
ECON 6170 Section 9

TA: Patrick Ferguson

November 1, 2024

Implicit Function Theorem
Theorem 6 (Implicit function theorem). Suppose f : X × Y ⊆ Rd × Rm → Rm is C1 and X × Y is
open.1 Let (x0, y0) ∈ X × Y be a point at which

(i) f (x0, y0) = 0;

(ii) Dy f (x0, y0) is invertible.

Then:

(i) There exists Bεx(x0) ⊆ X and Bεy(y0) ⊆ Y such that for all x ∈ Bεx(x0) there exists a unique
y ∈ Bεy(y0) such that f (x, y) = 0.

(ii) So there exists a function g : Bεx(x0) → Bεy(y0) that satisfies

(a) g(x0) = y0;

(b) f (x, g(x)) = 0 for all x ∈ Bεx(x0);

(c) g is C1, with derivative

Dg(x) = −(Dy f (x, g(x)))−1Dx f (x, g(x))

Example 1. Suppose f : R2 → R is given by f (x, y) := x − y2. The level set {(x, y) | f (x, y) = 0}
is shown below. The graph of the implicit function g : Bεx(x0) → Bεy(y0) is given by the red subset
of the level set. Note that g maps into but not necessarily onto Bεy(y0), that is, there may be some
y ∈ Bεy(y0) that are not in the range g[Bεx(x0)].

1To be explicit, we mean X ⊆ Rd and Y ⊆ Rm.
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Note also that if we took x0 = y0 = 0, then Dy f (0, 0) = ∂ f (0,0)
∂y = −2 · 0 = 0, violating hypothesis

(ii). Indeed, for any εx > 0, any function defined on Bεx(0) must violate f (x, g(x)) = 0 for x < 0.
Similarly, at the graphed (x0, y0) ≫ 0, we must choose εx small enough that it excludes x < 0.

Exercise 19. Prove the inverse function theorem: Suppose f : X ⊆ Rd → Y ⊆ Rd is C1, x0 ∈ int X,
and define y0 := f (x0). If

(i) D f (x0) is invertible.

Then:

(i) There exists Bεx(x0) ⊆ X and Bεy(y0) ⊆ Y such that for all y ∈ Bεy(y0) there exists a unique
x ∈ Bεx(x0) such that f (x) = y.

(ii) So there exists a function g : Bεx(x0) → Bεy(y0) that satisfies

(a) ( f ◦ g)(y) = y for all y ∈ Bεy(y0);

(b) g is C1, with derivative
Dg(y) = (D f (g(y)))−1

Write
F(x, y) := y − f (x)

Then F is C1, F(x0, y0) = 0, and DxF(x0, y0) = −D f (x0) is invertible. It is WLOG to assume that
X × Y is open.2

It follows that we can apply the implicit function theorem to obtain:

(i) There exists Bεy(y0) ⊆ Y and Bεx(x0) ⊆ X such that for all y ∈ Bεy(y0) there exists a unique
x ∈ Bεx(x0) such that F(x, y) = 0. That is, y = f (x).

(ii) So there exists a function g : Bεy(y0) → Bεx(x0) that satisfies

(a) g(y0) = x0;

(b) F(g(y), y) = 0 for all y ∈ Bεy(y0); that is, y = ( f ◦ g)(y);

2Because x0 ∈ int X, Y can be extended to Rd, and the Cartesian product of open sets is open.
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(c) g is C1, with derivative

Dg(y) = −(DxF(g(y), y))−1DyF(g(y), y)

= −(Dx(y − f (g(y))))−1Dy(y − f (g(y)))

= −(−D f (g(y)))−1 I

= (D f (g(y)))−1

Static Optimisation
Theorem 3 (Necessity). Let f : Rd → R, hk : Rd → R, and gj : Rd → R be C1 for each k ∈ {1, . . . , K}
and each j ∈ {1, . . . , J}. Suppose x∗ is a local maximum of f on the constraint set

Γ :=
{

x ∈ Rd | hk (x) = 0 for k = 1, . . . , K and gj (x) ≥ 0 for j = 1, . . . , J
}

Let E ⊆ {1, . . . , J} denote the set of binding constraints at x∗ and let gE := (gj)j∈E. Suppose that

rank

(
D

[
h (x∗)
gE (x∗)

])
= K + |E| . (9)

Then, there exists µ∗ ∈ RK and λ∗ ∈ RJ such that

λ∗
j ≥ 0 for all j ∈ {1, . . . , J} , (10)

λ∗
j gj (x∗) = 0 for all j ∈ {1, . . . , J} , (11)

∇ f (x∗) +
K

∑
k=1

µ∗
k∇hk (x∗) +

J

∑
j=1

λ∗
j ∇gj (x∗) = 0T. (12)

Section Exercise 1. Show that Theorems 1 and 2 are special cases of Theorem 3.

Theorem 1 is the case of only (K) equality constraints. The constraint qualification (9) then becomes

rank Dh(x∗) = K

and the conclusion omits (10) and (11), and changes (12) to

∇ f (x∗) +
K

∑
k=1

µ∗
k∇hk(x∗) = 0T

Theorem 2 is the case of only (J) inequality constraints. The constraint qualification then becomes

rank DgE(x∗) = |E|

The nonnegativity constraints (10) and complementary slackness conditions (11) are unchanged.
The FOC becomes

∇ f (x∗) +
J

∑
j=1

λ∗
j ∇gj(x∗) = 0T
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Section Exercise 2 (From MT3 2023 Q3). Let f : Rd → R and gj : Rd → R for j = 1, . . . , J all be C1.
Consider the following problem:

max
x∈X

f (x) st gj(x) ≥ 0 for j = 1, . . . , J

Suppose x∗ is a local maximum that satisfies the constraints.

(i) Suppose g1(·) = gj(·) for j = 2, . . . , J. Can the constraint qualification be satisfied? If not,
what can we do?

Not in general. It follows from the question that Dg1(·) = Dgj(·) for j = 2, . . . , J. Moreover
either all the constraints bind or none binds. It follows that if J ≥ 2 and the constraints
bind, rank DgE(x∗) = 1 < J = |E|. If we remove all but the first constraint, the optimisation
problem is unchanged, but the constraint qualification can be satisfied.

(ii) Suppose g1(·) = −g2(·). Can the constraint qualification be satisfied? If not, what can we do?

No. We know that Dg1(·) = −Dg2(·). Moreover, g1(x∗) ≥ 0 and −g1(x∗) ≥ 0 imply that
g1(x∗) = 0, so both constraints bind. It follows that rank DgE(x∗) ≤ |E| − 1 < |E|. We
can resolve this by replacing the two inequality constraints with one equality constraint,
g1(x) = 0, and using the Theorem of Lagrange.

Section Exercise 3.

(i) Specialise Theorem 3 to the unconstrained case.

Proposition 2. Let f : Rd → R be C1. Suppose x∗ is a local maximum of f on Rd. Then,

∇ f (x∗) = 0T.

(ii) Let X ⊆ Rd be open and define f |X : X → R by f |X(x) = x for all x ∈ X. Show that x∗ ∈ X
is a local maximum of f |X on X iff it is a local maximum of f on Rd.

If X is open and x∗ ∈ X, then there exists a sufficiently small ε > 0 such that B := Bε(x∗) ⊆ X.
Then x∗ is a local maximum of f |X on X ⇐⇒ f (x∗) ≥ f (x) for all x ∈ Bδ(x∗) ∩ X ⇐⇒
f (x∗) ≥ f (x) for all x ∈ Bδ(x∗) with δ < ε ⇐⇒ x∗ is a local maximum of f on Rd.

(iii) Show that it suffices in Proposition 1, that f be continuously differentiable at x∗ (as opposed
to everywhere in Rd).

Note that the solution to part (ii) implies that the behaviour of f outside of Bδ(x∗) is irrelevant
to whether x∗ is a local maximum of f . But δ is an arbitrary positive real number. Suppose it
were necessary that f be C1 at x ̸= x∗. Then choose δ < ∥x − x∗∥ to obtain a contradiction.

Exercise 1. Consider the equality-constrained problem from class notes:

max
x∈Rd

f (x) st h(x) = 0 (1)

where f : Rd → R and hk : Rd → R, k = 1, . . . , K are all C1. Define L : Rd × RK → R by

L(x, µ) := f (x) +
K

∑
k=1

µkhk(x)
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Let
S := {(x, µ) | ∇L(x, µ) = 0}

and define SX as the projection of S onto the first d components of S, i.e.,

SX := {x | there exists µ such that (x, µ) ∈ S}

Now consider the following problem:
max
x∈SX

f (x) (2)

(i) Show that if problem (1) attains a global maximum at x∗ ∈ Rd and the constraint qualification
holds at x∗, then a x◦ that solves (2) is also a global maximum of (1).

If problem (1) attains a global maximum at x∗ and the constraint qualification holds, then by
the Theorem of Lagrange, there exists µ∗ ∈ RK such that

∇ f (x∗) +
K

∑
k=1

µ∗
k · ∇hk(x∗) = 0

But the left-hand side is just ∇xL(x∗, µ∗). Moreover, the constraints imply ∇µL(x∗, µ∗) =

h(x∗) = 0. Taken together, we have

∇L(x∗, µ∗) = 0

So (x∗, µ∗) ∈ S and x∗ ∈ SX. It follows that f (x◦) ≥ f (x∗). Moreover, x◦ ∈ SX implies that
there exists µ◦ such that ∇L(x◦, µ◦) = 0. But ∇µL(x◦, µ◦) = 0 implies that x◦ satisfies the
constraints. Therefore, x◦ is also a global maximiser for problem (1).

(ii) Show that (2) is equivalent to
max

(x,µ)∈Rd×RK
L(x, µ) (3)

if the latter has a solution.3

Let (x′, µ′) solve (3). Then Proposition 1 on unconstrained optimisation implies that (x′, µ′) ∈
S, so x′ ∈ SX. Moreover, by definition of (x′, µ′),

L(x′, µ′) = f (x′) + ∑ µ′
khk(x′) ≥ f (x◦) + ∑ µ◦

k hk(x◦) = L(x◦, µ◦)

where x◦ maximises (2). But x′, x◦ ∈ SX implies h(x′) = h(x◦) = 0.It follows that

f (x′) ≥ f (x◦)

so x′ is also a solution to (2). Conversely, x′ ∈ SX and the definition of x◦ imply

f (x◦) ≥ f (x′)

Moreover, we know that h(x◦) = h(x′) = 0 so

L(x◦, µ◦) = f (x◦) + ∑ µ◦
k hk(x◦) ≥ f (x′) + ∑ µ′

khk(x′) = L(x′, µ′)

for any µ◦. It follows that (x◦, µ◦) solves (3).

3The text in red has been added—the result does not go through in its absence. Thank you to Wanxi for pointing this
out.
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Exercise 2. Consider the problem

max
x,y

f (x, y) st h(x, y) = 0

where f (x, y) := −y and h(x, y) := y3 − x2. Show that the unique solution to the problem is at 0;
that the constraint qualification is violated at 0; and that there does not exist µ ∈ R satisfying

∇ f (x∗) +
K

∑
k=1

µ∗
k∇hk(x∗) = 0

The equation y3 − x2 = 0 is equivalent to y3 = x2. In particular, this implies that y ≥ 0. Maximising
−y is equivalent to minimising y, which is achieved by choosing y = 0. The constraint then implies
that the optimal x = y3/2 = 0.

Dh(0, 0) =
[

∂h(0,0)
∂x

∂h(0,0)
∂y

]
=
[
−2 · 0 3 · 02

]
=
[
0 0

]
and the constraint qualification is that rank Dh(x, y) = 1. The rank of a matrix is the maximal
number of its rows (or columns) that can comprise a linearly independent set. Here, we have one
row, which is a zero vector, and the set {0} is not linearly independent. Therefore rank Dh(x, y) = 0,
violating the constraint qualification.

Note also that for any µ ∈ R,

∇ f (0, 0) + µ∇h(0, 0) =
[
0 −1

]
+ µ

[
0 0

]
=
[
0 −1

]
̸=
[
0 0

]
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