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Exercise 1. Toward a contradiction, suppose that

sup
x∈Γ1

f (x) > sup
x∈Γ2

f (x)

Then there exists x′ ∈ Γ1 such that
f (x′) > sup

x∈Γ2

f (x)

But x′ ∈ Γ2 also, so this is a contradiction.

Exercise 2. By definition of sup

x∗ ∈
{

x ∈ X

∣∣∣∣∣ f (x) = sup
z∈Γ

f (z)

}
⇐⇒ f (x∗) ≥ f (x) for all x ∈ Γ

and

x∗ ∈
{

x ∈ X

∣∣∣∣∣ (g ◦ f ) (x) = sup
z∈Γ

(g ◦ f ) (z)

}
⇐⇒ (g ◦ f ) (x∗) ≥ (g ◦ f ) (x) for all x ∈ Γ

Because g is strictly increasing, we also have for all x that

f (x∗) ≥ f (x) ⇐⇒ (g ◦ f ) (x∗) ≥ (g ◦ f ) (x)

The result follows. If g was a weakly increasing function, we would instead have

f (x∗) ≥ f (x) =⇒ (g ◦ f ) (x∗) ≥ (g ◦ f ) (x)

This implies {
x ∈ X

∣∣∣∣∣ f (x) = sup
z∈Γ

f (z)

}
⊆

{
x ∈ X

∣∣∣∣∣ (g ◦ f ) (x) = sup
z∈Γ

(g ◦ f ) (z)

}

This may hold with inequality: consider the set {0, 1} and the functions f (x) := x and g(x) := 1.

Exercise 3. By definition, (iii) =⇒ (ii). If f has a local maximum at x∗ then for x sufficiently close
to x∗, f (x∗) ≥ f (x). Because f is concave and differentiable on the convex set int X, Proposition
14 implies that ∇ f (x∗)(x − x∗) ≤ 0 for x close to x∗. It follows that ∇ f (x∗) ≤ 0 and ∇ f (x∗) ≥ 0,
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so ∇ f (x∗) = 0. Therefore, (ii) =⇒ (i). It remains to show that (i) =⇒ (iii). Suppose that
∇ f (x∗) = 0. Applying Proposition 4 again,

∇ f (x∗) (x − x∗) ≥ f (x)− f (x∗)

for all x ∈ int X. It follows that 0 ≥ f (x)− f (x∗) for all such x, or equivalently, f (x∗) ≥ f (x).
Suppose x ∈ bd X. Continuity of f (implied by differentiability) tells us that for all ε > 0, there
exists x′ close enough to x that f (x) < f (x′) + ε. This implies that f (x) < f (x∗) + ε for all ε > 0.
That is, f (x) ≤ f (x∗). Thus, f has a global maximum at x∗.

Exercise 4. g is clearly C1 and concave. f is clearly C1 on R \ {0, 1}. To see if f is differentiable at
0, we consider left- and right-derivatives,

lim
h↗0

f (h)− f (0)
h

= lim
h↗0

h3

h

= lim
h↗0

h2

= 0

=
0
h

= lim
h↘0

f (h)− f (0)
h

and do the same at 1,

lim
h↘0

f (1 + h)− f (1)
h

= lim
h↘0

(1 + h − 1)2 − (1 − 1)2

h

= lim
h↘0

h2

h

= lim
h↘0

h

= 0

= lim
h↗0

f (1 + h)− f (1)
h

Therefore, f is differentiable everywhere, with derivative

f ′(x) =


3x2 if x < 0

0 if 0 ≤ x ≤ 1

2(x − 1) if x > 1

It is easy to see that this is continuous: in particular, if x → 0 then f ′(x) → 0 and if x → 1 then
f ′(x) → 0. The derivative of f is everywhere nonnegative, so f is monotone and thus quasiconcave.
f is not concave because

f
(

1
2
· 0 +

1
2
· 2

)
= f (1) = 0 <

1
2
=

1
2
· 12 =

1
2

f (0) +
1
2

f (2)

Let x∗ ∈ [0, 1]. Then f ′(x∗) = 0 and g(x∗) ≥ 0, so the KKT conditions are satisfied by λ∗ = 0.
But f (x∗) = 0 < f (x) for any x > 1. This suggests that we cannot remove condition (14) from
Theorem 5: if ∇ f (x∗) = 0 and f is not concave, then x∗ may not be a maximum.
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PS 9 Additional Exercises
Exercise 1.

(i) If problem (1) attains a global maximum at x∗ and the constraint qualification holds, then by
the Theorem of Lagrange, there exists µ∗ ∈ RK such that

∇ f (x∗) +
K

∑
k=1

µ∗
k · ∇hk(x∗) = 0

But the left-hand side is just ∇xL(x∗, µ∗). Moreover, the constraints imply ∇µL(x∗, µ∗) =

h(x∗) = 0. Taken together, we have

∇L(x∗, µ∗) = 0

So (x∗, µ∗) ∈ S and x∗ ∈ SX. It follows that f (x◦) ≥ f (x∗). Moreover, x◦ ∈ SX implies that
there exists µ◦ such that ∇L(x◦, µ◦) = 0. But ∇µL(x◦, µ◦) = 0 implies that x◦ satisfies the
constraints. Therefore, x◦ is also a global maximiser for problem (1).

(ii) (Note: This problem should have had the the additional hypothesis: “Suppose (4) has a solution.” ) Let
(x′, µ′) solve (4). Then Proposition 1 on unconstrained optimisation implies that (x′, µ′) ∈ S,
so x′ ∈ SX. Moreover, by definition of (x′, µ′),

L(x′, µ′) = f (x′) + ∑ µ′
khk(x′) ≥ f (x◦) + ∑ µ◦

k hk(x◦) = L(x◦, µ◦)

where x◦ maximises (3). But x′, x◦ ∈ SX implies h(x′) = h(x◦) = 0.It follows that

f (x′) ≥ f (x◦)

so x′ is also a solution to (3). Conversely, x′ ∈ SX and the definition of x◦ imply

f (x◦) ≥ f (x′)

Moreover, we know that h(x◦) = h(x′) = 0 so

L(x◦, µ◦) = f (x◦) + ∑ µ◦
k hk(x◦) ≥ f (x′) + ∑ µ′

khk(x′) = L(x′, µ′)

for any µ◦. It follows that (x◦, µ◦) solves (4).

If problem (1) attains a global maximum at x∗ and the constraint qualification holds, then by
the Theorem of Lagrange, there exists µ∗ ∈ RK such that

∇ f (x∗) +
K

∑
k=1

µ∗
k · ∇hk(x∗) = 0

But the left-hand side is just ∇xL(x∗, µ∗). Moreover, the constraints imply ∇µL(x∗, µ∗) =

h(x∗) = 0. Taken together, we have

∇L(x∗, µ∗) = 0

So (x∗, µ∗) ∈ S and x∗ ∈ SX. It follows that f (x◦) ≥ f (x∗). Moreover, x◦ ∈ SX implies that
there exists µ◦ such that ∇L(x◦, µ◦) = 0. But ∇µL(x◦, µ◦) = 0 implies that x◦ satisfies the
constraints. Therefore, x◦ is also a global maximiser for problem (1).
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(iii) Let (x′, µ′) solve (4). Then Proposition 1 on unconstrained optimisation implies that (x′, µ′) ∈
S, so x′ ∈ SX. Moreover,

f (x′) + ∑ µ′
khk(x′) ≥ f (x◦) + ∑ µ◦

k hk(x◦)

where x◦ maximises (3). But part (i) tells us that h(x◦) = 0 and Proposition 1 tells us that
h(x′) = 0. it follows that

f (x′) ≥ f (x◦)

so x′ is also a solution to (3). Conversely, suppose x◦ is a solution to (3). Then, the previous
direction implies

f (x◦) ≥ f (x′)

for any x′ such that (x′, µ′) solves (4). Moreover, we know that h(x◦) = h(x′) = 0 so

L(x◦, µ◦) = f (x◦) + ∑ µ◦
k hk(x◦) ≥ f (x′) + ∑ µ′

khk(x′) = L(x′, µ′)

for some µ◦. It follows that (x◦, µ◦) solves (4).

Exercise 2. y3 − x2 = 0 is equivalent to y3 = x2. In particular, this implies that y ≥ 0. Maximising
−y is equivalent to minimising y, which is achieved by choosing y = 0. The constraint then implies
that x =

√
y = 0.

Dh(0, 0) =
[

∂h(0,0)
∂x

∂h(0,0)
∂y

]
=

[
−2 · 0 3 · 02

]
=

[
0 0

]
and the constraint qualification is that rank Dh(x, y) = 1. The rank of a matrix is the maximal
number of its rows (or columns) that can comprise a linearly independent set. Here, we have one
row, which is a zero vector, and the set {0} is not linearly independent. Therefore rank Dh(x, y) = 0,
violating the constraint qualification.

Note also that for any µ ∈ R,

∇ f (0, 0) + µ∇h(0, 0) =
[
0 −1

]
+ µ

[
0 0

]
=

[
0 −1

]
̸=

[
0 0

]
Exercise 3. The solution to (1) can be obtained by plugging the constraint y = x into the objective
function to get 1

3 x3 − 3
2 x2 + 2x. This function does not attain a maximum, as limx→∞

1
3 x3 − 3

2 x2 +

2x = limx→∞ x3 · ( 1
3 −

3
2x + 2

x2 ) = ∞ · 1
3 = ∞.

Dh(x, y) =
[
1 −1

]
which has rank 1, as required by the constraint qualification.

The Lagrangian is

L(x, y, µ) =
1
3

x3 − 3
2

y2 + 2x + µ · (x − y)

Again, by choosing x = y → ∞, we can make this expression arbitrarily large, so (4) doesn’t have a
solution.

Exercise 4. Exercise 2 tells us that the constraint qualification is necessary in the Theorem of
Lagrange. Exercise 3 tells us that the constraint qualification and ∇L(x, µ) = 0 are not sufficient
conditions for the existence of an equality-constrained maximum.
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