
ECON 6170 Module 5 and Problem Sets 7, 8, 9 Answers

Patrick Ferguson*

Exercise 1. False. Take any function with a “kink”, e.g.,

|x| :=

{
x x ≥ 0

−x x < 0

which is not differentiable at x0 := 0.

Exercise 2.

(i)

( f + g)′(x0) = lim
h→0

f (x0 + h) + g(x0 + h)− f (x0)− g(x0)

h

= lim
h→0

f (x0 + h)− f (x0)

h
+ lim

h→0

g(x0 + h)− g(x0)

h
= f ′(x0) + g′(x0)

(ii)

(α f )′(x0) = lim
h→0

α f (x0 + h)− α f (x0)

h

= α · lim
h→0

f (x0 + h)− f (x0)

h
= α f ′(x0)

(iii)

( f · g)′(x0) = lim
h→0

f (x0 + h)g(x0 + h)− f (x0)g(x0)

h

= lim
h→0

f (x0 + h)g(x0 + h)− f (x0)g(x0 + h) + f (x0)g(x0 + h)− f (x0)g(x0)

h

= lim
h→0

( f (x0 + h)− f (x0))g(x0 + h) + f (x0)(g(x0 + h)− g(x0))

h

= lim
h→0

( f (x0 + h)− f (x0))

h
g(x0 + h) + lim

h→0
f (x0)

g(x0 + h)− g(x0)

h

= lim
h→0

( f (x0 + h)− f (x0))

h
lim
h→0

g(x0 + h) + f (x0) lim
h→0

g(x0 + h)− g(x0)

h
= f ′(x0)g(x0) + f (x0)g′(x0)

*Based on Professor Takuma Habu’s solutions.

1



(iv) It suffices to show that (
1
g

)′
(x0) = − g′(x0)

g(x0)2

from which the product rule gives the rest. Note that g(x0) > 0 implies g(x0 + h) > 0 for h
sufficiently close to 0.(

1
g

)′
(x0) = lim

h→0

1
g(x0+h) −

1
g(x0)

h

= lim
h→0

g(x0)−g(x0+h)
g(x0+h)g(x0)

h

= lim
h→0

g(x0)− g(x0 + h)
h

1
g(x0 + h)g(x0)

= lim
h→0

g(x0)− g(x0 + h)
h

lim
h→0

1
g(x0 + h)g(x0)

=
g′(x0)

g(x0)2

Exercise 3. First consider the case in which f ′(x0) ̸= 0. Then f (x) ̸= f (x0) for x ̸= x0 sufficiently
close to x0. For otherwise, we would have a sequence xn → x0 with f (xn) = f (x0) for all n and
thus f (xn)− f (x0)

xn−x0
= 0 → 0, a contradiction.

Then we can write

(g ◦ f )(xn)− (g ◦ f )(x0)

xn − x0
=

(g ◦ f )(xn)− (g ◦ f )(x0)

f (xn)− f (x0)
· f (xn)− f (x0)

xn − x0

By continuity of f , xn → x0 implies f (xn) → f (x0), so letting xn → x0 on both sides, we obtain

(g ◦ f )′(x0) = g′( f (x0)) · f ′(x0)

Now suppose f ′(x0) = 0. We will use the following lemma: If f : X ⊆ R → R is differentiable at x0,
then f is Lipschitz on some (x0 − δ, x0 + δ). To see this, note that differentiability of f implies that
there exist δ > 0 such that

∣∣∣ f (x)− f (x0)
x−x0

∣∣∣ ≤ L for x ∈ (x0 − δ, x0 + δ) \ {x0}. Rearranging, we have
| f (x)− f (x0)| ≤ L · |x − x0|.

Continuity of f at x0 implies that for all ε > 0, there exists δ > 0 such that x ∈ (x0 − δ, x0 + δ)

implies f (x) ∈ ( f (x0)− ε, f (x0) + ε). Therefore, differentiability of g combined with our lemma
implies that there exists δ > 0 such that if x ∈ (x0 − δ, x0 + δ) then

|(g ◦ f )(x)− (g ◦ f )(x0)| ≤ L| f (x)− f (x0)|

Dividing across by |x − x0|, we get∣∣∣∣ (g ◦ f )(x)− (g ◦ f )(x0)

x − x0

∣∣∣∣ ≤ L
∣∣∣∣ f (x)− f (x0)

x − x0

∣∣∣∣
Taking x → x0 implies that the the term on the right-hand side converges to L · | f ′(x0)| = 0. The
term on the left-hand side is bounded below by the sequence 0, 0, 0, . . . , so it too converges to 0.
Therefore, (g ◦ f )′(x0) = 0 = f ′(x0).
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Exercise 4. Since f is strictly increasing, x ̸= y implies f (x) ̸= f (y), so f−1 is well-defined on some
subset of R. By the intermediate value theorem and continuity of f , this subset will be an interval,
call it (c, d). By the extreme value theorem, f (S) is compact for any closed (implying compact)
S ⊆ (a, b). Equivalently, the preimage of any closed S ⊆ (a, b) under f−1 is closed. By (a slight
generalisation of) a result seen in section, this means that f−1 is continuous.

The derivative of f−1 at y = f (x), if it exists, is given by(
f−1

)′
(y) = lim

δ→0

f−1(y + δ)− f−1(y)
δ

By the intermediate value theorem, for δ sufficiently small, we can find an x + h ∈ (a, b) such that
h ̸= 0 and f (x + h) = y + δ. We can then rewrite the quotient above as

f−1(y + δ)− f−1(y)
δ

=
f−1( f (x + h))− f−1( f (x + h))

f (x + h)− f (x)
=

h
f (x + h)− f (x)

Note that, by construction, as δ → 0, f (x + h) → y = f (x). Since x + h is the only element of (a, b)
that gives f (x + h), this means that h → 0 as δ → 0. It follows that we can write(

f−1
)′

(y) = lim
h→0

h
f (x + h)− f (x)

=
1

limh→0
f (x+h)− f (x)

h

=
1

f ′(x)

using the fact that f ′(x) > 0 for all x.

Exercise 5. Take any x and y such that a ≤ x < y ≤ b. By the mean value theorem, there exists
z ∈ (x, y) such that

f (y)− f (x) = f ′(z)(y − x)

Since y − x > 0 and z ∈ (x, y), it follows that f (y)− f (x) = 0. Since x and y are arbitrary, this
holds for all x, y ∈ (a, b).

Exercise 6. Since f (k) is continuous at x0 and f (k)(x0) > 0, there exists δ > 0 such that f (k)(x) > 0
for all x ∈ (x0 − δ, x0 + δ). By Taylor’s theorem, and using the fact that the first k − 1 derivatives
of f at x0 are 0, we have that for any x ∈ (x0 − δ, x0 + δ),

f (x) = f (x0) +
f (k)(p)

k!
(x − x0)

k,

where p is some point between x and x0. But then f (k)(p) > 0, and, since k is even, (x − x0)k > 0.
Therefore f (x) is larger than f (x0), i.e., f has a local minimum at x0.

Exercise (Additional Exercise on PS 7). Note that1

|x · y|2 = (x1y1 + · · ·+ xdyd)
2 = ∑

i,j
xiyjxjyi

and
(∥x∥ · ∥y∥)2 = (x2

1 + · · ·+ x2
d) · (y2

1 + · · ·+ y2
d) = ∑

i,j
x2

i y2
j

1∑i,j f (i, j) := ∑d
i=1 ∑d

j=1 f (i, j) and ∑i<j f (i, j) := ∑d
i=1 ∑d

j=i+1 f (i, j).
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But
(xiyj − xjyi)

2 = x2
i y2

j − 2xiyjxjyi + x2
j y2

i

so

∑
i<j

(xiyj − xjyi)
2 = ∑

i<j

(
x2

i y2
j − 2xiyjxjyi + x2

j y2
i

)
= ∑

i<j

(
x2

i y2
j + x2

j y2
i

)
− 2 ∑

i<j
xiyjxjyi

= ∑
i<j

(
x2

i y2
j + x2

j y2
i

)
− 2 ∑

i<j
xiyjxjyi +

d

∑
i=1

(
x2

i y2
i − xiyixiyi

)
= ∑

i,j
x2

i y2
j − ∑

i,j
xiyjxjyi

= (∥x∥ · ∥y∥)2 − |x · y|2

But ∑i<j(xiyj − xjyi)
2 is nonnegative, so (∥x∥ · ∥y∥)2 ≥ |x · y|2, implying ∥x∥ · ∥y∥ > |x · y|.

Exercise 7.

0 = lim
h→0

∥ f (x0 + h)− f (x0)− D f (x0)h∥
∥h∥

= lim
h→0

∥h∥ lim
h→0

∥ f (x0 + h)− f (x0)− D f (x0)h∥
∥h∥

= lim
h→0

∥ f (x0 + h)− f (x0)− D f (x0)h∥

≥ lim
h→0

∥ f (x0 + h)− f (x0)∥ − lim
h→0

∥D f (x0)h∥

= lim
h→0

∥ f (x0 + h)− f (x0)∥

Exercise 8. Differentiability of f : X ⊆ Rd → Rm at x0 means that

∥ f (x0 + h⃗)− f (x0)− A⃗h∥m

∥⃗h∥d
→ 0

as h⃗ → 0, for some A ∈ Rm×d. For i ∈ {1, . . . , m} and j ∈ {1, . . . , d}, we want to show that2

lim
h→0

fi(x0 + hej)− fi(x0)

h

exists, and equals the (i, j)-th entry of A. To do so, it suffices to show that∣∣∣∣ fi(x0 + hej)− fi(x0)

h
− aij

∣∣∣∣
2Note that h⃗ above is a d-vector, whereas here it is a scalar.
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is bounded above by by some function that converges to zero with h. Letting Ai• be the i-th row of
A as a vector in Rd, we can rewrite this as∣∣∣∣∣ fi(x0 + hej)− fi(x0)− AT

i•hej

h

∣∣∣∣∣ =
∣∣∣∣∣ fi(x0 + hej)− fi(x0)− AT

i•hej

∥hej∥d

∣∣∣∣∣
≤ 1

∥hej∥d

√
m

∑
i=1

[
fi(x0 + hej)− fi(x0)− AT

i•hej
]2

=
∥ f (x0 + hej)− f (x0)− Ahej∥m

∥hej∥d
(∗)

But hej is a sequence of d-vectors converging to zero with h, so (∗) converges to zero as h → 0.

Exercise 9.
1
h

[
(0 + h)0

(0 + h)2 + 02 − f (0, 0)
]
= 0

so ∂ f
∂x

∣∣∣
(0,0)

= 0. Similarly, ∂ f
∂y

∣∣∣
(0,0)

= 0.

To prove that f is not differentiable at (0, 0), it suffices, by Exercise 7, to show that f is not
continuous at (0, 0). Observe that the sequence zn = ( 1

n , 1
n ) converges to (0, 0), but f (zn) =

1
2 for

all n, so f (zn) → 1
2 ̸= 0 = f (0, 0).

Exercise 10. By Proposition 10 (the chain rule), we can write

D(g ◦ f )(x0) = Dg( f (x0)) · D f (x0)

=
[

∂g( f (x0))
∂y1

· · · ∂g( f (x0))
∂yd

] 
∂ f1(x0)

∂x
...

∂ fd(x0)
∂x


=

d

∑
i=1

∂g( f (x0))

∂yi
· ∂ fi(x0)

∂x

where y = f (x).

Exercise 11. To simplify notation, I write x := (x1, x2) (i.e., drop the 0 subscript). Define

r(h1, h2) := f (x1 + h1, x2 + h2)− f (x1 + h1, x2)

t(h1, h2) := f (x1 + h1, x2 + h2)− f (x1, x2 + h2)

Then

r(h1, h2)− r(0, h2) = f (x1 + h1, x2 + h2)− f (x1 + h1, x2)− f (x1, x2 + h2) + f (x1, x2)

= t(h1, h2)− t(h1, 0)

By the mean-value theorem applied to r(·, h2) and t(h1, ·)

∂r(c1, h2)

∂x1
h1 =

∂t(h1, c2)

∂x2
h2
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for some c1 ∈ (0, h1) and c2 ∈ (0, h2). Rewriting in terms of f ,

h1

(
∂ f (x1 + c1, x2 + h2)

∂x1
− ∂ f (x1 + c1, x2)

∂x1

)
= h2

(
∂ f (x1 + h1, x2 + c2)

∂x2
− ∂ f (x1, x2 + c2)

∂x2

)
Applying the mean value theorem to ∂ f (x1+c1,·)

∂x1
and ∂ f (·,x2+c2)

∂x2
,

h1h2
∂2 f (x1 + c1, γ2)

∂x2∂x1
= h2h1

∂2 f (γ1, x2 + c2)

∂x1∂x2

for some γ1 ∈ (x1, x1 + h1), γ2 ∈ (x2, x2 + h2). We can divide both sides by h1h2 to get

∂2 f (x1 + c1, γ2)

∂x2∂x1
=

∂2 f (γ1, x2 + c2)

∂x1∂x2

Note that as h1 → 0, c1 → 0 and γ1 → x1; and as h2 → 0, c2 → 0 and γ2 → x2. Taking the limit of
both sides as h1, h2 → 0 and using that f ∈ C2,

∂2 f (x1, x2)

∂x2∂x1
=

∂2 f (x1, x2)

∂x1∂x2

Exercise 13. Write xn := αx + (1 − α)yn with α ∈ (0, 1). Then concavity of f implies that

f (xn) ≥ α f (x) + (1 − α) f (yn)

f (xn)− f (x) ≥ (1 − α)( f (yn)− f (x))
f (xn)− f (x)

(1 − α)(yn − x)
≥ f (yn)− f (x)

yn − x
f (xn)− f (x)

xn − x
≥ f (yn)− f (x)

yn − x
f (x)− f (xn)

x − xn
≥ f (x)− f (yn)

x − yn

and

f (xn)− f (yn) ≥ α( f (x)− f (yn))

f (xn)− f (yn)

α(x − yn)
≤ f (x)− f (yn)

x − yn

f (xn)− f (yn)

xn − yn
≤ f (x)− f (yn)

x − yn

Combining, we have
f (x)− f (xn)

x − xn
≥ f (xn)− f (yn)

xn − yn

An analogous argument gives the second inequality,

f (xn)− f (yn)

xn − yn
≥ f (yn)− f (y)

yn − y
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Exercise 14. Suppose first that f is concave on X. Fix any x, v ∈ Rd with v ̸= 0. For any t, t′ ∈ Sx,v

and any α ∈ [0, 1],

gx,v
(
αt + (1 − α) t′

)
= f

(
x +

(
αt + (1 − α) t′

)
v
)

= f
(
α (x + tv) + (1 − α)

(
x + t′v

))
≥ α f (x + tv) + (1 − α) f

(
x + t′v

)
= αgx,v (t) + (1 − α) gx,v

(
t′
)

Hence, gx,v(·) is concave. Conversely, suppose that for any x, v ∈ Rd with v ̸= 0, gx,v(·) is concave.
Pick any z1, z2 ∈ X and any α ∈ [0, 1]. Letting x = z1 and v = z2 − z1, observe that gx,v(0) = f (z1),
gx,v(1) = f (z2), and

gx,v (α) = f (z1 + α (z2 − z1)) = f ((1 − α) z1 + αz2)

Since gx,v(·) is concave, for any α ∈ [0, 1],

f ((1 − α) z1 + αz2) = gx,v (α)

= gx,v ((1 − α) · 0 + α · 1)

≥ (1 − α) gx,v (0) + αgx,v (1)

= (1 − α) f (z1) + α f (z2)

i.e., f is concave. The proof for the case of strict concavity is analogous.

Exercise 16. By Proposition 15 and Remark 16, f ′′(x) < 0 is a sufficient condition for strict
concavity, but not a necessary one. Note that in this case f ′′(x) = −12x2 < 0 for all x ∈ R \ {0}.
Therefore, f is strictly concave on R \ {0}. We therefore only need to prove strict concavity at
αx + (1 − α)y = 0 and for x = 0 or y = 0 (every other convex combination is not strict or is in the
restricted domain R \ {0}). Suppose that neither x nor y is 0 but αx + (1 − αy) = 0. Then

α f (x) + (1 − α) f (y) = −
(

αx4 + (1 − α)y4
)

< 0

= −04

= f (αx + (1 − α)y)

Suppose y = 0 and x ̸= 0. Then

α f (x) + (1 − α) f (y) = −αx4

< −(αx)4

= f (αx + (1 − α)y)

Exercise 17. First we calculate the Hessian. The first derivatives are
∂ f
∂x

= αxα−1yβ ∂ f
∂y

= βxαyβ−1

The Hessian is then

H =

[
α(α − 1)xα−2yβ αβxα−1yβ−1

αβxα−1yβ−1 β(β − 1)xαββ−2

]
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(i) Sylvester’s criterion says that H is negative definite if h11 < 0 and det H > 0. The former is
true if α − 1 < 0, or α < 1. The latter is true if

0 < α(α − 1)xα−2yβ · β(β − 1)xαββ−2 − (αβxα−1yβ−1)2

= αβx2α−2y2β−2[(α − 1)(β − 1)− αβ]

which is true if αβ − α − β + 1 − αβ > 0, or α + β < 1. This condition is then sufficient for
strict concavity.

(ii) I claim that α + β = 0 is a sufficient (and necessary) condition. Sylvester’s criterion implies
that H is negative semidefinite if h11, h22 ≤ 0 and det H ≥ 0. Given α > 0 and α + β = 1, we
know that β < 1, so h22 < 0. By the same reasoning as in (i), α + β = 1 implies det H = 0.
Therefore, α + β = 1 is sufficient for concavity. We will require α + β ≥ 1 to avoid strict
concavity (negating (i)). However, this alone is insufficient, as it only says the Hessian is not
negative definite, which does not disprove strict concavity. We need to find some other way
of showing that f with α + β = 1 will violate strict concavity. If α + β = 1, we can write
β = 1 − α. Therefore, we can write f (x, y) = xαy1−α. Consider the distinct points (1, 1) and
(3, 3). Then

f
(

1
2
(1, 1) +

1
2
(3, 3)

)
= f (2, 2) = 2α21−α = 2

=
1
2
· 1 +

1
2
· 3 =

1
2
(1α11−α) +

1
2
(3α31−α) =

1
2

f (1, 1) +
1
2

f (3, 3)

But if f were strictly concave, this would not hold with equality. Thus, f is not strictly
concave.

(iii) For f to be neither concave nor convex, Sylvester’s criterion implies that it suffices that
det H < 0 or h11 > 0 or h22 ≥ 0. This will be the case iff α + β > 1.

Exercise (Additional Exercise on PS 8). Because f is hod k, we can write

f (λx) = λk f (x)

Differentiating both sides with respect to λ, we have

∇ f (λx) · x = kλk−1 f (x)

which evaluated at λ = 1 gives
∇ f (x) · x = k f (x)

Exercise 18. We can rewrite the equation defining our implicit function as

F(x∗, h(x∗)) = 0

The implicit function theorem then says that at in some neighbourhood of (x∗, y∗), h : R2 → R2 is
well-defined and has derivative

Dh(x) = −(DyF(x, h(x)))−1 · DxF(x, h(x))
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which we can write as [
∂h1
∂x1

∂h1
∂x2

∂h2
∂x1

∂h2
∂x2

]
= −

[
∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2

]−1

·
[

∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

]
where y = h(x). Using the formula for inverting a 2 × 2 matrix, we get[

∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2

]−1

=
1

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

[
∂F2
∂y2

− ∂F1
∂y2

− ∂F2
∂y1

∂F1
∂y1

]

Inserting this into the previous formula, we have

∂h1

∂x1
= −

∂F2
∂y2

· ∂F1
∂x1

− ∂F1
∂y2

· ∂F2
∂x1

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

=

∂F1
∂y2

· ∂F2
∂x1

− ∂F2
∂y2

· ∂F1
∂x1

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

∂h1

∂x2
= −

∂F2
∂y2

· ∂F1
∂x2

− ∂F1
∂y2

· ∂F2
∂x2

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

=

∂F1
∂y2

· ∂F2
∂x2

− ∂F2
∂y2

· ∂F1
∂x2

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

∂h2

∂x1
= −

− ∂F2
∂y1

· ∂F1
∂x1

+ ∂F1
∂y1

· ∂F2
∂x1

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

=

∂F2
∂y1

· ∂F1
∂x1

− ∂F1
∂y1

· ∂F2
∂x1

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

∂h2

∂x2
= −

− ∂F2
∂y1

· ∂F1
∂x2

+ ∂F1
∂y1

· ∂F2
∂x2

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

=

∂F2
∂y1

· ∂F1
∂x2

− ∂F1
∂y1

· ∂F2
∂x2

∂F1
∂y1

· ∂F2
∂y2

− ∂F1
∂y2

· ∂F2
∂y1

Exercise 19. Define
F (y, x) = y − f (x)

for all (y, x) ∈ Y × X Note that x0 ∈ intX by assumption. It is WLOG to assume that Y is open,3

implying y0 := f (x0) ∈ int Y. Note that this is implies (x0, y0) ∈ int(X × Y).

We also have F(y0, x0) = 0. That f is C1 at x0 implies that F is C1 at x0. Moreover, DxF(y0, x0) =

−D f (x0) is invertible. Thus, applying the implicit function theorem on F gives us that x is
implicitly defined as a function g of y on an open ball BY(y0) such that F(y, g(y)) = 0 for all
y ∈ BεY(y0). Furthermore, g is differentiable and

Dg (y) = − [DxF (y, g (y))]−1 DyF (y, g (y))

= − [−D f (g (y))]−1 I

= D f (g (y))−1 .

3Because every potential codomain can be extended to an open superset.

9


