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Problem 1. Let X,, and s2 be the sample mean and variances. Suppose another observation X, y; becomes
available.

(a) We have that
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Problem 2. Find the distributions of:

(a) (X, —Y,)//20%/n: We have that

Thus, the mean is
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Since X and Y are iid normal and mutually independent, we can say that
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(b) (Xn — Yn)/\/25% /n: We have that from a theorem in class, since X is iid normal, that 25 ~ x2.
This means that our distribution is
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A student’s t distribution with n degrees of freedom.
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(¢) (Xn—Yy)/y/252 /n: Similarly as (b), since Y is iid normal, we have that "s" ~ X2. This means that
our distribution is
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A student’s t distribution with n degrees of freedom.
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(d) (Xn —Yn)//( sX + s3.)/n: We have that since X and Y are each normal, we have that ">, %X ~
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A student’s t distribution with 2n — 2 degrees of freedom.

(e) (X, — Yn)/\/s2/n: Since Z ~ N(0,202), since X and Y are mutually independent, we have that
ﬁ ~ x2. This means that the distribution is
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A student’s t distribution with n — 1 degrees of freedom.

Problem 3. Use X, Xs, X3 to construct a statistic with the following distributions:

(a) Chi-square distribution with 3 degrees of freedom. Note that since X; ~ N (i,4%), we have that
izt N(0,1). Then if Z; ~ N(0,1), we have that
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From the definition of chi-square distributions

(b) ' (0,1). Then from the
definition of the t distribution, and deﬁnmg Zi~ N (07 1), we have that
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Problem 4. Show that Y = min{X7,..., X, } is a sufficient statistic for 6, where f(z | ) = e~ =D 1{z >
0}.

Proof. We have that
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Thus, if 3 7 s.t. X; < 6, ! }‘Y(g(;) = 0 which is not dependent on #. Thus, we consider the case where
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Thus, we have that
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Since this does not depend on 6, Y = min; X; is a sufficient statistic for 6. O

Problem 5. Show that min; % is a sufficient statistic.

Proof. We will use the Factorization Theorem. Note that
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Defining an indicator function, we get that
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Then we can define
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And since fx(z | 6) = h(z)g (min; % 9), min; % is a sufficient statistic. 0




Problem 6. Show that any one-to-one function of a sufficient statistic is also a sufficient statistic.

Proof. We have that a statistic T'(x) is sufficient, meaning that there exist functions h(z) and g(T'(X) | )
such that
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If there exists T”(x) such that T"(z) = f(T(X)) for some bijective f, then we can say that since f is bijective
and invertible, T(X) = f~1(T"(X))
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so defining ¢g* := g o f~!, we get that
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and since the conditions of the Factorization Theorem hold, T” is also a sufficient statistic. O

Problem 7. The distribution of N(0,0?) is
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Thus, since every observation x is squared, meaning that 2% = | X|?, we can simply set x = | X/, and have
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so ¢x(x) = g(|X| | 0?)h(x) and | X| is sufficient by the Factorization Theorem.



