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Exercise 1.

(i) u is continuous and Γ is compact, so we can apply the extreme-value theorem.

(ii) Suppose x ∈ int Γ. Then px1 + x2 < m. In particular, px1 + x2 + ε ≤ m for sufficiently small ε.

But x
1
2
1 + (x2 + ε)

1
2 > x

1
2
1 + x

1
2
2 , so x is not a solution.

(iii) The Lagrangian ignoring the nonnegativity constraints is

x
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1 + x

1
2
2 + µ(m − px1 − x2)

Setting the gradient equal to 0, we obtain

1

2x
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2
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− µp = 0 =
1

2x
1
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− µ

and the budget constraint at equality. Rearranging, we get

px
1
2
1 = x

1
2
2

or
x2 = p2x1

Plugging this into the budget constraint at equality, we get

(p + p2)x1 = m

or
x∗1 =

m
p + p2

and
x∗2 =

pm
1 + p

The constraint qualification holds and a maximum does exist, so by Additional Exercise 1 on
Problem Set 9, maximising u over the set of (x1, x2) that satisfy the FOCs for some λ, will
give a solution to the problem with a budget constraint at equality and no nonnegativity
constraints. In this case, only one pair (x1, x2) satisfies the FOCs, so this is the solution to this
problem.

*Based on solutions provided by Professor Takuma Habu
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We still need to show that this problem has the same solution as the inequality-constrained
problem with nonnegativity constraints. It is WLOG to assume p ≥ 1.1 It then follows that
it is weakly better to expend all income on good 2 than to expend all income on good 1.
Expending all income on good 2 will give u(0, m) =

√
m. Note that

u(x∗1 , x∗2) =
√

m

(√
1

p(1 + p)
+

√
p

1 + p

)

To show that x1 = 0 or x2 = 0 is not optimal, it suffices to show that the sum inside the
parentheses exceeds 1. This follows from

1
p(1 + p)

+ 2

√
1

(1 + p)2 +
p

1 + p
=

2 + p
1 + p

+
1

p(1 + p)
>

2 + p
1 + p

> 1

Therefore, the nonnegativity constraints will be non-binding in the original problem, so we
can safely ignore them. From the second part of this question, we also know that we can ignore
the interior of the budget set. From the first part of this question we know that a maximiser
lies somewhere in the budget set. Therefore, the maximiser of the equality-constrained
problem ignoring the nonnegativity constraints will solve the original problem.

Exercise 2. Theorem 3 in Static Optimisation tells us that there exists µ∗ ∈ RK and λ∗ ∈ RJ such
that

λ∗
j ≥ 0 for all j (6)

λ∗
j gj(x∗) = 0 for all j (7)

∇ f (x∗) +
K

∑
k=1

µ∗
k∇hk(x∗) +

J

∑
j=1

λ∗
j ∇gj(x∗) = 0T (8)

Note that (8) is just ∇xL(x, µ, λ) = 0T, which is just condition (i) in the question. Condition (ii)
is just hk(x∗) = 0 for all k, which we are given in the question. The first part of condition (iii) is
satisfied by (6); the second part is just gj(x∗) ≥ 0 for all j, which we are given in the question; and
the third part is satisfied by (7). Therefore, (x∗, µ∗, λ∗) is a critical point of L and thus x∗ ∈ SX.
It follows that f (x◦) ≥ f (x∗). Moreover (ii) and the second part of (iii) imply that x◦ is in the
constraint set. Therefore, x◦ is also a solution to (1).

Exercise 3.

(i) The constrained optimisation problem is

max x1 + x2 st m − p1x1 − p2x2, x1, x2 ≥ 0

The associated Lagrangian is

L(x, λ) = x1 + x2 + λ1(m − p1x1 − p2x2) + λ2x1 + λ3x2

1Otherwise just define p′ := 1
p , m′ := m

p , switch the labels of x1 and x2, and write p′x1 + x2 = m′.
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(ii) If m > p1x1 + p2x2 then the consumer’s utility can be increased by increasing either of x1 or
x2 without violating any of the constraints. Therefore, at the optimal consumption bundle
the budget constraint must bind.

Dg(x∗) =

−p1 −p2

1 0
0 1


It cannot be the case that all of the constraints bind, as m > 0. Therefore, the binding
constraints are either (a) the budget constraint alone, (b) the budget constraint and x1 ≥ 0,
or (c) the budget constraint and x2 ≥ 0. The associated DgE(x∗) has rank |E| in all of these
cases, given p1, p2 > 0. That is,

rank

[
−p1 −p2

1 0

]
= rank

[
−p1 −p2

0 1

]
= 2

and
rank

[
−p1 −p2

]
= 1

(iii) By the previous exercise, the critical points of the Lagrangian that maximise f (x) over SX

solve this consumer’s problem.

Exercise 4.

(i) The firm’s profit maximisation problem is

max py − w1x1 − w2x2 − w3x3 st x1(x2 + x3)− y ≥ 0, y ≥ 0, x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0

Because p > 0, the constraint f (x1, x2, x3) ≥ y will bind, so we can replace y with f (x1, x2, x3):

max px1(x2 + x3)− w1x1 − w2x2 − w3x3 st x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0

The associated Lagrangian is

L(x, λ) = px1(x2 + x3)− w1x1 − w2x2 − w3x3 + λ1x1 + λ2x2 + λ3x3

The equations defining the critical points are

(1)

0T = ∇xL(x, λ)

=
[

p(x2 + x3)− w1 + λ1 px1 − w2 + λ2 px1 − w3 + λ3

]
(2) λ ≥ 0, g(y, x) ≥ 0, and λTg(y, x) ≥ 0, where g(y, x) is the vector of constraints.

(ii) Suppose, WLOG, that w2 ≥ w3. Then (1) implies that λ2 ≥ λ3, with strict inequality iff
w2 > w3.
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(a) First consider the case w2 > w3. Then λ2 > λ3 ≥ 0, so by complementary slackness,
x2 = 0.

Suppose x3 > 0. Then λ3 = 0 by complementary slackness =⇒ x1 = w3/p by FOC 3
=⇒ λ1 = 0 by complementary slackness and λ2 = w3 − w2 by FOC 2 =⇒ x3 = w1/p.
Therefore,

(x1, x2, x3, λ1, λ2, λ3) = (w3/p, 0, w1/p, 0, w3 − w2, 0)

is a critical point of L.

Suppose x3 = 0. Then λ1 = w1 > 0 by FOC 1 =⇒ x1 = 0 by complementary slackness
=⇒ λ2 = w2 and λ3 = w3. Therefore,

(0, 0, 0, w1, w2, w3)

is also a critical point of L.

(b) Now consider the alternative case w2 = w3. Then λ2 = λ3.

Suppose x3 > 0. Then λ2 = λ3 = 0 =⇒ x1 = w2/p > 0 by FOC 2 =⇒ λ1 = 0 by
complementary slackness =⇒ x2 + x3 = w1/p. It follows that

(w2/p, z, w1/p − z, 0, 0, 0)

is a critical point for any 0 ≤ z < w1/p. By the symmetry between x2 and x3, we can also
include the case z = w1/p.

Suppose x2 = x3 = 0. Then λ1 = w1 > 0 by FOC 1 =⇒ x1 = 0 =⇒ λ2 = λ3 = w2. It
follows that

(0, 0, 0, w1, w2, w2)

is also a critical point.

(iii) The profit maximisation problem does not have a solution, so none of the above critical points
could be a solution. To see that the PMP does not have a solution, let x1 = x2 = x3 → ∞.
Then profit is

lim
x1→∞

2px2
1 − (w1 + w2 + w3)x1 = lim

x1→∞
x1 · lim

x1→∞
(2px1 − (w1 + w2 + w3))

= ∞ · ∞

= ∞
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