
Module 1 answer key

1. Why can we write “the” least upper bound? (Formally, prove that supS
is unique: if β and β′ both satisfy the definition, then β = β′.)
Solution: Suppose for the sake of contradiction and without loss of gen-
erality that β < β′, β = supS, β′ = supS. Since β < β′ = supS, there
exists some a ∈ S such that a > β. However, this means that β cannot
be an upper bound.

2. Prove or disprove: If supS exists, then supS ∈ S.
Solution: False. Consider the set {x ∈ R : x < 2}, which can also be
written (−∞, 2).

3. Let S ⊂ R be nonempty and bounded. Prove that inf S ≤ supS. What
can you say if inf S = supS?
Solution: Since S 6= ∅, there must exist some element in S. By definition
of infinum,

∀s ∈ S, s ≥ inf S

∀s ∈ S, s ≤ supS

The two inequalities imply inf S ≤ supS. Note that if inf S = supS then
inf S = s = supS and S = {s}.

4. Recall the formal definition of maximum and minimum of a set (don’t look
them up—model your definitions on those of supremum and infimum).
Prove or disprove: Every set (in R) has a maximum. Every bounded set
has a maximum.
Solution: False; consider the following bounded set: S = {x ∈ R : 1 <
x < 2}. Let’s prove that this set does not have a maximum. Suppose
s ∈ S is the maximum of the set S. Then, s < 2. Take s̄ = s+2

2 . Clearly,
s̄ < 2 and, therefore, s̄ ∈ S; at the same time, s̄ > s, therefore, s can’t be
the maximum of S. Although S does not have the maximum, it still has
the supremum. In particular, supS = 2.

5. Prove or disprove: If S ⊆ R has a maximum maxS, then maxS = supS.
Solution: True. If m = maxS, then for all a ∈ S, a ≤ m by the definition
of maximum, so m is an upper bound. There cannot exist another upper
bound u < m because m ∈ S, and, hence, at least one of the elements of
S (this element is m) would be greater than u. Thus, m is the least upper
bound. In fact, maximum is often defined so that m = maxS if and only
if m = supS and m ∈ S.

6. Let S and T be nonempty and bounded subsets of R. Prove or disprove:
sup(S ∪ T ) = max{supS, supT}.
Solution: True. Without loss of generality (WLOG), let supS ≥ supT .
Then for any s ∈ S, we have supS ≥ s by definition, and for any t ∈ T ,
we have supS ≥ supT ≥ t. Therefore, for any x in S ∪ T , we have
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supS ≥ x. Thus, supS is an upper bound and we need only show that
supS is minimal among upper bounds for S ∪ T . Now, assume that there
exists an upper bound u < supS for S ∪T . Since u is an upper bound for
S ∪ T , it is also an upper bound for S. However, u < supS contradicts
the definition of supS.

7. Prove that Proposition 8 and Proposition 9 are equivalent: Proposition 8
follows from Proposition 9 and vice versa.
Solution: Suppose that N is bounded. Then, by completeness, it has the
supremum. Denote s = supN. Since, s is the supremum, s − 1 is not an
upper bound. Hence, there exist m ∈ N such that m > s − 1, otherwise
s−1 would be an upper bound. Rearranging terms, we get that m+1 > s.
But because m ∈ N, m+ 1 ∈ N. But then m+ 1 ≤ s by the definition of
supremum. Contradiction. N is unbounded in R.

8. Prove or disprove: If a > 0, then there exists an n ∈ N such that 1
n < a <

n.
Solution: True. Take b = 1 and apply Archimedean property: ∃n ∈
N, na > 1 ⇒ a > 1

n . By previous exercise, N is unbounded, hence,
∃m ∈ N, m > a. Take k = max{n,m}. Then, 1

k ≤
1
n < a < m ≤ k.

9. Prove or disprove: If a < b, then there exist infinitely many rationals
between a and b.
Solution: True. Suppose for the sake of contradiction, there exist only n
rationals between a and b, ordered a, r1, r2, ...rn, b (we know that n ≥ 1).
Then by the density property there exists another rational number a <
r0 < r1. However, then there would be n+ 1 rationals between a and b.

10. According to a strict interpretation of the definition of supremum and
infimum, what are sup ∅ and inf ∅ (where ∅ is the empty set)?
Solution: Since there are no elements in the empty set, the statement
“for all e ∈ ∅, e < (or >) r” for any r ∈ R is vacuously true. Thus,
every number in R is an upper (lower) bound. Thus, sup ∅ = −∞ and
inf ∅ =∞.

11. Prove or disprove: If a sequence has a limit, then the limit is unique.1

Solution: True. Suppose for the sake of contradiction that xn → L,L′

where L 6= L′. WLOG, assume that L ≥ L′. For any ε > 0, for sufficiently
large n, |xn−L| < ε and |xn−L′| < ε. Thus, we have |xn−L|+ |xn−L′| <
2ε. By the triangle inequality, this implies |L−L′| = L−L′ < 2ε. However,

note that this must hold for any ε > 0. Take ε = L−L′

2 , then we get that
L− L′ < L− L′. Contradiction.

12. Find the limit (if they exist) of the following sequences, or show that they
do not exist.

(a) (an)n =
(
1
n

)
n

1Hint: recall the triangle inequality: |a− b| ≤ |a− c|+ |c− b|, for all a, b, c ∈ R.
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(b) (bn)n = ((−1)n)n
(c) (cn)n =

(
(−1)2n

)
n

Solution:
(a) This converges to zero. For any ε > 0, pick N =

⌈
1
ε

⌉
. Then for any

n > N , we have n > N ≥ 1
ε ⇒ εn > 1 ⇒ ε > 1

n > 0 > −ε. Thus,
| 1n − 0| < ε.
(b) No; pick ε = 1. Since we have bn = 1 for even n, the limit must be in
(0, 1). But since we have bn = −1 for odd n, the limit must be in (−1, 0).
(c) Yes; this sequence is a constant sequence where every term equals 1.
Its limit is 1. Notice, |cn − 1| = |1− 1| = 0 < ε for any ε > 0 and any N
you pick.

13. Prove or disprove: If xn → x and yn → y, then (xn + yn)n converges to
x+ y.
Solution: True. For any ε, for sufficiently large n, we have |xn − x| < ε

2
and |yn − y| < ε

2 . This gives us |xn − x| + |yn − y| < ε. Using the
triangle inequality, we have |(xn + yn) − (x + y)| = |xn − x + yn − y| ≤
|xn − x|+ |yn − y| < ε

14. Prove or disprove: a sequence (xn) converges to x if and only if there
exists ε > 0 such that all terms xi are contained in (x− ε, x+ ε).
Solution: (a) (⇒) True. Take ε̄ > 0. Since (xn) converges, there exists
N such that ∀n > N it is true that xn ∈ (x− ε̄, x+ ε̄). At the same time
there is only a finite number of sequence points that have an index smaller
than N . Hence, x̄ = max{x1, x2, . . . , xN} and x = min{x1, x2, . . . , xN}
exist. Therefore, the entire sequence is bounded by max{x̄, x + ε̄} from
above and by min{x, x− ε̄} from below. So, obviously we can find such ε
such that all points of the sequnce will lie inside (x− ε, x+ ε).
(b) (⇐) False. Take (xn) = ((−1)n)n. Take x = 0 and ε = 2, then all
points of the sequence are contained in (−2, 2), but this sequence does not
converge to 0.

15. Prove or disprove: a sequence (xn) converges to x if and only if for all
ε > 0 all but finitely many terms xi are contained in (x− ε, x+ ε).
Solution: True. (a) (⇒) True. If all but finely many terms are contained
in (x− ε, x+ ε), then there must be a maximum term xN such that for all
xn 6∈ (x− ε, x+ ε), n ≤ N . Thus, for all n > N , |xn − x| < ε.
(b) (⇐) True. There exists some N such that for all n > N , |xn − x| < ε.
Since there are an infinite number of n > N , there are an infinite number
of terms such that xn ∈ (x− ε, x+ ε).

16. Prove or disprove: a sequence (xn) converges to x if and only if for all
ε > 0 infinitely many terms are contained in (x− ε, x+ ε).
Solution: False. (a) (⇐) False. Consider xn = (−1)n and take x = 1.
(b) (⇒) True. There exists some N such that for all n > N , |xn − x| < ε.
Since there are an infinite number of n > N , there are an infinite number
of terms such that xn ∈ (x− ε, x+ ε).

3



17. Prove or disprove: a sequence (xn) converges to x if and only if for all
ε > 0 infinitely many terms are contained in (x − ε, x + ε), and x is the
only number with this property.
Solution: (a) (⇒) True. If (xn) converges, then there exists some N such
that for all n > N , |xn−x| < ε. Since there is an infinite number of n > N ,
there are an infinite number of terms such that xn ∈ (x−ε, x+ε). Suppose
x is not the only point with such property and there exists x′ such that
for all ε′ > 0 there infinitely many points contained in (x′ − ε′, x′ + ε′).

WLOG, assume that x′ > x. Then, take ε = ε′ = x′−x
2 . In this case

Bε(x)∩Bε′(x′) = ∅. We know that since (xn) converges to x for all points
but finitely many are contained in (x − ε, x + ε). Hence, only a finite
number of points could be in Bε′(x

′). Contradiction.

(b) (⇐) False. Take xn =

{
n, if n is odd;

0, if n is even.

18. Prove or disprove: If a series does not converge, then it diverges to either
+∞ or −∞.
Solution: False. Consider xn = (−1)n.

19. Prove or disprove: Let (xn) diverge to +∞ and yn → y > 0 (y can be
finite or +∞). Then limxnyn exists (and is . . . ?).
Solution: Since (xn) diverges to +∞, then for any M > 0, and some
ε < y, there exists N1 such that for all n > N1, xn > M

y−ε . Since (yn)
converges to y > 0, there exists N2 such that for all n > N2, we have
|yn − y| < ε ⇔ −ε + y < yn < ε + y ,yn > −ε + y. Thus, for all
n > max{N1, N2}, we have xnyn >

M
y−ε · (y − ε) = M .

20. Prove or disprove: Let (xn) diverge to +∞ and yn → 0. Then limxnyn
exists (and is . . . ?).
Solution: In the case where y = 0, we cannot say anything for certain.
For example, if xn = n and yn = 1

n , xnyn → 1. However, if we set
xn = n2 and keep yn = 1

n , this diverges. If we set xn = n and yn = 0,
then xnyn → 0.

21. Prove or disprove: Every bounded sequence is convergent.
Solution: False. Consider xn = (−1)n.

22. Prove or disprove: Every convergent sequence (with a finite limit) is
bounded.
Solution: True; this is the “only if” direction of exercise 14. Take
ε̄ > 0. Since (xn) converges, there exists N such that ∀n > N it is
true that xn ∈ (x − ε̄, x + ε̄). At the same time there is only a finite
number of sequence points that have an index smaller than N . Hence,
x̄ = max{x1, x2, . . . , xN} and x = min{x1, x2, . . . , xN} exist. There-
fore, the entire sequence is bounded by max{x̄, x + ε̄} from above and
by min{x, x− ε̄} from below. So, obviously we can find such ε such that
all points of the sequnce will lie inside (x− ε, x+ ε).
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23. Complete the following: A sequence is both nondecreasing and nonincreas-
ing if and only if it is . . . .
Solution: ...it is constant. If for all n, xn ≤ xn+1 and xn ≥ xn+1, then
xn = xn+1.

24. Prove or disprove: If a sequence converges, then every subsequence con-
verges (to the same limit).
Solution: True. If xn converges to x, then for any ε, there exists N such
that for every n > N , |xn − x| < ε. Since we got a subsequence sm by
deleting some terms of xn, then this must also hold for every m > N .

25. Prove or disprove: if a sequence is bounded, then every subsequence is
bounded.
Solution: True. If a sequence is bounded, then its set of values X =
{xn : n ∈ N} is bounded and its supremum supX and infinum inf X exist.
If every element of a sequence is less than supX, then every element of a
subsequence must be as well, because they are constructed from original
elements of the sequence. And vice versa, if every element of the sequence
is greater or equal to inf X, then every element of the subsequence is
greater or equal to inf X as well.

26. Prove or disprove: if a sequence is unbounded, then every subsequence is
unbounded.

Solution: False. Take xn =

{
n, if n is odd;

0, if n is even.
. (xnk

)k = 0 is an obvious

subsequence.

27. Prove or disprove: if a sequence is unbounded, then it has a subsequence
which is bounded.
Solution: False. Consider the sequence xn = n. Since this diverges to
infinity, any subsequence must as well.

28. Prove or disprove: Referring to the previous proof, if maxS0 does not
exist then neither do maxSn, for all n ≥ 1.
Solution: True. Suppose the opposite is true: maxS0 does not exist,
but there is some Sn such that it has x̄ = maxSn. Denote S = S0\Sn =
{x0, x1, ..., xn−1}. Since S0 does not have a maximum, there exists ¯̄x ∈ S
such that ¯̄x > x̄ (otherwise x̄ = maxS0). Since S is finite, x = maxS
exists. Then, x ≥ ¯̄x ≥ x̄, but that means that x is a maximum of S0,
since it is the biggest element in S = S0/Sn and is bigger than the biggest
element in Sn.

29. In the second part of the proof, can you replace min {m ∈ N : xm =
maxS(nk)+1} with max {m ∈ N : xm = maxS(nk)+1}?
Solution: No. It might not exist. Consider (xn) = 1. Then maximum
exists for all Sn and is equal to 1. However, max{m ∈ N : xm = 1} =∞.
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30. Prove or disprove: If (xn) is a sequence, there exists an M ∈ N such that
lim supxn = sup{xn : n ≥M}.
Solution: False. Take any strictly decreasing sequence xn that converges
to some point x. lim supxn = x as well, by prop 30. But for any N ,
sup{xn|n ≥ N} is xN and xN > x by assumption that xn is strictly
decreasing.

31. Replace ? with an appropriate symbol, then prove: For any sequences
(xn), (yn),

lim sup(an + bn) ? lim sup an + lim sup bn

provided the right hand side is not of the form ∞ + (−∞) (which is un-
defined).
Solution: Replace ? with ”less than or equal to”. For an example
where the inequality is strict, let (an) = (1,−1, 1,−1, ...) and let (bn) =
(−1, 1,−1, 1, ...). Then lim sup(an + bn) = 0. lim sup an + lim sup bn = 2.
To prove the inequality in general: note that it suffices to prove that
sup{an + bn|n ≥M} ≤ sup{bn|n ≥M}+ sup{bn|n ≥M} ∀M .2

To prove this, note that {an + bn|n ≥M} is a subset of {an + bm|n,m ≥
M}, so sup{an + bn|n ≥M} ≤ sup{an + bm|n,m ≥M}.
Now if we show that sup{an + bm|n,m ≥ M} = sup{an|n ≥ M} +
sup{bn|n ≥M}, we are done.
Let A = {an|n ≥M} and B = {bn|n ≥M}. Then A+B = {a+ b|a ∈ A
and b ∈ B} = {an + bm|n,m ≥ M}. So we have to prove sup(A + B) =
sup(A)+sup(B), which has been proved in HW1, additional problem 1a).

32. Consider the following non-theorem: Let xn → x ≥ 0 and (yn) be any
sequence. Then lim supxnyn = x lim sup yn. Disprove this, then identify
a tiny change to the assumptions that makes it true (but don’t prove it).
Solution: A counter example would be xn = 1/n and yn = n. Either the
assumption that x > 0 or the assumption that yn is a bounded sequence
would make the statement true.

2The fact that showing this suffices follows from two even more basic facts: if (xk) and
(yk) converge, then (1) if xk ≤ yk for all n, then limxk ≤ lim yk, (2) lim(xk + yk) =
limxk + lim yk. We apply the first fact to the sequences xk = sup{an + bn|n ≥ k} and
yk = sup{an|n ≥ k}+ sup{bn|n ≥ k}, for all k. And we apply the second fact to the sequence
xk = sup{an|n ≥ k} and yk = sup{an|n ≥ k}+ sup{bn|n ≥ k}.
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