
Initial Assessment Solutions

Exercise 1. A definition of the exponential function is

ex := lim
n→∞

(
1 +

x
n

)n

(i) Recall that a real-valued sequence is convergent if there exists z ∈ R such that, for all ϵ > 0,
for some N ∈ N, it is the case that |zn − z| < ϵ for all n ∈ N \ {1, 2, . . . , N}. A sequence
(zn)n is divergent if it is not convergent. Write out a definition of a divergent sequence (zn)n

analogous to the definition of a convergent sequence using ϵ and N etc. Hint: Take the
negation of the definition of convergence.

A real-valued sequence is divergent if for all z ∈ R, there exists ϵ > 0 such that for all N ∈ N

there exists n > N, n ∈ N such that |zn − z| ≥ ϵ.

(ii) Suppose a bank pays interest annually at rate r > 0. Consider investing $1 with the bank.
How much money would you have after t ∈ {0} ∪ N years?

(1 + r)t

(iii) Suppose that the bank now pays interest every month and the monthly compound interest is
r/12. How much money would you have after t ∈ {0} ∪ N years?(
1 + r

12

)12t

(iv) Suppose that the bank now pays interest continuously (compounded), show that you would
have $ert after t ∈ {0} ∪ N.

Paying interest continuously means taking the payment frequency, n, to infinity. The bank
therefore pays

lim
n→∞

(
1 +

r
n

)nt
=

(
lim
n→∞

(
1 +

r
n

)n)t
= (er)t = ert

over t years.

(v) What does this tell you about the discount factor we often use in discrete- and continuous-time
models?

Discounting is the reciprocal of interest calculation and so this gives us a relationship between
the discount rate in discrete time, 1

1+r , and in continuous time, e−r.

Exercise 2. Recall that a binary relation ≿⊆ X × X on a nonempty set X is:

(a) complete if, for any x, y ∈ X, either x ≿ y or y ≿ x;
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(b) transitive if, for any x, y, z ∈ X, x ≿ y and y ≿ z implies x ≿ z.

(i) Define ∼⊆ X × X such that, for any x, y ∈ X, x ∼ y if and only if x ≿ y and y ≿ x. Prove
that ∼ is transitive. Is ∼ always complete? If yes, prove it; if not, give an example.

Suppose x ∼ y and y ∼ z. We have, then, that x ≿ y and y ≿ z, so by transitivity of ≿, x ≿ z.
We also have z ≿ y and y ≿ x, similarly implying z ≿ x. Therefore, x ∼ z, and ∼ is transitive.

∼ is not necessarily complete. For example, if X = R and ≿ is the natural order on R, ≥,
then ∼ is the equality relation. But it is not the case that either x = y or y = x: take, e.g., 1
and 2.

(ii) Suppose X = Rn and that ≿ additionally satisfies the following condition: for any x, y ∈ X,

x ≿ y ⇐⇒ αx + (1 − α)z ≿ αy + (1 − α)z (1)

for all z ∈ X and all α ∈ (0, 1). Show that, for any x, y ∈ X and any α > 0, x ≿ y ⇐⇒ αx ≿
αy. Hint: Consider first the case in which α ∈ (0, 1), then α = 1. Finally, consider the case in
which α > 1 ⇐⇒ α−1 < 1.

Suppose x ≿ y. If α ∈ (0, 1) then we can apply (1) with z = 0, to obtain αx ≿ αy. If α = 1,
then we want x ≿ y, which is true by assumption.

Now suppose α > 1. As noted in the hint, this is equivalent to α−1 < 1. By way of
contradiction, suppose αy ≻ αx. Then, by the first part of this proof, α−1αy ≻ α−1αx, or x ≻ y.
This contradicts our assumption that x ≿ y, so αx ≿ αy by completeness.

The reverse direction (⇐=) follows trivially from the first direction.

(iii) Show that the equivalence class [0]∼ := {x ∈ X | x ∼ 0} is a linear subspace of X; i.e., for any
x, y ∈ X, αx + βy ∈ X for all α, β ∈ R+. Bonus: why don’t we need to consider α, β ∈ R?

If x ∼ 0 then x ≿ 0 and 0 ≿ x, so by (ii), αx ≿ 0 and 0 ≿ αx, i.e., αx ∼ 0. Similarly, βy ∼ 0. If
α = 0 or β = 0, we are done. Otherwise, by (1),

1
2

αx +
1
2

βy ≿ 0 +
1
2

βy ≿ 0

and
0 ≿ 0 +

1
2

βy ≿
1
2

αx +
1
2

βy

so
1
2

αx +
1
2

βy ∼ 0

and thus
αx + βy ∼ 0

We can ignore α, β < 0 because x ∈ X implies −x ∈ X, so x, y ∈ X implies, for example,

αx − βy = αx + β(−y) ∈ X

To see that x ∈ X implies −x ∈ X, note that

x ≿ 0 =⇒ 1
2

x +
1
2
(−x) ≿

1
2
(−x) =⇒ 0 ≿ −x
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Similarly, 0 ≿ x implies that −x ≿ 0. It follows that x ∼ 0 implies −x ∼ 0.

Exercise 3. Consider again the linear system of equations

Xb = y

where X ∈ Rm×n, b ∈ Rn+1, and y ∈ Rm+1. We showed in class that the normal system associated
with the above is given by

XTy = XTXb̂

We now wish to show that the normal system has a solution. To that end, recall that the image of a
matrix A, denoted im A, is its column space (i.e., the set of all linear combinations of columns of
A). The null space of A ∈ Rc×d, denoted null A, consists of b ∈ Rd×1 such that Ab = 0.

(i) Show that
null

(
XTX

)
= null X

Hint: Recall that two sets X and Y are equal if and only if X ⊆ Y and Y ⊆ X. Recall also that
zTATAz = ∥Az∥2.

If b ∈ null X, then Xb = 0, so XTXb = XT0 = 0. Thus, b ∈ null(XTX). So null X ⊆
null(XTX).

If b ∈ null(XTX), then XTXb = 0 and so bTXTXb = 0. By the hint, this means ∥Xb∥2 = 0 and
so ∥Xb∥ = 0, which can only be true if Xb = 0. Therefore, b ∈ null X so that null(XTX) ⊆
null X.

(ii) Show that
im

(
XTX

)
= im

(
XT

)
Hint: Use part (i) and the fact that null

(
AT

)
= (im (A))⊥ and

(
M⊥)⊥ = M.

If null
(
XTX

)
= null X then

(
im

(
XTX

))⊥
=

(
im

(
XT

))⊥. Taking orthogonal complements
on each side,

im
(

XTX
)
= im

(
XT

)

(iii) Use parts (i) and (ii) to conclude that XTy ∈ im
(
XTX

)
; i.e., a solution to the normal system

exists.

XTy ∈ im
(
XT

)
= im

(
XTX

)
Exercise 4. Let g, f : R2 → R be defined via

g(x, y) := −1 + x2 + y2

f (x, y) := x2 − y

Consider the following problem:

max
(x,y)∈R2

f (x, y) s.t. g(x, y) ≤ 0
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(i) Write the Lagrangian, L, for this problem. Denote the Lagrange multiplier using λ.

L(x, y, λ) = (x2 − y) + λ
(
1 − x2 − y2)

(ii) Write down the KKT conditions (the derivatives of L with respect to x and y; nonnegativity
of the Lagrange multiplier, complementary slackness, and the constraint itself).

2x − 2λx = 0

−1 − 2λy = 0

λ ≥ 0

λ · (1 − x2 − y2) = 0

1 − x2 − y2 ≥ 0

(iii) Assuming that the constraint qualification holds (which it does), use the KKT conditions to
solve the problem. Hint: You may find that there are multiple values of (x, y, λ) that satisfy
the KKT conditions—in that case, recall that you can choose the one(s) that maximise the
objective.

The first condition tells us that either λ = 1 or x = 0. The second conditions tells us that
λy = −1/2. This implies, in particular, that neither λ nor y can equal 0. It follows, by the
fourth condition, that x2 + y2 = 1. If x = 0 then y = ±1 and λ = ±1/2. The case λ = −1/2
and y = 1 is precluded by the nonnegativity constraint on λ. So (0,−1, 1/2) is a candidate
solution. It gives f (0,−1) = 1. If λ = 1 then y = −1/2 and x = ±

√
1 − y2 = ±

√
3/4.

At these two solutions f (±
√

3/4,−1/2) = 5/4 > 1 = f (0,−1). So our solutions are
(
√

3/4,−1/2, 1) and (
√

3/4,−1/2, 1).
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