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1 Discretizing AR(1): Tauchen’s Method

1.1 Idea

The essence of Tauchen’s method is to discretize a continuous AR(1) process, which
is typically normal, into a finite state space that captures the essence of the continu-
ous process. By doing so, it allows for easier computation of stochastic processes in
numerical models, especially in dynamic programming contexts.

Here we want to approximate the following AR(1) process with {zi}ni=1 and {pij}n,ni,j=1

where pij is the transition probability from state zi to state zj :

z′ = (1− ρ)µ+ ρz + ϵ′ ϵ′ ∼ iid N(0, σ2
ϵ )

1. Set n, which is the number of potential realizations of z.

2. Notice that the stationary distribution of z is N(µ, σ2
z) where σz = σϵ√

1−ρ2
.

3. Set the upper bound z̄ and the lower bound z to the support of z. Considering
the symmetry of the normal distribution around µ, a natural way to set the bounds is
to choose λ such that:

z̄ = µ+ λσz

z = µ− λσz

4. Set {zi}ni=1 such that, z1 = z, zn = z̄, and all of {zi}ni=1 are equally distanced. In
other words, for i = 1, 2, . . . , n:

zi = z +
z̄ − z

n− 1
(i− 1) = z +

2λσz
n− 1

(i− 1)

5. Construct the midpoints {mi}n−1
i=1 . mi is constructed as follows:

mi =
zi+1 + zi

2
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6. Let’s construct intervals {Zi}ni=1 as follows:

Z1 = (−∞,m1]

Zi = (mi−1,mi] i = 2, 3, . . . , n− 1

Zn = (mn−1,∞)

7. We will approximate the transition probability pij as the probability that, condi-
tional on zi, z′ = (1− ρ)µ+ ρzi+ ϵ

′ falls into the interval j. pij can be easily computed
as follows:

pij = Φ

(
mj − (1− ρ)µ− ρzi

σϵ

)
− Φ

(
mj−1 − (1− ρ)µ− ρzi

σϵ

)
j = 2, 3, . . . , n− 1

pi1 = Φ

(
m1 − (1− ρ)µ− ρzi

σϵ

)
pin = 1− Φ

(
mn−1 − (1− ρ)µ− ρzi

σϵ

)
where Φ(.) is the CDF of N(0, 1).

1.2 Intuition

The method assumes that the future value of zt+1 is normally distributed around
the mean given by the AR(1) process, and the variance remains constant. By dividing
the possible range of zt+1 into discrete intervals and computing transition probabilities,
Tauchen’s method approximates the likelihood of moving from one state to another.

If currently we are in state i such that zt = zi, then:

E[zt+1 | zt = zi] = (1− ρ)µ+ ρzi

V ar[zt+1 | zt = zi] = σ2
ϵ

Therefore,
zt+1 | zt ∼ N((1− ρ)µ+ ρzi, σ

2
ϵ )

3



ECON 6130 Section 7 October 11, 2024FA

And the transition probability Pi→j we want to calculate would be something like:

Pi→j = P (z = zj | zi) ≈ P (z ∈ “Zj” | z = zi)

This is basically what the algorithm is doing.

A graphical illustration of Tauchen (By Alisdair McKay):

1.3 Simulate the AR(1) as a Markov Chain

Route 1: With the transition matrix Pi→j in hand, you could use the MATLAB
function simulate together with dtmc2. Please read the document yourself.

x = simulate(mc,numSteps,’X0’,x0)

where "x0" is the initial state.

Route 2: Start at an initial state. Use a random number generator from the
standard uniform distribution, and assign the draw to a destination state. (The code
is provided in section7_MATLAB.m).

Note: There are built-in functions in MATLAB for variance, mean, and autocorre-
lation. These are easy to use, but you can also code up the “math formulas” yourself.

2https://www.mathworks.com/help/econ/dtmc.simulate.html
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2 Value Function Iteration with (z, k) State Space

2.1 Remarks on how to code this

This code builds on Section 5’s code, but now we have two state variables: z, k.
Therefore, we need a two-dimensional grid to discretize the state space!

1. For z, we have the Tauchen grid already (say, per Pset4, we have 7 grid points).

2. For k, we can choose 100 grid points using linspace.

Therefore, we need to find the policy rule k′ = g(z, k) for each of the 7× 100 = 700

grid points. And z′ = h(z, k) is simply the exogenous AR(1) rule.

Key point: Note that we need to compute the conditional expectation of the value
function across all possible states. For example,

v(k, z) = max
k′

{U (ezF (k, 1) + (1− δ)k − k′) + βE[v(k′, z′) | z]}

≈ max
k′

{
U (ezF (k, 1) + (1− δ)k − k′) + β

∑
z′

π(z′ | z)v(k′, z′)

}

And in MATLAB, we can perform a dot product between two vectors:

value_iter(i,k,j)=log(exp(sample_space(k))*k_grid(i)^alpha-k_grid(j)+...
beta*trans(k,:)*squeeze(value(1,j,:)));

We here provide you with a code with a different AR(1) process and assume full
depreciation. The code is also not optimized (e.g., k′ is not in vector form). You need
to adapt the code on your own.

1 % Loop to compute value functions iteratively , continue until sup <tol
2 while sup >=tol
3 % Rename previous iteration ’s value function as base value function

for
4 % current iteration
5 value (1,:,:)=value (2,:,:);
6 % Loop over current income shock values in sample_space
7 for k=1: size_space

5
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8 % Loop over current capital values in k_grid
9 for i=1: grid_size

10 % Loop over next -period capital values in k_grid
11 for j=1: grid_size
12 % Check if feasibility is satisfied , capital strictly
13 % positive (Inada conditions assumed)
14 if 0<k_grid(j) && k_grid(j)<=exp(sample_space(k))*

k_grid(i)^alpha
15 % Calculate value of objective with current -period capital
16 % k_grid(i), next -period capital k_grid(j), and
17 % current -period shock sample_space(k)
18 value_iter(i,k,j)=log(exp(sample_space(k))*k_grid(

i)^alpha ...
19 -k_grid(j))+beta*trans(k,:)*squeeze(value(1,j,:))

;
20 % Set value to -Inf if feasibility violated
21 else
22 value_iter(i,k,j)=-Inf;
23 end
24 end
25 % Assign value(2,i,k) as maximum of value_iter(i,k,j) over j
26 value(2,i,k)=max(value_iter(i,k,:));
27 end
28 end
29 % Determine sup difference between value(2,i,k) and
30 % value(1,i,k)
31 sup=max(max(abs(value (2,:,:)-value (1,:,:))));
32 end
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3 Practice Question: Multiple Endogenous States

Consider an economy with a single good, cookies, produced using capital. Cookies
can be eaten as consumption, or transformed into capital goods or durable goods. The
representative agent has lifetime utility given by

∞∑
t=0

βtu(cnt , xt)

where 0 < β < 1. Here cnt is the agent’s consumption of cookies, xt is the agent’s
consumption of the service flow from durable goods. Here u has standard properties.

The resource constraint is
cnt + cdt + it = yt

where cdt represents investment in durables goods (durables purchases), it represents
investment, and yt is the output of cookies. The capital stock and the stock of durables
evolve according to

kt+1 = (1− δ)kt + it

dt+1 = (1− ψ)dt + cdt

Here 0 < δ < 1 and 0 < ψ < 1 are depreciation rates of capital and durables,
respectively.

Output and service from the stock of durable is given by

yt = f(kt)

xt = ϕ(dt)

Here f and ϕ have standard properties.

1. Write down the social planner’s problem for this economy as a Bellman equation.

2. Derive the first-order conditions and the envelope conditions of the social planner.

3. Derive and interpret the Euler equation for durable goods.
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