
3 Production

3.1 Firm

Assumptions 3.1.

(i) L commodities

(ii) Production plan y ∈ R
L

(1) Net input: good i such that yi < 0

(2) Net output: good j such that yj > 0

(iii) Production possibility set, Y ⊆ R
L of feasible production plans

(iv) Prices, p ≥ 0, are unaffected by the activity of the firm.

We will also often assume:

Assumptions 3.2.

(i) Y is nonempty, closed and (strictly) convex.11

(ii) Free disposal: If y ∈ Y and y′ ≤ y then y′ ∈ Y .

Definition 3.3. A production plan, y ∈ Y is efficient if there does not exist
y′ ∈ Y such that y′ ≥ y and y′i > yi for some i.

In the case of a single output, we partition y into output q ∈ R+ and inputs
z ∈ R

L−1
+ . This allows us to define the following:

Definition 3.4. The production function f : RL−1
+ → R+ is defined by

f(z) = max q

st (q,−z) ∈ Y

Definition 3.5. The input requirement set

V (q) := {z ∈ R
L−1
+ | (q,−z) ∈ Y }

gives all the input vectors that can be used to produce the output q.

11These properties are required for the general existence and/or uniqueness of the max-
imizers and minimizers defined in this section. In particular, strict convexity allows us to
speak exclusively of demand and supply functions, rather than correspondences. An ad-
ditional more technical property, the recession-cone property, is also required: see Kreps
Proposition 9.7.
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Definition 3.6. The isoquant

Q(q) := {z ∈ R
L−1
+ | z ∈ V (q) and z /∈ V (q′) for any q′ > q}

gives all the input vectors that can be used to produce at most q units of
output.

3.2 Cost minimization

Assumptions 3.7.

(i) L− 1 inputs z

(ii) One output q = f(z)

(iii) f ∈ C2

(iv) Input price w ∈ R
L−1
+

Remark 3.8. Inputs with zero prices will not affect the decision-making of the
firm and can thus be ignored.

The firm’s cost minimization problem is

min
z∈RL−1

+

w · z

st f(z) = q

Definition 3.9. The associated value function is called the cost function:

C(w, q) := min
z∈RL−1

+

w · z

st f(z) = q

Proposition 3.10 (Properties of the cost function).

(i) C is homogeneous of degree 1 in w.

(ii) C is concave in w.

(iii) If we assume free disposal, then C is nondecreasing in q.

(iv) If f is homogeneous of degree k in z, then C is homogeneous of degree 1
k

in q.

*Proof.
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(i) Increasing w by a factor of α is a positive monotonic transformation and
therefore does not affect the optimal choice of z, but does increase w · z
by that factor.

(ii) Let w,w′ ∈ R
L−1
+ . Suppose C(w, q) = w · z and C(w′, q) = w′ · z′. Let

w′′ = αw + (1− α)w′ for some α ∈ [0, 1]. Then, for z′′ a cost minimizer
at w′′,

C(w′′, q) = w′′ · z′′
= (αw + (1− α)w′) · z′′
= αw · z′′ + (1− α)w′ · z′′

We know w·z′′ ≥ C(w, q) and w′·z′′ ≥ C(w′, q). So C(w′′, q) ≥ αC(w, q)+
(1− α)C(w′, q).

(iii) Suppose q′ > q. By free disposal, q can be produced from the same input
vector used to produce q′.

(iv) Homogeneity of degree k of f implies

f(z) = q ⇐⇒ 1

q
f(z) = 1 ⇐⇒ f

(
z

q1/k

)
= 1

Therefore,

C(w, q) = min
z

w · z st f(z) = q

= min
z

w · z st f

(
z

q1/k

)
= 1

= q1/k min
z

w · z

q1/k
st f

(
z

q1/k

)
= 1

= q1/kC(w, 1)

3.3 Homogeneous functions

Definition 3.11. f : X ⊆ R
n → R is homogeneous of degree k if

f(αx) = αkf(x)

where k is a nonnegative integer, for all α > 0, x ∈ X

Proposition 3.12. If f is homogeneous of degree k, then for i = 1, 2, . . . , n,
∂f
∂xi

is homogeneous of degree k − 1.
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*Proof. Let fi :=
∂f
∂xi

.

f(αx) = αkf(x) hod k

αfi(αx) = αkfi(x) differentiating wrt xi

fi(αx) = αk−1fi(x) dividing by α

=⇒ fi(αx) is homogenous of degree k − 1

Proposition 3.13 (Euler’s formula). If f is homogeneous of degree k and
differentiable, then at any x

n∑
i=1

∂f(x)

∂xi

xi = kf(x)

*Proof.

f(αx) = αkf(x) hod k
n∑

i=1

fi(αx)xi = kαk−1fi(x) differentiating wrt α

n∑
i=1

fi(x)xi = kfi(x) evaluating at α = 1

Proposition 3.14. If the production function f is homogeneous of degree k,
then

MRTSij(z) :=

∂f(z)
∂zi

∂f(z)
∂zj

=

∂f(αz)
∂zi

∂f(αz)
∂zj

= MRTSij(αz)

Proof.
fi(αz)

fj(αz)
=

αk−1fi(z)
αk−1fj(z)

=
fi(z)

fj(z)
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3.4 Profit maximization

The firm’s profit maximization problem is

max
y

p · y
st y ∈ Y

Definition 3.15. The associated value function is called the profit function:

π(p) :=max
y

p · y
st y ∈ Y

In the single-output case, this becomes

π(p, w) := max
z∈RL−1

+

pf(z)− w · z

Henceforth, we consider only the single-output case.

Proposition 3.16 (Properties of the profit function).

(i) Homogeneous of degree 1.

(ii) Nondecreasing in output price p.

(iii) Nonincreasing in input prices w.

(iv) Convex in (p, w).

(v) Continuous.

*Proof.

(i) maxz α(pf(z)− w · z) = αmaxz pf(z)− w · z.
(ii) p′ ≥ p =⇒ p′f(z) ≥ pf(z) for all z.

(iii) w′ ≥ w =⇒ w′ · z ≥ w · z.
(iv) Let (p′′, w′′) := α(p, w) + (1 − α)(p′, w′) and z, z′, z′′ be the solution to

the profit maximization problem with the corresponding output prices
and input price vectors. Then by definition of z and z′,

π(p, w) = pf(z)− w · z ≥ pf(z′′)− w · z′′
π(p′, w′) = p′f(z′)− w′ · z′ ≥ p′f(z′′)− w′ · z′′
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implying

απ(p, w) + (1− α)π(p′, w′) ≥ α(pf(z′′)− w · z′′)
+ (1− α)(p′f(z′′)− w′ · z′′)

= (αp+ (1− α)p′)f(z′′)

− (αw + (1− α)w′) · z′′
= π(p′′, z′′)

(v) See Kreps Proposition 9.9.

Remark 3.17. Note that π being convex in (p, w) implies that π is convex in
p and w individually.

Definition 3.18. The unconditional input demand function

x(p, w) := argmax
z∈RL−1

+

pf(z)− w · z

is the solution to the profit maximization problem. The output supply
function

q(p, w) := f(x(p, w))

is the output level when the profit is maximized.

Proposition 3.19 (Hotelling’s lemma). If π is differentiable,12 then for
(p, w) ∈ R

L
++,

q(p, w) =
∂π(p, w)

∂p

xj(p, w) = −∂π(p, w)

∂wj

Proof. Apply the Envelope Theorem and note that x(p, w) is the profit maxi-
mizer and q(p, w) is the production function evaluated at the maximizer.

12In fact, if the output supply and unconditional demand functions are well-defined –
or equivalently, the associated correspondences are singleton-valued – then π is necessarily
differentiable. See Kreps Proposition 9.22. An analogous result holds for the cost function:
see Kreps Proposition 9.24j.
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Definition 3.20. The conditional input demand function

z(w, q) := argmin
z∈RL−1

+

w · z

st f(z) = q

is the solution to the cost minimization problem.

Proposition 3.21 (Shepard’s lemma). If C is differentiable, then for w ∈
R

L−1
++ ,

zi(w, q) =
∂C(w, q)

∂wi

Proof. Similarly, apply the Envelope Theorem to the cost function (the value
function of the cost minimization problem). Note that the Envelope Theorem
also holds true for minimization problems. Equivalently, we can rewrite

−C(w, q) := max
z∈RL−1

+

−w · z st f(z) = q.

and apply the regular Envelope Theorem.

Proposition 3.22. Suppose that the profit function is twice continuously dif-
ferentiable. Then

(i)
∂q(p, w)

∂p
≥ 0

(ii)
∂xj(p, w)

∂wj

≤ 0

(iii)
∂xj(p, w)

∂wi

=
∂xi(p, w)

∂wj

Proof. By applying Hotelling’s lemma, note that

D2π(p, w) =

⎡
⎢⎢⎢⎢⎣

∂q(p,w)
∂p

∂q(p,w)
∂w1

. . . ∂q(p,w)
∂wn

−∂x1(p,w)
∂p

−∂x1(p,w)
∂w1

. . . −∂x1(p,w)
∂wn

...
...

. . .
...

−∂xn(p,w)
∂p

−∂xn(p,w)
∂w1

. . . −∂xn(p,w)
∂wn

⎤
⎥⎥⎥⎥⎦
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is symmetric and positive semidefinite because the profit function π is twice
continuously differentiable and convex. Then, (i) and (ii) follows from the fact
that a positive semidefinite matrix has nonnegative diagonal entries, and (iii)
follows from symmetry.

Proposition 3.23. Suppose that the cost function is twice continuously dif-
ferentiable. Then

(i)
∂zi(w, q)

∂wi

≤ 0

(ii)
∂zi(w, q)

∂wj

=
∂zj(w, q)

∂wi

(iii)
∂MC(w, q)

∂wi

=
∂zi(w, q)

∂q
=⇒

{
> 0 Normal Input
< 0 Inferior Input

where MC(w, q) = ∂C(w,q)
∂q

.

Proof. Using Shepard’s lemma, write the Hessian of C as

D2C(w, q) =

⎡
⎢⎢⎢⎢⎣

∂MC(w,q)
∂q

∂MC(w,q)
∂w1

. . . ∂MC(w,q)
∂wn

∂z1(w,q)
∂q

∂z1(w,q)
∂w1

. . . ∂z1(w,q)
∂wn

...
...

. . .
...

∂zn(w,q)
∂q

∂zn(w,q)
∂w1

. . . ∂zn(w,q)
∂wn

⎤
⎥⎥⎥⎥⎦

Then, (ii) and (iii) follow from the symmetry of the second derivatives. Since
C is concave in w, the sub-matrix

⎡
⎢⎣

∂z1(w,q)
∂w1

. . . ∂z1(w,q)
∂wn

...
. . .

...
∂zn(w,q)

∂w1
. . . ∂zn(w,q)

∂wn

⎤
⎥⎦

is negative semidefinite and its diagonal entries must be nonpositive. This
proves (i).
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3.5 Comparative Statics

Assumptions 3.24.

(i) Two inputs (x1, x2)

(ii) One output q = f(x)

(iii) f ∈ C2 and the Hessian, Hf , is negative definite

(iv) f(0, x2) = f(x1, 0) = 0, i.e., both inputs necessary

(v) Inada conditions on x1, x2

(vi) Output price p > 0

(vii) Input price w 	 0

Consider the profit maximization problem:

max
x∈R2

++

pf(x)− w · x

The first order conditions are

pf1(x)− w1 = 0

pf2(x)− w2 = 0

Since the Lagrangian is strictly concave, the first order conditions are sufficient.
To determine the sign of ∂x1(p,w)

∂w1
, we apply the Implicit Function Theorem.

Since Hf is negative definite,

H(x) =

[
pf11(x) pf12(x)
pf21(x) pf22(x)

]

has strictly positive determinant. This satisfies the condition for the IFT, so
there exists an implicit function

x(p, w) = (x1(p, w), x2(p, w))

which is C1 near (x, p, w). Writing x as an implicit function of (p, w), we have

pf1(x(p, w))− w1 = 0

pf2(x(p, w))− w2 = 0

Taking the derivative with respect to w1 gives

pf11
∂x1

∂w1

+ pf12
∂x2

∂w1

− 1 = 0

pf21
∂x1

∂w1

+ pf22
∂x2

∂w1

= 0
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Writing it in matrix form,[
pf11 pf12
pf21 pf22

] [ ∂x1

∂w1
∂x2

∂w1

]
=

[
1
0

]

Since the first matrix is non-singular, invert it and find that

∂x1

∂w1

=
pf22
|H(x)| < 0

∂x2

∂w1

=
−pf12
|H(x)|

where the inequality is from the negative definiteness of Hf . Thus we have
shown that the demand for an input always decreases with its price.

To determine the effect of a price change on output, i.e., the sign of ∂q
∂w1

, we
write

q(p, w) = f(x(p, w))

and take the derivative with respect to w1:

∂q

∂w1

= f1
∂x1

∂w1

+ f2
∂x2

∂w1

=
p(f1f22 − f2f12)

|H(x)|
where the sign depends on the term f1f22 − f2f12. To find this, we consider
the cost minimization problem:

min
x∈R2

++

w · x

st f(x) = q

The first order conditions are

−w1 + λf1(x) = 0

−w2 + λf2(x) = 0

q − f(x) = 0

where λ(w, q) is the Lagrangian multiplier. Taking the derivative with respect
to q gives:

∂λ

∂q
f1 + λ

∂f1
∂x1

∂x1

∂q
+ λ

∂f1
∂x2

∂x2

∂q
= 0

∂λ

∂q
f2 + λ

∂f2
∂x1

∂x1

∂q
+ λ

∂f2
∂x2

∂x2

∂q
= 0

1− ∂f1
∂x1

∂x1

∂q
− ∂f1

∂x2

∂x2

∂q
= 0
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Writing it in matrix form,

⎡
⎣λf11 λf12 f1
λf21 λf22 f2
f1 f2 0

⎤
⎦
⎡
⎢⎣

∂x1

∂q
∂x2

∂q
∂λ
∂q

⎤
⎥⎦ =

⎡
⎣00
1

⎤
⎦

where the first matrix is the Hessian of the Lagrangian, Hc(x), and is thus
invertible. By Cramer’s Rule,

∂x1

∂q
=

∣∣∣∣∣∣
0 λf12 f1
0 λf22 f2
1 f2 0

∣∣∣∣∣∣
|Hc(x)|

=
λ(f12f2 − f22f1)

|Hc(x)|
{
> 0 Normal Input
< 0 Inferior Input

where λ and |Hc(x)| are strictly positive. Combined with the result from the
profit maximization problem, we conclude:

(i) If input 1 is normal, ∂x1

∂q
> 0, then f12f2 − f22f1 > 0 and ∂q

∂w1
< 0.

w1 ↑ =⇒ q ↓ =⇒ x1 ↓

(ii) If input 1 is inferior, ∂x1

∂q
< 0, then f12f2 − f22f1 < 0 and ∂q

∂w1
> 0.

w1 ↑ =⇒ q ↑ =⇒ x1 ↓

In either case, this reinforces the substitution effect where x1 necessarily de-
creases when w1 increases, keeping output level q fixed.

3.6 Duality

Fix an output level q and suppose we observe C(w, q) for all w 	 0. We can
recover an “outer bound” of the (unobserved) input requirement set,

V ∗(q) := {x ∈ R
L−1
+ | w · x ≥ C(w, q) for all w ∈ R

L−1
++ }

Proposition 3.25. V ∗(q) is convex.
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Proof. Suppose x, x′ ∈ V ∗(q). Let α ∈ [0, 1] and x′′ := αx+(1−α)x′. We want
to show that x′′ ∈ V ∗(q). Since x ∈ V ∗(q), w · x ≥ C(w, q) for all w ∈ R

L−1
++

and similarly x′ ∈ V ∗(q) implies w · x′ ≥ C(w, q) for all w ∈ R
L−1
++ . Then

w · x′′ = αw · x+ (1− α)w · x′ ≥ C(w, q)

Thus x′′ ∈ V ∗(q).

Remark 3.26. This doesn’t imply that the true input requirement set V (q) is
convex, but it does imply that the non-convex part of V (q) is not economically
relevant since a cost-minimizing firm would never choose something in that
region of V (q).

Proposition 3.27 (Relationship between V (q) and V ∗(q)).

(i) V (q) ⊆ V ∗(q).

(ii) If V (q) is closed, convex and comprehensive upward,13 then V (q) =
V ∗(q).

*Proof.

(i) Suppose x /∈ V ∗(q). We want to show x /∈ V (q). If x /∈ V ∗(q) then there
exists some w ∈ R

L−1
++ such that w ·x < C(w, q). If x ∈ V (q) then C(w, q)

is not the minimum, contradicting the definition of C.

(ii) Suppose not. In particular, suppose x ∈ V ∗(q) and x /∈ V (q). V (q) and
{x} are both closed, convex, disjoint, nonempty subsets of RL−1 and {x}
is compact. Applying a version of the separating hyperplane theorem,14

we obtain w∗ �= 0 such that w∗ ·x < w∗ ·x′ for all x′ ∈ V (q). In particular,
w∗ ·x < C(w∗, q), which contradicts the definition of V ∗(q). We also want
to show that w∗ ≥ 0. Suppose instead that for some i, w∗i < 0. Because
V (q) is comprehensive upward, this implies we can choose x′ ∈ V (q) with
xi sufficiently large that w∗ · x′ < w∗ · x, contradicting our choice of w∗.

Now, let
C∗(w, q) := min

x∈V ∗(q)
w · x

13V (q) is comprehensive upward if x ∈ V (q) and x′ ≥ x imply x′ ∈ V (q). That is, the same
output can always be produced using more input. If Y has the free disposal property, then
for all q, V (q) is comprehensive upward. The converse is not true. See Kreps Proposition
9.23c.

14Covered in the math class.
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Not Closed

x1

x2

Not Convex

x1

x2

Not Comprehensive Upward

x1

x2

Figure 1: Three classes of V (q) for which V (q) �= V ∗(q)

Proposition 3.28.
C∗(w, q) = C(w, q)

Proof. V (q) ⊆ V ∗(q) implies C(w, q) ≥ C∗(w, q). Suppose that for some
w̄ ∈ R

L−1
++ , we have C∗(w̄, q) = w̄ · x̄ < C(w̄, q). Then x̄ /∈ V ∗(q) which

contradicts the definition of C∗. This implies C∗(w, q) ≥ C(w, q) for all w ∈
R

L−1
++ . Combining both inequalities, we have C∗(w, q) = C(w, q).
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