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1 Implicit Function Theorem (again)

Berge’s theorem of the maximum gave us conditions under which the solution correspondence and
value function were continuous. The implicit function theorem gave us (stronger) conditions under
which the solution function are differentiable and told us how to compute those derivatives. We
can then use the derivatives to conduct comparative statics.

Example 1. For concreteness, let X ⊆ Rd and Θ ⊆ Rm be open and convex and that f : X×Θ → R
is C2 and that f(·, θ) is strictly concave on X for each θ ∈ Θ. Suppose we want to maximise f on
X for some given θ ∈ Θ; i.e.,

f∗ (θ) := max
x∈X

f (x,θ) .

We know that the first-order condition characterises the unique global maximum; i.e., x0 ∈ X is a
global maximum of f(·,θ0) if and only if

∇xf (x0,θ0) = 01×d.

Define h : Θ×X → Rd via h(θ,x′) := ∇xf(x
′,θ). Then, we have that h(θ0,x0) = 0. Suppose that

Dxh(θ0,x0) = D2
xf(x0,θ0) is invertible, then since h is C1 (because f is C2), the implicit function

theorem gives us that there exist open balls centred at θ0 and x0, denoted BΘ and BX respectively,
and a differentiable solution function x∗ : BΘ → BX such that x∗(θ0) = x0 and

h (θ, x∗ (θ)) = ∇xf (x∗ (θ) ,θ) = 0 ∀θ ∈ BΘ.

Moreover, the theorem also gives us how the solution changes with with parameter θ (around θ0):

Dx∗ (θ) = − (Dxh (θ, x
∗ (θ)))−1

Dθh (θ, x
∗ (θ))

= −
(
D2

xf (x∗ (θ) ,θ)
)−1

Dθ∇xf (x∗ (θ) ,θ) .

Exercise 1 (PS11). Consider the problem of maximising an objective function f : Rd × Rm → R
∗Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes. The note is also

based on a class I took from John Quah.
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subject to K equality constraints; i.e.,

max
x∈X

f (x,θ) s.t. hk (x,θ) = 0 k ∈ {1, . . . ,K} ,

where hk : Rd ×Rm → R for each k ∈ {1, . . . ,K}. Suppose that f and hk’s are all C2 and concave,
constraint qualification (for equality constraints) is satisfied, and that there is a unique solution
for all θ ∈ Θ. Apply the implicit function theorem on the first-order condition of the Lagrangian
to give an expression for how the solution varies with θ. What must be true to apply the same
argument when there are inequality constraints?

If we know that some (sub)set of inequality constraints are known to be bound at the global
maximum of the problem, we can treat them as equality constraints and apply the argument above.

2 Envelope Theorem

Take the example above and let us ask how the maximised objective f∗(θ) varies with θ. Note that

f∗ (θ) = f (x∗ (θ) ,θ) ,

where we obtained the solution function x∗(·) via the implicit function theorem. Since both f and
x∗ are differentiable (in the neighbourhood of θ0),

∇f∗ (θ) = ∇xf (x∗ (θ) ,θ)∇x∗ (θ) +∇θf (x∗ (θ) ,θ) .

But the first-order condition tells us that the first-term equals zero. Hence,

∇f∗ (θ) = ∇θf (x∗ (θ) ,θ) .

In words, above tells us that if we want to know how the maximised objective changes with para-
meter θ, then it suffices to consider only the direct effect of θ on f and not the indirect effect of θ
on f via x∗(·).
Remark 1. Where is the “envelope” in the envelope theorem? For each fixed x ∈ X ⊆ R (with
Θ ⊆ R too), consider the graph of f(x, ·). Then, the graph of f∗(θ) is given by the upper envelope
of graphs of {f(x, ·)}x∈X—this upper envelope is the envelope!

Theorem 1 (Envelope Theorem). Let X ⊆ Rd and Θ ⊆ Rm be convex. Suppose that f : X×Θ → R
is C1,

f∗ (θ) := max
x∈X

f (x,θ)

is differentiable on int(Θ), and
x∗ (θ) := argmax

x∈X
f (x,θ)

is well-defined and differentiable. Then,

∇f∗ (θ) = ∇θf (x∗ (θ) ,θ) .

Proof. Define ϕ : X ×Θ → R as ϕx(θ) := f∗(θ)− f(x,θ). By construction ϕx(θ) ≥ 0 for all x ∈ X
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and ϕx∗(θ)(θ) = 0. Moreover, ϕx is continuous (why?) and attains a minimum (of zero) at θ such
that x = x∗(θ). Since ϕx(θ) is differentiable, its derivative at θ must be zero (why?) which gives

∇ϕx (θ) = ∇f∗ (θ)−∇θf (x,θ) = 0 ⇒ ∇f∗ (θ) = ∇θf (x∗ (θ) ,θ) . ■

Remark 2. As stated above, the envelope theorem has an endogenous requirement for f∗ to be
differentiable. But since f∗(·) = f(x∗(·), ·), for f∗ to be differentiable, it suffices that f is differen-
tiable and that x∗(·) is differentiable. While the latter requirement also appear endogenous, we can
appeal to the implicit function theorem to obtain conditions that ensure that x∗(·) is differentiable
as we did in the example above (wait, what were they all again?).

Exercise 2 (PS11). State and prove the Envelope Theorem for the equality constrained optimisa-
tion problem from Exercise 1. Hint: You may make the same endogenous assumption as in the
theorem above and an additional endogenous assumption regarding the Lagrange multipliers. What
further assumptions on the Lagrangian can you make to replace the endogenous assumptions?

3 Monotone Comparative Statics

Consider the problem:
max
x∈X

u (x, θ)− c (x) ,

where we think of x ∈ R is a choice variable, θ ∈ R is a parameter, u : R2 → R is the utility and
c : R → R is the cost function. If u and c are differentiable, the first-order condition is

∂u

∂x
(x∗ (θ) , θ) =

∂c

∂x
(x∗ (θ)) .

If u and c are twice continuously differentiable and ∂2u
∂x∂x (x

∗(θ), θ) ̸= c′′(x∗(θ)), the implicit function
theorem implies that x∗(·) is continuously differentiable and that

∂x∗

∂θ
(θ) =

∂2u
∂x∂θ (x

∗ (θ) , θ)

c′′ (x∗ (θ))− ∂2u
∂x∂x (x∗ (θ) , θ)

.

If c is convex and u is concave in x, and ∂2u
∂x∂θ > 0, we can conclude that x∗(θ) is (locally) increasing

in θ.
From this example, you might be tempted to think that smoothness or concavity were important

to identifying the effect of θ on x∗. But, recall that applying a strictly increasing transformation
to an objective does not alter the maximisers. So continuity, differentiability and concavity of f
must have little to do with whether x∗ is increasing in θ: Because the transformation can have
jumps, kinks and strictly increasing transformation of concave functions need not be concave, yet
any comparative statics conclusions that apply to f also applies to the transformed f ! We will see
below that what’s actually driving the result is related to the fact ∂2u

∂x∂θ > 0; more generally, it is
an ordinal condition called single-crossing property that drives this comparative static result.
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3.1 Partial orders

Definition 1. Given sets X and Y , R ⊆ X × Y is a binary relation from X to Y . Write

xRy ⇔ (x, y) ∈ R,

¬xRy ⇔ (x, y) /∈ R.

The inverse of a binary relation R from X to Y is a relation from Y to X defined as

R−1 := {(y, x) ∈ Y ×X : (x, y) ∈ R} .

A binary relation on X is R ⊆ X ×X and we say that it is

� reflexive if ∀x ∈ X, xRx;

� symmetric if ∀x, y ∈ X, xRy ⇔ yRx;

� transitive if ∀x, y, z ∈ X, (xRy ∧ yRz) ⇒ xRz;

� antisymmetric if ∀x, y ∈ X, (xRy ∧ yRx) ⇒ x = y (i.e., rules out ties);

� complete if ∀x, y ∈ X, either xRy or yRx (i.e., every pair is ordered).1

A binary relation ≥ on X is:

� a partial order if it is reflexive, transitive and antisymmetric, and (X,≥) is a partially ordered
set (poset);

� a total order if it is complete, transitive and antisymmetric and (X,≥) is a totally ordered
set;2

Remark 3. Totally ordered set is a special case of partially ordered sets. Based on a partially
ordered set (X,≥), we may define

≤ :=≥−1

= :=≤ ∩ ≥
> :=

{
(x, y) ∈ X2 : (x ≥ y) and ¬ (y ≥ x)

}
,

< :=>−1 .

If ≥ is a binary relation on X, then ≥ is a binary relation on any S ⊆ X.

Example 2. (R,≥) is a total order defined as:

≥:=
{
(x, y) ∈ R2 : y − x is nonnegative

}
.

However, (Rd,≥) (with n ∈ N\{1}) is a partial order defined as

≥:=
{(

(xi)
d
i=1 , (yi)

d
i=1

)
∈ Rd × Rd : yi − xi is nonnegative ∀i ∈ {1, . . . , d}

}
.

1Note that completeness implies reflexiveness.
2Some people refer to total order as linear order.
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Observe that above is not complete (e.g., with d = 2, (1, 2) and (2, 1) are not ordered). Given a set
X, (2X ,⊆) is a partial order.

Remark 4. Given any poset (X,≥), we can define upper and lower bounds in the usual way; e.g.,
u ∈ X is an upper bound of S ⊆ X is u ≥ s for all s ∈ S. We can also define the supremum and
the infimum as the least upper bound and the greatest upper bound respectively; e.g., supS ∈ X

is the least upper bound if (i) supS is an upper bound of S and (ii) supS ≤ u for any upper bound
u of S.

Exercise 3. Suppose (X,≥) is a poset. Show that if S ⊆ X has a maximum or a minimum, then
it is unique.

Example 3. Suppose X := R\{0} and S := {x ∈ R : x < 0}. Then, S ⊆ X, (X,≤) is a partially
ordered set, and, for example, 1 ∈ X is an upper bound of S. However, there is no least upper
bound.

Say that a partially ordered set (X,≤) has the least upper bound ( resp. greatest lower bound)
property if any nonempty subset of X bounded from above (resp. below) has a least upper (resp.
greater lower) bound.

3.2 Lattices

Definition 2. Let (X,≥) be a partially ordered set (poset). Given any x, y ∈ X, the join of x and
y is

x ∨ y := sup {x, y}

and the meet of x and y is

x ∧ y := inf {x, y} .

Example 4. Suppose X = R2 and let x = (1, 2) and y = (3, 0). Then, x ∨ y = (3, 2) and
x ∧ y = (1, 0). The four points x, y, x ∨ y and x ∧ y forms a rectangle in R2.

Figure 1: Meet and join.
(1, 2)

(3, 0)

(1, 2) _ (3, 0) = (3, 2)

(1, 2) ^ (3, 0) = (1, 0)

1

(1, 2)

(3, 0)

(1, 2) _ (3, 0) = (3, 2)

(1, 2) ^ (3, 0) = (1, 0)

1

(1, 2)

(3, 0)

(1, 2) _ (3, 0) = (3, 2)

(1, 2) ^ (3, 0) = (1, 0)

1

(1, 2)

(3, 0)

(1, 2) _ (3, 0) = (3, 2)

(1, 2) ^ (3, 0) = (1, 0)

1

Definition 3. A poset set (X,≥) is...

� a lattice if join and meet of any two elements of X are contained in X; i.e., x ∨ y ∈ X and
x ∧ y ∈ X for all x, y ∈ X.

� a complete lattice if every nonempty subset S ⊆ X has an infimum and a supremum in X;
i.e., supS ∈ X and inf S ∈ X for all nonempty S ⊆ X.

A subset S ⊆ X is...
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� a sublattice of X ⊆ Rd if the join and meet of any two element are contained in S (not just
in X); i.e., x ∨ y ∈ S and x ∧ y ∈ S for all x, y ∈ S.

� a subcomplete sublattice if it contains the supremum and the infimum of every subset; i.e.,
supT ∈ S and inf T ∈ S for all T ⊆ S.

Figure 2: Lattices and non-lattices.

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

Remark 5. By the completeness axiom, (R,≥) is a complete lattice. For any given set X, the poset
(2X ,⊆) is a lattice with

A ∨B = A ∪B,

A ∧B = A ∩B

for any A,B ∈ 2X .

Example 5. Define S1 := {(1, 1), (1, 2), (2, 1), (2, 2)} and S2 := {(0, 0), (2, 1), (1, 2), (3, 3)}. Then,
S1 is the corner of a rectangle and so it is sublattice of X = R2. The set S1 is also a lattice. In
contrast, S2 is not a sublattice of R2 since (1, 2) ∨ (2, 1) = (2, 2) /∈ S2 but it is a lattice (check!).

Example 6 (Subcomplete sublattice). Consider S1 := (0, 1)×(0, 1) is a sublattice of poset (R2,≥).
However, since supS1 = (1, 1) /∈ S1, it is not a subcomplete sublattice. On the other hand,
S2 := [0, 1]× [0, 1] is a subcomplete lattice.

Figure 3: Subcomplete sublattice.
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Example 1.7. Some examples of lattices:

⇤
�
Zl,�

�
is a lattice.

⇤ (P (Q) ,✓) is a lattice. In particular, for A, B ✓ P (Q),

A _ B = A [ B,

A ^ B = A \ B.

The supremum is the smallest set containing both A and B and the infimum is the largest
set which is smaller than A and B.

⇤ Consider the posets in R2 in Figure 1.3. In order to show that a set is not a lattice, it is
sufficient to show that either the infimum or the supremum is not in the poset. In the diagram,
the supremum and the infimum of the two elements (shaded circles) are shown with unshaded
circles.

Figure 1.3: More examples of lattices.

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

A lattice.
Not a lattice.

1

In particular, notice that a budget set, which would look similar to the last poset considered
in the figure, is not a lattice.

Definition 1.4 (Complete lattice). (S,�) is a complete lattice if every subset of S has a supremum
and an infimum.

Definition 1.5 (Sublattice of poset). A subset S0 of (S,�) is a sublattice of (S,�) if

x _ y 2 S0, x ^ y 2 S0

for all x, y 2 S0.

Remark 1.4. A sublattice S0 of (S,�) is itself a lattice. However, a lattice may not be a sublattice.
Example 1.8 illustrates.

Example 1.8. Consider {(1, 2) , (2, 1) , (2, 2) , (1, 1)} = S0 ✓
�
R2,�

�
. Since S0 represents the four

corners of a rectangle, it is clear that S0 is a sublattice of
�
R2,�

�
. In addition, since every two

element set of S0 has a supremum and an infimum, (S0,�) is also a lattice.
Now consider {(0.5, .0.5) , (2, 1) , (1, 2) , (3, 3)} = S00 ✓

�
R2,�

�
. S00 is not a sublattice of

�
R2,�

�

since (1, 2) _ (2, 1) = (2, 2) /2 S00. Nevetherless, S00 is itself a lattice since the supremum of any two
element set is always (3, 3) and the infimum of any two element set is always (0.5, 0.5), which are
both within the set S00.

Definition 1.6 (Subcomplete lattice ). A subset S0 of a lattice (S,�) is a subcomplete sublattice if

sup (S00) 2 S0,

inf (S00) 2 S0,

for all subset S00 ✓ S.

Example 1.9. Consider S0 ✓ (S,�) as shown in Figure . For S0 to be a subcomplete lattice,
it must be the case that for any S00 ⇢ S (eg, subset shown in green in the figure), sup (S00) and
inf (S00) must lie within the set S0.
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- 5 -Exercise 4. Let (X,≥) be a lattice. Prove the following: (i) x ∨ y = x if and only if x ≥ y; (ii)
x ∧ y = x if and only if x ≤ y; (iii) ¬(x ≥ y) ⇔ x ̸≥ y implies x ∨ y > x; (iv) ¬(x ≤ y) ⇔ x ̸≤ y

implies x ∧ y < x.

Proposition 1. Let (X,≥) be a sublattice of (Rd,≥). If X is compact, then (X,≥) is a subcomplete
sublattice.
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Proof. Let πi : Rd → R be the projection onto the ith coordinate. Let X be a sublattice (of Rd)
and suppose X is compact. Fix S ⊆ X and let

xi ∈ argmax
x∈cl(S)

πi (x) ,

(how do we know xi exists?). Let

x∗ = x1 ∨ x2 ∨ · · · ∨ xd =
(
xi
i

)d
i=1

.

Observe that, xi ∈ X and so x∗ ∈ X since X is a sublattice. We now show that x∗ = supS. First,
x∗ is an upper bound on S because if z ∈ S, then zi ≤ xi

i = x∗
i for all i ∈ {1, . . . , d}. So z ≤ x∗.

Second, x∗ is the least upper bound because if z is an upper bound of S, then z is also an upper
bound of cl(S) (why?). So xi ∈ cl(S) means that xi

i ≤ zi for all i ∈ {1, . . . , d}; i.e., x∗ ≤ z. Hence,
we conclude that X is a subcomplete sublattice. ■

Remark 6. The converse is also true so that, in fact, a poset (X ⊆ Rd,≥) is a subcomplete sublattice
if and only if X is compact. For this reason, we say that a sublattice X ⊆ Rd is a compact sublattice
if X is also compact under the Euclidean metric. For example, [0, 1]d is a compact sublattice of
(Rd,≥).

Corollary 1. Suppose (X,≥) is a compact sublattice of Rd. Then, X has a greatest and a least
element; i.e.,

supX ∈ X and infX ∈ X.

Proof. That (X,≥) is a compact sublattice of Rd means that (X,≥) is a subcomplete sublattice
and, as such, supT, inf T ∈ X for all T ⊆ X. In particular, supX, infX ∈ X. ■

Remark 7. Recall that if X ⊆ R and X is compact, then supX ∈ X and infX ∈ X. However, this
is not always true in Rd. Hence, we need the subcomplete sublattice property on X to ensure the
result above.

Exercise 5. Give an example of X ⊆ R2 such that X is compact but supX (or infX) is not
contained in X.

3.3 Supermodularity and increasing differences

Definition 4. Let Z be a sublattice of Rd (omitting the order ≥ for brevity). A function f : Z → R
is supermodular (on Z) if

f (z) + f (z′) ≤ f (z ∨ z′) + f (z ∧ z′) ∀z, z′ ∈ Z.

If the inequality holds strictly for any non-ordered z, z′ ∈ Z, then f is strictly supermodular. A
function f is submodular if −f is supermodular.

Remark 8. If z and z′ are ordered, then the inequality above holds with equality. A univariate
function, f : Z ⊆ R → R is necessarily supermodular.
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Definition 5. Suppose that X and Θ are sublattices of Rd and Rm respectively. A function
f : X ×Θ → R has increasing differences in (x,θ) if

f
(
x′,θ′)− f

(
x,θ′) ≥ f (x′,θ)− f (x,θ) ∀

(
x′,θ′) ≥ (x,θ) .

f has strictly increasing differences in (x,θ) if we can replace the weak inequalities with strict
inequalities in the expression above.

Remark 9. Equivalently, f has (resp. strictly) increasing differences in (x,θ) if, for any x′ ≥ x, the
function g : Θ → R defined as

g (θ) := f (x′,θ)− f (x,θ)

is (resp. strictly) increasing in θ.
Let us interpret these. Suppose that f is the utility function for a player when choosing an

“action” x when the state is θ. Then, g(θ) is the additional benefit that the player gets from
choosing the “higher” action x over the “lower” action x′; i.e., it is the marginal benefit from
choosing the higher action. Thus, increasing differences is the condition that the marginal benefit
from choosing the higher action increases in the state θ. Notice that we can account for the case
in which the marginal benefit is decreasing in θ by ensuring that g(−θ) is increasing in −θ.

Proposition 2. Suppose that (X,≥) and (Θ,≥) are sublattices of Rd and Rm, respectively, and
that f : X ×Θ → R is supermodular. Then,

(i) f is supermodular in x for each θ ∈ Θ; i.e., for all θ ∈ Θ,

f (x,θ) + f (x′,θ) ≤ f (x ∨ x′,θ) + f (x ∧ x′,θ) ∀x,x′ ∈ X.

(ii) f satisfies increasing differences in (x,θ).

Proof. (i) follows from the definition of supermodularity and letting z := (x,θ) ∈ X × Θ and
z′ := (x′,θ) ∈ X ×Θ. (ii) Fix any z′ := (x′,θ′) ≥ (x,θ) =: z, z, z′ ∈ X ×Θ. Let w := (x,θ′) and
w′ := (x′,θ). Then, w ∨w′ = (x′,θ′) = z′ and w ∧w′ = (x,θ) = z. By supermodularity of f ,

f (w) + f (w′) ≤ f (w ∨w′) + f (w ∧w′) = f (z′) + f (z) ,

which implies
f
(
x′,θ′)− f

(
x,θ′) ≥ f (x′,θ)− f (x,θ) ;

so that f satisfies increasing differences in (x,θ). ■

The result below gives a way of checking if f is supermodular when f is C2.

Proposition 3. Suppose Z is a sublattice of Rd and f : Z → R is C2. Then, f is supermodular
on int(Z) if and only if

∂2f

∂zi∂zj
(z) ≥ 0 ∀i, j ∈ {1, . . . , d} : i ̸= j.

Proof. We prove an interim result first. Suppose Z ⊆ Rd and for any z ∈ Z, let (z′i, z′j ; z−ij) denote
the vector z with zi and zj replaced by z′i and z′j respectively. Say that a function f : Z → R
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satisfies increasing differences on Z if, for all z ∈ Z, for all distinct i, j ∈ {1, . . . , d} and for all z′i
and z′j such that z′i ≥ zi, z′j ≥ zj and (z′i, z

′
j ; z−ij) ∈ Z, we have

f
(
z′i, z

′
j ; z−ij

)
− f (z′i, zj ; z−ij) ≥ f

(
zi, z

′
j ; z−ij

)
− f (zi, zj ; z−ij) .

In words, f has increasing differences on Z if it has increasing differences in each pair (zi, zj) holding
all other coordinates fixed.

Lemma 1. A function f : Z ⊆ Rd → R is supermodular on Z if and only if f has increasing
differences on Z.

Proof. Suppose that f is supermodular and fix z ∈ Z, distinct i, j ∈ {1, . . . , d} and z′i and z′j such
that z′i ≥ zi, z′j ≥ zj and (z′i, z

′
j ; z−ij) ∈ Z. Let w := (z′i, zj ; z−ij) and w′ := (zi, z

′
j ; z−ij) and

observe that
w ∨w′ =

(
z′i, z

′
j ; z−ij

)
, w ∧w′ = z = (zi, zj ; z−ij)

and so by supermodularity,

f (w) + f (w′) ≤ f (w ∨w′) + f (w ∧w′)

⇔ f (z′i, zj ; z−ij) + f
(
zi, z

′
j ; z−ij

)
≤ f

(
z′i, z

′
j ; z−ij

)
+ f (zi, zj ; z−ij) .

Hence, f has increasing differences on Z.
Conversely, suppose that f has increasing differences on Z. Fix any z, z′ ∈ Z. We want to show

that
f (z) + f (z′) ≤ f (z ∨ z′) + f (z ∧ z′) .

If z ≥ z′ or z ≤ z′, the inequality holds with equality. So suppose that z and z′ are not ordered.
Rearrange the coordinates such that

z ∨ z′ = (z′1, . . . , z
′
k, zk+1, . . . , zd) ,

z ∧ z′ =
(
z1, . . . , zk, z

′
k+1, . . . , z

′
d

)
.

That z and z′ are not ordered means we must have 0 < k < m. Now, for 0 ≤ i ≤ j ≤ m, define

zi,j :=
(
z′1, . . . , z

′
i, zi+1, . . . , zj , z

′
j+1, . . . , z

′
m

)
.

Then, z0,k = z∧ z′, zk,m = z∨ z′ , z0,m = z and zk,k = z′. Since f has increasing differences on Z,
for all 0 ≤ i < k ≤ j < m,

f
(
zi+1,j+1

)
− f

(
zi,j+1

)
≥ f

(
zi+1,j

)
− f

(
zi,j

)
.
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Therefore, for k ≤ j < m,

f
(
zk,j+1

)
− f

(
z0,j+1

)
=

k−1∑

i=0

[
f
(
zi+1,j+1

)
− f

(
zi,j+1

)]

≥
k−1∑

i=0

[
f
(
zi+1,j

)
− f

(
zi,j

)]

= f
(
zk,j

)
− f

(
z0,j

)
.

Observe that the left-hand side is greatest when j = m − 1, while the right-hand side is smallest
when j = k. Therefore,

f
(
zk,m

)
− f

(
z0,m

)
≥ f

(
zk,k

)
− f

(
z0,k

)
,

which is, in fact, what we wanted to show. ■

By the lemma above, f is supermodular if and only if, for all z ∈ Z, for all distinct i, j ∈
{1, . . . , d}, and for all ϵ > 0 and δ > 0, we have

f (zi + ϵ, zj + δ; z−ij)− f (zi + ϵ, zj ; z−ij) ≥ f (zi, zj + δ; z−ij)− f (zi, zj ; z−ij) .

Dividing both sides by δ and letting δ ↘ 0, we realise that f is supermodular on Z if and only if,
for all z ∈ Z, for all distinct i, j ∈ {1, . . . , d}, and for all ϵ > 0,

∂f

∂zj
(zi + ϵ, zj ; z−ij) ≥

∂f

∂zj
(zi, zj ; z−ij) .

Subtracting the right-hand side from the left-hand side, dividing both sides by ϵ, and letting ϵ ↘ 0

gives that f is supermodular on Z if and only if, for all z ∈ Z, for all distinct i, j ∈ {1, . . . , d},
∂2f

∂zj∂zi
(z) ≥ 0, as we wanted. ■

Letting Z := X ×Θ = R× R, this tells us that f : R2 → R is supermodular if

∂2f

∂x∂θ
(x, θ) ≡ ∂

∂θ

(
∂f

∂x
(x, θ)

)
≥ 0.

Thinking of f as the utility function, the condition tells us that the marginal utility from x is
increasing in the parameter θ. Alternatively, if we think of f as production and x as labour and
θ as capital input, the condition above is that the two factors of productions are complementary.
Rewriting using “standard” notation and using Young’s Theorem , the above condition becomes

∂

∂K

(
∂F

∂L
(K,L)

)
=

∂

∂L

(
∂F

∂K
(K,L)

)
≥ 0.

Thus, supermodularity can be thought as expressing the idea of complementaries.

Exercise 6 (PS11). Suppose that X and Θ are open sublattices of Rd and Rm respectively. Prove
that f : X ×Θ → R that is C2 has increasing differences in (x,θ) ∈ X ×Θ if

∂2f

∂xi∂θj
(x,θ) ≥ 0 ∀ (i, j) ∈ {1, . . . , d} × {1, . . . ,m} .
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f
(
x′
i, θ

′
j ;x−i,θ−j

)
− f

(
xi, θ

′
j ;x−i,θ−j

)
≥ f

(
xi, θ

′
j ;x−i,θ−j

)
− f (xi, θj ;x−i,θ−j) .

Then, we can mimic the proof in Proposition 3 to obtain the result.
Let us now state the reason why we are interested in supermodularity and increasing differences.

Theorem 2 (Supermodular Monotone Comparative Statics Theorem). Let X be a compact sub-
lattice of Rd, Θ be a sublattice of Rm, and f : X ×Θ → R be a continuous function on X for each
θ ∈ Θ. Suppose that f satisfies increasing differences in (x,θ) and is supermodular in x for each
θ ∈ Θ. Define X∗ : Θ → R by

X∗ (θ) := argmax
x∈X

f (x,θ) .

Then, for each θ ∈ Θ, X∗(θ) is a nonempty compact sublattice of Rd and contains a greatest
element, denoted x∗(θ), that is increasing in θ; i.e. for any θ,θ′ ∈ Θ such that θ′ ≥ θ,

x∗ (θ′) ≥ x∗ (θ) .

If f further satisfies strictly increasing differences in (x,θ), then, for any θ,θ′ ∈ Θ such that θ′ ≥ θ,

x′ ≥ x

for any x ∈ X∗(θ) and any x′ ∈ X∗(θ′).

Proof. Fix θ ∈ Θ. That X∗(θ) is nonempty and is compact follows from the theorem of the
maximum (check that you understand this). Take any distinct x,x′ ∈ X∗(θ). If x ∧ x′ /∈ X∗(θ),
we must have

f (x ∧ x′,θ) < f (x,θ) = f (x′,θ) .

Supermodularity in x then implies

f (x ∨ x′,θ) > f (x,θ) = f (x′,θ) ,

which contradicts the optimality of x and x′. Similar argument establishes that x ∨ x′ ∈ X∗(θ).
Thus, X∗(θ) is a sublattice of Rd and, as a nonempty, compact sublattice of Rd, admits a greatest
element x∗(θ).

Now suppose θ′ > θ and take x ∈ X∗(θ) and x′ ∈ X∗(θ′). Then,

0 ≤ f (x,θ)− f (x ∧ x′,θ)

≤ f (x ∨ x′,θ)− f (x′,θ)

≤ f
(
x ∨ x′,θ′)− f

(
x′,θ′)

≤ 0

(check that you know why each line is true). Hence, above expressions must hold with equality. Optimality of
x′ at θ′; super-
modularity in
x; increasing
differences in
(x, θ); optim-
ality of x at
θ.

Now suppose x = x∗(θ) and x′ = x∗(θ′). Since above expression all hold with equality, x∨x′ must
also be optimal at θ′. If it were not true that x′ ≥ x, then we would have x ∨ x′ > x′ and this
contradicts x′ as the greatest element of X∗(θ′). Thus, we must have x′ ≥ x.
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Finally, take any x ∈ X∗(θ) and x′ ∈ X∗(θ′). If we did not have x′ ≥ x, then we must have
x ∨ x′ > x′ and x ∧ x′ < x. If f satisfies strictly increasing differences, then, since θ′ > θ,

f
(
x,θ′)− f

(
x ∧ x′,θ′) > f (x,θ)− f (x ∧ x′,θ)

so that third inequality in the string of inequality above becomes strict—a contradiction. ■

3.4 Quasi-supermodularity and single-crossing differences

Definition 6. Let X ⊆ Rd be a sublattice of (Rd,≥). A function f : Z → R is quasi-supermodular
if

f (z ∨ z′) ≥ f (z′) ∀z, z′ ∈ Z : f (z) ≥ f (z ∧ z′)

and
f (z ∨ z′) > f (z′) ∀z, z′ ∈ Z : f (z) > f (z ∧ z′) .

Remark 10. As the name suggests, quasi-supermodularity is a weaker property than supermodu-
larity. The latter property is that

f (z ∨ z′)− f (z′) ≥ f (z)− f (z ∧ z′)

Thus, supermodularity says makes a comparison between these two differences. However, quasi-
supermodularity is the requirement that

f (z)− f (z ∧ z′) ≥ 0 ⇒ f (z ∨ z′)− f (z′) ≥ 0.

Thus, it has nothing to say about the relative size between the two except that if the right-hand side
is positive, then so must the left-hand side. Observe also that the implication above is unchanged
by applying a strictly positive transformation; i.e., quasi-supermodularity is an ordinal property.

Proposition 4. Let (X,≥) be a lattice and f : X → R be quasi-supermodular. Then,

X∗ := argmax
x∈X

f (x) (1)

is a sublattice of X.

Proof. Suppose that x,x′ ∈ X∗. We wish to show that x ∨ x′ ∈ X∗ and x ∧ x′ ∈ X∗. Since x is
a maximiser, f(x) ≥ f(x ∧ x′) so that, by quasi-supermodularity, we must have f(x ∨ x′) ≥ f(x′).
Since x′ is also a maximiser, we must also have f(x) = f(x′) ≥ f(x ∨ x′). That is,

f (x′) ≥ f (x ∨ x′) ≥ f (x′) ⇔ f (x ∨ x′) = f (x′) ⇒ x ∨ x′ ∈ X∗.

Towards a contradiction, suppose that x ∧ x′ /∈ X∗; i.e., f(x) > f(x ∧ x′), then by quasi-
supermodularity, we have f(x∨x′) > f(x′), which contradicts that x′ ∈ X∗. Thus, x∧x′ ∈ X∗. ■

Combined with Weierstrass theorem, the result helps us to establish that with the lattice struc-
ture in place, we can think of such a thing as the largest and the smallest maximisers.
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Corollary 2. Suppose X ⊆ Rn is a compact sublattice of (Rn,≥) and f : X → R is continuous
and quasi-supermodular. Then, X∗ as defined in (1) is a nonempty compact sublattice and, in
particular,

supX∗, infX∗ ∈ X.

Proof. Since X is compact and f is continuous, by the Weierstrass Extreme Value Theorem, a
solution exists so that X∗ ̸= ∅. By Proposition 4, X∗ is a sublattice. Moreover, by Berge’s
theorem of maximum, X∗ is compact. Thus, X∗ is a compact sublattice. Then by Proposition 1,
X∗ contains its supremum and infimum. ■

Let us now introduce an order that allows us to compare subsets of a lattice.

Definition 7. Suppose (X,≥) is a lattice and let S, S′ ⊆ X. The strong set order, ≥S , is a binary
relation ≥S : X ×X → X defined by

S′ ≥S S ⇔ s ∨ s′ ∈ S′, s ∧ s′ ∈ S ∀s ∈ S ∀s′ ∈ S′.

Figure 4: Strong set order.
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Proposition 2.2. If (X,�) is a lattice and f : (X,�) 7! R is quasi-supermodular, then arg maxx2X f (x)
is a sublattice of (X,�).

Proof. Suppose that x, x0 2 arg maxx2X (x). We need to show that

x _ x0 2 arg max
x2X

f (x) , (2.1)

x ^ x0 2 arg max
x2X

f (x) . (2.2)

Consider (2.1). Since x is a maximiser,f (x) � f (x ^ x0) . By quasi-supermodularity,

f (x) � f (x ^ x0) ) f (x _ x0) � f (x0) .

Since x0 is also a maximiser, it follows that x _ x0 2 arg maxx2X f (x).
Now consider (2.2). Suppose that x ^ x0 /2 arg maxx2X f (x) such that

f (x) > f (x ^ x0) .

By quasi-supermodularity,

f (x) > f (x ^ x0) ) f (x _ x0) > f (x0) .

However, this contradicts x0 being a maximiser. Hence, x ^ x0 2 arg maxx2X f (x).

Corollary 2.2. Suppose (X,�) is a compact sublattice of
�
Rl,�

�
and f : (X,�) 7! R is continuous

and quasi-supermodular, then M ⌘ arg maxx2X f (x) is a nonempty compact sublattice of
�
Rl,�

�
.

In particular, sup (M) and inf (M) exists and are both in M .

Proof. Since (X,�) is a compact sublattice of
�
Rl,�

�
, by Proposition 1.1, (X,�) is a subcomplete

sublattice such that sup (X 0) 2 X and inf (X 0) 2 X for all X 0 ✓ X. By Proposition 2.2, M =
arg maxx2X f (X) ✓ X is a sublattice of (X,�) and thus, by definition, x _ y 2 M and x ^ y 2 M
for all x, y 2 M . In other words, sup (M) and inf (M) exist and are both in M . Nonemptiness of M
follows from Weierstrass Theorem and the fact that X ✓ Rl is a compact and f is continuous.2

Remark 2.6. The existence of sup (M) and inf (M) implies that there is such a thing as the largest
and smallest maximisers, which in turn imply that the maximisers may be ranked.

Example 2.4 (Production). Suppose 0  K  K, 0  L  L, ⇡ (K, L) = R (K, L) � rK � wL,
and that K and L are complements; ie,

@2R

@K@L
� 0 ) @2⇡

@K@L
� 0.

Then, by Corollary 2.2, M = arg max⇡ (K, L) subject to K 2
⇥
0, K

⇤
and L 2

⇥
0, L

⇤
is a compact

sublattice containing sup (M) and inf (M). Note that if R is concave, then the set of maximiser may
look like an ’egg’ (convex). However, if R is concave and supermodular, then the set of maximisers
will be a compact sublattice and, in particular, the set of maximiser can be ranked (not always
completely) but to the extent that there is a largest maximiser and a smallest maximiser.

2.1 Strong set order
Definition 2.4 (Strong set order). Suppose (X,�) is a lattice and S00, S0 ✓ X. Then S00 �S S0 in
the strong set order if, for all x00 2 S00, x0 2 S0,

x00 _ x0 2 S00,

x00 ^ x0 2 S0.

2Weierstrass Theorem states that: Suppose X is a compact subset of Rl and f : X 7! R is continuous, then
arg maxx2X f (x) is a nonempty compact set.
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Proposition 5. Let (X,≥) be a lattice and suppose S, S′ ⊆ X such that S ≥S S′.

(i) for all s ∈ S, there exists s′ ∈ S′ such that s′ ≥ s;

(ii) for all s′ ∈ S′, there exists s ∈ S such that s′ ≥ s.

Proof. (i) Let z′ ∈ S′ and s ∈ S. Since S′ ≥S S, z′ ∨ s ∈ S′ so set s′ := z′ ∨ s. (ii) Let z ∈ S and
s′ ∈ S′. Since S′ ≥S S, z ∧ s′ ∈ S so set s := z ∧ s′. ■

That is, the strong set order implies ordering of the largest and the smallest elements in the
sets.

Proposition 6. Suppose S and S′ are subcomplete sublattices in Rd such that S′ ≥S S or S′ >S S.
Then,

supS′ ≥ supS and inf S′ ≥ inf S.
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Proof. By definition of a subcomplete sublattice, supS, inf S ∈ S and supS′, inf S′ ∈ S′. By
Proposition 5,

supS ∈ S ⇒ ∃s′ ∈ S′, s′ ≥ supS,

inf S′ ∈ S′ ⇒ ∃s ∈ S, inf S ≥ s′.

Then, by definition of supremum and infimum supS′ ≥ s′ ≥ supS and inf S ≥ s′ ≥ inf S′. ■

Next, we show that if constraint sets are ordered with respect to strong set order, then so is the
set of maximisers.

Theorem 3. Let (X,≥) be a lattice and f : X → R be quasi-supermodular. Suppose Γ,Γ′ ⊆ X

such that Γ′ ≥S Γ, then

X∗
Γ′ := argmax

x∈Γ′
f (x) ≥S argmax

x∈Γ
f (x) =: X∗

Γ (2)

Proof. Take any x ∈ X∗
Γ and x′ ∈ X∗

Γ′ . We wish to show that X∗
Γ′ ≥S X∗

Γ; i.e., (i), x ∨ x′ ∈ X∗
Γ′ ;

and (ii) x ∧ x′ ∈ X∗
Γ. Note that since x ∈ X∗

Γ ⊆ Γ and x′ ∈ X∗
Γ′ ⊆ Γ′, that Γ′ ≥S Γ implies that

x ∨ x′ ∈ Γ′ and x ∧ x′ ∈ Γ.
(i) As x is a maximiser in Γ, we must have f(x) ≥ f(x ∧ x′). By quasi-supermodularity of f ,

this implies that f(x ∨ x′) ≥ f(x′). Since x′ is a maximiser in Γ′ and x ∨ x′ ∈ Γ′, we must have
f(x ∨ x′) = f(x′); i.e., x ∨ x′ ∈ X∗

Γ′ .
(ii) By way of contradiction, suppose that x ∧ x′ /∈ X∗

Γ. Then, f(x) > f(x ∧ x′) since x is a
maximiser in Γ and x∧x′ ∈ Γ. By quasi-supermodularity of f , this implies that f(x∨x′) > f(x′).
Since x ∨ x′ ∈ Γ′, this contradicts the fact that x′ is a maximiser in Γ′. Thus, x ∧ x′ ∈ X∗

Γ. ■

Corollary 3. Let (X,≥) be a sublattice in (Rd,≥) and f : X → R be continuous and quasi-
supermodular. Suppose Γ,Γ′ ⊆ X are compact sublattices of (Rd,≥) with Γ′ ≥S Γ. Then, X∗

Γ and
X∗

Γ′ as defined in (2) are nonempty compact sublattices containing their infimum and supremum
with

X∗
Γ′ ≥S X∗

Γ,

supX∗
Γ′ ≥ supX∗

Γ and infX∗
Γ′ ≥ infX∗

Γ.

Proof. That X∗
Γ′ ≥S X∗

Γ follows from Theorem 3. The rest follows from Corollary 2 and Proposition
6. ■

Definition 8. Suppose that (Θ,≥) is a partially ordered set. A function g : Θ → R has the
single-crossing property if, for any θ′ > θ, we have

g (θ′) ≥ 0 ∀g (θ) ≥ 0

and
g (θ′) > 0 ∀g (θ) > 0.

Remark 11. Any increasing function has the single-crossing property; however, the converse is false
(example?).
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Definition 9. Suppose (X,≥) and (Θ,≥) are partially ordered sets. A function f : X×Θ → R has
single-crossing differences in (x, θ) if, for any x, x′ ∈ X such that x′ > x, the function g : Θ → R
defined as

g (θ) := f (x′, θ)− f (x, θ)

has the single-crossing property.

Remark 12. Since increasing differences implies that g is increasing, it follows that a function with
increasing differences has single-crossing differences.

Exercise 7 (PS11). Suppose (X,≥) and (Θ,≥) are partially ordered sets and that f : X ×Θ → R
has single-crossing differences in (x, θ). Prove that single-crossing property is an ordinal property.
Hint: Show that, for any ϕ : R × Θ → R such that ϕ(·, θ) is strictly increasing for any θ ∈ Θ, the
function f̃ : X ×Θ → R defined by f̃(x, θ) := ϕ(f(x, θ), θ) also has single-crossing differences.

Theorem 4 (Milgrom and Shannon). Let (X,≥) be a lattice and (Θ,≥) be a partially ordered set.
Suppose f : X ×Θ → R and define X∗ : Θ×X ⇒ X as

X∗
Γ (θ) := argmax

x∈Γ
f (x, θ) .

Then, X∗
Γ(θ) is monotone increasing (i.e., X∗

Γ(θ
′) ≥S X∗

Γ′(θ) for any (θ,Γ) ∈ Θ × X such that
θ′ ≥ θ and Γ′ ≥S Γ) if and only if (i) f(·, θ) is quasi-supermodular in x for all θ ∈ Θ, and (ii) f

has single-crossing differences in (x, θ).

Proof. Fix θ′, θ ∈ Θ such that θ′ ≥ θ and Γ′ ≥S Γ. Let x ∈ X∗(θ,Γ) and x′ ∈ X∗(θ′,Γ′). Since
Γ′ ≥S Γ, x ∧ x′ ∈ Γ and x ∨ x′ ∈ Γ′. We first show that x ∨ x′ ∈ X∗(θ′,Γ′). By optimality
of x, f(x ∧ x′, θ) ≤ f(x, θ). Because f has single-crossing differences in (x, θ), we must then have
f(x∧x′, θ′) ≤ f(x, θ′). By f(·, θ) is quasi-supermodular, we must have f(x′, θ′) ≤ f(x∨x′, θ′). This,
in turn, implies that x∨x′ ∈ X∗(θ′,Γ′). By way of contradiction, suppose that x∧x′ /∈ X∗(θ,Γ); i.e.,
f(x, θ) > f(x ∧ x′, θ). By quasi-supermodularity of f(·, θ), this implies that f(x ∨ x′, θ) > f(x′, θ).
Since f has single-crossing differences in (x, θ), we obtain that f(x ∨ x′, θ′) > f(x′, θ′). But since
x ∨ x′ ∈ Γ′ and x′ ∈ Γ′, above contradicts the fact that x′ ∈ X∗(θ′,Γ′). Hence, we must have
x ∧ x′ ∈ X∗(θ,Γ).

Conversely, suppose that X∗
Γ(θ) is monotone increasing. To show that f(·, θ) is quasi-supermodular

in x for all θ ∈ Θ, fix x, x′ ∈ X and θ ∈ Θ. Consider Γ := {x, x∧x′} and Γ′ := {x′, x∨x′}. Observe
that Γ′ ≥S Γ. Suppose that f(x∧x′, θ) ≤ f(x, θ) so that x ∈ X∗

Γ(θ). Then, X∗
Γ′(θ) ≥S X∗

Γ(θ) implies
that we must have f(x′, θ) ≤ f(x ∨ x′, θ)—if, instead, f(x′, θ) > f(x ∨ x′, θ), then x′ ∈ X∗

Γ′(θ) and
x ∨ x′ /∈ X∗

Γ′(θ); but this contradicts the fact that X∗
Γ′(θ) ≥S X∗

Γ(θ) implies that x ∨ x′ ∈ X∗
Γ′(θ)).

Similarly, f(x ∧ x′, θ) < f(x, θ) implies f(x′, θ) < f(x ∧ x′, θ). To show that f has single-crossing
differences in (x, θ), fix x, x′ ∈ X and θ, θ′ ∈ Θ such that x′ > x and θ′ > θ. Consider Γ := {x, x′}.
If f(x, θ) ≤ f(x′, θ), then x′ ∈ X∗

Γ(θ) and X∗
Γ(θ

′) ≥S X∗
Γ(θ) implies that f(x, θ′) ≤ f(x′, θ′)—if, in-

stead, f(x, θ′) > f(x′, θ′), then x′ /∈ X∗
Γ(θ

′) but X∗
Γ(θ

′) ≥S X∗
Γ(θ) implies that x∨x′ = x′ ∈ X∗

Γ(θ
′)).

Similarly, f(x, θ) < f(x′, θ) implies that f(x, θ′) < f(x′, θ′). ■

Remark 13. The theorem above does not require topological assumptions (and so we don’t have
nonemptiness nor compactness of X∗(θ)).
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Remark 14. The monotone comparative statics theorem does not always apply. Indeed, the budget
constraint Γ(p,m) := {x ∈ Rd : p · x ≤ m} in utility maximisation problems are not ordered with
respect to the strong set order (it is not even a lattice). This means that we cannot conduct demand
analysis via the monotone comparative statics theorem. There are generalisations of the result (e.g.,
C-supermodularity, Quah, 2007) allowing one to handle budget constraints among other things.
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