (θki(t), θli(t) θK(t)󰁿 󰁾󰁽 󰂀
=
󰁕
θki(t)di

) = F (θki(t), θ
2li(t)K(t)) > θF (ki(t), li(t)K(t))

for any θ > 1. The competitive equilibrium exists in this economy because from the firm’s perspective there
are constant returns to scale. Will it be Pareto Optimal? Not in general! This is straightforward to see, in
a world with externalities.

As before, the households are a size L of identical people, with no population growth.
Definition. A competitive equilibrium is a set of allocations {ĉ(t), â(t)} for the representative household, a
set of allocations {k̂i(t), l̂i(t)} for each firm i, a stream of aggregate capital stock {K̂(t)}, and a stream of
prices {ŵ(t), r̂(t)} such that:

1. Given prices, {ĉ(t), â(t)} solves

max
{c(t),a(t)}

󰁝
exp(−ρt)

c(t)1−σ

1− σ
dt

subject to

c(t) + ȧ(t) + a(t) = w(t) + (r(t)− δ)a(t)

a(0) = k(0) given

lim
t→∞

a(t) exp

󰀕
−
󰁝 t

0

(r(τ)− δ)dτ

󰀖
≥ 0

2. Given {ŵ(t), r̂(t)} and {K̂(t)}, the path {k̂i(t), l̂i(t)} maximizes firm profits in each period for each
firm

6This is often called the Big K / small k model.
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3. Feasibility: for all t, markets clear:

Lĉ(t) +
˙̂
K(t) + K̂(t)δ =

󰁝 1

0

F (k̂i(t), l̂i(t)K̂(t))di

󰁝 1

0

l̂i(t)di = L and
󰁝 1

0

k̂i(t)di = Lâ(t)

4. Rational Expectations: 󰁝 1

0

k̂i(t)di = K̂(t)

The planner’s problem is

max
c(t),K(t)

󰁝
exp(−ρt)

c(t)1−σ

1− σ
dt

subject to
Lc(t) + K̇(t)−K(t)δ = F (K(t), LK(t)) with K(0) = Lk(0)

Note that the planner can deal in terms of total capital and total labor, because the firms have identical
production functions, so when they choose capital and labor so that the marginal products of capital and
labor respectively equal the wage and rental price, they all choose the same levels, so they can be aggregated.
The planner can choose first the aggregates and next how to split them across the agents. Optimality requires
that

γSP
C (t) =

ċ(t)

c(t)
=

1

σ

󰁫
F1(K(t), LK(t)) + F2(K(t), LK(t))L− (δ + ρ)

󰁬

Since F is homogeneous of degree 1 in capital, F ′ is homogeneous of degree 0, so we have that

F1(K(t), LK(t)) + F2(K(t), LK(t))L = F1(1, L) + F2(1, L)L

Thus, consumption growth is

γSP
C (t) =

ċ(t)

c(t)
=

1

σ

󰁫
F1(1, L) + F2(1, L)L− (δ + ρ)

󰁬

which is constant in time! From the aggregate resource constraint:

L
c(t)

K(t)
+

K̇(t)

K(t)
+ δ = F (1, L)

so in the balanced growth path, γSP
C (t) = γSP

k (t) = γSP
K (t). From the first order conditions of the household

and the firm, we have that

γCE
C (t) =

ċ(t)

c(t)
=

1

σ

󰁫
r(t)− (δ + ρ)

󰁬
and r(t) = F1(ki(t), li(t)K(t))

Since all firms are identical and choose the same allocations, ki(t) = k(t) =
󰁕
ki(t)di = K(t) and li(t) = L,

so r(t) = F1(1, L), so

γCE
C (t) =

1

σ

󰁫
F1(1, L)− (δ + ρ)

󰁬
< γSP

C (t)

since F2(1, L) > 0. So in the balanced growth path, γCE
C = γCE

k = γCE
K . How do we bring γCE

K to γSP
K ?

With a subsidy per unit of capital invested, equal to F2(1, L)L. That will make the cost of capital to the
firms r(t)− F2(1, L)L.
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Remark. A prediction of this model is that larger economies grow more, where

γCE
C (t) =

ċ(t)

c(t)
=

1

σ
[F1(1, L)− (δ + ρ)] < γSP

C (t)

since ∂F (1,L)
∂L > 0. If L is defined as the labor force of a country (or population), the data across post-World

War II countries show no evidence of this fact. Technically, this is because we have constant returns in K
and increasing returns in K and L. We can avoid this by assuming that productivity depends on the ratio
K
L rather than the aggregate. An example of this is the following:
Model. Externalities in Human Capital (from Lucas, 1988) We have households with measure 1 and human
capital hi for i ∈ (0, 1), with hi(0) = h0 and ki(0) = k0. The household chooses time to work 1− si(t) and
time to accumulate human capital si(t), with budget constraint(s)

ci(t) + ȧi(t) = (r(t)− δ)ai(t) + (1− si(t))hi(t)w(t)

ḣi(t) = θhi(t)si(t)− δhi(t)

and production technology
Y (t) = AK(t)αL(t)1−αH(t)β

Firms choose capital and labor and they take H(t) as given. Since the total supply of labor is (1−s(t))H(t),
this becomes

AK(t)αH(t)1−αH(t)β(1− s(t))1−α = AK(t)αH(t)β+(1−α)(1− s(t))1−α

The planner’s problem is

max

󰁝 ∞

0

exp(−ρt)
c(t)1−σ

1− σ
dt

subject to

C(t) + K̇(t) + δK(t) = AK(t)αH(t)β+(1−α)(1− s(t))1−α

Ḣ(t) = θH(t)s(t)− δH(t)

with H(0) and S(0) given, s(t) ∈ [0, 1], and we have used the fact that
󰁝
(1− si(t))hi(t)di = L(t) ;

󰁝
ai(t)di = K(t) ;

󰁝
ci(t)di = C(t)

Firms solve the simple
max

L(t),K(t)
Y (t)− w(t)L(t)− r(t)K(t)

where
r(t) = α

Y (t)

K(t)
and w(t) = (1− α)

Y (t)

(1− s)H(t)

Households solve the Hamiltonian

H(·) = exp(−ρt)
ci(t)

1−σ

1− σ
+ λ(t) [(r(t)− δ)ai(t) + (1− si(t))hi(t)w(t)− ci(t)]

+ µ(t) [θhi(t)si(t)− δhi(t)]

Again, we have that γSP
C > γCE

C .
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1.8.2 Innovation

In the economies we’ve studied so far, we’ve been on the balanced growth path from the beginning. We can
think of transition dynamics by relaxing that, and think of growth through variety innovation.
Model. Transition Dynamics (from Jones & Manuelli, 1990) We have production technology

Y = F (K,L) = AK +BKαL1−α

so that y = Ak +Bkα and limt→∞ f ′(k) = A. We have growth rates

k̇

k
=

f(k)

k
− c

k
− (n+ δ) and

ċ

c
=

1

θ

󰀃
A+Bαkα−1 − (ρ+ δ)

󰀄

where θ is the elasticity of substitution in consumption. In the balanced growth path, we have growth rates

γ󰂏 =
1

θ
(A− (ρ+ δ))

The problem is that we have no steady state. We can rewrite the variables in stationary terms (i.e. detrend
them). Which variables do we detrend with respect to? Here, capital. Generally it depends on the problem.
We have

z =
f(k)

k
and χ =

c

k

By doing a bunch of (annoying) algebra, we can rewrite the dynamic system as

ż = −(1− α)(z −A)(z − χ− n− δ)

χ̇ = χ

󰀕
(χ− ϕ)− θ − α

θ
(z −A)

󰀖

where ϕ ≡ (A− δ) θ−1
θ + ρ

θ − n. We can now draw a phase diagram in (χ, z) space!

Writing Recursively. (Hamilton-Jacobi-Bellman Equations) We have

V (k0) = max
c(t)

󰁝 ∞

0

exp(−ρt)U(c(t))dt

subject to
k̇(t) = F (k(t))− δk(t)− c(t)

for t ≥ 0, with k(0) = k0 given. Our state x is k(t), and the control u is c(t). Let h(x, u) = U(u) and
g(x, u) = F (x) − δx − u. The value function of the generic optimal control problem solves the Hamilton-
Jacobi-Bellman equation

ρV (x) = max
u

h(x, u) + V ′(x)g(x, u)

With multiple states, V ′(x) is a vector of dimension m. This implies that

ρV (k) = max
c

U(c) + V ′(k) [F (k)− δk − c] ⇐⇒ U ′(c) = V ′(k)

We define a discount factor β(∆) = exp(−ρ∆), where ∆ is the length of a period. We multiply all of our
flows by ∆, and keep the stocks the same. The Bellman equation is

V (kt) = max
ct

∆U(ct) + exp(−ρ∆)V (kt+∆)
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subject to
kt+∆ = ∆[F (kt)− δkt − ct] + kt

For small ∆, exp(−ρ∆) ∼ (1− ρ∆), so

ρ∆V (kt) = max
ct

∆U(ct) + (1− ρ∆)(V (kt+∆)− V (kt))

and so
ρV (kt) = max

ct
U(ct) + (1− ρ∆)

󰀕
V (kt+∆)− V (kt)

kt+∆ − kt

kt+∆ − kt
∆

󰀖

and taking the limit as ∆ → 0, we get

ρV (kt) = max
ct

U(ct) + V ′(kt)k̇t

Recall that we have had the two general forms:

H(x, u,λ) ≡ h(x, u) + λg(x, u)󰁿 󰁾󰁽 󰂀
Hamiltonian

; ρV (x) = max
u

h(x, u) + V ′(x)g(x, u)
󰁿 󰁾󰁽 󰂀

Bellman

so we can directly see that λ(t) = V ′(x(t)), the co-state variable is the shadow value of the future. Thus:

ρV (x) = max
u∈U

H(x, u, V ′(x))

we get the reason for the ‘Hamilton’ in the name of this subsection!
Model. Endogenous Technological Change (from Romer, 1990) We can think about expanding input vari-
eties, where a greater variety of inputs increases the ‘division of labor’ which raises the productivity of final
goods firms. We have competitive markets for final goods, monopolistic competition for intermediate goods,
and competitive markets for R&D. We have final goods, produced by:

Y (t) = L(t)1−α

󰀣󰁝 A(t)

0

xi(t)
1−µdi

󰀤 α
1−µ

where 1/µ is the elasticity of substitution. We are interested in µ ∈ (0, 1), meaning that there is some
substitution. We also have intermediate goods, produced by

xi(t) = ali(t)

and R&D, with constant returns to scale:
Ȧ(t) = bX(t)

where X(t) are final goods devoted to R&D. We normalize the population to 1, and the planner’s problem
is

max

󰁝 ∞

0

exp(−ρt)
c(t)1−σ

1− σ
dt
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subject to

c(t) +X(t) = L(t)1−α

󰀣󰁝 A(t)

0

xi(t)
1−µdi

󰀤 α
1−µ

xi(t) = ali(t)

Ȧ(t) = bX(t)

L(t) +

󰁝 A(t)

0

li(t)di = 1

Given that there is imperfect substitution, the optimal planner strategy is

xi(t) = x(t) and li(t) = l(t)

Hence,
c(t) +X(t) = L(t)1−α

󰀃
A(t)(al(t))1−µ

󰀄 α
1−µ

Feasibility requires that l(t) = 1−L(t)
A(t) , and equilibrium aggregate output is

Y (t) = aαL(t)1−α(1− L(t))αA(t)
αµ
1−µ

Output maximization implies that L(t) = 1− α. The planner’s problem is

max

󰁝 ∞

0

e−ρt c(t)
1−σ

1− σ
dt s.t. c(t) +

Ȧ(t)

b
= CA(t)

αµ
1−µ

where C = aα(1 − α)1−ααα. If αµ
1−µ ∈ (0, 1), we have Ramsey-Cass-Koopmans. Romer requires that

αµ = 1− µ, so we have an AK model where

ċ(t)

c(t)
=

1

σ
[bC − ρ]

so we are on the balanced growth path from the beginning.

Alternatively, we could solve the decentralized economy. When a new idea is introduced, the R&D sector
charges k(t), where since the sector is competitive and has CRS technology, so πR&D = 0. We will assume
that k(t) is the present value of the profits of the monopolistic firm, and let pi(t) be the price of intermediate
goods, p(t) be the price of final goods, and w(t) the cost of labor. The final goods firms maximize profits,
so we attain the first order conditions

w(t) = (1− α)p(t)L(t)−α

󰀣󰁝 A(t)

0

xi(t)
1−µdi

󰀤 α
1−µ

(L(t))

pi(t) = αptL(t)
1−α

󰀣󰁝 A(t)

0

xi(t)
1−µdi

󰀤 α
1−µ−1

xi(t)
−µ (xi(t))

which simplify to

w(t) = (1− α)p(t)
Y (t)

L(t)
and xi(t)

µ = α
p(t)

pi(t)

Y (t)
󰁕 A(t)

0
xi(t)1−µdi
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Since markets are competitive, π = 0, and we can use the zero profit condition to get that

x󰂏
i (t) = α

1
µ

󰀕
p(t)

pi(t)

󰀖 1
µ

Y (t)
µ+α−1

αµ L(t)
(1−µ)(1−α)

αµ

The intermediate goods producer, who has already paid the fixed cost, solves

max
pi(t)

pi(t)xi(t)− w(t)
xi(t)

a

Because of monopolistic competition, xi is a function of pi(t). Optimality yields that pi(t) =
w(t)

a(1−µ) , which
is a constant markup over marginal cost.

In equilibrium, all firms are identical so pi(t) = p̂(t). We could show that LCE(t) = 1−α
1−αµ > 1−α so there is

more labor in the final goods sector than in the planner’s allocation. Intuitively, xi(t) is relatively expensive,
so firms switch to labor rather than innovation – there is less investment in ideas. The growth rates are

ċCE(t)

cCE(t)
=

1

σ

󰀕
bαααµ

1− α

1− αµ
− ρ

󰀖
<

ċ(t)

c(t)

Remark. Variety models deal with horizontal innovation, but typically innovations both (i) improve the
quality of the good, and (ii) lower the cost of production. Endogenous growth, in the Schumpeterian
economies involves price competition, the replacement of old vintages, and business stealing effects (entrants).
Model. Endogenous Vertical Innovation (from Aghion & Howitt, 1992; Howitt & Aghion, 1998, and Gross-
man & Helpman, 1991) We have a representative household with CRRA preferences, constant population,
and inelastic labor supply L. The resource constraint is that C(t) + X(t) + Z(t) = Y (t) for R&D Z(t),
investment X(t), and consumption C(t). The final good is produced:

Y (t) =
1

1− β
L(t)β

󰀕󰁝 1

0

q(v, t)x(v, t | q)1−βdv

󰀖

where x(v, t | q) is the quantity of machines of vintage v of quality q(v, t) at time t. The source of growth
here is quality improvements. We have a quality ladder for each machine type, where

q(v, t) = λn(v,t)q(v, 0)

where λ > 1 and n(v, t) is the number of innovations so far. At any point in time, only one quality of any
machine v is used – i.e. creative destruction, where the invention of a higher-quality machine ‘destroys’
(replaces) an older machine. Once a machine of quality q(v, t) is invented, any quantity can be produced at
cost ψq(v, t).
Remark. Innovation is driven by entrants. This is sometimes called Arrow’s Replacement Effect , where
incumbents have little incentive to innovate as that would destroy their own profits.

Innovation requires investment, where Z(v, t) units of the final good are used for research in line v with
quality q(v, t). The rate of innovation is z(v, t | q) = ηZ(v,t)

q(v,t) , and we have (i) free entry into research, and
(ii) perpetual patents for innovators.
Definition. An allocation in this economy is a time path for (i) consumption levels, aggregate spending
on machines, and aggregate R&D spending {C(t), X(t), Z(t)}∞t=0; (ii) machine qualities {q(v, t)}∞t=0 for v ∈
[0, 1]; (iii) prices and quantities of each machine and the net present value of profits from each machine:
{px(v, t | q), x(v, t | q), V (v, t | q)}∞t=0 for v ∈ [0, 1]; and (iv) interest rates and wages {r(t), w(t)}∞t=0.
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The final good producer solves

max
L,x(v)

1

1− β
L(t)β

󰀕󰁝 1

0

q(v, t)x(v, t | q)1−βdv

󰀖
− w(t)L(t)−

󰁝 1

0

px(v, t)x(v, t | q)dv

The optimal machine demand is

x(v, t | q) =
󰀕

q(v, t)

px(v, t | q)

󰀖 1
β

L

There are typically two regimes: (i) drastic innovation, where firms charge monopoly prices, and (ii) limit

prices. For now, we assume (i), attained when λ is sufficiently large, such that λ ≥
󰀓

1
1−β

󰀔(1−β)/β

. We
normalize ψ = 1− β, and we have that

π(v, t) = max
x

px(v, t | q)x(v, t | q)− ψq(v, t)x(v, t | q)

= max
x

q(v, t)Lβx(v, t | q)1−β − ψq(v, t)x(v, t | q)

then for a profit maximizing monopoly, we have that

x(v, t | q) = L ; px(v, t | q) = q(v, t) ; π(v, t) = βq(v, t)L

Total output will be

Y (t) =
1

1− β
Q(t)L where Q(t) =

󰁝 1

0

q(v, t)dv

and aggregate spending in machines (and the implied equilibrium wage rate) is therefore
󰁝 1

0

px(v, t | q)x(v, t | q)dv = Q(t)L which implies that w(t) =
β

1− β
Q(t)

The monopolist with vintage v and quality q(v, t) has a value function defined by

r(t)V (v, t | q)− V̇ (v, t | q) = π(v, t | q)− z(v, t | q)V (v, t | q)

where z(v, t | q) is the arrival rate of innovations to vintage v. The creative destruction implies that when an
innovation occurs, the monopolist loses its monopoly and is replaced by a higher quality producer; and from
there the innovation has zero value. This implies that z(v, t | q) is the rate of replacement of incumbents in
vintage v. Since we have free entry, entrants have

ηV (v, t | q) ≤ q(v, t)

λ
with equality if z(v, t | q) > 0

The consumer’s maximization problem admits the Euler equation

Ċ(t)

C(t)
=

1

θ
(r(t)− ρ)

with the transversality condition

lim
t→∞

exp

󰀕
−
󰁝 t

0

r(s)ds

󰀖󰁝 1

0

V (v, t | q)dv = 0

for all q, where V (v, t) is nonstochastic.
Definition. An equilibrium is an allocation such that (i) the aggregate feasibility constraints for goods and
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machines and the transversality condition are satisfied; (ii) the value of the firm and the average quality
satisfy optimality of the monopolist and machine demands, and free entry; (iii) prices and quantities of
machines are as described in the monopolist’s problem; and (iv) the interest rate and wages are consistent
with the Euler equation and feasibility in labor markets.

Given that consumption grows at a constant rate on the balanced growth path, feasibility implies that output
also grows at a constant rate, and from the Euler equation, the interest rate is constant. If there is positive
growth there must be research in at least one sector. Linearity of the value of the firm and innovation
costs in quality together imply that free entry holds for all varieties. If free entry holds in all periods, then
V̇ (v, t | q) = 0 and R&D for each machine type has the same productivity z(v, t) = z(t) = z󰂏. Then, the
firm value is

V (v, y | q) = βq(v, t)L

r󰂏 + z󰂏

so we have an effective discount of r󰂏 + z󰂏, and by free entry and the Euler equation respectively, we have:

r󰂏 + z󰂏 = ηβλL ; g󰂏 =
r󰂏 − ρ

θ
=⇒ r󰂏 = g󰂏 · θ + ρ

From the definition of output, we have Ẏ (t)
Y (t) =

Q̇(t)
Q(t) , and dynamics

Q(t+∆t) = λQ(t)z(t)∆t+ (1− z(t)∆t)Q(t) + o(∆t)

Note that the measure of the varieties that experience more than one innovation is second order in t, so
o(∆t)
∆t → 0. Thus, we have that

Q̇(t) = (λ− 1)z(t)Q(t) ; g󰂏 = (λ− 1)z󰂏

So the equilibrium growth rate is

g󰂏 =
ηλβL− ρ

θ + (λ− 1)−1
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2 Kristoffer Nimark

2.1 Introduction

This course will cover New Keynesian business cycle theory with applications to monetary policy, and will
introduce tools for applied macroeconomic research. Grades will be 40% homework (four problem sets) and
60% a comprehensive final exam. The texts are mainly Jordi Gali’s Monetary Policy, Inflation, and the
Business Cycle, with some use of James Hamilton’s Time Series Analysis.

Macroeconomists think about (i) growth, (ii) business cycles, (iii) fiscal and monetary policy, (iv) inequality
and heterogeneity, (v) efficiency, (vi) dynamic decisions, (vii) information and uncertainty, and (viii) general
equilibrium. This section of the course will think about business cycles, monetary policy, efficiency, dynamic
decisions, and general equilibrium models. All macro models are simplified versions of reality, and most
simplify using aggregation, rationality, equilibrium, and mathematics. We need simple models so that we
can understand economic mechanisms, and a good researcher finds the right simple model for a given question.

Our theoretical framework here will be the New Keynesian business cycle model, where we have a represen-
tative household that works and consumes goods, firms that produce heterogeneous goods and have some
market power, and a monetary policy authority that sets nominal interest rates. These are the three equa-
tions that characterize the base of all New Keynesian models. We will use this model to learn to manipulate
a (linearized) business cycle model, to study stabilization policy and welfare, and as a vehicle to learn tools
and strategies for relating models to data.

To call something a business cycle, we need (i) comovement across macro aggregates (so simultaneous
increases / decreases in GDP, employment, consumption, and investment); and (ii) comovement across broad
sectors of the economy (so simultaneous increases / decreases in construction, manufacturing, services, etc.).
Are business cycles actually cyclical? Probably not.

The Plan:

• Lecture 2.1 is today.

• Lecture 2.2 will introduce a classical monetary model with firms and production.

• Lecture 2.3 will introduce a basic New Keynesian model with imperfectly competitive markets – mo-
nopolistic competition and CES demand – and will describe how inefficiencies arise.

• Lecture 2.4 will continue the basic New Keynesian model, with sticky prices (Calvo pricing and the
New Keynesian Phillips Curve, and monetary non-neutrality), and will show that sticky prices imply
that monetary policies have real effects.

• Lecture 2.5 will cover solution methods for rational expectations problems, including method of unde-
termined coefficients, iterative projection methods, and stable-unstable decoupling. We will solve by
imposing model-consistent expectations.

• Lecture 2.6 will cover fluctuations, welfare, and efficiency, meaning micro-founded welfare criteria and
level, composition, and production efficiency, which gives us a simple but coherent framework to study
what policy should achieve.

• Lecture 2.7 will talk about policy trade-offs, where we have multi-dimensional policy objectives but
only a single instrument.

• Lecture 2.8 will introduce sticky wages, and talk about monetary policy design with sticky wages.

• Lecture 2.9 will introduce unemployment and monetary policy when there is unemployment – how
unemployment will change welfare incentives.
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• Lecture 2.10 will take the model to the data, where we write the linear models in state space form,
estimating latent states using the Kalman filter.

• Lecture 2.11 will talk about calibration and matching moments, largely thinking about how we choose
parameter values for a model.

• Lecture 2.12 will conclude with likelihood-based estimation, meaning numerical optimization with the
models as likelihood functions, thinking of choosing parameters as a form of maximum likelihood
estimation.

We will finish today by doing something tedious but useful: linear difference equations.

First Order Scalar Difference Equations. We will write

xt = c+ ρ · xt−1 + εt

where εt is a white noise shock process with mean 0 and variance σ2. We can recursively write these equations
as a function of the initial state x0 and the sequence of shocks, so

x1 = c+ ρ · x0 + ε1

x2 = c+ ρ · (c+ ρ · x0 + ε1) + ε2

= c(1 + ρ) + ρ2 · x0 + ρ · ε1 + ε2

=⇒ xt = c+ ρ · c+ · · ·+ ρt−1 · c+ ρt · x0 + ρt−1 · ε1 + · · ·+ ρ · εt−1 + εt

= c
1− ρt

1− ρ
+ ρt · x0 +

t󰁛

s=1

ρt−s · εs

So when |ρ| < 1, the initial state becomes unimportant for sufficiently long time horizons, since limt→∞ ρt =
0.

Impulse Response Functions. The impulse response function describes the effect on xt+s of a unit
change in εt. From the expression for xt above, we get that

∂xt+s

∂εt
= ρs

Higher Order Difference Equations. A pth order difference equation of the form

xt = c+ ρ1 · xt−1 + ρ2 · xt−2 + · · ·+ ρp · xt−p + εt

It is often easier to rewrite this into an equivalent vector-valued difference equation, where we define the
vectors ξt, c, and vt, and the matrix F as

ξt = c+ F · ξt−1 + vt

where

ξt =

󰀵

󰀹󰀹󰀹󰀷

xt

xt−1

...
xt−p+1

󰀶

󰀺󰀺󰀺󰀸
; c =

󰀵

󰀹󰀹󰀹󰀷

c
0
...
0

󰀶

󰀺󰀺󰀺󰀸
; F =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

ρ1 ρ2 · · · ρp
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
; vt =

󰀵

󰀹󰀹󰀹󰀷

εt
0
...
0

󰀶

󰀺󰀺󰀺󰀸
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This equation is now the same as the pth order difference equation as above, and we can rewrite it recursively
as before, where

ξt = (I − F t−s)(I − F )−1 · c+ F t · ξ0 +
t󰁛

s=0

F t−s · vs

As long as max |eig(F )| < 1, we can again ignore ξ0 for sufficiently large t. The impulse response function is
now given by

∂xt+s

∂εt
= e′1F

se1

where e1 =
󰀅
1 0 · · · 0

󰀆′

Variances. The variance of a process xt is defined as Var(xt) = E(xt − µ)2, where µ = Ext =
c

1−ρ . We
thus have that

E(xt − µ)2 = σ2(ρ2 + ρ4 + · · · ) = σ2

1− ρ2

Alternatively, we could define σ2
x = Var(xt), and get that taking the variance of the most simple form of xt,

we have

σ2
x = ρ2σ2

x + σ2 =⇒ σ2
x =

σ2

1− ρ2

For vector-valued processes ξt, we cannot solve directly for the covariance, but defining cov(ξt, ξt) = Σξ and
using that ξt and vt are uncorrelated, we get that

Σξ = FΣξF
′ + E(vtv

′
t)

which has a closed-form solution as long as the largest eigenvalue of F is less than 1, and can be found using
function iteration.

2.2 A Classical Monetary Model

Remark. The plan is to present a simple ‘real’ economy, derive equilibrium, and introduce monetary policy.
Model. Classical Monetary Model
Assumption 2.1. We have two types of agents: a representative household, and firms. We have perfect
competition in goods and labor markets, flexible prices and wages, no capital accumulation, and no fiscal
sector. The economy is closed.

The representative household makes two decisions: how much labor to supply, and how much income to
consume versus save. We also assume, as usual, that the representative household owns the firms. They
solve:

maxE0

󰀥 ∞󰁛

t=0

βtU(Ct, Nt)

󰀦

subject to, for all t,
PtCt +QtBt ≤ Bt−1 +WtNt +Dt

and the solvency constraint
lim

T→∞
Et [Λt,T (BT /PT )] ≥ 0
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where Λt,T ≡ βT−tUc,T /Uc,t is the stochastic discount factor. We have two optimality conditions:

−Un,t =
Wt

Pt
Uc,t

Uc,t =
β

Qt
Et

󰀗
Uc,t+1

Pt

Pt+1

󰀘

The intuition of the first is that the additional disutility of working more today must be exactly offset
by the utility of the consumption that the additional income could buy, meaning that the labor supply
decision responds to the relative price of leisure against consumption. The intuition of the second is that
the additional utility of consuming more today must be equal to the additional utility of consuming more
tomorrow, controlling for everything else – i.e. , people smooth.

We further assume that households have CRRA utility functions that are separable in consumption and
labor:

U(Ct, Nt) =

󰀫
C1−σ

t −1
1−σ − N1+ϕ

t

1+ϕ for σ ∕= 1

logCt − N1+ϕ
t

1+ϕ for σ = 1

When we have these explicit forms, the optimality conditions become:

Nϕ
t = C−σ

t

Wt

Pt

Qt = βEt

󰀥󰀕
Ct+1

Ct

󰀖−σ
Pt

Pt+1

󰀦

These admit the labor supply decision
wt − pt = σct + ϕnt

and the consumption Euler equation

ct = E[ct+1]−
1

σ
(it − Et[πt+1]− ρ)

where πt ≡ pt − pt−1, it ≡ − logQt, and ρ ≡ − log β. In steady state, with zero growth, we have that
i = π+ ρ, so the implied real interest rate r is r ≡ i− π = ρ, which is the (log of the) inverse of the discount
rate.

Firms hire labor from households to produce a uniform good using the technology

Yt = AtN
1−α
t

where at ≡ logAt follows an exogenous process

at = ρaat−1 + εat

The firm’s profit is, as always, the difference between revenue and cost. Maximizing profits subject to the
above while taking the price and wage as given results in the optimality condition

Wt

Pt
= (1− α)AtN

−α
t

that equates the marginal product of labor with the real marginal cost. In log-linear terms,

wt − pt = at − αnt + log(1− α)
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Definition. Equilibrium requires market clearing in: (i) goods, yt = ct; (ii) household labor supply wt−pt =
σct +ϕnt; (iii) firm labor demand wt − pt = at −αnt + log(1−α); (iv) aggregate output yt = at +(1−α)nt;
and (v) asset market clearing rt = it − E[πt+1] = ρ+ σE[∆ct+1].

We attain the implied equilibrium values for real variables as functions of productivity

nt = ψnaat + ψn

yt = ψyaat + ψy

rt = ρ− σψya(1− ρa)at

ωt ≡ wt − pt = at − αnt + log(1− α) = ψωaat + ψω

where

ψna ≡ 1− σ

σ(1− α) + ϕ+ α
; ψn ≡ log(1− α)

σ(1− α) + ϕ+ α
; ψya ≡ 1 + ϕ

σ(1− α) + ϕ+ α
; ψy ≡ (1− α)ψn

ψωa ≡ σ + ϕ

σ(1− α) + ϕ+ α
; ψω ≡ (σ(1− α) + ϕ) log(1− α)

σ(1− α) + ϕ+ α

We also have nominal neutrality , where real variables are determined independently of monetary policy, that
optimal monetary policy is undetermined, meaning that inflation does not affect welfare, and that price level
is undetermined, meaning that a rule for money supply or the nominal interest rate is needed.
Definition. We also have a simple interest rate rule, where nominal interest rate increases with inflation,
so

it = ρ+ π + φπ(πt − π) + vt

where φπ ≥ 0. We can combine with the Fischer equation rt = it − Et[πt+1] to get

φtπ̂t = Et[π̂t+1] + r̂t − vt

where r̂t ≡ rt − ρ and π̂t ≡ πt − π. If φπ > 1, then

π̂t =

∞󰁛

k=0

φ−(k+1)
π Et [r̂t+k − vt+k] = −σ(1− ρa)ψya

φπ − ρa
at −

1

φπ
vt

Remark. In summation, the representative household trades off (i) leisure against consumption; and (ii)
consumption today against consumption tomorrow. Firms hire labor until marginal cost equals marginal
revenue, and monetary policy does not affect real variables. We should know how to set up and solve the
model and how parameters affect how the economy responds to exogenous variables.

2.3 Basic New Keynesian Model I

Today, we will talk about Dixit-Stiglitz (CES) Demand Systems (from Dixit & Stiglitz, 1977), the basic New
Keynesian Business Cycle Model, and some sources of inefficiency.
Remark. Empirical evidence shows that monetary policy shocks have persistent effects on real variables,
prices that adjust slowly, and a liquidity effect. These stylized facts are in conflict with the predictions of the
classical monetary models. Micro evidence suggests that there may be significant price and wage rigidities.
For the stylized facts, see Leeper, Sims, and Zha (1996), and for the micro evidence, see Alvarez et al. (2006).
Model. Basic New Keynesian Model (Outline) We have a goods market and a labor market. In the goods
market, households consume a basket of goods, and firms produce different consumption goods. Prices have
a fixed probability of resetting their prices as in Calvo (1983). In the labor market, firms hire labor and
households supply labor. Households also optimally invest in a one-period riskless bond.
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Definition. The New Keynesian Phillips Curve is

πt = βEt[πt+1] + κỹt

The Dynamic IS Equation is

ỹt = Et[ỹt+1]−
1

σ
(it − Et[πt+1]− rnt )

The Monetary Policy Rule is
it = ρ+ φππt + φy ŷt + vt

Model. Dixit-Stiglitz Demand Systems Consider the utility function U(C) = C1−σ

1−σ , where C is a CES
aggregator over a continuum of goods,

C ≡
󰀕󰁝 1

0

C
ε−1
ε

i ∂i

󰀖 ε
ε−1

for ε > 1, i ∈ (0, 1)

For finite ε, goods are imperfect substitutes and firms therefore have some market power over the pricing of
goods. We want to maximize C subject to the budget constraint

󰁝 1

0

PiCi ∂i ≤ R

We can set up the Lagrangian

max
Ci

󰀕󰁝 1

0

C
ε−1
ε

i ∂i

󰀖 ε
ε−1

− λ

󰀕󰁝 1

0

PiCi ∂i−R

󰀖

and taking first order conditions, we get

ε

ε− 1

ε− 1

ε

󰀕󰁝 1

0

C
ε−1
ε

i ∂i

󰀖 ε
ε−1−1

C
ε−1
ε −1

i = λPi

Using the fact that C =
󰀓󰁕 1

0
C

ε−1
ε

i ∂i
󰀔 ε

ε−1

, we can rewrite this as

C
1
εC

− 1
ε

i = λPi =⇒ C − i = (λPi)
−εC

It remains to eliminate λ. If we multiply both sides by Ci and integrate over i, we get that

C
1
ε+1− 1

ε = λ

󰁝 1

0

PiCi ∂i

and from the definition of P ≡ C−1
󰁕 1

0
PiCi ∂i implies that p = λ−1, so

Ci =

󰀕
Pi

P

󰀖−ε

C

Question. Given this demand, what is the optimal price to charge?
Remark. Consider firm i facing the above demand curve. The maximization problem can be written as

max
Pi

PiYi − C(Yi)
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where C(Yi) is nominal cost as a function of output Yi = Ci. We get the first order condition

Yi + Pi
∂Yi

∂Pi
− ∂C

∂Yi

∂Yi

∂Pi
= 0

Defining the nominal marginal cost as ψi =
∂C
∂Yi

, we can simplify this to

1 +
Pi

Yi

∂Yi

∂Pi
− ψi

1

Yi

∂Yi

∂Pi
= 0 =⇒ Pi =

ε

ε− 1
ψi

using the definition of elasticities. This gives the optimal price as the markup M = ε
ε−1 > 1 times nominal

marginal cost.
Model. The Basic New Keynesian Model The representative household solves

maxE0

󰀥 ∞󰁛

t=0

βtU(Ct, Nt;Zt)

󰀦

where

U(Ct, Nt;Zt) =

󰀣
C1−σ

t − 1

1− σ
− N1+ϕ

t

1 + ϕ

󰀤
Zt

and

Ct =

󰀕󰁝 1

0

Ct(i)
1− 1

ε ∂i

󰀖 ε
ε−1

subject to 󰁝 1

0

Pt(i)Ct(i) ∂i+QtBt ≤ Bt−1 +WtNt +Dt

for all t. We will allocate expenditure across different goods as

Ct(i) =

󰀕
Pt(i)

Pt

󰀖−ε

Ct =⇒ ct(i) = −ε(pt(i)− pt) + ct

labor supply will meet

−Un,t

Uc,t
=

Wt

Pt
=⇒ wt − pt = σct + ϕnt

and intertemporal consumption

Qt = βEt

󰀗
Uc,t+1

Uc,t

Pt

Pt+1

Zt+1

Zt

󰀘
=⇒ ct = Et[ct+1]−

1

σ
(it − Et[πt+1]− ρ) +

1

σ
(1− ρz) zt

where it = − logQt and ρ = − log β. We have exogenous demand shocks zt = ρzzt−1 + εzt .

Finally, we have a continuum of firms indexed by i ∈ (0, 1), where each firm produces a differentiated good
with identical technology Yt(i) = AtNt(i)

1−α, where at = ρaat−1 + εat . The probability of getting to reset
the price in any period is 1− θ, with the implied average price duration 1

1−θ .
Remark. We will think about two sources of inefficiency: (i) decreasing marginal utility of individual goods
(love of variety); and (ii) decreasing returns to scale in production. For the first, consider the CES aggregator
with only two goods:

Ct ≡
󰀣
1

2

2󰁛

i=1

Ct(i)
1− 1

ε ∂i

󰀤 ε
ε−1

Clearly, the consumer would prefer {Ct(1), Ct(2)} to {2 · Ct(1)}. For the second, consider the production
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function with common productivity At:
Yt(i) = AtNt(i)

1−α

Clearly, the bundle {Yt(1), Yt(2)} takes less labor inputs to produce than {2 · Yt(1)}.
Remark. In summary, we introduced monopolistic competition with household preferences, through a CES
demand system where optimal price is a fixed markup over marginal cost, and explored two potential sources
of inefficiency. From this part, we should know (i) how to derive demand for individual goods; (ii) how to
derive the CES price index; (iii) how to find the optimal price Pi; and (iv) the economic forces that determine
efficiency in allocation of labor.

2.4 Basic New Keynesian Model II

If a fraction (1− θ) of firms set price P 󰂏
t , the aggregate price level will follow

Pt =
󰀅
θ(Pt−1)

1−ε + (1− θ)(P 󰂏
t )

1−ε
󰀆 1

1−ε

which can be rearranged to

Π1−ε
t = θ + (1− θ)

󰀕
P 󰂏
t

Pt−1

󰀖1−ε

Log-linearization around the zero-inflation steady state gives

πt = (1− θ)(p󰂏t − pt−1) ≡ pt = θpt−1 + (1− θ)p󰂏t

Using the stochastic discount factor of the households, firms maximize expected discounted profits

max
P󰂏

t

∞󰁛

k=0

θkEt

󰁱
Λt,t+k(1/Pt+k)

󰀃
P 󰂏
t · Yt+k|t − Ct+k(Yt+k|t)

󰀄󰁲

subject to

Yt+k|t =

󰀕
P 󰂏
t

Pt+k

󰀖−ε

Yt+k ∀ k = 0, 1, . . .

Note that the firm can only affect the rightmost term in the maximization problem, not the given prices or
stochastic discount factor. The first order condition of the price-setting problem is

∞󰁛

k=0

θkEt

󰁱
Λt,t+kYt+k|t(1/Pt+k)

󰀃
P 󰂏
t −MΨt+k|t

󰀄󰁲
= 0

where Ψt+k|t = C′
t+k(Yt+k|t) is the nominal marginal cost of a firm producing a good in period t + k with

price P 󰂏
t , and M = ε

ε−1 is the desired markup. Note that if θ = 0, this equation simplifies to P 󰂏
t = MΨt|t.

The linearized optimal price setting condition around a zero-inflation steady state is given by

p󰂏t = µ+ (1− βθ)

∞󰁛

k=0

(βθ)kEt{ψt+k|t}

where µ = logM and ψ = logΨ. Essentially, firms are looking to set the price that results in the optimal
markup, weighted to the discount factor and the probability of the price still being in place k periods in the
future. The nominal marginal cost is the wage divided by the marginal productivity of labor, so

ψt+k|t = wt+k −
󰀃
at+k − α · nt+k|t + log(1− α)

󰀄
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We can define the component of marginal cost that is constant across firms (so not dependent on the price
set today) as

ψt+k = wt+k − (at+k − α · nt+k + log(1− α))

Thus, we have that

ψt+k|t = ψt+k + α(nt+k|t − nt+k) = ψt+k +
αε

1− α
(p󰂏t − pt+k)

Define the marginal cost as 󰁦mct = ψt − pt + µ, and substituting into the optimal price setting equation we
get

p󰂏t = (1− βθ)

∞󰁛

k=0

(βθ)kEt

󰀝
󰁦mct+k − αε

1− α
(p󰂏t − pt+k) + pt+k

󰀞

Simplifying, this becomes

p󰂏t = (1− βθ)

∞󰁛

k=0

(βθ)kEt

󰀝
1− α

1− α+ αε
󰁦mct+k + pt+k

󰀞

Writing recursively, we get

p󰂏t = βθEtp
󰂏
t+1 + (1− βθ)

󰀕
1− α

1− α+ αε
󰁦mct + pt

󰀖

Subtracting pt−1 from both sides and adding and subtracting βθpt, and using the fact that p󰂏t − pt−1 =
(1− θ)−1πt, we get

(1− θ)−1πt = (1− θ)−1βθEt{πt+1}+ (1− βθ)

󰀕
1− α

1− α+ αε
󰁦mct

󰀖
+ πt

so we get that

πt = βEt{πt+1}+
(1− θ)(1− βθ)

θ

1− α

1− α+ αε
󰁦mct

The real marginal cost is the real wage divided by the marginal productivity of labor, so

mct = ψt − pt =

󰀕
σ +

ϕ+ α

1− α

󰀖
yt −

󰀕
1 + ϕ

1− α

󰀖
at − log(1− α)

So real marginal cost is a function of both output and productivity. If we have flexible prices (where θ = 0),
the markup is constant and equal to negative marginal cost:

mc = −µ =

󰀕
σ +

ϕ+ α

1− α

󰀖
ynt −

󰀕
1 + ϕ

1− α

󰀖
at − log(1− α)

where ynt is the natural level of output which we can solve for:

ynt =
1 + ϕ

σ(1− α) + ϕ+ α
at =

(1− α)(µ− log(1− α))

σ(1− α) + ϕ+ α

The deviation of marginal cost from the steady state is equal to the output gap:

󰁦mct =
󰀕
σ +

ϕ+ α

1− α

󰀖
(yt − ynt )
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If we combine this with the (previously assumed) goods and labor market clearing conditions, we can finally
derive the New Keynesian Phillips Curve

πt = βEt{πt+1}+ κỹt

where ỹt = yt − ynt and κ =
󰀓
σ + ϕ+α

1−α

󰀔
(1−θ)(1−βθ)

θ
1−α

1−α+αε . We also have the Dynamic IS equation

ỹt = Et{ỹt+1}−
1

σ
(it + Et{πt+1}− rnt )

where rnt is the natural rate of interest , given by rnt = ρ− σ(1− ρa)ψyaat + (1− ρt)zt. We can finally close
the model by writing a Taylor-type rule for the nominal interest rate, where

it = ρ− φππt + φy ŷt + vt

where ŷt = yt − y and vt = ρvvt−1 + εvt . We can use the method of undetermined coefficients to solve for
inflation and the output gap, which we’ll be able to write as a function of the composite shocks. Next time,
we will talk more about the dynamics of the solved model.

2.5 Rational Expectations Models

Remark. There are three different ways of solving linear rational expectations models that we will discuss:

1. The method of undetermined coefficients, which can be very quick when feasible and illustrates the
fixed point nature of the rational expectations solution

2. Decouple the stable and unstable dynamics of the model and set the unstable part to zero

3. Replacing expectations with linear projections onto observable variables

We will discuss methods (1) and (2) today.

As a vehicle to demonstrate the different solution methods, we will use the basic New Keynesian model:

πt = βEt{πt+1}+ κỹt

ỹt = Et{ỹt+1}−
1

σ
(it − Et{πt+1}− rnt )

it = ρ+ φππt + φy ŷt + vt

rnt = ρ− σ(1− ρa)ψyaat + (1− ρz)zt

where πt, ỹt, ŷt, it, r
n
t are inflation, output gap, output deviation from steady state, nominal interest rate,

and the natural rate of interest respectively.
Example. Method of Undetermined Coefficients
Remark. This method is quick when feasible and illustrates well the fixed point nature of rational expec-
tations equilibria but is difficult to implement in large models.

We start by substituting the interest rate into the IS equation to get

ỹt = Et{ỹt+1}−
1

σ
(ρ+ φππt + φy ŷt + vt − Et{πt+1}− rnt )

and define the composite shock ut as

ut ≡ rnt − φy ŷ
n
t − vt = −ψya(φy + σ(1− ρa))at + (1− ρz)zt − vt
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and use the fact that
ŷt = ỹt + ŷnt ; ŷnt = ψyaat

to simplify the IS equation to

ỹt = Et{ỹt+1}−
1

σ
(φππt + φy ỹt − Et{πt+1}+ ut)

By assuming that the composite shock is an AR(1) process with persistence parameter ρu, so ut = ρuut−1+ηt,
we can write all endogenous variables as functions only of ut. We conjecture that the model can be put in
the form

πt = ψπut ; ỹt = ψyut

so that
Et{πt+1} = ψπρuut ; Et{ỹt+1} = ψyρuut

Solving the model implies finding the coefficients ψπ and ψy.

We can substitute the conjectured solution into the structural Phillips curve and IS equation

ψπut = βψπρuut + κψyut

ψyut = ψyρuut −
1

σ
(φπψπut + φyψyut − ψπρuut + ut)

Equating coefficients on the left and right hand sides, we get

0 = ψπ − βψπρu − κψy

− 1

σ
= ψy − ψyρu +

1

σ
(φπψπ + φyψy − ψpiρu)

which is a system of linear equations in ψπ and ψy:
󰀗

(1− βρu) −κ󰀃
1
σφπ − ‘

σρu
󰀄 󰀃

1− ρu + 1
σφy

󰀄
󰀘
·
󰀗
ψπ

ψy

󰀘
=

󰀗
0

− 1
σ

󰀘

We can multiply both sides by the inverse of the coefficient matrix, so
󰀗
ψπ

ψy

󰀘
= Λ

󰀗
−κ

(βρu − 1)

󰀘

where Λ is the determinant of the coefficient matrix.
Example. Stable/Unstable Decoupling Originally due to Blanchard & Kahn (1980), and has been developed
significantly since then. See for example Söderlind (1999). This method has several advantages: it’s fast,
provides conditions for when a solution exists, and provided conditions for when a solution is unique.

We begin by putting the model in matrix form:

A0

󰀗
x1
t+1

Et{x2
t+1}

󰀘
= A1

󰀗
x1
t

x2
t

󰀘
+ C1ut+1

where x1
t is a vector of the control variables and x2

t is a vector of the jump variables. The respective matrices
are:

x1
t =

󰀅
at zt ut

󰀆T
; x2

t =
󰀅
πt ỹt

󰀆
; C1 =

󰀵

󰀹󰀹󰀹󰀹󰀷

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀸
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A0 =

󰀵

󰀹󰀹󰀹󰀹󰀷

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 β 0
0 0 0 1

σ 1

󰀶

󰀺󰀺󰀺󰀺󰀸
; A1 =

󰀵

󰀹󰀹󰀹󰀹󰀷

ρa 0 0 0 0
0 ρz 0 0 0
0 0 ρu 0 0
0 0 0 1 −κ

1
σ (φyψya + (1− ρa)ψya) − 1

σ (1− ρz)
1
σ

1
σφπ

󰀃
1 + 1

σφy

󰀄

󰀶

󰀺󰀺󰀺󰀺󰀸

With some linear algebra, we convert this to
󰀗

x1
t+1

Et{x2
t+1}

󰀘
= A

󰀗
x1
t

x2
t

󰀘
+ Cut+1

where A = A−1
0 A1 and C = A−1

0 C1. For the model to have a unique stable solution, the number of stable
eigenvalues of A must be equal to the number of exogenous (control) variables.

We will use a Schur decomposition to get A = ZTZH where T is upper block triangular
󰀕

i.e. T =

󰀗
T11 T12

0 T22

󰀘󰀖

and Z is a unitary matrix so that ZHZ = ZZH = I, where the H exponent denotes the Hermitian operator.
For any square matrix W , W−1AW is called a similarity transformation of A. Similarity transformations
do not change the eigenvalues of a matrix, and it is a property of the Schur decomposition that it is always
possible to choose Z and T so that the unstable eigenvalues of A are shared with T22 (the lower right block
of T ).

We define the auxiliary variables 󰀗
γt
δt

󰀘
= ZH

󰀗
x1
t

x2
t

󰀘

and we can rewrite the system as

ZH

󰀗
x1
t+1

Et{x2
t+1}

󰀘
= ZHZTZH

󰀗
x1
t

x2
t

󰀘
≡ E

󰀗
γt+1

δt+1

󰀘
=

󰀗
T11 T12

0 T22

󰀘 󰀗
γt
δt

󰀘

since ZHZ = I.

For this system to be stable, the auxiliary variables associated with the unstable roots in T22 must be zero
for all t. Imposing δt = 0 ∀ t reduces the relevant state dynamics to γt = T11γt−1, and to get back the
original variables we simply use that

󰀗
x1
t

x2
t

󰀘
=

󰀗
Z11

Z21

󰀘
γt ≡

󰀗
x1
t

x2
t

󰀘
=

󰀗
Z11

Z21

󰀘
Z−1
11 x1

t

which is the solution to the model. The solved model is of the form

x1
t = Mx1

t−1 + Cut

x2
t = Gx1

t

where

M = Z11T11Z
−1
11 =

󰀵

󰀷
ρa 0 0
0 ρz 0
0 0 ρu

󰀶

󰀸

and G = Z21Z
−1
11 .

Remark. There are slides on how to implement this in Matlab in Kris’ files. I don’t use Matlab so that
material is omitted here.
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2.6 Monetary Policy

Recall that we have two sources of inefficiency: market power of individual firms in the goods market, and
nominal rigidities. The efficient allocation solves

maxU(Ct, Nt;Zt) s.t. Ct(i) = AtNt(i)
1−α and Nt =

󰁝 1

0

Nt(i) ∂i

which admits optimality conditions

Ct(i) = Ct ; Nt(i) = Nt ; −Un,t

Uc,t
= MPNt = (1− α)AtN

−α
t

Under flexible prices the optimal price is marginal cost times a fixed markup Pt = M Wt

MPNt
for a fixed

markup M = ε
ε−1 > 1 so

−Un,t

Uc,t
=

Wt

Pt
=

MPNt

M < MPNt

We could restore efficiency with an employment subsidy τ = 1
ε , so M(1 − τ) = 1, since Pt = MWt(1−τ)

MPNt
.

With a constant employment subsidy that implies an efficient level of output under flexible prices, variation
in mark-ups resulting from sticky prices are inefficient:

Mt ≡
Pt

(1− τ)(Wt/MPNt)
=

PtM
Wt/MPNt

=⇒ −Un,t

Uc,t
=

Wt

Pt
= MPNt

M
Mt

∕= MPNt

Efficiency requires that average markup is the desired markup for all t.

We also have composition effects, which are relative price distortions resulting from staggered price setting,
which could be either Ct(i) ∕= Ct(j) if Pt(i) ∕= Pt(j), decreasing marginal utility of individual goods, or
decreasing marginal productivity of labor in a given firm. Since utility of, and production technology for
making, all goods are symmetric across all firms, optimal policy requires that prices and quantities are
equalized.
Model. For monetary policy, we assume the optimal (constant) employment subsidy as above, no inherited
price distortions, meaning that P−1(i) = P−1 for all i ∈ [0, 1], and only demand and productivity shocks
(meaning no shocks that make the flex-price equilibrium inefficient).

The optimal monetary in this case replicated the flexible price equilibrium allocation – the central bank
should stabilize marginal costs at a level consistent with firms’ desired markup at given existing prices.
Thus, no firm has an incentive to adjust its price, and equilibrium output and unemployment match their
natural levels. Equilibrium under the optimal policy then implies that yt = ynt , ỹt = 0, πt = 0, and it = rnt
for all t. This result is called the divine coincidence.

Inserting the exogenous interest rate rule it = rnt into the non-policy block gives

πt = βEt{πt+1}+ κỹt

ỹt = − 1

σ
(Et{πt+1}) + Et{ỹt+1}

where rnt = ρ− σ(1− ρa)ψyaat + (1− ρz)zt. Equilibrium dynamics with an exogenous optimal rule can be
represented as 󰀗

ỹt
πt

󰀘
=

󰀗
1 1

σ
κ β + κ

σ

󰀘
·
󰀗
Et{ỹt+1}
Et{πt+1}

󰀘

A shortcoming here: the solution ỹt = πt = 0 is not unique, as one eigenvalue of the coefficient matrix is
strictly greater than one, meaning we have indeterminacy. We could resolve this indeterminacy by specifying
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a rule that responds to inflation and output, of the form

it = rnt + φππt + φy ỹt

Equilibrium dynamics become
󰀗
ỹt
πt

󰀘
=

1

σ + φy + κφπ

󰀗
σ 1− βφπ

σκ κ+ β(σ + φy)

󰀘 󰀗
Et{ỹt+1}
Et{πt+1}

󰀘

Why does this work? An existence and uniqueness condition was provided by Bullard & Mitra (2002), of
the form

κ(φπ − 1) + (1− β)φy > 0

and a Taylor-principle interpretation was provided by Woodford (2002):

lim
k→∞

∂it+k

∂πt
= φπ + φy lim

k→∞

∂ỹt+k

∂πt
= φπ +

φy(1− β)

κ

Remark. Optimal rules assume that the natural rate of interest is observable in real time. This requires the
policymaker to know (i) the true model, (ii) the true parameter values, and (iii) realized shocks, all of which
are unrealistic. An operational alternative is a simple rule, which depends only on observable variables, and
does not require knowledge of the true parameter values if they approximate the optimal rule across different
models.

We can approximate the welfare of the representative household as

W = −E0

∞󰁛

t=0

βt

󰀕
Ut − Un

t

UcC

󰀖
= −1

2
E0

∞󰁛

t=0

βt

󰀗󰀕
σ +

ϕ+ α

1− α

󰀖
ỹ2t +

ε

λ
π2
t

󰀘

so that the expected average welfare loss per period is given by

L = −1

2

󰀗󰀕
σ +

ϕ+ α

1− α

󰀖
Var(ỹt) +

ε

λ
Var(πt)

󰀘

We get from this the equivalent rules

it =

󰀫
ρ+ φππt + φy ŷt

ρ+ φππt + φy ỹt + vt

where vt = φy ŷ
n
t is a simple rule. Equilibrium dynamics become

󰀗
ỹt
πt

󰀘
= Ω

󰀗
σ 1− βφπ

σκ κ+ β(σ + φy)

󰀘 󰀗
Et{ỹt+1}
Et{πt+1}

󰀘
+ Ω

󰀗
1
κ

󰀘
(r̂nt − vt)

and Ω = 1
σ+φy+κφπ

as before. Note that

r̂nt − vt = −ψya (σ(1− ρa) + φy) at + (1− ρz)zt

If we take this to the data, we find that it is not optimal to stabilize output if fluctuations are mainly due
to productivity shocks, but that strongly stabilizing inflation shocks leads to good outcomes regardless of
whether fluctuations are due to inflation or demand shocks.
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2.7 Policy Tradeoffs

Remark. In the simple New Keynesian model with only demand and productivity shocks there are no
policy trade-offs. Strict inflation targeting is optimal even if we don’t care about inflation per se. Implicitly,
we here assume that the efficient level of output and the natural level of output coincide. What if the two
don’t coincide?

If output coincides with the natural level of output, there will be no inflation. If it coincides with the efficient
level of output, there may be inflation but the condition

−Un,t

Uc,t
= MPNt

will hold. If yet ∕= ynt , we need to modify the Phillips curve to

πt = βEt{πt+1}+ κ xt󰁿󰁾󰁽󰂀
yt−ye

t

+ ut󰁿󰁾󰁽󰂀
κ(ye

t−yn
t )

The monetary policy problem is:

minE0

∞󰁛

t=0

βt(π2
t + ϑx2

t )

subject to

xt = − 1

σ
(it − Et{πt+1}− ret ) + Et{xt+1}

πt = βEt{πt+1}+ κxt + ut

for each t, where ut = ρuut−1 + εt and where ret = ρ − σEt{∆yet+1} + (1 − ρz)zt. Note that a utility-based
criterion requires that ϑ = κ

ε . This simplifies, so that each period the monetary policy authority chooses
(xt,πt) to minimize

π2
t + ϑx2

t

subject to πt = κxt + vt, with vt = βEt{πt+1}+ ut taken as given. We attain the optimality condition

xt = −κ

ϑ
πt

Equilibrium requires that

πt =
ϑ

κ2 + ϑ(1− βρu)
ut

xt = − κ

κ2 + ϑ(1− βρu)
ut

it = ret +
ϑρu + σκ(1− ρu)

κ2 + ϑ(1− βρu)
ut

Implementation is:

it = ret +
ϑρu + σκ(1− ρu)

κ2 + ϑ(1− βρu)
ut + φπ

󰀕
πt −

ϑ

κ2 + ϑ(1− βρu)
ut

󰀖

= ret +Θiut + φππt where Θi =
σκ(1− ρu)− ϑ(φπ − ρu)

κ2 + ϑ(1− βρu)
and φπ > 1
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Solving the Phillips curve forward gives us

πt = κxt + β

∞󰁛

k=1

βkEt{xt+k}+
1

1− βρu
ut

By committing to future negative output gaps, the policymaker can reduce the response to inflation today.
Given the convex loss function, smoothing over time is optimal.

Under commitment, the policymaker solves the problem of finding a state-contingent policy {xt,πt}∞t=0 that
minimizes

E0

∞󰁛

t=0

βt
󰀃
π2
t + ϑx2

t

󰀄

subject to the sequence of constraints

πt = βEt{πt+1}+ κxt + ut

which admits the Lagrangian

L = E0

∞󰁛

t=0

βt

󰀗
1

2

󰀃
π2
t + ϑx2

t

󰀄
+ ξt (πt − κtxt − βπt+1)

󰀘
+ t.i.p󰁿󰁾󰁽󰂀

terms independent
of policy

The optimality conditions for t = 0, 1, 2, . . . are

ϑxt − κξt = 0 and πt + ξt + ξt−1 = 0

where we set ξ−1 = 0. Combining, these become for t = 1, 2, 3, . . .

x0 = −κ

ϑ
π0 and xt = xt−1 −

κ

ϑ
πt

Alternatively, xt = −κ
ϑ p̂t for t = 0, 1, 2, . . . , where p̂t = pt − p−1. In equilibrium, we have

p̂t = γp̂t−1 + γβEt{p̂t+1}+ γut

for t = 0, 1, 2, . . . , where γ = ϑ
ϑ(1+β)+κ2 . The stationary solution is

p̂t = δp̂t−1 +
δ

1− δβρu
ut

where δ =
1−

√
1−4βγ2

2γβ ∈ (0, 1). This implies price-level targeting!
Remark. What we need to know from this:

1. It is possible to derive optimal policy criteria from utility function of representative household

2. With CES utility and decreasing marginal productivity of labor production functions it is optimal to
produce the same amount of each good

3. In the presence of only productivity and demand shocks, optimal policy implies complete price stability

4. In the presence of shocks that imply a trade-off between stabilizing output and inflation, the possibility
of committing to future policy actions can lead to better outcomes
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2.8 Sticky Wages

Remark. Wages are empirically quite sticky. The probability of a wage change is between 5 and 18% per
quarter, is higher for hourly workers than salaried workers, there is little heterogeneity, the probability of
a wage change increases with unemployment, and wages are less likely to change downwards than upwards,
even accounting for inflation. See Barattieri, Basu, & Gottschalk (2010) for more.
Model. New Keynesian Model with Sticky Wages We have a production function

Yt(i) = AtNt(i)
1−α

where Nt(i) =
󰀓󰁕 1

0
Nt(i, j)

1− 1
εW ∂j

󰀔 εW
εW −1

and at = logAt ∼ AR(1). The cost minimizing labor demand is

Nt(i, j) =

󰀕
Wt(j)

Wt

󰀖εW

Nt(i)

where Wt =
󰀓󰁕 1

0
Wt(j)

1−εW ∂j
󰀔 1

1−εW so that Wt is the ideal wage index, implying that

󰁝 1

0

Wt(j)Nt(i, j) ∂j = WtNt(i)

The firms problem is

max
P󰂏

t

∞󰁛

k=0

θkpEt

󰀋
Λt,t+k(1/Pt+k)(P

󰂏
t Yt+k|t − Ct+k(Yt+k|t))

󰀌

subject to

Ct+k(Yt+k|t) = Wt+k(Yt+k|t/At+k)
1

1−α

Yt+k|t =

󰀕
P 󰂏
t

Pt+k

󰀖−εp

Ct+k

The implied log-linearized price setting rule is

p󰂏t = µp + (1− βθp)

∞󰁛

k=0

(βθp)
kEt{ψt+k|t}

where ψt+k|t = logΨt+k|t and µp = log
εp

εp−1 , so nothing has changed except for notation.

We write price inflation in terms of the markup gap:

πp
t = βEt{πp

t+1}− λt(µ
p
t − µp)

where λp =
(1−θp)(1−βθp)

θp
1−α

1−α+αεp
, and µp

t − µp = −(σ + ϕ)ỹt − (µw
t − µw).

Households maximize

E0

∞󰁛

t=0

βtU(Ct, {Nt(j)};Zt)

subject to 󰁝 1

0

Pt(i)Ct(i) ∂i+QtBt ≤ Bt−1 +

󰁝 1

0

Wt(j)Nt(j) ∂j +Dt
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where

U(Ct, {Nt(j)};Zt) =

󰀻
󰀿

󰀽

󰀓
C1−σ

t −1
1−σ −

󰁕 1

0
Nt(j)

1+ϕ

1+ϕ ∂j
󰀔
Zt for σ ∕= 1

󰀓
logCt −

󰁕 1

0
Nt(j)

1+ϕ

1+ϕ ∂j
󰀔
Zt for σ = 1

and Ct =
󰀓󰁕 1

0
Ct(i)

1− 1
εP ∂i

󰀔 εp
εp−1

and zt = logZt ∼ AR(1). The optimality conditions require that

Ct(i) =

󰀕
Pt(i)

Pt

󰀖−εp

Ct

Qt = βEt

󰀫󰀕
Ct+1

Ct

󰀖−σ 󰀕
Zt+1

Zt

󰀖󰀕
Pt

Pt+1

󰀖󰀬

which, in log-linearized form, is

ct = Et{ct+1}−
1

σ

󰀃
it + Et{πp

t+1}− ρ
󰀄
+

1

σ
(1− ρz) zt

Note however that we have no optimal labor supply condition.

Optimal wage setting solves the problem

max
W󰂏

t

Et

∞󰁛

k=0

(βθw)
k

󰀣
C−σ

t+k

W 󰂏
t

Pt+k
Nt+k|t −

N1+ϕ
t+k|t

1 + ϕ

󰀤
Zt+k

subject to

Nt+k|t =

󰀕
W 󰂏

t

Wt+k

󰀖−εw 󰀕󰁝 1

0

Nt+k(i) ∂i

󰀖

Which admits first order condition
∞󰁛

k=0

(βθw)
kEt

󰀝
Nt+k|tZt+kC

−σ
t+k

󰀕
W 󰂏

t

Pt+k
−MwMRSt+k|t

󰀖󰀞
= 0

where MRSt+k|t = Cσ
t+kN

ϕ
t+k|t and Mw = εw

εw−1 . The log-linearized version is

w󰂏
t = µw + (1− βθw)

∞󰁛

k=0

(βθw)
kEt{mrst+k|t + pt+k}

or equivalently,

w󰂏
t =

1− βθw
1 + εwϕ

∞󰁛

k=0

(βθw)
kEt

󰀋
(1− εwϕ)wt+k − µ̂w

t+k

󰀌

where µw
t = wt − pt −mrst and mrst = σct + ϕnt. The wage inflation equation is

πw
t = βEt{πw

t+1}− λw(µ
w
t − µw)

where λw = (1−βθw)(1−θw)
θw(1+ϕεw) , so wage stickiness is introduced in a way that is completely analogous to price

stickiness.
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Equilibrium requires market clearing in goods, meaning that

Yt(i) = Ct(i) ∀ i ∈ [0, 1] =⇒ Yt = Ct, where Yt =

󰀕󰁝 1

0

Yt(i)
1− 1

εp ∂i

󰀖 εp
εp−1

and aggregate employment, so we have that

Nt =

󰁝 1

0

󰁝 1

0

Nt(i, j)∂j∂i =

󰁝 1

0

Nt(i)

󰁝 1

0

Nt(i, j)

Nt(i)
∂j∂i = ∆w,t

󰁝 1

0

Nt(i)∂i

= ∆w,t

󰀕
Yt

At

󰀖 1
1−α

󰁝 1

0

󰀕
Yt(i)

Yt

󰀖 1
1−α

∂i = ∆w,t∆p,t

󰀕
Yt

At

󰀖 1
1−α

where ∆w,t =
󰁕 1

0

󰀓
Wt(j)
Wt

󰀔−εw
∂j and ∆p,t =

󰁕 1

0

󰀓
Pt(i)
Pt

󰀔− εp
1−α

∂i. Up to a first order approximation, we have
that (1− α)nt = yt − at.

We will define a new and useful variable the wage gap ω̃t, where

ω̃t = ωt − ωn
t

where ω = wt − pt and where ωn
t is the natural real wage:

ωn
t = log(1− α) + (at − αnn

t )− µp = log(1− α) + ψwaat − µp

where ψwa =
1−αψya

1−α > 0 and ψya = 1+ϕ
σ(1−α)+ϕ+α .

We define the price mark-up gap µ̂p
t as

µ̂p
t = (mpnt − ωt)− µp = − α

1− α
ỹt − ω̃t

Hence,
πp
t = βEt{πp

t+1}+ κpỹt + λpω̃t

where κp =
αλp

1−α .

We define the wage mark-up gap µ̂w
t as

µ̂w
t = ωt −mrst − µw = ω̃t − (σỹt + ϕñt) = ω̃t −

󰀕
σ +

ϕ

1− α

󰀖
ỹt

so that
πw
t = βEt{πw

t+1}+ κwỹt − λwω̃t

where κw = λw

󰀓
σ + ϕ

1−α

󰀔
. In addition, we also have that

ω̃t = ω̃t−1 + πw
t − πp

t −∆ωn
t

Finally, we have the IS equation

ỹt = − 1

σ

󰀃
it − Et{πp

t+1}− rnt
󰀄
+ Et{ỹt+1}
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where rnt = ρ− σ(1− ρa)ψyaat + (1− ρz)zt, and an interest rate rule

it = ρ+ φpπ
p
t + φwπ

w
t + φy ŷt + vt

We can represent this as a dynamical system

Aw
0 xt = Aw

1 Et{xt+1}+Bw
0 ut

where

Aw
0 =

󰀵

󰀹󰀹󰀷

σ + φy φp φw 0
−κp 1 0 0
−κw 0 1 0
0 −1 1 1

󰀶

󰀺󰀺󰀸 xt =

󰀵

󰀹󰀹󰀷

ỹt
πp
t

πw
t

ω̃t−1

󰀶

󰀺󰀺󰀸 Aw
1 =

󰀵

󰀹󰀹󰀷

σ 1 0 0
0 β 0 λp

0 0 β −λw

0 0 0 1

󰀶

󰀺󰀺󰀸

Bw
0 =

󰀵

󰀹󰀹󰀷

1 0
0 0
0 0
0 1

󰀶

󰀺󰀺󰀸 ut =

󰀗
r̂nt − vt − φy ŷ

n
t

∆ωn
t

󰀘

For the equilibrium to be unique, it is necessary and sufficient that

φp + φw + φy

󰀣
1− β

σ + α+ϕ
1−α

󰀤󰀕
1

λp
+

1

λw

󰀖
> 1

Example. Dynamic Responses to a Monetary Policy Shock We can see in simulation that while it may
seem like price and wage stickiness work in opposite directions, they actually don’t cancel out the other’s
inefficiencies. They generally both slow the response of the economy to a shock.

The social planner’s problem is now
maxU(Cy{Nt(j)};Zt)

subject to

Ct(i) = AtNt(i)
1−α

Nt(j) =

󰁝 1

0

Nt(i, j)∂i

where Ct and Nt(i) are defined as above. Optimality conditions are that

Ct(i) = Ct ∀ i ∈ [0, 1]

Nt(i, j) = Nt(j) = Nt(i) = Nt ∀ i, j ∈ [0, 1]

−Un,t

Uc,t
= MPNt = (1− α)AtN

−α
t

In the decentralized economy with flexible prices and wages,

Pt = Mp
(1− τ)Wt

MPNt

Wt

Pt
= −Un,t

Uc,t
Mw
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for all goods and occupations, with Mp =
εp

εp−1 and Mw = εw
εw−1 . Thus,

−Un,t

Uc,t
=

1

M(1− τ)
MPNt

where M = MpMw. The condition for efficiency of the natural equilibrium is that M(1 − τ) = 1. Note
that this is not generically available with sticky prices and / or wages.

The optimal monetary policy problem is

min
1

2
E0

∞󰁛

t=0

βt

󰀕󰀕
σ +

ϕ+ α

1− α

󰀖
ỹ2t +

εp
λp

)πp
t )

2 +
εw(1− α)

λw
(πw

t )
2

󰀖

subject to

πp
t = βEt{πp

t+1}+ κpỹt + λpω̃t

πw
t = βEt{πw

t+1}+ κwỹt + λwω̃t

ω̃t−1 = ω̃t − πw
t + πp

t +∆ωn
t

We consider two types of rules: strict targeting rules, under which πi
t = 0, and flexible targeting rules under

which it = 0.01 + 1.5πi
t. With a flexible rule, interest rates can respond to either price or wage inflation

(or a composite measure). Looking to the data, we can see that composite inflation targeting can reattain
something fairly close to the first-best level of output even with price and wage stickiness. It’s doing a fairly
good job.

2.9 Unemployment

Remark. One criticism of the baseline New Keynesian model is that it has no role for unemployment.
Today, we will reinterpret the NK model to analyze unemployment and introduce an alternative to the
search friction-based framework we studied under Ryan.
Model. Unemployment in the New Keynesian Model We have a representative household with a continuum
of members, indexed by (j, s) ∈ [0, 1] × [0, 1], where we have a continuum of differentiated occupations
indexed by j ∈ [0, 1] and households get disutility from (indivisible) labor χsϕ for s ∈ [0, 1], where ϕ ≥ 0.
We assume full consumption risk sharing within the household. The household utility function becomes:

U(Ct, {Nt(j)};Zt) =

󰀣
C1−σ

t − 1

1− σ
− χ

󰁝 1

0

󰁝 Nt(j)

0

sϕ∂s∂j

󰀤
Zt =

󰀕
C1−σ

t − 1

1− σ
− χ

󰁝 1

0

Nt(j)
1+ϕ

1 + ϕ
∂j

󰀖
Zt

where Xt =
󰀓󰁕 1

0
Ct(i)

1− 1
εp ∂i

󰀔 εp
εp−1

with budget constraint

󰁝 1

0

Pt(i)Ct(i)∂i+QtBt ≤ Bt−1 +

󰁝 1

0

Wt(j)Nt(j)∂j +Dt

and two optimality conditions:

Ct(i) =

󰀕
Pt(i)

Pt

󰀖−εp

Ct
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where Pt =
󰀓󰁕 1

0
Pt(i)

1−εp∂i
󰀔 1

1−εp which implies that
󰁕 1

0
Pt(i)Ct(i)∂i = PtCt; and

Qt = βEt

󰀫󰀕
Ct+1

Ct

󰀖−σ 󰀕
Zt+1

Zt

󰀖󰀕
Pt

Pt+1

󰀖󰀬

The average wage dynamics are
wt = θwwt−1 + (1− θw)w

󰂏
t

and the optimal wage setting rule is

w󰂏
t = µw + (1− βθw)

∞󰁛

k=0

(βθw)
kEt

󰀋
mrst+k|t + pt+k

󰀌

where µw = log εw
εw−1 and mrst+k|t = σct+k + ϕnt+k|t + ξ, with wage inflation equation

πw
t = βEt{πw

t+1}− λw(µ
w
t − µw)

where πw
t = wt − wt−1, µw

t = wt − pt −mrst, and λw = (1−θw)(1−βθw)
θw(1+ewϕ) .

The participation condition for an individual (j, s) is

Wt(j)

Pt
≥ χCσ

t s
ϕ

The marginal participant, Lt(j), is given by

Wt(j)

Pt
≥ χCσ

t Lt(j)
ϕ

The aggregate labor force is therefore
wt − pt = σct + ϕlt + ξ

where wt
∼=

󰁕 1

0
wt(j)∂j and lt =

󰁕 1

0
lt(j)∂j. We can represent this visually as:

Wage

Employment

Labor Demand
Labor Supply

ltnt

wt − pt

µw
t

ut

The unemployment rate is now ut = lt − nt, so we have average wage markup is

µw
t = (wt − pt)− (σct + ϕnt + ξ) = ϕut
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and under flexible wages, µw = ϕun, the natural rate of unemployment. We thus have a New Keynesian
Wage Phillips Curve

πw
t = βEt{πw

t+1}− λwϕ(ut − un)

Our production technology is
Yt(i) = AtNt(i)

1−α

where Nt(i) =
󰀓󰁕 1

0
Nt(i, j)

1− 1
εw ∂i

󰀔 εw
εw−1

, which gives us price dynamics

pt = θppt−1 + (1− θp)p
󰂏
t

and optimal price setting rule

p󰂏t = µp + (1− βθp)

∞󰁛

k=0

(βθp)
kEt{ψt+k|t}

The implied price inflation equation is

πp
t = βEt{πp

t+1}− λp(µ
p
t − µp)

where µp
t = pt − ψt and ψt = w − (at − αnt + log(1− α)), and λp =

(1−θp)(1−βθp)
θp

1−α
1−α+αεp

.

The equilibrium non-policy block is:

ỹt = − 1

σ

󰀃
it − Et{πp

t+1}− rnt
󰀄
+ Et{ỹt+1}

πp
t = βEt{πp

t+1}+ κpỹt + λpω̃t

πw
t = βEt{πw

t+1}− λwϕût

ω̃t = ω̃t−1 + πw
t − πp

t −∆ωn
t

ϕût = ûw
t = ω̃t − (σc̃t + ϕñt) = ω̃ −

󰀕
σ +

ϕ

1− α

󰀖
ỹt

An example of the equilibrium policy block with a Taylor-type rule it = ρ+ φpπ
p
t + φy ŷt + vt is the natural

equilibrium

ŷnt = ψyaat

rnt = ρ− σ(1− ρa)ψyaat + (1− ρz)zt

ω̂n
t = ψwaat

with ψya = 1+ϕ
σ(1−α)+ϕ+α and ψwa =

1−αψya

1−α > 0, and exogenous AR(1) processes for {at}, {zt} and {vt}.

We can compare this Taylor-type rule to the solution to the optimal monetary policy problem

min
1

2
E0

∞󰁛

t=0

βt

󰀕󰀕
σ +

ϕ+ α

1− α

󰀖
ỹ2t +

εp
λp

(πp
t )

2 +
εw(1− α)

λw
(πw

t )
2

󰀖

subject to

πp
t = βEt{πp

t+1}+ κpỹt + λpω̃t

πw
t = βEt{πw

t+1}+ κwỹt + λwω̃t

ω̃t = ω̃t−1 + πw
t − πp

t −∆ωn
t
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Optimality conditions are:

0 =

󰀕
σ +

ϕ+ α

1− α

󰀖
ỹt + κpζ1,t + κwζ2,t

0 =
εp
λp

πp
t −∆ζ1,t + ζ3,t

0 =
εw(1− α)

λw
π2
t −∆ζ2,t − ζ3,t

0 = λpζ1,t − λwζ2,t + ζ3,t − βE{ζ3,t+1}

Compare this also to a simple rule with unemployment:

it = 0.01 + 1.5πp
t − 0.5ût

Bringing this to the data, we can see that the simple rule almost perfectly recreates the optimal monetary
policy rule, while the Taylor-type rule has a lot of distortions from the optimal.
Remark. Wage stickiness and differentiated labor types allow for reinterpreting the New Keynesian model
to include unemployment; and the labor force includes all agents who would work for the aggregate real
wage.

Criticisms of the basic New Keynesian Model.

1. We can introduce involuntary unemployment into the NK model, but not search unemployment or any
adverse consequences of unemployment. Trigari (2009) introduced search unemployment into the NK
model.

2. The basic model uses a representative household, but in reality not all households earn the same wage
and there is large heterogeneity in wealth holdings. The costs are that the model makes inaccurate
predictions if well-paid and wealthy households behave differently from low-paid and poor households,
and that the model gives inaccurate normative recommendations if we care about inequality. McKay
& Reis (2016) and Kaplan, Moll, & Violante (2016) explore some Heterogenous Agent New Keynesian
(HANK) models.

3. Consumption (and output) decision is completely determined by the expected real interest rate. There
is little empirical evidence that individual spending and investment decisions respond to expected
real interest rates. The cost is that the main model mechanism is not a good description of what
drives consumption and investment in reality. Heterogeneous agent models allow for wealth effects and
precautionary motives to affect the spending / saving decision.

2.10 State Space Models (and the Kalman Filter)

The most general way to write linear models is as state space systems:

Xt = AtXt−1 + Ctut : ut ∼ N (0, I) (State Equation)
Zt = DtXt + vt : vt ∼ N (0,Σv) (Measurement Equation)

This nests “observable” VAR(p), MA(p), and VARMA(p, q) processes as well as systems with latent variables.
As an example, the VAR(p) model

yt = φ1yt−1 + φtyt−2 + · · ·+ φpyt−p + ut
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can be written as

Xt = AtXt−1 + Ctut

Zt = DtXt + vt

where

A =

󰀵

󰀹󰀹󰀹󰀷

φ1 φ2 · · · φp

I 0 · · · 0
...

...
. . .

...
0 · · · I 0

󰀶

󰀺󰀺󰀺󰀸
; C =

󰀵

󰀹󰀹󰀷

I
0
0
0

󰀶

󰀺󰀺󰀸ut ; D =

󰀵

󰀹󰀹󰀹󰀷

I
0
...
0

󰀶

󰀺󰀺󰀺󰀸

T

; Σvv = 0

The MA(1) process yt = εt + θεt−1 can be written as
󰀗

εt
εt−1

󰀘
=

󰀗
0 0
1 0

󰀘 󰀗
εt−1

εt−2

󰀘
+

󰀗
1
0

󰀘
εt

yt =
󰀅
1 θ

󰀆 󰀗 εt
εt−1

󰀘

Definition. The Kalman Filter is used for mainly two purposes: (i) to estimate the unobservable state Xt,
and (ii) to evaluate the likelihood function associated with a state space model.

For state spaces of the form

Xt = AtXt−1 + Ctut

Zt = DtXt + vt

the Kalman filter recursively computes estimates of Xt conditional on the history of observations Zt, Zt−1, . . . , Z0

and an initial estimate (or prior) X0|0 with variance P0|0. The form of the filter is

Xt|t = AtXt−1|t−1 +Kt(Zt −DtXt|t−1)

and the task is thus to find the Kalman gain Kt so that the estimates Xt|t are in some sense ‘optimal’. We
define

Xt|t−s = E
󰀅
Xt | Zt−s

󰀆
and Pt|t−s = E

󰀅
(Xt −Xt|t−s)(Xt −Xt|t−s)

′󰀆

Example. A Simple Example Let’s say that we have noisy measures z1 of an unobservable process x such
that z1 = x + v1, where v1 ∼ N (0,σ2

1). Since the signal is unbiased, the minimum variance estimate
E[x | z1] = x̂ of x is given by x̂ = z1, and its variance is equal to the variance of the noise E[x̂− x]2 = σ2

1 .

Now say we have a second measure z2 of x so that z2 = x+ v2, where v2 ∼ N (0,σ2
2). How can we combine

the information in the two signals to find the minimum variance estimate of x? Clearly, we will restrict to
linear estimators of the form

x̂ = (1− a)z1 + az2

and we will simply minimize E [(1− a)z1 + az2 − x]
2 with respect to a. We rewrite the variance as

E [(1− a)(x+ v1) + a(x+ v2)− x]
2
= σ2

1 − 2aσ2
1 + a2σ2

1 + a2σ2
2

Our first order condition attains a =
σ2
1

σ2
1+σ2

2
. The minimum variance estimate of x is thus

x̂ =
σ2
2

σ2
1 + σ2

2

z1 +
σ2
1

σ2
1 + σ2

2

z2
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which has conditional variance

E[x̂− x]2 =

󰀕
1

σ2
1

+
1

σ2
2

󰀖−1

As long as σ2
2 < ∞, this strictly improves on the variance of the estimate with only one signal.

Example. Scalar Kalman Filter Consider the process

xt = ρxt−1 + ut

zt = xt + vt󰀗
ut

vt

󰀘
∼ N

󰀕
0,

󰀗
σ2
u 0
0 σ2

v

󰀘󰀖

We want to form an estimate of xt conditional on zt = {zt, zt−1, . . . , z1}. In addition to the system above,
we have a prior on the initial value of the state x0 such that x0|0 = x̄0 and E(x̄0 − x0)

2 = p0. With this
information we can form a prior on x1. Using the state transition equation we get that

x1|0 = E
󰀅
x1 | x0|0

󰀆
= ρx0|0 with variance E(x1|0 − x1)

2 = ρ2p0 + σ2
u

Note that ρ2p0 is the uncertainty from period 0 carried to period 1, and σ2
u is the uncertainty in period 0

about the period 1 innovation to xt. We denote the prior variance as p1|0 = ρ2p0 + σ2
u. We can combine the

information in the signal z1 with the information in the prior in exactly the same way as we combined the
two signals in the simple example above. The optimal weight k1 in the equation x1|1 = (1− k1)x1|0 + k1z1
is thus given by

k1 =
p1|0

p1|0 + σ2
v

and the period 1 posterior error covariance p1|1 is

p1|1 =

󰀣
1

p1|0 +
1
σ2
v

󰀤−1

or equivalently, p1|1 = p1|0 − p21|0(p1|0 + σ2
v)

−1. We can propagate this forward to get

p2|1 = ρ2
󰀓
p1|0 − p21|0(p1|0 + σ2

v)
−1

󰀔
+ σ2

u

and in general we have the difference equation

pt|t−1 = ρ2
󰀓
pt−1|t−2 − p2t−1|t−2(pt−1|t−2 + σ2

v)
−1

󰀔
+ σ2

u

We thus have the Kalman gain kt = pt|t−1(pt|t−1 + σ2
v)

−1 which allows us to compute

xt|t = (1− kt)xt|t−1 + ktzt

The state and measurement equations:

xt = ρxt−1 + ut and zt = xt + vt
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give us the Kalman update equations:

xt|t = ρxt−1|t−1 + kt(zt − ρxt−1|t−1)

kt = pt|t−1(pt|t−1 + σ2
v)

−1

pt|t−1 = ρ2
󰀓
pt−1|t−2 − p2t−1|t−2(pt−1|t−2 + σ2

v)
−1

󰀔

󰁿 󰁾󰁽 󰂀
pt−1|t−1

+σ2
u

Remark. There are two things worth noting about the difference equation for the prior error variances:

1. The prior error variance is bounded from below and above so that

σ2
u ≤ pt|t−1 ≤ σ2

u

1− ρ2

2. For |ρ| ∈ [0, 1), this is a contradiction

The upper bound is given by the optimality of the filter, where we cannot do worse than making the
unconditional mean xt for all t. The lower bound is given by the fact that the future is inherently uncertain,
so even with a perfect estimate of xt−1, xt will still not be known with certainty.
Question. What determines the Kalman gain kt?

The Kalman filter will optimally combine information in the prior ρxt−1|t−1 and the signal zt to form a
posterior estimate xt|t with covariance pt|t:

xt|t = (1− kt)ρxt−1|t−1 + ktzt

We put more weight on the signal, meaning a higher Kalman gain, if prior variance is large or the signal is
very precise. The prior variance can be large either because the previous state estimate was imprecise (i.e.
pt−1|t−1 is large) or because the variance of state innovations is large (i.e. σ2

u is large).
Remark. If ρ < 1 and if ρ, σ2

u, and σ2 are constant, the prior variance of the state estimate will converge
to

p = ρ2
󰀃
p− p2(p+ σ2

v)
−1

󰀄
+ σ2

u

and the Kalman gain will converge to
k = p(p+ σ2

v)
−1

Example. The Multivariate Kalman Filter For state space systems of the form

Xt = AtXt−1 + Ctut

Zt = DtXt + vt

the Kalman filter recursively computes estimates of Xt conditional on the history of observations Zt, Zt−1, . . . , Z0

and an initial estimate X0|0 with variance P0|0. The form of the filter is

Xt|t = AtXt−1|t−1 +Kt(Zt −DtXt|t−1)

and the task is again to find the Kalman gain Kt so that the estimates Xt|t are optimal. We further assume
that X0|0 − X0 is uncorrelated with the shock processes {ut} and {vt}. We can find a brute force linear
minimum variance estimator by solving the period t problem

min
α

E

󰀵

󰀷Xt −
t󰁛

j=0

αjZt−j

󰀶

󰀸

󰀵

󰀷Xt −
t󰁛

j=0

αjZt−j

󰀶

󰀸
′
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We want to find the linear projection of Xt on the history of observables Zt, Zt−1, . . . , Z1. From the projection
theorem, the linear combination

󰁓t
j=1 αjZt−j+1 should imply errors that are orthogonal to Zt, Zt−1, . . . , Z1

so that the following holds: 󰀳

󰁃Xt −
t󰁛

j=0

αjZt−j

󰀴

󰁄 ⊥ {Zj}tj=1

We could compute the α’s directly as

P{Xt | Zt, Zt−1, . . . , Z1} = E
󰀓
Xt

󰀅
Z ′
tZ

′
t−1 · · ·Z ′

1

󰀆′󰀔×
󰀓
E
󰀅
Z ′
tZ

′
t−1 · · ·Z ′

1

󰀆 󰀅
Z ′
tZ

′
t−1 · · ·Z ′

1

󰀆′󰀔−1

×
󰀅
Z ′
tZ

′
t−1 · · ·Z ′

1

󰀆′

However, as t → ∞ that gets really messy. We will use two tricks to find a nice recursive formulation:

1. Gram-Schmidt Orthogonalization

2. Exploit properties of projections onto mutually orthogonal variables
Definition. Gram-Schmidt Orthogonalization is defined in Rm when we have a matrix Y ∈ Rm×n with
columns y1, y2, . . . , yn. We will keep the first column, and then subtract the projection of y2 on y1 from y2
and define a new column vector ỹ2 as:

ỹt = y2 − y1(y
′
1y1)

−1y′1y2 ⇐⇒ ỹ2 = (I − Py1
) y2

and then subtract the projection of y3 on
󰀅
y1 y2

󰀆
from y3 to construct ỹ3, and so on.

Lemma 2.1. Let Z and Y be two uncorrelated mean zero variables where E[ZY ′] = 0. Then

E[X | Z, Y ] = E[X | Z] + E[X | Y ]

Proof. Follows directly from the projection formula, if the variables we are projecting onto are orthogonal,
we will be taking the inverse of a diagonal matrix.

With these, we can find the Kalman gain, which as a reminder is defined by the equation

Xt|t = AtXt−1|t−1 +Kt(Zt −DtXt|t−1)

We start from the first-period problem of how to optimally combine the information in the prior X0|0 and
the signal Z1. We will use that Z1 = D1A1X0+D1Cu1+v1 and that we know that ut and vt are orthogonal
to X0|0 to first find the optimal projection of Z1 on Z0|0: Z1|0 = D1A1X0|0. We can then define the period
1 innovation Z̃1 in Z1 as Z̃1 = Z1 − Z1|0. We know that

E
󰀓
X1 | Z̃1, X0|0

󰀔
= E

󰀓
X1 | Z̃1

󰀔
+ E

󰀃
X1 | X0|0

󰀄

since Z̃1 ⊥ X0|0 and E(Z1 | X0|0) = D1A1X0|0. From the projection theorem, we will look for a K1 such
that the inner product of the projection error and Z̃1 is zero:

󰁇
X1 −K1Z̃1, Z̃1

󰁈
= 0

65



Defining the inner product 〈X,Y 〉 as E(XY ′), we get

E
󰁫󰀓

X1 −KtZ̃1

󰀔
Z̃ ′
1

󰁬
= 0

E
󰁫
Z1Z̃

′
1

󰁬
−K1E

󰁫
Z̃1Z̃

′
1

󰁬
= 0

K1 = E
󰁫
X1Z̃

′
1

󰁬 󰀓
E
󰁫
Z̃1Z̃

′
1

󰁬󰀔−1

We thus need to evaluate the two expectational expressions. Before doing so it helps to define the state
innovation X̃1 = X1 − X1|0, so X̃1 is the one period error. The first expectation factor of K1 can now be
manipulated as follows:

E
󰁫
X1Z̃

′
1

󰁬
= E

󰀓
X̃1 +X1|0

󰀔
Z̃ ′
1 = EX̃1Z̃

′
1 = EX̃1

󰀓
X̃1D

′ + v′
1

󰀔
= P1|0D

′

Evaluating the second expectation factor as follows

E
󰁫
Z̃1Z̃

′
1

󰁬
= E

󰀗󰀓
D1X̃1 + v1

󰀔󰀓
D1X̃1 + v1

󰀔′
󰀘
= D1P1|0D

′
1 + Σvv

gives us the last component needed to find K1:

K1 = P1|0D
′
1

󰀃
D1P1|0D

′
1 + Σvv

󰀄−1

where we know that P1|0 = A1P0|0A
′
1 + C0C

′
0. We can add the projections of X1 on Z̃1 and X0|0 to recover

the linear minimum variance estimate X1|1

X1|1 = E
󰀃
X1 | X0|0

󰀄
+ E

󰀓
X1 | Z̃1

󰀔
= A1X0|0 +K1Z̃1

It remains to find an expression for the period t covariance. We can rewrite Xt|t = KtZ̃t +Xt|t−1 as

X1 −Xt|t +KtZ̃t = Xt −Xt|t−1

Since the period t error Xt −Xt|t is orthogonal to Z̃t, the variance of the right hand side must be equal to
the sum of the variances of the terms on the left hand side. We thus have

Pt|t +Kt

󰀃
DPt|t−1D

′ + Σvv

󰀄
K ′

t = Pt|t−1

Rearranging,

Pt|t = Pt|t−1 −Kt

󰀃
DPt|t−1D

′ + Σvv

󰀄
K ′

t = Pt|t−1 − Pt|t−1D
′
t

󰀃
DtPt|t−1D

′
t + Σvv

󰀄−1
DtPt|t−1

It is then straightforward to show that

Pt+1|t = At+1Pt|tA
′
t+1 + CC ′ = At+1

󰀓
Pt|t−1 − Pt|t−1D

′
t

󰀃
DtPt|t−1D

′
t + Σvv

󰀄−1
DtPt|t−1

󰀔
A′

t+1 + CC ′

Remark. In summation, for the state space system

Xt = AtXt−1 + Ctut

Zt = DtXt + vt󰀗
ut

vt

󰀘
∼ N

󰀕
0,

󰀗
In 0n×I

0I×n Σvv

󰀘󰀖
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we have the state estimate update equations

Xt|t = AtXt−1|t−1 +Kt(Zt −DtXt|t−1)

Kt = Pt|t−1D
′
t

󰀃
DtPt|t−1D

′
t + Σvv

󰀄−1

Pt+1|t = At+1

󰀓
Pt|t−1 − Pt|t−1D

′
t

󰀃
DtPt|t−1D

′
t + Σvv

󰀄−1
DtPt|t−1

󰀔
A′

t+1 + CC ′

The innovation sequence can be computed recursively from the innovation representation

Z̃t = Zt −DtXt|t−1 ; Xt+1|t = At+1Xt|t−1 +At+1KtZ̃t

The Kalman filter can be used to estimate latent variables in a state space system, and to evaluate the
likelihood function for a given parameterized state space system. We will explore the latter later.

2.11 Calibration and Moment Matching

Remark. Structural macroeconomic models can be used to make predictions about the effects of monetary
policy changes, changes in taxes, etc. However, model predictions often depend on model parameters. How
should we choose parameters for the model? There are three main categories of methods:

1. Calibration

2. Moment matching

3. Likelihood-based methods

Today, we do the first two.
Definition. Calibration is using evidence from existing studies to choose parameters, solving the model, and
comparing the output to actual macroeconomic data (that was not used when choosing the parameters). If
the output resembles the actual data, we can claim success.

Kydland & Prescott (1996) defined a computational experiment as the following process:

1. Ask a well-posed question

2. Write down a suitable model that can address the question

3. Choose parameters from empirical evidence that is not directly related to the question at hand

4. Solve the model

5. Compute the answer
Example. The original experiment is Kydland & Prescott (1982), where they ask whether an equilibrium
model can generate realistic business cycles. Their model is a RBC model where it takes more than one
period to install new capital, households choose how much labor to supply and how much to consume, and
investment is income minus consumption.

They used data from the average labor share of GNP to calibrate the production function, the investment
share of GDP and steady-state capital-to-output ratio to set the depreciation parameter, and the average
risk-free real interest rate to set the discount rate. Importantly, parameters were not chosen based on the
features of the data that the model is used to address. In addition, some parameters were chosen without
reference to any empirical observations.
Remark. We could do similarly in the New Keynesian model.
Remark. There are several valid criticisms of calibration:

• The choice of empirical facts used for calibration is arbitrary
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• The choice of which moments to use to judge the performance of the model is arbitrary

• The mapping between microeconomic studies to parameters is not always straightforward or innocuous

• There is no formal way to take into account parameter uncertainty

• What is judged a success is not based on any formal criteria
Definition. Moment matching is choosing parameters to minimize the discrepancy between the model and
the data. It allows for a more formal statistical treatment of choosing parameters and testing over-identified
restrictions. Note the difference from calibration: the data moments are used to choose parameter values
rather than evaluate the fit of the model.
Example. Consider a data moment h(zt) that has a clear correspondence to a model moment h(yt,Θ).
Given simulated model data {yi}Ni=1, we can compute the discrepancy between the data and the model
moment as

g(Z,Θ) =

󰀣
1

T

T󰁛

t=1

h(zt)

󰀤
−
󰀣

1

N

N󰁛

i=1

h(yi,Θ)

󰀤

We should then choose parameters Θ to minimize the weighted discrepancy between model and data moments

Γ(Θ) = g(Z,Θ)′ ×
󰀗
Σ

󰀕
1 +

T

N

󰀖󰀘−1

× g(Z,Θ)

where Σ in the weighting matrix is the covariance of numerical standard deviation of h(zt)− h(yt,Θ) under
the null hypothesis. Since the weighting matrix Σ depends on the parameters Θ, multiple iterations are
necessary in order to find the Θ that minimizes Γ(Θ).

2.12 Likelihood-Based Estimation

Example. Estimating the parameters in a state space system For a given state space system

Xt = AXt−1 + Cut ut ∼ N (0, I)

Zt = DXt + vt vt ∼ N (0,Σvv)

How can we find the A, C, D, and Σvv that best fit the data?

1. The Kalman Filter: We saw earlier that the associated Kalman filter for this system is given by

Xt|t = AtXt−1|t−1 +Kt(Zt −DtXt|t−1)

Kt = Pt|t−1D
′
t(DtPt|t−1D

′
t + Σvv)

−1

Pt+1|t = At+1

󰀓
Pt|t−1 − Pt|t−1D

′
t

󰀃
DtPt|t−1D

′
t + Σvv

󰀄−1
DtPt|t−1

󰀔
A′

t+1 + Ct+1C
′
t+1

2. The Likelihood Function: We can use the fact that the vector of innovations Z̃t are conditionally
independent Gaussians to write the log likelihood function as

L(Z | Θ) = (−nT/2) log(2π)− T

2
log |Ωt|−

1

t

T󰁛

t=1

Z̃ ′
tΩ

−1
t Z̃t
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where

Z̃t = Zt −DAXt−1|t−1

Xt|t = AXt−1|t−1 +Kt(Zt −DAXt−1|t−1)

Ωt = DPt|t−1D
′ + Σvv

But how do we find the MLE?
Question. How can we estimate parameters when we cannot maximize likelihood analytically? We need to
(i) be able to evaluate the likelihood function for a given set of parameters, and (ii) find a way to evaluate a
sequence of likelihoods conditional on different parameter vectors so that we can feel confident that we have
found the parameter vector that maximizes the likelihood.

There are four main numerical maximization methods:

1. Grid search

2. Steepest ascent

3. Newton-Raphson algorithms

4. Simulated annealing

We will see examples of the first and fourth.
Example. Unobserved Component Model The Unobserved Component model of inflation

πt = τt + ηt where τt = τt−1 + εt

decomposes inflation into permanent τ and transitory η components. This fits the data well, but we might
be concerned about having an actual unit root in inflation on theoretical grounds.

We wait to (i) estimate the parameters of the system, meaning σ2
η and σ2

ε , and (ii) find an estimate of the
permanent component τt at different points in time. The above state implies that A = 1, D = 1, C =

󰁳
σ2
ε ,

and Σv = σ2
η. The likelihood function is the same as always, but how do we choose initial values for the

Kalman recursions? Unconditional variance is infinite because of the unit root in the permanent component
of inflation. A good choice is to choose ‘neutral’ values, meaning something akin to uninformative priors.
One good choice is X0|0 = π1 and P0|0 very large and constant.

Since the dimension of the parameter vector is low, we can use grid search. Define a grid of variances:

σ2
ε = {0, 0.001, 0.002, . . . , σ̄2

ε}
σ2
η = {0, 0.001, 0.002, . . . , σ̄2

η}

and evaluate the likelihood function for all combinations. How do we choose the boundaries of the grid?
Variances are necessarily non-negative, and both of the estimates should be smaller than or equal to the
sample variance of inflation, so we set σ̄2

η = σ̄2
ε = 1

T

󰁓
π2
t . If we do grid search, we estimate σ̂2

ε = 0.0028 and
σ̂2
η = 0.0051. This also allows us to estimate the permanent component of inflation.

Remark. With a fine enough grid, grid search always finds the global maximum as long as the parameter
space is bounded. However, it is computationally infeasible for models with a large number of parameters.
Definition. Steepest ascent methods are for when grid search is not feasible. We need to be able to evaluate
the likelihood function for a given set of parameters, and find a way to evaluate a sequence of likelihoods
conditional on the difference parameter vectors so that we can feel confident that we have found the parameter
vector that maximizes the likelihood. This is useful when the likelihood service may not be so well-behaved.
The procedure is:

1. Make an initial guess of Θ = Θ(0)
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2. Find the direction of steepest ascent by computing the gradient

g(Θ) =
∂L(Z | Θ)

∂Θ

which is a vector which can be approximated element by element as

∂L(Z | Θ(0))

∂θi
≈

L(Z | θj = θ
(0)
j + ε : j = i; θj = θ

(0)
j otherwise)− L(Z | Θ(0))

ε

for each θj in Θ = {θ1, θ2, . . . , θJ}.

3. Take a step proportional to the gradient by setting the new value of the parameter vector as

Θ(1) = Θ(0) + s ·G(Θ)

4. Repeat steps (2) and (3) until convergence.
Remark. This is feasible for models with a large number of parameters, but can be hard to calibrate even
for simple models to achieve the right rate of convergence. Additionally, it can converge to a local maximum.
Definition. The Newton-Raphson method is similar to steepest ascent, but also computes the step size.
The step size depends on the second derivative, and this may converge faster than steepest ascent. However,
Newton-Raphson requires concavity, so it is less robust when the shape of the likelihood function is unknown.
Definition. Simulated Annealing comes from Goffe et al. (1994), which uses language from thermodynamics
and combines elements of grid search with (strategically chosen) random movements in the parameter space.
This has a good record in practice, but cannot be proven to reach a global maximum quicker than grid
search.

The main algorithm inputs are Θ(0), temperature T , the boundaries of Θ, the temperature reduction pa-
rameter rT , and the function to be optimized f(Θ). The algorithm is:

1. θ′j = θ
(0)
j + r · vj , where r ∼ U [−1, 1] and vi is an element of the step size vector V .

2. Evaluate f(Θ′) and compare with f(Θ(0)). If f(Θ′) > f(Θ(0)), set Θ(1) = Θ′. If f(Θ′) < f(Θ(0)),
set Θ(1) = Θ′ with probability exp

󰀃
(f(Θ′)− f(Θ(0))/T

󰀄
and Θ(1) = Θ(0) with probability 1 −

exp
󰀃
(f(Θ′)− f(Θ(0))/T

󰀄
.

3. After Ns loops through steps (1) and (2), step length vector V is adjusted in direction so that approx-
imately 50% of all moves are accepted.

4. After Nt loops through (1) and (3), temperature is reduced so that T ′ = rT · T so that fewer downhill
steps are accepted.

Example. Estimating DSGE using Simulated Annealing Recall the benchmark model:

πt = βEtπt+1 + κỹt

ỹt = Etỹt+1 −
1

σ
(it − Etπt+1 − rnt )

it = ρ+ φππt + φy ŷt + vt

rnt = ρ− σ(1− ρa)ψyaat

We want to estimate the parameters in:

Θ = {σ,β,ϕ, ε,φπ,φy, θ,α, ρa, ρv, ρz,σa,σv,σz}
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The solved model can be put in state space form

Xt = AXt−1 + Cut

Zt = DXt + vt

where A, C, D, and Σv are functions of the model’s ‘deep’ parameters. The matrix D and the covariance of
vt depend on what observable variables will be included in Zt. We can evaluate the log likelihood using the
simulated annealing code provided (in LLDSGE.m).
Remark. In summation, the DSGE model takes as an input a vector of parameters Θ and outputs a state
space system

f(Θ) → {A,C,D,Σvv}

The Kalman Filter estimates latent variables in the state space system, and evaluates the likelihood function
for a given parameterized state space system, and an optimization algorithm finds a parameter vector Θ
that maximizes the likelihood given the data.
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