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Worked with Fenglin Ye on Exercise 19.

1 Exercises from Class Notes

Exercise 18. Let F : R* — R2. Suppose the conditions for the Implicit Function Theorem are satisfied at
all points, and that F(z%, 2%, yF,y5) = 0. Let h = (hq, he) denote the implicitly defined function of (21, z2)
for the relation F'(x1, 2,91, y2) = (0,0) near (a7, 23, y7,v5). Give explicit formulae for g’;"’, for 4,5 € {1, 2}.

J

Solution. We have from the Implicit Function Theorem that h = (hy, ha) is differentiable at all (21, z2)
sufficiently close to (z},z3), and that

Dh(x) = (D, F(x, h(x))) "D, F(a, h(x))

Recall that Dh, DyF, and D,F are all 2 x 2 matrices of partial derivatives. In expanded terms, we have
that at some x = (1, 22),

OF OF -1 )
3—;’1(:6) 3—2;(9:) By (2) (z) Bha(2) (z) g—fi(m) gfz (z)
S (x) S(x) ot (1) gty () S2(z) G2 ()

Recall that the inverse of a 2 x 2 matrix has a closed form:

R OF -1 OF, OF
Bh1(2) (z) Dha(a) (z) 1 Jha(z) (z) - dha(a) (z)
= ToF OF OF, OF.
agf&) (z) 8}?5(2_1) (z) s (2) (fc)‘ahl(l{) (z) — Bha(a) (m)‘ahlé‘) (z) *agf&) (z) aglF(lm) (z)

Taking the matrix inner product of (D, F(z,h(z)))~! and D, F(z,h(x)) , we get

)Gk (2) — ity (@) G52 (x)

S

it (@) 5t (@) — gty (@) 32 (@) gt

Bha(2) ) oz \T) — Bha(a) \T) 2y Oha (@)

OF, OF, OF, OF OF, OFy OFy OF
é)hl(z)( )5a (%) — 8h1(z)( ) ar () ahl(w)( ) oz () — (’)hl(z)( ) ()

Thus, we have that the respective partial derivatives are

O (2 = aff?ﬂ% ) %% (@) - 32% (x)(gﬁ (2)
. o () (D)3, (27 (@) ~ iy (D)0, (7 (@)
sy - ) i (DB
" ohate) (E) 3 () (®) — Bhate) (@) o (o (%)
Oy o) @) sl (85
h ey (7)o ) () ~ Dhatey (7)o ()



OF, OF: OF: OF,
Oho Dhy (2) (m)a_mj(x) - ahl(zm) (x) D2 ()

I OEE
Oy ety () o) () — oty (©) iy (@)

I refuse to simplify these on principle (the principle is mostly laziness).

Exercise 19. Prove the Inverse Function Theorem:

Theorem 1. Suppose f : X C R = Y C Re. Let g € int(X) and define yo = f(xo). If f € C' and
D f(xzg) is invertible, then there exists an open ball B., (zo) C X and an open ball B., (yo) C Y such that
for all y € Be, (yo) there exists a unique x € Be, (x¢) such that f(x) =y. Therefore, the equation f(z) =y
implicitly defines a function g : Be, (yo) — Bey (x0) with the property

flgy) =y Yy e B, (v)

Moreover, g is differentiable at any y € Be, (yo) and
Dy(y) = (Df(g(y))) ™"

Proof. Define a function F':intY x int X — R by F(y,z) = y — f(z). Note that this function meets the
conditions of the Implicit Function Theorem, as f is continuous, and the Cartesian product of open sets
is open. Moreover, at (yo, o), we have that F(yo,z0) = yo — f(xo) = 0. Since Df(xo) is invertible, we
have that by the Implicit Function Theorem, there exists an open ball B, (z¢) C int X and an open ball
Be, (y0) C intY such that for each z € B., (x0), there exists a unique y € Be, (yo) such that F(y,z) =
0= f(z) =v.

We have that the implicitly defined function implies that y — f(g(y)) = 0 for some ¢ : Be, (yo) — Bey (20)-
From the fact that y — f(f~'(y)) = 0, we get that g(y) = f~'(y). Note that f(g(y)) = f(f'(y)) =yVy€
BEY (yO)
Finally, from the Implicit Function Theorem, we have that
Dyg(y) = —(DaF(y, 9(y))) "' DyF(y, 9(y)) = —=(Df(9(y)) " - =1 = (Df(g(y))) "
O

Exercise 3. Prove the following: Suppose f is C? on X, where int(X) is convex, and that f is concave.
Fix 2* € int(X). The following are equivalent:

(i) VF(z*) =0
(ii) f has a local maximum at x*
(iii) f has a global maximum at z*

Proof. (i) = (ii): Since int(X) is definitionally open, we can find some ¢ > 0 such that B.(z*) C int(X).
Consider some y € B.(z*), where y # x. From Proposition 14 in the notes, we have that f being concave
implies that

Vi@@)y—2") = fly) - f@") = 0= f(y) - f(@") = f(=") = f(y)

Thus, z* is a local maximum of f.

(ii) = (iii): Fix ¢ > 0 such that z* > y V y € B.(z*). Consider some z’ € X. Since int(X) is convex,
az* + (1 —a)z’ € int(X) for all a € (0,1). Additionally, there exists a sufficiently close to 1 that az* + (1 —
o)z’ € B:(z*). Since f is concave, it is also quasiconcave, and we have that

flaz* + (1 = a)2’) > min{f(z*), f(2')}



Since az* + (1 — @)z’ € Be(z*), we have that f(z*) > f(az* + (1 — a)a’), so it must be the case that
f(z*) > f(«'), and thus z* is a global maximum of f.

(iii) = (i): Take some sequence {y,} € int(X) such that y, — x*, and where y,, < z* for all n € N.
Take another sequence {z,}int(X) such that z, — z*, and where z, > z* for all n € N. Note that these
sequences exist because int(X) is open, meaning that there exists € such that B.(z*) C int(X). Since x* is
a global maximum, we have that f(y,) — f(z*) <0V n €N, and that f(z,) — f(z*) <0V n e N. Since f
is concave, we have that

flyn) = f(2") < V(@) (yn —2") VR EN
and

f(zn) = f(&") < Vf(@")(zn —2") VR €N

Taking the limit, we get that from the definition of gradients
_ * _ *
i FO0 =G Gy F) = £6)

n—00 Yp — T* n—00 Zp — TX

where all the terms of the left limit are positive and all the terms of the right limit are negative, since
Yn —x* < 0 and z, —2* > 0. Thus, Vf(z*) = 0. O

2 Additional Exercises

Exercise 1. Consider the following problem:

)

(i) Proof.

We have that z* is a global maximum of f(z) on the constraint set h(z) = 0. Since the constraint
qualification holds, and since global maxima are also local maxima, we have that there exists u* € R¥

such that
K

V@) + > piVhe(z) =0 = VL(", p*) =0
k=1
Thus, the set Sx is nonempty, and z* € Sx. Say that we have some x° € Sx such that z° =
maxzesy f(z). It must be the case that 2° > z* because x* is not necessarily the maximum. Further,
since 3 pu° s.t. (2°,p°) € S = VL(z°,p°) =0 = hy(z°) =0V k € {l,..., K} = h(z) = 0. Thus,
x° is feasible in the primal problem, and since z° > x*, x° is a global maximum. O
(ii) Proof. Take some z* such that f(z*) = max,es, f(z). It must also be the case that (by (i)) f(z*) =
max f(z) s.t. h(z) = 0, which means that £(z*, ) = f(x)+ZkK:1 -0 for any p € R, Thus, it follows
that f(2*) = maxges, f(2) < max(, ,)eraxpr £(, ). Next, take some (z/, p/) € RY x R® such that
L(z!,p') = max(, )eraxrx L(x, p). Since (', ') is a maximizer, we must have that VL(2',u') = 0,
which implies that (z/,p') € S. Thus, 2’ € Sx, and f(2') < maxyes, f(x). Thus, we have that
maXgeSy f(CIL‘) = MaX(y ;)eRd xRE ‘C(xa :U’)' O

Exercise 2. Consider the following problem:

max — st.yd—22=0
(w,y)ER? Y Y
Note that the constraint implies that at any optimal solution, we will have that 3> = £2 = y > 0, where
y > 0 at any y # 0. Thus, the problem is maximized when y = 0, and the constraint is satisfied only when
z = 0, implying that the unique solution is at (0,0).



Note that since 2 > 1, the constraint qualification does not hold. We have that

which becomes
—14up3-0-2-0)0=0=-1=0

Thus, this equation has no solutions.

Exercise 3. Let f(z,y) = %x3 - %yQ + 2z and g(z,y) = x —y. We have that the constraint qualification is
rank(Dg(z)) =rank [1 —1] =1=K

Thus, the constraint qualification holds everywhere. We will solve

I3 3,
ma; —x° — —y° 4+ 2z + p(r —
(z,y,u)eﬁsz 3 2y H’( y)

We get the first order condition
VL(z,y,p)=[2>+24+p —3y—p z—y]=[0 0 0
These imply that = = g, and that 22 + 2 = 3y. These imply that

(x*ay*,/f) € {(272? —6), (1,1, _3)}

which have the attained values:

2 )

£(2,2,—-6) = = and £(1,1,-3) = =

3 6

However, note that (x,y) = (4,4) is attainable in the primal problem, and f(4,4) = % > f(—2,-2), f(—1,-1).
Thus, these solutions to (4) are not solutions to (1).

Exercise 4. Exercises 2 and 3 tell us that we have to be extremely careful trying to solve a primal problem
using the Lagrangian. In Exercise 2, the constraint qualification was violated and there existed no solutions
to the Lagrangian. In Exercise 3, the function we optimized over was convex, rather than concave, so the
Lagrangian did not identify local maxima, instead identifying local minima. The function actually went to
infinity as x,y increased, so it does not attain a maximum in the constraint set.



