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Introduction

“We have all of this administrative crap to do. Let’s get that out of the way” – L. Blume

Grading is the least important part of this class – you can just tank it, and as long as you pass the Q you’ll
be fine! (There is correlation, but unsure if there’s causation).

We will begin by talking about linear programming, which is the best way to understand duality. Linear
programming is a shockingly useful tool, and duality is essential (see Myerson for a cutting-edge example).
We will use the tools Tak taught – specifically, Convex Analysis. Then we will apply these tools to talk about
linear production models, including the non-substitution theorem, which drove a lot of macroeconomics in
the late 20th and early 21st century. We will go on to talk about some other uses of constant returns to
scale production, including in international trade.

We will then go through some of the issues with welfare economics, which Larry believes is an interesting
area of research. We will talk about uncertainty, matching, and (if we have time) some mechanism design
in market settings.

Grading: Participation is 40%. Problem sets will be 10%. One prelim will be worth 10%, and by implication
the final is additionally 40%.

1 Linear Programming

This part of the course will have more proofs than the rest of the course – convexity in general, and linear
programming specifically, are about geometry.
Lemma 1.1. Farkas’ Lemma Given a matrix A and a vector b, exactly one of the following is true:

1. Ax = b, x ≥ 0 has a solution

2. The system yA ≥ 0, yb < 0 has a solution

Proof. (Intuition) Consider the set
{z : z = Ax, x ≥ 0}

This set is convex. Interestingly, it is not necessarily closed, though the difference is subtle. More specifically,
it is closed, but not for the reason you think it’s closed. It’s actually a polyhedron, and more specifically
a convex polyhedral cone. What Farkas’ Lemma says geometrically is that a vector is either in the convex
polyhedral cone, or that b can be separated by the cone by a hyperplane – specifically the hyperplane y.
Remark. Quick notation break – x ≥ 0 means that each xi ≥ 0. x > 0 means that x is semipositive, so
x ≥ 0 and some xi > 0. x ≫ 0 means that each xi > 0. Additionally, if we say that x 󰂏 y, then we are saying
that x− y 󰂏 0 for any relationship 󰂏.
Definition. A polyhedron is the intersection of finite halfspaces. A polytope is a bounded polyhedron.
Remark. Any convex set is the intersection of (any number of) halfspaces. Polyhedra have more properties.
Definition. The canonical form of a linear program is written

max c · x
s.t. Ax ≤ b

x ≥ 0
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The standard form of a linear program is written

max c · x
s.t. A′x = b′

x ≥ 0

Definition. x is a vertex of a polyhedron F if and only if there is no y ∕= 0 such that x + y and x − y are
both in F .
Theorem 1.1. Vertex Theorem If a linear program in standard form has feasible solutions, then

1. It has a feasible vertex

2. If vP (b) < ∞ and x is feasible, then there is a feasible vertex x′ such that c · x′ ≥ c · x
Remark. By implication, if a standard form problem has an optimal solution then it has an optimal vertex
solution.

Proof.

1. Let F denote the feasible set. We will describe an algorithm for finding a vertex and show that it
always succeeds. Choose x ∈ F . If x is a vertex, done! If not, there exists y ∕= 0 such that x± y ∈ F .
For any such y, Ay = 0. Let λ󰂏 ≥ 0 solve sup{λ : x ± λy ∈ F}. Since x is not a vertex, λ󰂏 > 0, and
since F is closed x ± λ󰂏y ∈ F . However, this is on a border. At least one of x ± λ󰂏y has more zeros
than x does. Assign that x1. If x1 is a vertex, done! If not, repeat to get x2, and so on. Eventually,
at least xn will have all zeros and we will be done.

2. Left as exercise, but exact same basic form as (1)

Definition. The support of a feasible solution x is the set of all indices j such that xj > 0

supp(x) = {j : xj > 0}

Definition. The jth column of A is denoted Aj . A feasible solution is basic if {Aj : j ∈ supp(x)} is linearly
independent.
Theorem 1.2. A feasible solution x is a vertex if and only if it is basic.

Proof. If x is not a vertex, then ∃ y ∕= 0 s.t. x± y is feasible, and Ay = 0 such that if xj = 0, yj = 0. This
implies that Ay is a linear combination of the columns Aj , and since it is equal to zero and y ∕= 0, then x is
not basic since Aj are linearly dependent.

If x is not basic, then Aj are linearly dependent, so there exists y ∕= 0 such that if xj = 0, yj = 0 and Ay = 0.
For λ ∈ R such that |λ| sufficiently small, x± λy ≥ 0, meaning that x± λy feasible, so x is not a vertex.
Proposition 1.1. Suppose x is a feasible solution, y is a feasible solution, x ∕= y, and supp(y) ⊆ supp(x).
Then x is not basic.

Proof. Ax = b, Ay = b, A(x− y) = 0, x ∕= y, =⇒ Aj linearly dependent.
Theorem 1.3. The Fundamental Theorem of Linear Programming If a problem in standard form has a
feasible solution, then it has a basic feasible solution. If it has an optimal solution, it has a basic optimal
solution.

Proof. Left as exercise.
Definition. We define the primal problem as follows:

vP (b) = max c · x
s.t. Ax ≤ b

x ≥ 0
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The dual problem is:

vD(c) = min y · b
s.t. yA ≥ c

y ≥ 0

Exercise. Suppose that we have the following primal problem:

max c · x
s.t. Ax ≤ b

A′x = b′

x ≥ 0

Prove that the dual can be expressed

min y · b+ z · b′

s.t. yA+ zA′ ≥ c

y ≥ 0

Note that there are no sign constraints on the z variables.
Theorem 1.4. Weak Duality For the primal and dual problems, vP (b) ≤ vD(c)

Proof. For feasible solutions x and y of the primal and dual respectively, we must have that (yA− c)x ≥ 0
and y(b−Ax) ≥ 0, so for all feasible solutions x and y, we must have that c · x ≤ y · b.
Theorem 1.5. Duality For the primal problem and the dual problem, exactly one of the following must hold:

1. Both are feasible, both have optimal solutions, and the optimal solutions coincide

2. One is unbounded and the other is infeasible

3. Both are infeasible

Proof. Long, left out. Straightforward, but annoying.
Theorem 1.6. Complimentary Slackness Suppose that x󰂏 and y󰂏 are feasible for the primal and dual re-
spectively. Then they are optimal solutions if and only if for each constraint i in the primal problem and j
in the dual problem,

y󰂏(b−Ax󰂏) = 0 and (y󰂏A− c)x󰂏 = 0

Proof. In notes, out of time.
Lemma 1.2. vP (b) is concave, and vD(c) is convex, and the domains of each are closed convex sets.

Consider the following restatement of the Duality Theorem:
Theorem 1.7. If vP (b) or vD(c) is finite,

1. Both are finite

2. Both programs have optimal solutions

3. ∂vD(c)1 is the set of solutions to the primal, and ∂vP (b) is the set of solutions to the dual

Proof. (Just of Part 3, only one part. Other is parallel) (⇒): Assume y󰂏b = vD(c) and y󰂏b = vP (b) by
finite. Then for any problem with the same feasible set and objective b′, y󰂏 is feasible and not optimal.
Thus, we have

y󰂏b′ − vP (b
′) ≥ y󰂏b− vP (b)

1The subgradient of vD at c.
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which implies the subgradient inequality.

2 Polyhedral Models

Model. The Open Leontief Model (sometimes Input-Output Model, from Leontief) We have N produced
goods, and production is described by a matrix A =

󰀅
aij

󰀆
N×N

∈ RN×N where aij is the amount of good i

necessary to produce good j. Specifically, we have Leontief isoquants – if a11 = 1
2 and a12 = 1, then in the

N = 2 model the isoquants look like Figure 1.

Figure 1: Leontief Isoquants

We have one good that is not produced – a0 = (a01, a02, . . . , a0N ). We have a labor endowment of L, and
we call gross output x and y ≤ x net output.

Call the vector (a0j , · · · , aNj) a technique for producing good j. Note that to produce some vector x =
(x1, . . . , xN ), we need Ax of the inputs. Then, of course, y = x − Ax. The question we’ll face next time:
Given our technology, can we produce anything?
Definition. A is productive if ∃ x󰂏 ≫ 0 s.t. x󰂏 ≫ Ax󰂏 (equivalently: if y = x󰂏 − x󰂏, y ≫ 0).
Theorem 2.1. If A is productive, any y ≥ 0 can be produced ( i.e. for any y ≥ 0, ∃ x ≥ 0 s.t. (I −A)x = y)

Proof.
Lemma 2.1. If A is productive, and x ≥ Ax, then x ≥ 0.

Proof. Suppose ∃ x ∕≥ 0 s.t. x ≥ Ax. Define λ′ = inf{λ : x + λx󰂏 ≥ 0}, where x󰂏 ≫ Ax󰂏 exists by
productivity, and define x′ = x+ λ′x󰂏. Then

x+ λ′x󰂏 ≫ Ax+ λ′Ax󰂏 = A(x+ λ′x󰂏) ≥ 0

so λ′ is not the infimum.
Corollary 2.1. If A is productive, then I −A has full rank.

Proof. Suppose (I − A)x = 0. Then x ≥ Ax and x ≥ 0. Since (I − A)(−x) = 0 then −x ≥ A(−x) and
−x ≥ 0. Thus, x = 0 and (I −A) has a rank 0 null space.

Since I −A is invertible, for any y ≥ 0 there is an x such that (I −A)x = y, then by the Lemma x ≥ 0.
Theorem 2.2. If (I −A)−1 has non-negative columns and is non-singular, then A is productive.

Proof. For any y ≥ 0, (I − A)−1y ≥ 0. Since (I − A)−1 is non-singular, it has no zero column, so every
column is semi-positive. Therefore x󰂏 = (I −A)−1e ≫ 0, and x󰂏 ≫ Ax󰂏.
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Remark. There are other conditions that work.
Theorem 2.3. Hawkins-Simon A is productive ⇐⇒ all leading principal minors are positive
Theorem 2.4. If A is productive, then Anx → 0 (at a geometric rate).

Proof. Since A is productive, x󰂏 ≫ Ax󰂏 for some x󰂏 ≫ 0, and there is λ ∈ (0, 1) such that λx󰂏 ≫ x󰂏. Then
Ax󰂏 ≪ λAx󰂏 ≪ λ2x󰂏, and for all n λnx󰂏 ≫ Anx󰂏, so Anx󰂏 → 0 and An → 0.
Corollary 2.2. If A is productive, then limn→∞(I +A+A2 + · · ·+An) = (I −A)−1

Proof. (I −A)(I +A+A2 + · · ·+An) = I −An+1 → I.

Suppose that the economy is endowed with L units of the (non-produced) primary good. What net output
bundles can we make? To produce y, we need (I−A)−1y units of gross output, which requires a0(I−A)−1y
of the primary factor. Thus, our production possibility set is

P (L) = {y : a0(I −A)−1y ≤ L}

Definition. A price vector (p0, p1, . . . , pN ) = (p0, p) ∈ RN+1
+ where p0 is the price of the primary input and

pi is the price of produced good i. The cost of producing one unit of good j is

cj = p0a0j + pAj

and the profit from producing one unit of good j is

πj = pj − cj = pj −
󰁛

m

pmamj =⇒ π = p(I −A)− p0a0

Definition. An equilibrium is a tuple 〈x, y, p, p0〉, such that (i) y ≤ (I − A)x, (ii) a0x < L =⇒ p0 = 0, (iii)
ym < xm − amx =⇒ pm = 0, (iv) π ≤ 0, (v) πx = 0, and (vi) a0x ≤ L.
Assumption 2.1. We set p0 = 1 almost always, and deal with prices relative to labor. The exception is
when we have excess labor. See condition (ii) of equilibrium above.
Theorem 2.5. If A is productive and a0 ≫ 0, an equilibrium exists in which y ≫ 0, p ≫ 0, and all profits
are 0.

Proof. Per-unit profits are π = p(I − A) − a0. If A is productive, then (I − A) is invertible, so take
p = (I −A)−1a0, so π = 0. Next, choose any y. The required labor input is a0(I −A)−1y, and we can scale
y directly so that this equals L. Strict positivity of p follows from the fact that (I − A)−1 is non-negative
and since it is non-singular, it has at least one non-zero element in each column. Conclusion follows from
the hypothesis that a0 ≫ 0.
Remark. That A is productive is, of course, necessary. The condition that a0 ≫ 0 can be relaxed, and
that’s very contemporary research. Specifically, we need that the product

a0

󰁱
I +A+A2 + · · ·+An+1 + · · ·

󰁲
≫ 0

This would reduce the condition to a0 ≥ 0 and a0 ∕= 0, and a sufficient condition for that is the graph
described by A being irreducible – i.e. that if we draw a directed graph where an arrow from i to j means
‘i is used in the production of j’, that graph being irreducible implies that for sufficiently large m, Am is
always strictly positive, which suffices to show that (I − A)−1 is strictly positive. Note that we can reach
the entirety of the indirect reach of labor with only the first n − 1 matrix products, where n is the size of
the matrix.
Definition. A convex support function for a set C is defined by the maximization problem

vC(q) = max{q · x : x ∈ C}

This function is convex and homogeneous of degree 1. The concave indicator function of a convex set C is
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the function

1C(x) =

󰀫
0 x ∈ C

−∞ x ∕∈ C

(and the convex indicator function is defined analogously, with +∞).
Question. What does the set of convex support functions actually look like? It sits in C1, which is a
normed vector space. In fact, it is precisely the set of continuous, homogeneous of degree 1, and convex
functions, which is a convex cone! We can, in fact, even put a measure on this space and regress over it.
This means that we can put a measure over all convex sets, and even prove central limit theorems and laws
of large numbers over them.
Example. Consider the production possibility set of our economy, where we have the production matrix
A, the labor requirement vector a0, and labor endowment L. The set is described by the constraints: (i)
y − (I −A)x ≤ 0, (ii) a0x ≤ L, and (iii) x, y ≥ 0. We can define its convex support function as

vC(q) = max q · y

subject to

y − (I −A)x ≤ 0

a0x ≤ L

x, y ≥ 0

The dual of this problem is
min
p0,p

p0 · L

subject to

p ≥ q

−p(I −A) + p0a0 ≥ 0

p0, p ≥ 0

Remark. We can interpret q as ‘world prices’ in a market where only final goods are shipped.
Remark. Complimentary slackness of p − q implies that pm > qm ⇐⇒ we produce 0 of good m, and that
either we use a positive amount of good i in production or we make positive profit on good i. Formally:
Corollary 2.3. At an optimal primal-dual quadruple (y󰂏, x󰂏, p󰂏, p󰂏0), we have that:

1. p󰂏y󰂏 − p󰂏(I −A)x󰂏 = 0, so if good m is in excess supply then p󰂏m = 0.

2. p󰂏0(a0x
󰂏 − L) = 0, so if labor supply is not exhausted then wage p󰂏0 = 0.

3. (p󰂏 − q)y󰂏 = 0, so if the net output of good m is positive, then p󰂏m = qm.

4. p󰂏(I −A)x󰂏 + p󰂏0a0x
󰂏 = 0, so if good m is produced, profits πm = 0.

Remark. These complementary slackness conditions precisely define the equilibrium we defined above.
Theorem 2.6. If A is productive and a0 ≫ 0, then both the primal and dual have optimal solutions. If
(x󰂏, y󰂏) solves the primal problem and (p󰂏, p󰂏0) solves the dual, then (x󰂏, y󰂏, p󰂏, p󰂏0) is an equilibrium.

Proof. If A is productive, the feasible set is nonempty, as the first primal inequality has at least one solution.
If a0 ≫ 0, then it is bounded, so the primal problem attains a maximum. Conclusion follows from strong
duality.
Model. Activity Analysis Model of Production We have N goods, M activities, M ≥ N , a matrix A ∈ RN×M

where amn is the amount of good n needed to run activity m at unit level, and a0m the amount of ‘labor’
required to run activity m at unit level. The only difference, besides A no longer being square, is that we
now have B ∈ RN×M , where the column Bm is the output vector of goods 1, . . . , n from running activity m
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at unit level.

The vector x ∈ Rm
+ is now the vector of levels at which the different activities are run. For activity vector

x ≥ 0, the input requirements are Ax and the output levels are Bx.
Definition. The model is productive if there exists x󰂏 ≥ 0 such that Bx󰂏 ≫ Ax󰂏. The production possibility
set of the economy is

Y = {y ≥ 0 : (B −A)x ≥ y, a0x ≤ L, x ≥ 0}

Remark. The general Leontief model is a special case of the Activity Analysis Model, where we assume
that there is no joint production.
Definition. A technology τ is a set of N activities in {1, . . . ,M} such that through those activities alone
every good is produced.

The problem, therefore, is to characterize the production possibility set. Define the cost functions

λ(y) = min{a0x : (B −A)x ≥ y, x ≥ 0}
λτ (y) = min{a0x : (I −Aτ )x ≥ y, x ≥ 0}

that gave the minimum amount of the primary factor needed to produce net output y in (first) the general
model and (second) the technology τ . Define their respective production possibility sets as

P (L) = {y : (B −A)x ≥ y, x ≥ 0, a0x ≤ L}
P τ (L) = {y : (I −Aτ )x ≥ y, x ≥ 0, a0x ≤ L}

Note that for any τ , P τ (L) ⊆ P (L).
Theorem 2.7. Non-Substitution Theorem There is a technology τ󰂏 such that for all y ≥ 0, λ(y) = λτ󰂏

(y).
Corollary 2.4. P τ󰂏

(L) = P (L).

Proof. First, to produce the vector 1, we solve the problem

λ(1) = min a0x s.t. (B −A)x ≥ 1, x ≥ 0

Productivity of A,B implies that the feasible set is nonempty, so this problem has a solution. This means
that it has a basic optimal solution, and we call the set of its columns a technology τ󰂏.

Recall that for any technology τ , cost is linear in y

λτ (y) = a0(I −Aτ )−1y

To show that λτ󰂏

(y) = λ(y), it suffices to show that λτ󰂏

(y) ≤ λτ (y) for any other τ .
Lemma 2.2. For each 1m and for all τ , λτ󰂏

(1m) ≤ λτ (1m).

Proof. FSOC, assume that there is a cheaper technology θ for producing 11. Then

λ(1) ≤ λθ(11) +
󰁛

m≥2

λτ󰂏

(1m) <
󰁛

m≥1

λτ󰂏

(1m) = λτ󰂏

(1)

which is a contradiction.

To conclude the proof, observe that any y can be produced at minimum cost by some technology, and for
any technology τ ,

λτ (y) =
󰁛

m

ymλτ (1m) ≥
󰁛

m

ymλτ󰂏

(1m) = λτ󰂏

(y)
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A Brief Aside on Modeling. A model is an abstraction of the world. A model is a set of objects and a
set of relationships. In Economics, we have agents, goods, beliefs, preferences as the objects; states such as
prices and capital; and relationships such as behavioral relationships (between any objects) and consistency
conditions.

3 The Hecksher-Ohlin-Vanek Model

Model. Leontief Version Consider a small country with immobile capital stock K and labor endowment
L that trades final products clothing c and food f on world markets at prices pc and pf . The production
technology for good g is described by input requirement coefficients akg and alg. Assume:
Assumption 3.1. Clothing is capital-intensive, food is labor-intensive: akc

alc
>

akf

alf

The PPS is the set {(xc, xf ) : akcxc + akfxf ≤ K, alcxc + alfxf ≤ L, x ≥ 0}. This set is convex, and (as
before) we can characterize it with its concave support function. The support function is

vP (K,L) = max
x

pcxc + pfxf

s.t. ackxc + afkxf ≤ K

aclxc + aflxf ≤ L

x ≥ 0

The dual is

vD(pc, pf ) = min
r,w

rK + wL

s.t. rack + wacl ≥ pc

rafk + wafl ≥ pf

r, w ≥ 0

The complimentary slackness conditions are

(r󰂏akc + w󰂏alc − pc)x
󰂏
c = 0

(r󰂏akf + w󰂏alf − pf )x
󰂏
f = 0

r󰂏(akcx
󰂏
c + akfx

󰂏
f −K) = 0

w󰂏(alcx
󰂏
c − alfx

󰂏
f − L) = 0

We can solve this model with a few assumptions on structure. Consider:

Case 1: x ≫ 0. Let A denote the matrix whose rows are input requirements, A =

󰀕
akc akf
alc alf

󰀖
. Assump-

tion 3.1 implies that A is non-singular. For a solution where xc, xf ≫ 0, complementary slackness requires
that 󰀅

r󰂏 w󰂏
󰀆
A =

󰀅
pc pf

󰀆

meaning that price is equal to marginal cost. A positive solution will exist if and only if:
Assumption 3.2. Prices are interior:

akc
akf

>
pc
pf

>
alc
alf

which is satisfiable under the assumptions. If the price ratio equalities are strict, then the dual solution
(r󰂏, w󰂏) is strictly positive. If so, complementary slackness implies that Ax󰂏 =

󰀅
K L

󰀆′. A strictly positive
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solution requires that:
Assumption 3.3. (K,L) is in the interior of the span of the columns of A.
Theorem 3.1. Suppose Assumptions 3.1, 3.2, and 3.3 hold. Then the primal and dual have unique strictly
positive solutions.
Remark. x󰂏 maximizes GDP, and r󰂏 and w󰂏 are shadow prices for resource constraints. At those prices,
all per-unit profits are non-positive and operating industries make 0 profits.

Note that as K and L change within the cone, factor prices do not change.
Theorem 3.2. Factor Price Equalization Theorem In a diversified equilibrium, for all (K,L) ∈ {y : y =
Ax, x ≥ 0} factor prices are those prices satisfying Assumption 3.2, which does not depend on (K,L).
Remark. Two different countries with identical technologies but different capital-labor ratios will have the
same factor prices.
Question. What is the effect of an increase in the price of good c?
Answer. Assumption 3.1 implies that the determinant of A is positive, and A−1 will have the sign pattern

sgnA−1 =

󰀕
+ −
− +

󰀖
. This means that an increase in pc will increase the rental rate r and lower the wage

rate w.
Theorem 3.3. Stolper-Samuelson Theorem In a diversified equilibrium, an increase in the world price of a
commodity raises the price of the factor in which it is intensive and lowers the price of the other factor.

The Picture. This is entirely illustrated in Figure 2

r

w

r󰂏

w󰂏

r󰂏󰂏

w󰂏󰂏

K

L

K

L

K ′′/L′′

K ′/L′

: r · afk + w · afl = pf

: r · ack + w · acl = pc

Figure 2: A Diversified Equilibrium
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The Story The dot at (w󰂏, r󰂏) is a diversified equilibrium – both goods are produced. The vectors are
input requirements describing per-unit cost as a function of r and w. The dual feasible factor prices are those
above the food and clothing isocost lines. The K − L axes taking the intersections as their origin measure
the primary factor endowment, and the cyan vector is the factor endowment. The (K ′, L′) endowment is in
the cone spanned by the input requirement vectors. The requirements for the diversified equilibria are that
K ′, L′ are in the cone and that the factor price vector sits on the intersection between the isocost lines for
the capital- and labor-intensive industries respectively..

Case 2: xc = 0. Then we have that xf > 0 and rafk +wafl = pf . There are three subcases. There is the
knife-edge case where the factor endowment vector is the same as the inputs requirement vector for some
good. Equilibrium factor prices will be (w󰂏, r󰂏), but nothing will be produced.

Alternatively, if the red isocost line lies below the blue isocost line everywhere, then only food will be
produced, and one factor will be entirely exhausted. If there is excess K, then r = 0 and w =

pf

afl
. If

K
L =

afl

afk
, any (r, w) pair on the blue isocost line is optimal. If there is excess L, then w = 0 and r =

pf

afk
.

The most interesting case is if the red and blue isocost lines cross. Suppose that K is in excess supply,
so afkxf < K. Then r = 0, so w =

pf

afl
, so aflxf = L. This solution is the w-intercept of the blue line.

However, it’s clear that this is infeasible since the solution lies below the red isocost line.
Remark. The blue dot is a specialized equilibrium. The (K ′′, L′′) endowment is below the cone, so equilib-
rium is at the upper corner. Output xf is such that capital is just exhausted, and labor is in excess supply.
Factor prices are (0, r󰂏󰂏) and equilibrium factor demand is the other cyan arrow.

Trade. Suppose that we now have two countries with identical technologies. Country A has relatively more
labor and country B has relatively more capital. World prices are established in a competitive equilibrium.
What is the pattern of trade?
Theorem 3.4. Rybczynski Theorem The country with a higher ratio of capital to labor will produce relatively
more of the capital-intensive good, and the country with a higher ratio of labor to capital will produce relatively
more of the labor-intensive good.

Proof can be seen straightforwardly from the picture. If one country is entirely specialized, then the pattern
is even stronger since they’ll entirely specialize in the good they have an endowment advantage in.
Model. Smooth Version Consider a single small country with immobile capital stock K and labor endowment
L, that trades final products a and b on world markets at world prices pa and pb. The production technology
for good g is described by a production function fg(k, ℓ).
Assumption 3.4. The production function satisfies the following:

1. fg ∈ C2

2. fg is concave

3. fg has constant returns to scale

4. fg satisfies the Inada Conditions at 0:

lim
k→0

∇kfg(k, ℓ
′) = lim

ℓ→0
∇ℓfg(k

′, ℓ) = ∞ for all k′, ℓ′ > 0

The profit function for industry g is found by the maximization problem

πg(pg, r, w) = max
kg,ℓg,xg

pgxg − rkg − wℓg s.t. xg ≤ fg(kg, ℓg)

The solution to this problem gives both the output and factor demands at the output and factor market
prices. Equilibrium requires that (i) outputs and factor demands are both profit maximizing, and (ii) all

11



factor markets clear.

Since production is CRS (by Assumptions 3.4), cost functions are of the form cg(r, w)xg. Profit maximization
requires zero profit for producers, so pg = cg(r, w). This gives

cf (r, w) = pf and cc(r, w) = pc

so Shephard’s Lemma gives factor demands

∂cf (r, w)

∂r
xf +

∂cc(r, w)

∂r
xc = K and

∂cf (r, w)

∂ℓ
xf +

∂cc(r, w)

∂ℓ
xc = L

We have similar results to above: If (K,L) is in the cone spanned by the gradients of the unit cost functions,
then a diversified equilibrium would exist. Moving (K,L) around inside the cone changes outputs but
does not change factor prices since the first two equations are unperturbed. The gradient ∇c(r, w) is (by
Shephard’s Lemma) the input requirement vector. In the smooth model, the picture is Figure 3.

w

r

K ′/L′

K ′′/L′′

cc(r, w) = pc

cf (r, w) = pf

Figure 3: The Smooth Hecksher-Ohlin-Vanek Model

Remark. To demonstrate the Stolper-Samuelson Theorem in this model, we can apply the Implicit Function
Theorem to the map

F (r, w, pf , pc) =

󰀕
cf (r, w)− pf
cc(r, w)− pc

󰀖

where the equilibria are the tuples for which F (·) = 0. The Jacobian of F is

DF (·) =
󰀅
Dr,wF (·)Dpf ,pc

󰀆
F (·) =

󰀕
∇cf (·) −1 0
∇cc(·) 0 −1

󰀖
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If we assume the hypothesis that Dr,wF (·) is non-singular, we have that
󰀳

󰁅󰁃

∂r
∂pf

∂r
∂pc

∂w
∂pf

∂w
∂pc

󰀴

󰁆󰁄 = −
󰀕
∇cf (·)
∇cc(·)

󰀖
·
󰀕
−1 0
0 −1

󰀖
=

1
∂cf
∂r

∂cc
∂w − ∂cc

∂r
∂cf
∂w

·

󰀳

󰁃
∂cc
∂w −∂cf

∂w

−∂cc
∂r

∂cf
∂r

󰀴

󰁄

The hypothesis that c is capital-intensive implies that the determinant is positive, so an increase in pc lowers
w and raises r, and an increase in pf raises w and lowers r.

4 Walrasian Equilibrium

Remark. Think of the diamond-water paradox (appears in Smith, due to Plato). Nothing is more useful
than water but it’s incredibly cheap, nothing is less useful than a diamond but it’s amazingly expensive.
Question. What does the value of something actually denote? A lot of people have tried to answer this,
and there’s a good rundown in Larry’s notes.
Definition. The marginal utility theory (from Jevons) is that the ratio of prices is equal to the ratio of
marginal utilities:

MUx

MUy
=

px
py

We can think of the different theories as a difference between classical economists, who tend to think about
production and growth; and neoclassical economists, who are more interested in questions of allocation and
distribution. We will think of two schools of general equilibrium theory. The Walras-Cassel model begins
with demand functions, supply functions, and a classical production model. This leads to the two-sector
model and the Hecksher-Ohlin-Vanek model. This entire process is about equating supply and demand.
On the other hand, Edgeworth-Pareto use optimization – utility maximization, profit maximization, welfare
economics, etc. This leads to the modern way of conceptualizing general equilibrium theory – especially in
macroeconomics.

An aside on the integrability of demand.
Question. Why are indifference surfaces ‘more general’ than utility functions?

To go from demand to utility, we use a budget balance, indirect utility, and the expenditure function:

v0 = V (p0, w0) = U(xM (p0, w0)) ; µ(p, p0, w0) = e(p, V (p0,m0)) ; µ(p0, p0,m0) = m0

where µ(p, p0, w0) = e(p, V (p0,m0)) is the income compensation function. Together, we have that

∂µ(p, p0,m0)

∂pi
=

∂e(p, V (p0,m0))

∂pi
= xH

i (p, v0) = xM
i (p, e(p, v0)) = xM

i (p, µ(p, p0, w0))

In summary, we define e(p) = µ(p, p0, w0), which solves the differential equation

Dµ(p) = xM
i (p, e(p)) s.t. e(p0) = w0

Fix a p󰂏 and notice that µ(p󰂏, p, w) is an indirect utility function. We can invert Marshallian demand to get
χm : x → (p, w), and U(c) = µ(p󰂏,χm(x)).

Can we carry out this program? If we have two or less goods, definitely! With three or more, it becomes an

13



issue. Suppose we are given a Marshallian demand function xM . Define the Slutsky substitution coefficients

σij(p, w) =
∂xM

i

∂pj
+ xM

j

∂xM
i

∂w

Theorem 4.1. Let xM : Rn
+ × R+ → Rn

+ be a Marshallian demand. If:

1. Budgets are exhausted, so p · xM (p, w) = w

2. xM is differentiable throughout its domain

3. The Slutsky coefficients are symmetric, so σij(p, w) = σji(p, w)

4. The Slutsky matrix is negative semidefinite

5. The magnitude of Dwx
M is bounded on compact subsets of strictly positive prices

then there is a utility function U on the range of xM that rationalizes demand.

Behavioral General Equilibrium. Walras and Cassel posit demand functions, firm profit maximization,
and search for prices that equilibrate the system. This is behavioral because individual demands are simply
decision rules.
Definition. A behavior is a rule that maps environments into actions. In GE models, an environment for a
consumer is a budget set. An environment for a firm is a price vector and a production possibility set. This
is straightforward in an Arrow-Debreu economy, but is more complicated in an exchange economy.
Model. Market Equilibrium from Demand We consider an I-person exchange economy with N goods. Price
vectors are p ∈ RN

+ . Each individual i is described by an endowment vector ωi ∈ RN
+ \ {0} and a demand

function di : RN
+ × RN

+ \ {0} → RN
+ . The endowment allocation is ω = {ωi}i∈I and aggregate endowment is

ω =
󰁓

i ωi.
Definition. Individual excess demand is zi(p,ωi) = di(p,ωi)−ωi and aggregate excess demand is a function
Z : RN

+ \ {0}××i∈I
RN

+ \ {0} → RN , where

Z(p,ω) =
󰁛

i

di(p,ωi)− ω

Equilibrium is market clearing , meaning that there is no aggregate excess demand. Formally, a price vector
p ∈ RN

+ \ {0} is an equilibrium price vector if if Z(p,ω) ≤ 0 and p ·Z(p,ω) = 0, so no commodity is in excess
demand and if a commodity is in excess supply it has price zero.
Assumption 4.1. We make the following assumptions on the excess demand function:

1. Z(p,ω) is homogeneous of degree 0 in prices

2. For all p ∈ RN
+ \ {0}, p · Z(p,ω) = 0 (Walras’ Law)

3. For all ω, Z(p,ω) is continuous in p

These can all be justified by reference to individual demand.
Theorem 4.2. If Z(p,ω) satisfies Assumption 4.1, an equilibrium price vector exists.
Corollary 4.1. If the correspondence Z(p,ω) is upper hemi-continuous in p and convex-valued, then an
equilibrium price vector exists.

Before we prove these, we first define the two best theorems of all time:
Theorem 4.3. Brouwer If C is a convex, compact, and non-empty set and f : C → C is a continuous
function, ∃ x ∈ C such that x = f(x).
Theorem 4.4. Kakutani If C is a convex, compact, and non-empty set and F : C 󰃃 C is a nonempty,
convex, and closed-valued correspondence, then ∃ x ∈ C such that x ∈ F (x).
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Proof. (Of Theorem 4.2) The concept here is to ‘simulate’ a price adjustment process and show that it has
a fixed point. Homogeneity implies that we can restrict the price space to the unit simplex, ∆ = {p ∈ RN

+ :
󰀂p󰀂1 = 1}. Define f(p) such that fi(p) = max{−pi, Zi(p)}. Define the map φ : ∆ → ∆ by

φ(p) =
1

󰀂p+ f(p)󰀂1
(p+ f(p))

To see what this does, look at
φm(p)

φn(p)
=

pm + fm(p)

pn + fn(p)

If Zm ·Zn > 0, we can’t tell the relationship. If Zm > 0 and Zn ≤ 0, fm > 0 and fn ≤ 0 so φm

φn
> pm

pn
. We will

use three properties of f : (i) fn > 0 ⇐⇒ Zn(p,ω) > 0, (ii) Zn(p,ω) = 0 =⇒ fn = 0, and (iii) p+ f(p) ≥ 0.

We begin by showing that φ is well-defined (i.e.
󰁓

n pn + fn(p) > 0). Properties (i) and (ii) imply that
for all goods n, fn(p) · Zn(p,ω) ≥ 0. FSOC, assume that for some p′, the sum equals zero. Then by using
Walras’ Law, we get that

0 = 0 · Z(p′,ω) = (p′ + fn(p
′)) · Z(p′,ω) = p′ · Z(p′,ω) + fn(p

′) · Z(p′,ω) =
󰁛

n

fn(p
′)Zn(p

′,ω)

This and the complementary non-negativity imply that for all n, fn(p′) ·Zn(p
′,ω) = 0, and the contradictory

supposition implies that for all n, fn(p′) = −p′n, so each Zn(p,ω) ≤ −pn. However, if p′n > 0, then we have
that Zn(p

′,ω) = 0 for all n, so all prices equal zero, which is a contradiction.

Since ∆ is compact and convex, and f continuous implies that φ is continuous, we have (from Brouwer’s Fixed
Point Theorem) that φ has a fixed point, which we call p󰂏. It remains to show that p󰂏 is an equilibrium. At p󰂏,
we have that f(p󰂏) = λp󰂏, where λ = 󰀂p󰂏+f(p󰂏)󰀂1−1. We then have that f(p󰂏)·Z(p󰂏,ω) = λ·p󰂏·Z(p󰂏,ω) = 0.
This and the above imply that for each n, fn(p󰂏) · Zn(p

󰂏,ω) = 0. If Zn(p
󰂏,ω) > 0, then fn(p

󰂏) = 0 which
contradicts the assumption of positive prices. So Zn(p

󰂏,ω) ≤ 0, which together with Walras’ Law implies
that p󰂏 is an equilibrium.
Model. Private Ownership Economy . A private ownership economy is a tuple:

〈{Xi,≽i, {θij}j∈J ,ωi}i∈I , {Yj}j∈J〉

with I consumers, J firms, and N commodities, with consumption sets Xi ⊆ RN , preference relations ≽i on
Xi, ownership shares θij , which is consumer i’s share of the profits of firm j, endowment bundles ωi ∈ RN ,
and production sets Yj ⊆ RN .

We assume that the endowment allocation is ω, the aggregate endowment is ω, the aggregate production
set is

󰁓
j Yj , that all θij ≥ 0 and that

󰁓
i θij = 1 for all j. An allocation (x, y) is a specification of a

consumption plan for each consumer i, a vector xi ∈ Xi, and a production plan for each firm j, a vector
yj ∈ Yj . An allocation is feasible if and only if

󰁓
i xi = ω +

󰁓
j yj . Following MWG, we denote the set

of feasible allocations as A ⊆ RN(I+J). We will call x the consumption allocation and y the production
allocation associated with the allocation z = (x, y).

Let E = {{Xi,≽i, {θij}j∈J ,ωi}Ii=1, {Yj}Jj=1} denote a private ownership economy.
Definition. A competitive equilibrium for the economy E is an allocation (x󰂏, y󰂏) and a price vector p󰂏 such
that

1. For every firm j, y󰂏j maximizes profits among all feasible production plans in Yj , meaning that p󰂏 ·y󰂏j ≥
p󰂏 · yj for all yj ∈ Yj

2. For every consumer i, x󰂏
j is preference-maximal among all affordable consumption plans, meaning that
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x󰂏
i ≽i xi for all xi in the set

{xi ∈ Xi : p
󰂏 · xi ≤ p󰂏 · ωi +

󰁛

j

θij · p󰂏 · y󰂏j }

3. (x󰂏, y󰂏) ∈ A
Theorem 4.5. Equilibrium Existence in the Private Ownership Economy A competitive equilibrium for E
exists if

1. For all I, Xi is closed, convex, and bounded from below

2. ≽i is locally non-satiated in Xi

3. The relation ≽i is continuous

4. If x′
i ≻i xi, then for all t ∈ (0, 1), tx′

i + (1− t)xi ≻ xi

5. There is an x0
i in Xi such that ωi ≫ x0

i

6. For all j, 0 ∈ Yj

7. The aggregate production set Y =
󰁓

j Yj is closed and convex

8. Y ∩ (−Y ) = ∅

9. Y ⊃ RN
−

Definition. The Edgeworth Box was invented in 1881, in the legendary Mathematical Psychics. Edgeworth
showed that: (i) barter between two people is indeterminate; (ii) all final settlements are on the contract
curve; (iii) the competitive equilibrium is on the contract curve; and (iv) as the number of traders increases,
the contract curve shrinks to the competitive equilibrium.

When Edgeworth first drew the box, it looked like:

XO

Y

C

C ′
x
2
′ y
2
′

η0x0

ηξ

y2ξ2

y3ξ3

y0ξ0

x′y′
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We draw the Edgeworth Box for two people (A and B) bargaining over two goods (X and Y ) like:

B’s Origin

A’s Origin
Good X

Good Y

xA

yA

xB

yB

We can also represent the contract curve and the competitive equilibrium in this box, as in Figure 4.

U󰂏
A

U󰂏
B

P

CC

UA UB

U󰂏
A

U󰂏
B

P

Figure 4: The Contract Curve (left) and the Competitive Equilibrium (right)

Model. Walras Production Model Individuals own factors and consume goods. Goods are made from factors
with a fixed-coefficient technology. We have xj production of good j, pj price of good j, and fj(p, w) demand
for good j, for j = 1, . . . , N . We also have wi rate of return for factor i, aij quantity of factor i needed
per unit of good j output, and gi(p, w) supply of factor i, for i = 1, . . . ,M . An equilibrium is a triple
(p󰂏, w󰂏, x󰂏) ∈ RN

+ ×RM
+ ×RN

+ such that: (i) each fn(p, w) ≤ xn and strict inequality implies that p󰂏n = 0; (ii)
each (Ax)m ≤ 0 and strict inequality implies that w󰂏

m = 0; and (iii) each p󰂏n ≤ (w󰂏A)n and strict inequality
implies that x󰂏

n = 0.
Assumption 4.2. We assume that:

1. f(p, w), g(p, w) are continuous, non-negative, and homogeneous of degree 0

2. p · f(p, w)− w · g(p, w) = 0 (Walras’ Law)

3. A has no zero columns

4. g(p, 0) = 0 for all p

Let ∆ be the unit simplex in R2N+M
+ . Define Z : ∆ → R2N+M by

Z(p, w, x) =

󰀳

󰁃
f(p, w)− x
Ax− g(p, w)
p−ATw

󰀴

󰁄
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It follows from Walras’ Law that (p, w, x)Z(p, w, x) = 0 for all (p, w, x) ∈ ∆. From the proof of Theorem 4.2
it follows that there exists (p󰂏, w󰂏, x󰂏) such that Z(p󰂏, w󰂏, x󰂏) ≤ 0. Also (p󰂏, w󰂏) ∕= 0 because Assumption 4.2
part 4 would imply that then x󰂏 = 0. Together with Walras’ Law, this implies the complimentary slackness
conditions. The key technical idea is:
Lemma 4.1. Gale-Kuhn-Nikaido-Debreu If some continuous function f maps the unit simplex in some
Euclidean space into that space, and if for all x in the simplex x · f(x) = 0, then there is x󰂏 in the simplex
such that f(x󰂏) ≤ 0.

5 Welfare

Definition. A competitive equilibrium with transfers for the economy E is an allocation (x󰂏, y󰂏), a price
vector p󰂏, and an assignment of wealths (w󰂏

1 , . . . , w
󰂏
I ) to consumers such that

1. For every firm m, y󰂏m maximizes profits among all feasible production plans in Ym:

p󰂏 · y󰂏m ≥ p󰂏 · ym for all ym ∈ Ym

2. For every consumer n, x󰂏
n is preference-maximal among all affordable consumption plans; that is

x󰂏
n ≽n xn for all xn in the set

{xn : xn ∈ Xn and p󰂏 · xn ≤ w󰂏
n}

3. (x󰂏, y󰂏) ∈ A

4.
󰁓

n w
󰂏
n =

󰁓
n p

󰂏 · ω +
󰁓

m p󰂏 · y󰂏m
Definition. Economists are mainly concerned with the Pareto order. A consumption plan x is Pareto-
better-than consumption plan x′, written x ≻P x′, if for all n, xn ≽n x′

n, and for some consumer k, xk ≻k x′
k.

An allocation z = (x, y) is Pareto optimal if it is feasible and if for no other feasible consumption plan
z′ = (x′, y′) is it true that z′ ≻P z.
Remark. How do we know that an optimum exists?

In exchange economies, this is fairly easy, as the set of feasible allocations is obviously compact, so as long as
preferences are continuous we have it immediately. When we introduce production, showing that the set of
feasible allocations is compact is not so straightforward. The following argument comes from Debreu (1959).
Theorem 5.1. The private ownership economy E has an optimum if

1. For all n, Xn is closed and bounded from below and ωn ∈ Xn

2. Each Ym is closed, convex, and contains 0

3. Y ∩ Rn
+ = {0} and Y ∩ −Y = {0}

4. For every x′
n ∈ Xn, the set {xn ∈ Xn : xn ≽n x′

n} is closed

Proof. Define Y =
󰁓

m Ym. Consider the economy E ′ formed by replacing each Ym with their sum Y . Let
A′ be the set of attainable states of E ′. Using the same preferences {≽n} as E , and summing them, we get
the continuous representation ≽′, which admits the utility function u′, representing an order over A′ in Rm.
However, we have that A′ is closed and bounded, taking condition (4) in each direction, and A′ is nonempty,
so it’s nontrivially compact and u′ attains a maximum. Conclusion follows by disaggregating u′ and a󰂏 ∈ A′

into their component parts.

We can now move to the actual welfare theorems. First:
Definition. Recall that a preference order ≽n is locally non-satiated at x󰂏

n if in every open neighborhood of
x󰂏
n there is an x′

n ≻n x󰂏
n.
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Theorem 5.2. First Welfare Theorem Let E be a private ownership economy with an equilibrium (p󰂏, x󰂏, y󰂏).
Suppose for all n, ≽n is everywhere locally non-satiated. Then (x󰂏, y󰂏) is a Pareto-optimal allocation.
Remark. A failure of the First Welfare Theorem is that the proof requires that in every equilibrium, any
consumption bundle that is better for some n costs more. Actually, it requires more – it requires that any
bundle that is at least as good costs at least as much. Thus, a thick indifference curve can break it, and
that’s not such an absurd assumption.

Proof. First, a useful Lemma:
Lemma 5.1. If ≽n is locally non-satiated at bundle x′

n and if x′
n ≽n x󰂏

n, where x󰂏
n is preference-maximal

on the set {xn ∈ Xn : p · xn ≤ p · x󰂏
n}, then p · x′

n ≥ p · x󰂏
n.

Proof. Since ≽n is locally non-satiated at x′
n, there exists a sequence of consumption bundles xk

n with limit
x′
n such that xk

n ≻n x′
n for all k. By transitivity, xk

n ≻n x󰂏
n, and so by preference maximality p · xk

n > p · x󰂏
n

for all k. Taking limits, we get that p · x′
n ≥ p · x󰂏

n.

Suppose FSOC that there is some feasible bundle (x′, y′) such that (x′, y′) ≻P (c󰂏, y󰂏). Then for all n,
x′
n ≽n x󰂏

n, and for someone this ranking is strict. Then from Lemma 5.1, we have that p󰂏 · x′
n ≥ p󰂏 · x󰂏

n for
all n, with the inequality strict for some. Furthermore, for each firm j we have that p󰂏 · y′m ≤ p󰂏 · y󰂏m since
each firm maximizes profit in equilibrium. Thus,

p󰂏 · ω = p󰂏
󰁛

n

x󰂏
n − p󰂏

󰁛

m

y󰂏m < p󰂏
󰁛

n

x′
n − p󰂏

󰁛

m

y′m

The equality follows from feasibility of the equilibrium allocation, the inequality follows from the above
conditions, and thus we have that (x′, y′) is not feasible, leading to a contradiction.
Definition. Let P (xn) = {x′

n ∈ Xn : x′
n ≻n xn} be the better-than set and let R(xn) = {x′

n ∈ Xn : x′
n ≽n

xn} be the no-worse-than set . A quasi-equilibrium for the economy E is an allocation (x󰂏, y󰂏) and a price
vector p󰂏 such that

1. For every firm m, y󰂏m maximizes profits among all feasible production plans in Ym:

p󰂏 · y󰂏m ≥ p󰂏y′m ∀ ym ∈ Ym

2. For every consumer n, x󰂏
n is expenditure-minimal on R(x󰂏

n), meaning that p󰂏 ·x󰂏
n ≤ p󰂏 ·xn ∀ xn ∈ R(x󰂏

n)

3. (x󰂏, y󰂏) ∈ A

A quasi-equilibrium is sometimes called a compensated equilibrium.
Theorem 5.3. Second Welfare Theorem Let (x󰂏, y󰂏) be a Pareto optimal allocation for a private ownership
economy E with the properties that

1. For all n, Xn is convex

2. The sets R(x󰂏
n) are convex

3. For some consumer k, P (x󰂏
k) is convex and ≽k is locally non-satiated at x󰂏

k

4. Y is convex

Then there is p󰂏 such that (x󰂏, y󰂏, p󰂏) is a quasi-equilibrium for E.

Proof. Define the set G =
󰁓

n ∕=k R(x󰂏
n) + P (x󰂏

k) − Y . This set is convex and ω is not in G because the
allocation is Pareto optimal. This, there is a vector p󰂏 such that p󰂏 ·ω ≤ p󰂏 · g for all g ∈ G. Since consumer
k has preferences that are locally non-satiated, there is a sequence of consumption plans xi

k such that as
i → ∞, xi

k → x󰂏
k, where xi

k ≻k x󰂏
k for all i. Then for all n the vector

gi =
󰁛

n ∕=k

x󰂏
n + xi

k −
󰁛

m

y󰂏m

19



is in G, and the sequence gi converges to

ω =
󰁛

n ∕=k

x󰂏
n + x󰂏

k −
󰁛

m

y󰂏m

Thus, ω ∈ ∂G and inf{p󰂏 · g : g ∈ G} = p󰂏 · ω. Now, we will show that (x󰂏, y󰂏, p󰂏) is a quasi-equilibrium.
Intuitively, we need that everything at least as good costs at least as much, and profit maximization. For
n ∕= k and for any x′

n ∈ R(x󰂏
n), let

gin =
󰁛

j ∕=n,k

x󰂏
j + x′

n + xi
k −

󰁛

m

y󰂏m

ω =
󰁛

j ∕=n,k

x󰂏
j + x󰂏

n + x󰂏
k −

󰁛

m

y󰂏m

Each gin ∈ G, so p󰂏 ·gin ≥ p󰂏 ·ω. Taking limits and subtracting, p󰂏 ·x′
n ≥ p󰂏 ·x󰂏

n. We can do the same by taking
any y′m ∈ Ym, and seeing that −p󰂏 · y󰂏m ≥ −p󰂏 · y′m for all y′m ∈ Ym, meaning that y󰂏m is profit-maximizing.
For consumer k, we can see directly by subtraction that for all x′

k ≻k x󰂏
k, p

󰂏 ·x′
k ≥ p󰂏 ·x󰂏

k, and the conclusion
for all x′

k ≽k x󰂏
k follows from local non-satiation.

Question. When is a quasi-equilibrium not a competitive equilibrium?
Remark. The existence of x′

i is often referred to as the cheaper point assumption. The following figure
illustrates what can go wrong if the cheaper point does not exist:

ω p

The consumption set is R2
+ from which the open triangle with vertices at e1, e2, and 0 is removed. Prices

and wealth are such that the budget set is the lower 45 degree line. The red lines are indifference curves,
and the indicated consumption bundle ω is expenditure maximizing on its ‘no worse than’ set but is not
preference maximal on the budget set.
Remark. To move from quasi-equilibrium to competitive equilibrium, we need expenditure minimization
to imply utility maximization, meaning that if x󰂏

n minimizes expenditure at price p󰂏 on the set P (x󰂏
n), the

x󰂏 is preference maximal on the set {z : p󰂏 · z ≤ p󰂏 · x󰂏
n}.

Lemma 5.2. Cheaper Point Lemma Suppose that at price p, x′
n minimizes expenditure on R(x′

n). Suppose
that P (x′

n) is open and that there is an x0
n ∈ Xn such that p · x0

n < p · x′
n. Then x′

n is preference maximal
on the set {x′′

n ∈ Xn : p · x′′
n ≤ p · x′

n}.

Proof. If x′
n is expenditure minimizing on R(x′

n), then x′′
n ≻n x′

n implies that p · x′′
n ≥ p · x′

n. We must
show that this inequality is strict. Suppose FSOC that p · x′′

n = p · x′
n. Since p · x0

n < p · x′
n, we have that

x′′
n ≻n x′

n ≻n x0
n. For all t ∈ (0, 1),

p · (t · x′′
n + (1− t) · x0

n) < p · x′
n
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and for t sufficiently close to 1, (t ·x′′
n +(1− t) ·x0

n) ≻n x′
n, which contradicts expenditure minimization.

Theorem 5.4. From Quasi- to Competitive Equilibrium Suppose that (x󰂏, y󰂏, p󰂏) is a quasi-equilibrium for
a competitive ownership economy E. Suppose that for all consumers n and for all xn ∈ Xn, the set ≻n (xn)
is open. If each w󰂏

n = p󰂏 · x󰂏
n ≥ 0, then (x󰂏, y󰂏, p󰂏, w󰂏) is a competitive equilibrium with transfers.

Proof. Immediate consequence of the definition of a quasi-equilibrium and the Cheaper Point Lemma.
Remark. The cheaper point assumption is automatically satisfied for interior optima. What about boundary
optima?

Lange’s Approach If x󰂏 is an interior (strictly) Pareto optimal allocation, then there is no reallocation
that can increase the utility of any consumer without decreasing the utility of anyone else. Let un(x

󰂏
n) = u󰂏

n.
Then x󰂏 solves the optimization problem on×n

Xn:

PO(x󰂏) : max ui(xi)

s.t. un(xn) ≥ u󰂏
n󰁛

n

xn =
󰁛

n

x󰂏
n

Assume that the un(·) are strictly increasing and C1, and we can assume the weak inequalities hold with
equality. For simplicity, we’ll consider an interior allocation. The first order conditions are

Du1(x1) = λ

νnDu1(x1) = λ ∀ n ∕= 1

for some λ ∈ RL and νn ∈ R, together with the constraints. Strict monotonicity will imply that λ, ν ≫
0. From this, the usual equality constraints for marginal rates of substitution follow. These conditions,
along with the constraints are necessary for an allocation to be Pareto optimal. If we assume the un are
quasiconcave, these are also sufficient.

Now suppose an allocation x′
1, . . . , x

′
I is a competitive equilibrium at price vector p. Then

󰁓
n x

′
n =

󰁓
n ωn,

and for each n the bundle x′
n solves the maximization problem

CEn(ωn) : maxun(xn) s.t. p · xn ≤ p · ωn

Again, we can take the inequality to be an equality. The first order conditions include Dun(x
󰂏
n) = ηn · p.

Again, these conditions are necessary, and suffice if un(·) are quasiconcave.

Suppose that the un(·) are quasiconcave. The welfare theorems in these terms are:
Theorem 5.5. FWT (Lange) If for all n and x󰂏

n, ηn solve the first order conditions for CEn(x
󰂏
n) with prices

p, then x󰂏 and multipliers λ = η1 · p and νn = η1/ηn solve the PO(x󰂏) first order conditions.
Theorem 5.6. SWT (Lange) If x󰂏, ν, and λ solve PO(x󰂏), then taking ν1 = 1, x󰂏 and the multipliers
ηn = 1/νn and p = λ solve all of the CEn(x

󰂏
n) first order conditions.

Due to quasiconcavity of the un(·), the first-order conditions are sufficient as well, and so for every interior
Pareto optimal allocation there is a price that makes it a no-trade competitive equilibrium; and every
competitive allocation is Pareto optimal.

6 Transferable Utility Matching

Model. The market contains workers and firms. Workers and firms are matched together, one-to-one.
Utility is transferable among workers and firms, and if a match is formed it will generate surplus. We ask if
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(i) we can characterize optimal matches; (ii) we can decentralize them in some sort of market; (iii) allocate
the surplus between firms and workers; and (iv) implement the market solution with some mechanism. The
classic article is Shapley & Shubik (1971).

Formally, we have L workers and F firms, where X =
󰀅
x
󰀆
ℓf

is the matrix denoting whether ℓ is matched to
f (1) or not (0), vℓf is the surplus from matching ℓ to f , and πf and wℓ are the profit of firm f and the
wage to worker ℓ respectively.

A matching is optimal if and only if it solves the following maximization problem of total surplus:

v(L ∪ F) = max
ℓ,f

v · x

s.t.
󰁛

f

xℓf ≤ 1 ∀ ℓ ∈ L

󰁛

ℓ

xℓf ≤ 1 ∀ f ∈ F

xℓf ∈ {0, 1} ∀ ℓ ∈ L, f ∈ F

Example. Consider the following example:

1 8 3

3 1 8

8 3 1

7 7 7

1 2 3

a

b

c

d

F

L

The optimal match is clearly a ↔ 2, b ↔ 3, c ↔ 1, and d ↔ ∅. Note that everyone’s wage is 1 who matches –
even though the unemployed worker makes nothing, even just by existing and having productivity of 7 they
constrain everyone else’s wages.

A payoff is a vector (wℓ,πf )ℓ,f∈L∪F ≥ 0, and an allocation is a matching-payoff pair (x,w,π) such that:

1. If xℓf = 1, then wℓ + πf = vℓf

2. If xℓf = 0 for all f , then wℓ = 0

3. If xℓf = 0 for all ℓ, then πf = 0

Finally, an allocation (x,w,π) is stable if no currently unmatched worker-firm pair could increase their total
surplus by matching to each other, meaning that if xℓf = 0, then wℓ + πf ≥ vℓf .

We could relax the above non-linear program to

vP (L ∪ F) = max
ℓ,f

v · x

s.t.
󰁛

f

xℓf ≤ 1 ∀ ℓ ∈ L

󰁛

ℓ

xℓf ≤ 1 ∀ f ∈ F

xℓf ≥ 0 ∀ ℓ ∈ L, f ∈ F

The set C of all vectors satisfying these constraints is a convex polytope, the fractional matchings.
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Theorem 6.1. Birkhoff–von Neumann x is a vertex of C if and only if for all ℓ, f xℓf ∈ {0, 1}.

Thus, using the basic optimal solutions, it suffices to solve the true linear program and find an optimal
matching. Formally:
Corollary 6.1. x󰂏 is an optimal matching if and only if it is a basic optimal solution to the linear program.

The dual is, of course,

vD(L ∪ F) = min
π,w

󰁛

ℓ,f

wℓ + πf

s.t. wℓ + πf ≥ vℓf ∀ ℓ ∈ L, f ∈ F
wℓ,πf ≥ 0 ∀ ℓ ∈ L, f ∈ F

The dual has a solution (w󰂏,π󰂏), where
󰁓

ℓf w
󰂏
ℓ +π󰂏

f =
󰁓

ℓf vℓfx
󰂏
ℓf . If x󰂏

ℓf = 1, then w󰂏
ℓ +π󰂏

f = vℓf . If ℓ ∈ L
is unmatched, then w󰂏

ℓ = 0, and if f ∈ F is unmatched, then π󰂏
f = 0. We immediately get that:

Theorem 6.2. (x󰂏, w󰂏,π󰂏) is a stable allocation if and only if x󰂏 is an optimal matching and (w󰂏,π󰂏) solves
the dual linear program.
Example. Consider the surplus matrix

10 9

9 3

1 2

a

b

F

L

The optimal match is a ↔ 2 and b ↔ 1, with a surplus of 18. The dual constraints are:

wa + π1 ≥ 10

wa + π2 ≥ 9

wb + π1 ≥ 9

wb + π2 ≥ 3

These admit the feasible region

1

6

9

0 3 8 9

(w󰂏,π󰂏)

Remark. No worker-firm pair can break off and do better on their own. What about larger coalitions of
workers and firms?

Define the total surplus any subset of workers can earn for themselves. Let S ⊆ L ∪ F be a set of workers
and / or firms. If S ⊆ L or S ⊆ F , let vP (S) = 0. Otherwise, we define the total surplus that S can earn
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for itself is

vP (S) = max
󰁛

ℓ,f∈S

vℓf · xℓf

s.t.
󰁛

f

xℓf ≤ 1 ∀ ℓ ∈ S

󰁛

ℓ

xℓf ≤ 1 ∀ f ∈ S

xℓf ≥ 0 ∀ ℓ, f ∈ S

If
󰁓

ℓ,f∈S wℓ + πf < vP (S), then S can improve itself by breaking away. This matching problem defines a
transferable utility game.
Definition. A payoff is in the core of the matching game if no subset S of individuals can improve by
breaking away.
Theorem 6.3. Any stable payoff is a core payoff.

Proof. Consider WLOG the coalition containing workers 1 through k and firms 1 through k, and suppose
that the optimal matching matches worker i with firm i. For any stable payoff (w󰂏,π󰂏) for the entire group,
w󰂏

i + π󰂏
i ≥ vii, so

k󰁛

i=1

w󰂏
i + π󰂏

i ≥
k󰁛

i=1

vii = vP (S)

so thus coalition S cannot improve upon any stable payoff. The converse is obviously true.
Definition. A partially-ordered set (poset) (X,≽) is a set X with a reflexive, transitive, and antisymmetric
binary relation ≽. An element x ∈ X is an upper bound for A ⊆ X if x ≽ y for all y ∈ A, and x is a
supremum for A if it is an upper bound for A and there is no other upper bound x′ with x ≻ x′. Similarly
for lower bounds.

A lattice is a poset in which each pair of elements x, y ∈ X has a supremum x ∨ y ∈ X and an infimum
x ∧ y ∈ X. A lattice is complete if every subset A ⊆ X has both a supremum and an infimum in X.

The sets A ⊆ X is as large as the set B ⊆ X in the strong set ordering , denoted A ⊒ B if for all x ∈ A and
y ∈ B, x ∨ y ∈ A and x ∧ y ∈ B.

Let P denote the set of stable payoffs. Define (w′,π′) ≽ (w′′,π′′) if for all ℓ, w′
ℓ ≥ w′′

ℓ and for all f , π′
f ≤ π′′

f ,
each in the usual vector order. Then:
Theorem 6.4. (P,≽) is a complete lattice.

Proof. Choose some p′ = (w′,π′) and p′′ = (w′′,π′′). First, we show that p′∨p′′ satisfies the dual constraints,
meaning that

w′
ℓ ≥ vℓf − π′

f

w′′
ℓ ≥ vℓf − π′′

f

and so
max{w′

ℓ, w
′′
ℓ } ≥ max{vℓf − π′

f , vℓf − π′′
f } = vℓf −min{π′

f ,π
′′
f }

which means that p ∨ p′ ≥ vlf . A similar argument holds for p ∧ p′. Thus, the solutions are feasible, and
complementary slackness holds the equations to equality as long as ℓ and f are matched. Thus, (P,≽) is a
lattice.

Finally, we show that P is complete. Let A ⊆ P be a set of payoffs. We have that sup{p : p ∈ A} as p̄ such
that w̄ℓ = sup{wℓ : p ∈ A} and π̄f = inf{πf : p ∈ A}. It remains to show that p̄ ∈ P , i.e. that p̄ is an
optimal solution to the dual problem. It suffices to show that p̄ satisfies complementary slackness. Choose
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a matching x. For all ε > 0 there is a payoff in A with wε
ℓ ≤ w̄ℓ < wε

ℓ + ε, and πε
f ≥ π̄ > πε

f − ε. Then

vℓf − ε ≤ wε
ℓ + πε

f − ε ≤ w̄ℓ + π̄f

Letting ε → 0, we have that w̄ℓ + π̄f ≥ vℓf , so p̄ is feasible. If xℓf = 1, then

w̄ℓ + π̄f ≤ wε
ℓ + πε

f + ε ≤ vℓf − ε

Again letting ε → 0, we have that w̄ℓ+ π̄f ≤ vℓf . Thus, equality holds, which suffices to show that p̄ satisfies
complementary slackness.
Remark. There is a unique least wage payoff and a unique greatest wage payoff. The former is best for the
firms and worst for the workers, the latter is best for the workers and worst for the firms.

Suppose we were given partial orders ≻ℓ on workers and ≻f on firms. For instance, ℓ′ ≻ℓ ℓ′′ might mean
that worker ℓ′ is more skilled than worker ℓ′′, and f ′ ≻f f ′′ might mean that any worker is more productive
in firm f ′ than in firm f ′′.
Proposition 6.1. Suppose that for all ℓ′, ℓ′′, f ′, and f ′′, ℓ′ ≻ℓ ℓ

′′ and f ′ ≻f f ′′ means that vℓ′f ′ − vℓ′′f ′ >
vℓ′f ′′ − vℓ′′f ′′ . Then it cannot be the case that ℓ′ ↔ f ′′ and ℓ′′ ↔ f ′.

Proof. If vℓ′f ′ − vℓ′′f ′ > vℓ′f ′′ − vℓ′′f ′′ , then vℓ′f ′ + vℓ′′f ′′ > vℓ′f ′′ + vℓ′′f ′ , so we could increase surplus by
changing the match.
Remark. The idea of matching bigger with bigger is called positive assortative matching , and is due to
Becker (1973) on marriage. The property that the v differences in ℓ are increasing in f is called increasing
differences.
Question. How do wages and profits change with the surplus? Who gains and loses?
Remark. We use the framework of monotone comparative statics to answer this question. Choose ℓ and f ,
and order (wℓ,πf ) as follows:

(w,π) ≽ℓf (w′,π′) ⇐⇒ wℓ + πf ≥ w′
ℓ + π′

f and wℓ ≥ w′
ℓ

Order remaining wages and profits with the usual ≥ order, and order RL
+ × RF

+ with the product order:

p ≽ p′ ⇐⇒ (wℓ,πf ) ≥ (wℓ′ ,πf ′) and (wℓ,πf ) ≽ℓf (wℓ′ ,πf ′)

Suppose vℓf increases to v′ℓf holding all else fixed. There are three cases: (i) xℓf = 1, (ii) x′
ℓf = 0, and

(iii) xℓf = 0 and x′
ℓf = 1. However, there are really only two cases. The final case can be decomposed into

regions where ℓf is not an optimal match and regions where it is optimal. The two ranges intersect precisely
at a point, where there are at least two optimal matches and all optimal matches have the same value.

First Case. If ℓf is part of an optimal matching and vℓf increases, it remains so. The set of dual solutions
increases the payoffs to ℓf , and leaves all else unchanged. Take any dual solution to the new problem. Every
other pair must be dividing up the value of their match, so the set of allocations of these surpluses in the old
and new problem must be identical. And ℓf must divide their surplus v′ℓf , so their payoff set has increased
in the strong set order.

Second Case. If ℓf is out of the money, let σ(ℓ) denote ℓ’s optimal match. Suppose v′ℓf > vℓf , σ(ℓ) ∕= f ,
and σ is optimal on the interval [vℓf , v′ℓf ], ceteris paribus. Consider the minimal wage for ℓ and the maximal
profit for σ(ℓ), so that wℓ + π̄σ(ℓ) = vℓσ(ℓ).
Lemma 6.1. If wℓ ∕= 0, there is a f ∈ σ(ℓ) such that

wℓ + π̄f = vℓf

and similarly for πf

Proof. (wℓ, π̄f )ℓf∈L∪F is a dual optimal payoff. Suppose FSOC the claim is false, so we have that for all
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f ∕= σ(ℓ), wℓ+ π̄f ≥ vℓf +ε for some ε > 0. Modifying the payoff by letting w′
ℓ = wℓ−ε′ and π̄′

σ(ℓ) = π̄σ(ℓ)+ε′

is feasible for any positive ε′ < ε, and since the payoff has the same value this contradicts the minimality of
wℓ.

We call this the opportunity constraint for ℓ. There is also an opportunity constraint for matching f with
σ−1(f).
Theorem 6.5. Suppose that ℓg is the unique opportunity constraint for ℓ. An increase in wℓg raises wℓ and
decreases π̄σ(ℓ). A decrease in vℓg lowers wℓ and increases π̄σ(ℓ).

Proof. Replace vℓg by v′ℓg > vℓg such that σ still remains an optimal match. Then the binding opportunity
constraint on wℓ is tighter, so wℓ increases. Replace vℓg by v′ℓg < vℓg such that σ still remains an optimal
match. Then there is no binding opportunity constraint for ℓ, and the argument in the above Lemma’s proof
shows that the new greatest lower bound w′

ℓ on wℓ is less than wℓ, and that π̄′
σ(ℓ) > π̄σ(ℓ).

Similarly, if ℓg is the unique opportunity constraint for f , then raising vℓg lowers πf and raises w̄σ−1(f). Thus,
if we increase vℓf from a very low value for f ∕= σ(ℓ), nothing happens until ℓf becomes the opportunity
constraint for ℓ. Then wℓ rises until it becomes optimal to assign ℓ to f . Then wℓ holds constant. Along this
same trajectory, π̄σ(ℓ) holds constant, then falls, then holds constant when it is no longer optimal to match
ℓ with σ(ℓ).
Model. The Assignment Problem The assignment problem is a one-sided version of the matching market.
For example: the objective could be to match individuals to positions or houses or something similar. It can
be set up as an LP the same way the matching market can. There are two versions:

1. Position constraints, where the “profits” to positions are what the individuals pay for the position, and
the “wage” is the remaining surplus, which they keep

2. No constraints, which we model as the case where there are more positions of each type than agents in
the economy. Then the position price will be 0 and individuals keep all of the surplus. Here the focus
is on self-selection and the match. An example of this is in Roy (1951).

7 Matching Without Transfers

There’s a large literature in school choice, which is the broad problem we’re trying to solve here. The history
of schooling in America is one of neighborhood schools, but magnet schools started in New York City, and
the problem was answered in Boston by using Gale & Shapley (1962)’s Deferred Acceptance Algorithm.
Model. School Choice We have a set S of students and a set C of schools. Each student s ∈ S has a strict
preference order ≻s on C, and each school c ∈ C has a strict preference order ⊐c on S, and a capacity qc.
Finally, we have a matching µ : S ∪ C → S ∪ C such that (i) |µ(s)| = 1 and µ(s) ∈ C; (ii) µ(c) ⊂ S; and (iii)
µ(s) = c ⇐⇒ s ∈ µ(c).
Definition. A matching µ is feasible if no school is over capacity, so that |µ(c)| ≤ qc. Define the set of all
preference profiles that parents have AS , where for N parents we have (≻1,≻2, . . . ,≻N ).

Define a function φ : AS → M, the set of all matchings, such that φ(·) is, for all preference profiles φ, feasible;
such that for all s µ(s) ≻s ∅ (individually rational), and attains Pareto efficiency. Finally, we require that it
attains the Elimination of Justified Envy , which means that µ(t) ≻s µ(s) =⇒ t ⊐µ(t) s. This means that if
s prefers t’s match, then the school t is matched to prefers t to s.
Remark. Each mechanism introduces a game. Students may have an incentive to act strategically when
submitting their preference order – they might lie! The game is that each student s chooses a preference
order ≻′

s∈ A. Outcomes are φ ((≻′
s)s∈S) ∈ M, and are ranked by each student according to ⊵s.

Definition. A mechanism is strategy-proof if each agent is always incentivized to tell the truth:

∀ s ∈ S, ∀ ≻−s∈
󰁜

t ∕=s

At, ∀ ≻s,≻′
s∈ A,φ(≻−s,≻s)⊵s φ(≻−s,≻′

s)
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Algorithm. Deferred Acceptance Take the model as defined above, and implement the following:

Step 1. Each student applies to her top school. Each school c tentatively accepts all who apply up to qc
(according to its ranking), rejecting the rest.

Step k. Each student who was rejected at step k − 1 applies to her top school among those to which she has
not yet applied. Each school c takes all of those tentatively accepted and the new applicants, ranks
them according to ⊐c, tentatively accepts the top qc students, and rejects the rest.

Stop. The algorithm terminates when no student is rejected.
Remark. We have the following results for deferred acceptance:

1. The algorithm will terminate.
Proof. Follows immediately from both sets being finite.

2. The outcome is stable.
Proof. Suppose s prefers c to µ(s), and c prefers s to some matched s′. However, at some point s
would have applied to c, and c would have had to held her over s′. This is a contradiction.

3. The outcome is individually rational.
Proof. If a student reaches ∅, he applies, and since there is infinite capacity is accepted.

Theorem 7.1. The deferred acceptance algorithm matching is weakly preferred by every student to any
other matching; that is, for every other stable matching, each student either gets the same or a less desirable
match.
Remark. This is called the student-optimal stable matching .

Proof. (Intuitive) In the course of the deferred acceptance algorithm, no student is ever rejected by a school
that would prefer her in any stable match.

Proof. (Actual) Say that school c is possible for student s if they are matched in some stable matching.
Assume that through the first k − 1 steps nobody has been rejected by a possible school. Suppose that at
step k, s is rejected by c. Then c has tentatively accepted a full quota of students s1, . . . , sN from students
with higher priorities. School c is best for each sn among those schools that have not rejected her, and
therefore each matching which gives s ←→ c will send some sn to a less desirable school. This matching is
unstable because (sn, c) is a blocking pair. Thus at stage k, students are rejected by only schools impossible
for them. The resulting assignment is therefore optimal.
Theorem 7.2. For stable matchings µ and ν, the matching µ ∨ ν which assigns to each s the better for her
of µ(s) and ν(s) is a stable matching. So is µ ∧ ∨ which assigns to each s the worst of the two.
Definition. A finite lattice is a partially ordered set in which each pair has a least upper bound and a
greatest lower bound. It is a distributive lattice if ∧ and ∨ distribute over each other.
Remark. The implication here is that the set of stable matchings with these operations is a lattice, and it
has a unique Pareto-best member.
Theorem 7.3. For any mechanism which gives the student-optimal stable matching for any problem, truth-
telling is a dominant strategy for students.

Proof. Dubins & Freedman (1981) and Roth (1982).

8 Uncertainty

Definition. Commodities are distributions on outcomes. Prices are linear functionals of distributions –
integration of a function. Formally, commodities are random variables – measurable functionals of states,
while prices are linear functions on measurable functions – measures on the state space.
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Model. The State Preference Model Let O be the outcome space, S be the (finite) state space, C be the set
of acts, which are functions from states to outcomes, and ≽ be a preference relation on acts. Some examples:

U(f) = min
s

u(f(s)) Maximin Utility

U(f) =
󰁛

s

u(f(s))µ(s) Expected Utility

U(f) = min
µ∈P

󰁛

s

u(f(s))µ(s) Maximin Expected Utility

U(f) =
1

1− γ

󰁝

P

󰀣
󰁛

s

u(f(s))µ(s)

󰀤1−γ

∂p(µ) The Smooth Model

Model. The Two-Period Exchange Economy I traders live for two periods, t = 0, 1. State s ∈ S is revealed
at the beginning of the second period. L physical commodities are available at date 0 and states 1 through
S. The consumption set for each trader is RL(S+1)

+ , and each trader has a strictly positive endowment vector
ωi ≫ 0 in the interior of the consumption set. Finally, each trader has beliefs πi and concave and increasing
date t payoff functions ui

t : RL
+ → R, where

U i(xi) = ui(xi
0) +

S󰁛

s=1

πi
su

i
1(x

i
s)

Model. The Arrow-Debreu Model At date 0, traders trade current consumption bundles and contracts
promising the delivery of xsℓ units of good ℓ if state s occurs at time 1. Prices are φ = (φ0, . . . ,φL) ∈ RL

+\{0},
and the Arrow-Debreu budget set is

BAD(φ,ωi) =

󰀫
y ∈ RS(L+1) :

S󰁛

s=0

φs(ys − ωi
s) = 0

󰀬

Equilibrium in the Arrow-Debreu model is a price φ and an allocation x such that (i) each trader i is
maximizing U i(xi) on BAD(φ,ωi); and (ii) for all s and ℓ,

󰁓
i x

i
sℓ − ωi

sℓ = 0.

We can easily show that:

1. Equilibrium exists

2. The First and Second Welfare Theorems apply

However, what does Pareto optimality mean in this case?
Definition. Allocation x is ex-ante Pareto preferred to y if for all i, U i(xi) ≥ U i(yi), with strict inequality
for some i.

Allocation x is ex-post Pareto preferred to y if for all i and for all s ≥ 0, ui(xi
s) ≥ ui(yis) with strict inequality

for some i.
Theorem 8.1. If for all i and all s ≥ 1, πi(s) ≥ 0, then if x is ex-ante Pareto preferred to y, then x is
ex-post Pareto preferred to y.
Remark. The converse does not hold here.
Model. The Radner Model Traders can trade L physical commodities at both time 0 and in each time 1
state s ∈ S spot market, and J assets. Asset j is a promise to pay to its holder ajs units of good 1 in state
s. The asset return matrix is the |S| × J matrix A with rows As. The vector of state-contingent returns
from portfolio z ∈ RJ is Az. Note that the set of feasible portfolios is unbounded – zj < 0 is a short / sale
position, while zj > 0 is a long / purchase position. Prices in the Radner model are spot prices p ∈ RL(S+1)

+

and asset prices q ∈ RJ .
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We can illustrate this with the Date-Event Tree:

H T

H T H T

t = 0

t = 1

t = 2

Each node is a spot market, and each edge is a state. The red node is at the spot market after two H states
have been realized. People trade goods at spot markets, and they trade assets between spot markets.

The Radner budget set is

BR(p, q,ω
i) =

󰀫
(y, z) ∈ RL(S+1)

+ × RJ : p0 · y0 + q · z = p0 · ωi
0; ps · ys = ps · ωi

s + ps1 ·As · z ∀ s ∈ S

󰀬

Note that this budget set is homogeneous of degree zero in all ps, so we can take the spot market prices for
numeraire to all be 1 WLOG. Formally, for s ∈ S, p1s = 1.
Definition. Equilibrium in the Radner model is a vector of spot prices p, asset prices q, a commodity
allocation x, and an asset allocation z such that:

1. Each trader i is maximizing U i(xi) on BR(p, q,ω
i)

2. For all s and ℓ,
󰁓

i x
i
sℓ − ωi

sℓ = 0

3.
󰁓

j z
j = 0

Remark. If there is a portfolio with a semi-positive return vector, then some spot-market budget sets are
unbounded. Equilibrium requires that no such portfolio exists, which may restrict asset prices. Let

M =

󰀗
−q
A

󰀘

with column space 〈M〉. The no-arbitrage condition is satisfied if there is no portfolio z such that Mz > 0.
That is,

〈M〉 ∩ RS+1
+ = {0}

Theorem 8.2. The no arbitrage condition is satisfied if and only if there is a π̃ ≫ 0 such that π̃ ·M = 0

Proof. The no-arbitrage theorem is a theorem of the alternative. Let ∆ denote the set of y ∈ RS+1
+ such

that
󰁓

n yn = 1. If Mz > 0 has a solution, it will have one in ∆. First, a preliminary result:
Lemma 8.1. Separating Hyperplane Theorem If A,B ⊆ Rm are convex, A closed, B compact, then there
is a π that separates them, meaning that

sup
a∈A

π · a < inf
b∈B

π · b

Proof. In math notes, in full. Too long to reprint here.

(⇐) If π̃M = 0, then π̃Mz = 0 ∀ z. Since π̃ ≫ 0, Mz ∕> 0.

(⇒) Suppose that 〈M〉 ∩RS+1
+ = {0}. Suppose that D = {y : y = Mz, z ∈ RJ}. The no-arbitrage condition

says that ∆ ∩D = ∅, and the lemma says that there is a π that separates them.
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Suppose that π ≤ 0. Then the infimum over ∆ is weakly negative, but 0 ∈ D, which is a contradiction. Thus,
π ≫ 0. Next suppose that πd ∕= 0 for some d ∈ D. Then there is a z ∈ RJ such that πMz ∕= 0, so expanding
positively or negatively as needed we have that supd∈D πd = +∞, which is another contradiction.
Remark. If there is such a π̃, WLOG let the first component be 1. Let

P (q) =
󰀋
π ∈ RS

++ : (1,π) ·M = 0
󰀌

Then π ∈ P (q) if and only if
qj = π1a

j
q + · · ·+ πSa

j
S

Any member of P (q) is called a state price vector. From Rank-Nullity, dimP (q) = S − rankA, so π will be
unique if and only if rankA = S. In this case, markets are said to be complete.
Definition. An asset is redundant if Aj =

󰁓
k ∕=j αkA

k. To see why, note that each qk = πAk, so

qj = π
󰁛

k ∕=j

αkA
k =

󰁛

k ∕=j

αkπA
k =

󰁛

k ∕=j

αkqk

An Arrow security is an asset that pays off 1 in a single state s and 0 otherwise. If π is a state price vector,
then q = π is the price vector of Arrow securities.
Theorem 8.3. Arrow’s Other Theorem Suppose that rankA = S. Then:

1. Suppose Radner prices are (p, q) with state prices π, and define φ0 = p0, and for s ≥ 1, φsℓ = πs
psℓ

ps1
.

Then (x, z) ∈ BR(p, q,ω
i) if and only if x ∈ BAD(p,ωi)

2. Suppose Arrow-Debreu prices are φ, and define p0 = φ0, πs = φs1, psℓ = φsℓ

φs1
, and q = πA. Then

x ∈ BAD(φ,ωi) if and only if there exists z such that (x, z) ∈ BR(p, q,ω
i).

Proof. The proof is just algebra. It’s fully in Arrow (1952) (n.b. translated 1964).
Remark. The implications here are that:

1. When markets are complete, Radner and Arrow-Debreu equilibrium commodity allocations are iden-
tical

2. Prices of either equilibrium type can be derived from the other

3. All Radner equilibria are Pareto optimal
Question. What happens when markets are incomplete?

We have first order conditions in the Radner market that give us (i) multipliers λi
s for constraint s, where

s = 0, 1, . . . , S; (ii) slackness conditions for all s and ℓ, DsℓU
i(xi)− λi

spsℓ = 0; and (iii) slackness conditions
for all j where −λi

0qj +
󰁓

s λ
i
sa

j
s = 0. Additionally, the Radner budget constraint must be satisfied, and we

must have that xi,λi ≫ 0.

When markets are complete, equilibrium is optimal. This is not the case when markets are incomplete.
Remark. We can easily derive optimality of equilibrium with complete markets from the first order condi-
tions, which tell us that within a state

DsℓU
i(xi)

DsmU i(xi)
=

psℓ
psm

meaning that the marginal rates of substitution between goods in the same state are equal across individuals.
Across states, we have that

DsℓU
i(xi)

DtmU i(xi)
=

λi
s

λi
t

psℓ
ptm

and
λi
s

λi
t

=
qs
qt

meaning that marginal rates of substitution between goods in different states equal a constant times the
marginal rate of substitution between the numeraires in different states. With complete markets, they are
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also equal. Since individuals marginal rates of substitution of wealth across states are pinned down by the
asset price ratios, all marginal rates of substitution are equal and equilibrium is Pareto optimal.
Remark. As an example of what happens when markets are incomplete, consider a market where the only
asset is a bond but there are at least two states. The bond pays off one unit of numeraire in every state.
Our first order conditions are, for each state s,

DsℓU
i(xi)− λi

spsℓ = 0 and − λi
0q

1 +

S󰁛

s=1

λi
s = 0

Thus, any vector

πi =

󰀕
λi
1

λi
0

, · · · , λ
i
s

λi
0

󰀖

is a state price vector. However, since rankA < S, state prices are not unique, so there is no force equilibrating
marginal rates of substitution across different states.
Remark. Market incompleteness causes issues for the existence of equilibrium. Radner (1973) showed
equilibrium existence with an additional assumption that bounded the set of allowable asset positions; Hart
(1975) discussed non-existence and other issues with the Arrow-Debreu world that arise in such models;
and Polemarchakis (1990) has a good summary discussion of existence, especially regarding how existence is
achieved in some asset structures.

31

https://www.jstor.org/stable/1909407
https://www.sciencedirect.com/science/article/pii/0022053175900289
https://www.jstor.org/stable/41953246?seq=1

