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. Let {Xi,...,X,} be a sequence of i.i.d. random variables with mean p and variance o2. Let ji =

Ly Xjand 62 =130 (X, — p)2.

(a)

Recall that Var(X;) = 02 = E[X?] — (E[X;])?. Also recall that ji = u = E[X;], by the Weak Law
of Large Numbers. Thus, we have that
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Thus, since the second and third terms approach 0 probabilistically by the Weak Law of Large
Numbers, we have that
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since the first term is the plug-in estimator for variance, which is unbiased in large samples.

Note that
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Define a function g such that g(a,b) = b— a?. We have that g(fi, i) = 62, where i = 1 >°7" | X2,
From part (a), we have that 62 is consistent. Thus, we can use Delta method. Note that
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where Y; = (XZQ B E[Xf
theorem gets us

]> Assuming that E[X?] < oo, applying the vector-valued central limit
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Additionally, taking the first order Taylor expansion of g, we get that
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Thus, combining them, we have that
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and we have that since 2 5 E[X;] and i & E[X?],

9dg(a,b)

/ R ’ R
da |a7b: T o _2M _2/J
<8g(a,b) | . Mf) N(O, V) =N (03 < 1 > % < 1 >>
ob  lab=pg
Recalling that

= G 20E0) (BB |- (e )

we finally get that
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2. Let X ~ U[0,b] and M,, = max;<, X;, where X, is a random sample from X. Derive the asymptotic
distribution using the following steps.

(a) We have that
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Illustrated graphically, because I’'m a visual person, it looks like:
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Figure 1: F(x)
(b) We have that, by the fact n € N and b € R are constant,

Zn=n <m<aXXi - b) = nmax(X; —b) = maxn(X; — b)
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(c) We have that
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Gn(z) =P{Z, <z} =P {maxn(Xi —b) < a:}

which becomes



(d) We have that

So,

(e) We have that, since b+ 2 >b, that F (b+ %) =1, and so G, (z) = (F (b—|— %))n 1
(f) We have that
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