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0 Conventions

x := y x is defined as equal to y
N {1, 2, 3, . . . }
R+ {x ∈ R | x ≥ 0}
R++ {x ∈ R | x > 0}
RL

++ R++ × · · · × R++

x ≥ y xi ≥ yi for i = 1, . . . , L
x ≫ y xi > yi for i = 1, . . . , L
S ⊆ T S is a subset of T .
S ⊂ T S is a proper subset of T , i.e., S ⊆ T and S ̸= T
SC Complement of the set S
AT Transpose of the matrix A
x · y xTy

Vectors are column vectors, unless otherwise specified
Dxf(x) Derivative matrix of f , with entries ∂fi(x)/∂xj

MWG Mas-Colell, Whinston, Green – Microeconomic Theory
Kreps Kreps – Microeconomic Foundations I

Note: Where possible, all stated results are proven. Proofs that were not
given in the lectures are marked with *. In addition, all results and proofs in
sections titled Appendix were not included in the lectures.
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1 Choice Theory

1.1 Preference Theory

Let X be a finite set of objects.

Example 1.1. X := {x, y, z}

Definition 1.2. Define a preference relation ≿ on X – “x is at least as good
as y”.

Definition 1.3.

(i) x ≻ y: x is strictly preferred to y if x ≿ y and not y ≿ x.

(ii) x ∼ y: x is indifferent to y if x ≿ y and y ≿ x.

Definition 1.4. The preference relation ≿ is complete, if for all x, y ∈ X
either x ≿ y, y ≿ x or both.

Remark 1.5. Completeness implies reflexivity: For all x ∈ X, x ≿ x.

Definition 1.6. The preference relation ≿ is transitive if for all x, y, z ∈ X,
if x ≿ y and y ≿ z then x ≿ z.

Example 1.7. Suppose ≻ is intransitive. In particular, let x ≻ y, y ≻ z and
z ≻ x. Making a choice for the agent becomes impossible.

Definition 1.8. Preference relation ≿ is rational if it is complete and tran-
sitive.

Definition 1.9. For any nonempty subset B of X define

C∗(B,≿) := {x ∈ B | x ≿ y, ∀y ∈ B}

Remark 1.10.

(i) Suppose x ∈ C∗(B,≿) and y ∈ C∗(B,≿). Then x ∼ y.

(ii) Suppose x ∈ B, x /∈ C∗(B,≿) and C∗(B,≿) ̸= ∅. Then there exists
y ∈ B such that y ≻ x.

Definition 1.11. Define the power set of X as P(X) := {B ⊆ X | B ̸= ∅}.

Proposition 1.12. If ≿ is a rational preference relation on X then

C∗ : P(X) → P(X)

In words, C∗ maps nonempty subsets of X to nonempty subsets of X.
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Proof. (By induction on #B) Let B ⊆ P(X) be nonempty. Suppose B con-
tains exactly one element, x. Then, by completeness, x ≿ x and C∗(B) =
{x} ⊆ P(X). Suppose alternatively that any set containing n ∈ N ele-
ments is mapped by C∗ to another nonempty subset of X. Let B con-
tain n + 1 elements and let x be an element of B. Let B′ := B \ {x}
and let x′ be an element of C∗(B′,≿). Note that the latter is nonempty
by the induction hypothesis. By completeness, x ≿ x′ or x′ ≿ x, implying
C∗(B,≿) ∈ {C∗(B′,≿), {x}, C∗(B′,≿) ∪ {x}} ⊆ P(X) using transitivity.

To see how choice and rationality relate, we need some further definitions.

Definition 1.13. C∗ satisfies Sen’s α if x ∈ A ⊆ B and x ∈ C∗(B,≿) implies
x ∈ C∗(A,≿).

Remark 1.14. Sen’s α is also known as independence of irrelevant alternatives.

Proposition 1.15. If ≿ is a rational preference relation then C∗ satisfies
Sen’s α.

Proof. The result is trivially true if A = B. Suppose then that A ⊂ B. Let
x ∈ C∗(B,≿). Then x ≿ y for all y ∈ B. In particular, if y ∈ A ⊆ B, then
x ≿ y. Thus, x ∈ C∗(A,≿).

Definition 1.16. C∗ satisfies Sen’s β if x, y ∈ C∗(A,≿), A ⊆ B and y ∈
C∗(B,≿) implies x ∈ C∗(B,≿).

Remark 1.17. Sen’s β is also known as expansion consistency.

Proposition 1.18. If ≿ is a rational preference relation then C∗ satisfies
Sen’s β.

Proof. Let x, y ∈ C∗(A,≿), A ⊆ B and y ∈ C∗(B,≿). Since x ∈ C∗(A,≿) we
have x ≿ y as y ∈ A. Since y ∈ C∗(B,≿) we have y ≿ z for all z ∈ B. By
transitivity, x ≿ y and y ≿ z implies x ≿ z. So we have x ≿ z for all z ∈ B
and thus x ∈ C∗(B,≿).

Definition 1.19. C∗ satisfies Houthaker’s weak axiom of revealed pref-
erence if for all A,B ∈ P(X), if x, y ∈ A∩B, x ∈ C∗(A,≿) and y ∈ C∗(B,≿),
then x ∈ C∗(B,≿) and y ∈ C∗(A,≿).

Proposition 1.20. C∗ : P(X) → P(X) satisfies Sen’s α and β if and only if
it satisfies Houthaker’s weak axiom of revealed preference (HWARP).
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Proof.

(i) (α+ β =⇒ HWARP) Suppose x, y ∈ A∩B ⊆ P(X), x ∈ C∗(A,≿) and
y ∈ C∗(B,≿). By Sen’s α, both x and y are in C∗(A ∩ B,≿). Then by
Sen’s β, x ∈ C∗(B,≿) and y ∈ C∗(A,≿).

(ii) (HWARP =⇒ β) Say x, y ∈ C∗(A,≿), A ⊆ B and y ∈ C∗(B,≿).
Because A = A ∩ B, x, y ∈ C∗(A ∩ B,≿). Applying HWARP, we get
x ∈ C∗(B,≿).

(iii) (HWARP =⇒ α) Say x ∈ A ⊆ B and x ∈ C∗(B,≿). Suppose x /∈
C∗(A,≿). Then by Proposition 1.12, there exists y ∈ C∗(A,≿). Note
that x, y ∈ A = A ∩ B, x ∈ C∗(B,≿) and y ∈ C∗(A,≿). By HWARP,
x ∈ C∗(A,≿), which is a contradiction.

Proposition 1.21. The following are equivalent for C∗ : P(X) → P(X)

(i) ≿ is rational

(ii) C∗ satisfies Sen’s α and Sen’s β

(iii) C∗ satisfies HWARP

Proof. The equivalence of (ii) and (iii) is given by Proposition 1.21. The
implication (i) =⇒ (ii) is given by Propositions 1.15 and 1.18. Finally, (iii)
=⇒ (i) is given later, in the proof of Proposition 1.29.

1.2 Observed Choice

Definition 1.22. For B ∈ P(X), let C(B) := {x ∈ B | x is chosen}

More generally,

Definition 1.23. For B a collection of nonempty subsets of X, (B, C), is
called a choice structure if C(B) ⊆ B and C(B) ̸= ∅ for all B ∈ B.

Example 1.24. Let X = {x, y, z} and B = {{x, y}, {x, y, z}}. Then a choice
structure could be C({x, y}) = {x}, C({x, y, z}) = {y}. Note that in this
example, the choice structure is not consistent with rational choice.

Definition 1.25. The choice structure (B, C) satisfies the weak axiom of
revealed preference (WARP) if for all A,B ∈ B, x and y are in both A and
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B, and x ∈ C(A) and y ∈ C(B), then x ∈ C(B) and y ∈ C(A).1

Example 1.26. Let X = {x, y, z} and B = P(X). Suppose C({x, y}) = {x, y},
C({y, z}) = {y, z} and C({x, z}) = {z}. If we look at C({x, y, z}) we will find
a contradiction with WARP.

Remark 1.27. WARP and HWARP are defined in different contexts in our
notes but are essentially the same theorem with a small caveat – HWARP is
WARP with B = P(X).

Definition 1.28. Given a choice structure (B, C), the revealed preference
relation ≿∗ is defined by x ≿∗ y if there exists B ∈ B such that x, y ∈ B and
x ∈ C(B).

Proposition 1.29. Suppose that X is finite and B = P(X). If (B, C) satisfies
WARP then the revealed preference relation that it induces, ≿∗, is rational and
C(B) = C∗(B,≿∗) for all B ∈ B.

*Proof. If B = P(X) and (B, C) is a choice structure, then C(X) is defined
and nonempty for every {x, y} ⊆ X. This implies x ≿∗ y or y ≿∗ x for all
x, y ∈ X and so ≿∗ is complete.

Suppose x ≿∗ y and y ≿∗ z. Then there exists A ⊆ X containing x and y
such that x ∈ C(A), and B ⊆ X containing y and z such that y ∈ C(B).
Moreover, {x, y, z} ∈ B and C(x, y, z) is nonempty. Suppose y ∈ C(x, y, z).
Then by WARP, x ∈ C(x, y, z). Suppose z ∈ C(x, y, z). Then again by
WARP, y ∈ C(x, y, z) and thus x ∈ C(x, y, z). In that case, x ∈ C(x, y, z)
reveals that x ≿∗ z and so ≿∗ is transitive.

Let x be an element of C∗(B,≿∗). Then x ≿∗ y for all y ∈ B. Since C(B)
is nonempty, we have z ∈ C(B) for some z. By x ≿∗ z, there exists A ∈ B
such that x, z ∈ A and x ∈ C(A). Therefore by (B, C) satisfying WARP,
x ∈ C(B). Conversely, suppose x ∈ C(B). Then x ≿∗ y for all y ∈ B, and so
x ∈ C∗(B,≿∗).

Remark 1.30. Note that the above proof holds more generally for any B that
contains all subsets of X of cardinality 3 or less.

Example 1.31. A counterexample for Remark 1.30: Suppose X := {x, y, z, w}
and B := {{x, y}, {y, z}, {z, w}, {w, x}}. Let C be defined by:

1Note the difference in phrasing from the HWARP definition – this is because A ∩ B is
not necessarily in B.
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{x, y} 7→ {x, y}
{y, z} 7→ {y, z}
{z, w} 7→ {z, w}
{w, x} 7→ {x}

Because no pair of elements of X are both in two elements of B, WARP is
vacuously satisfied. But neither x ≿∗ z nor z ≿∗ x, so ≿∗ is incomplete. It
can also be shown that ≿∗ is intransitive. Moreover, if we extend C∗ to the
family of all doubletons in X, such that every doubleton apart from {w, x} is
mapped to itself, ≿∗ becomes complete but remains intransitive.

1.3 Incomplete preferences

Definition 1.32. ≻ is a strict partial order2 if

(i) For any x, y ∈ X if x ≻ y then ¬(y ≻ x).

(ii) ≻ is transitive.

Remark 1.33. Note that we do not want to define ∼ by x ∼ y if ¬(x ≻ y) and
¬(y ≻ x). It could be the case that x and y are not comparable.

Proposition 1.34. Define choice by

C∗(A,≻) := {x ∈ A | ∀y ∈ A,¬(y ≻ x)}

where ≻ is a strict partial order. Then C∗ satisfies Sen’s α but not Sen’s β.

*Proof.

(i) Suppose x ∈ A ⊆ B and x ∈ C∗(B,≻). Then there does not exist y ∈ B
such that y ≻ x. It follows that no such y exists in A ⊆ B either, so
x ∈ C∗(A,≻).

(ii) By way of counterexample, suppose x, y ∈ C∗(A,≻), A ⊆ B, y ∈
C∗(B,≻) and there is some z ≻ x in B such that y and z are incompa-
rable. Then the hypotheses of Sen’s β are satisfied, but x /∈ C∗(B,≻).

2As opposed to the ≻ induced by complete preferences, which is a strict total order. In
the language of order theory, the complete weak preference relation, ≿, is a total preorder.
If the consumer was never indifferent between distinct consumption bundles, ≿ would be a
total order.
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2 Consumer Choice

2.1 WARP and the Slutsky Matrix

Assumptions 2.1.

(i) L commodities, x := (x1, . . . , xL) ∈ RL
+

(ii) Prices, p := (p1, . . . , pL) ∈ RL
++. That is, p ≫ 0 or pi > 0 for all i.

(iii) Wealth, w > 0

(iv) Budget set, Bp,w := {x ∈ RL
+ | p · x ≤ w}

Let x(p, w) be the consumer choice at (p, w).

Definition 2.2. The Walrasian demand function3 is given by

x : RL
++ × R++ → RL

+

Assumptions 2.3.

(i) x(p, w) is homogeneous of degree 0:

x(αp, αw) = x(p, w)

for all (p, w) ∈ RL
++ × R++ and α > 0.

(ii) x(p, w) satisfies Walras’ Law:

p · x(p, w) = w

for all (p, w) ∈ RL
++ × R++.

Proposition 2.4. Let BW := {Bp,w | (p, w) ∈ RL
++ × R++} and Cx(Bp,w) :=

{x(p, w)} and let x be homogeneous of degree 0 and satisfy Walras’ Law. Then(
BW , Cx

)
is a choice structure.

*Proof. We want to show that Cx(Bp,w) is a uniquely-defined nonempty subset
of Bp,w for all Bp,w ∈ BW . That Cx(Bp,w) is nonempty follows from the defini-
tion of x as a function. Homogeneity of degree 0 implies that for Bp,w = Bαp,αw,
Cx(Bp,w) = Cx(Bαp,αw). Walras’ Law implies that Cx(Bp,w) ⊆ Bp,w.

3If (p, w) does not uniquely specify a value, x, then we instead have the Walrasian
demand correspondence, X : RL

++ × R++ ⇒ RL
+.
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Definition 2.5. In the context of consumer choice, x(p, w) satisfies the weak
axiom of revealed preference if the following holds:
If (p, w), (p′, w′) ∈ RL

++ × R++ are such that p′ · x(p, w) ≤ w′ and x(p′, w′) ̸=
x(p, w), then p · x(p′, w′) > w.

Remark 2.6. “In words, the weak axiom says that if x′ is ever chosen when x
is available, then there can be no budget set containing both alternatives for
which x is chosen and x′ is not.” – MWG

Definition 2.7. A Slutsky compensated price change is a price change
from p to p′ accompanied by a change in wealth from w to w′ that makes the
old bundle just affordable. That is, such that p′ · x(p, w) = w′.

Remark 2.8. Recall that good i is normal at (p, w) if ∂xi/∂w ≥ 0 and inferior
at (p, w) if ∂xi/∂w < 0.

Proposition 2.9 (Law of compensated demand). Suppose that consumer
demand x(p, w) is homogeneous of degree 0 and satisfies Walras’ Law. Then
x(p, w) satisfies WARP if and only if for any compensated price change from
(p, w) to (p′, w′) := (p′, p′ · x(p, w)) we have

(p′ − p) · (x(p′, w′)− x(p, w)) ≤ 0

with strict inequality if x(p′, w′) ̸= x(p, w).

Proof. The wealth change can be defined as

∆w := w′ − w = p′ · x(p, w)− p · x(p, w)
= (p′ − p) · x(p, w)
= ∆p · x(p, w)

where ∆p := p′ − p. By WARP, p · x(p′, w′) ≥ p · x(p, w) = w with strict
inequality if x(p′, w′) ̸= x(p, w). Note that p′ · x(p′, w′) = p′ · x(p, w) = w′ by
Walras’ Law and the definition of a compensated price change. Subtracting
the two gives us:

(p− p′) · x(p′, w′) ≥ (p− p′) · x(p, w)
=⇒ (p′ − p) · x(p′, w′) ≤ (p′ − p) · x(p, w)
=⇒ (p′ − p) · (x(p′, w′)− x(p, w)) ≤ 0

Conversely, say

(p′ − p) · (x(p′, w′)− x(p, w < 0
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Then

p′ · x(p′, w′)− p′ · x(p, w)− p · (x(p′, w′) + p · x(p, w)) < 0

=⇒ p · (x(p′, w′)− x(p, w)) > 0

=⇒ p · x(p′, w′) > w

The case of strict inequality is analogous.

Proposition 2.10. Let x : RL
+×R+ → RL

+ be continuously differentiable. Then

∂xj(p, w)

∂pj
+ xj(p, w)

∂xj(p, w)

∂w
≤ 0

Proof. Let p change solely in pj, by ∆pj, and let ∆w be the compensating
changing in wealth, as above. Let ∆x := x(p′, w′)− x(p, w). Then, by the law
of compensated demand,

∆pj∆xj = ∆p ·∆x ≤ 0

and

∆pj(xj(p
′, w′)− xj(p, w)) ≤ 0

=⇒ xj(p
′, w′)− xj(p, w)

∆pj
≤ 0

Write xj(p
′, w′)− xj(p, w) = xj(p

′, w)− xj(p, w) + xj(p
′, w′)− xj(p

′, w). So

xj(p
′, w)− xj(p, w)

∆pj
+

xj(p
′, w′)− xj(p

′, w)

∆pj
≤ 0

Using ∆w = ∆pjxj(p, w),

xj(p
′, w)− xj(p, w)

∆pj
+ xj(p, w)

xj(p
′, w′)− xj(p

′, w)

∆w
≤ 0

Taking the limit as ∆pj → 0 (implying ∆w → 0 and p′ → p) and using the
continuity of partials of xj, we have

∂xj(p, w)

∂pj
+ xj(p, w)

∂xj(p, w)

∂w
≤ 0

provided that xj is continuously differentiable.
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Definition 2.11. The Slutsky matrix,

S(p, w) := Dpx(p, w) +Dwx(p, w)x(p, w)
T

=


∂x1

∂p1
· · · ∂x1

∂pL
...

...
∂xL

∂p1
· · · ∂xL

∂pL

+


∂x1

∂w
...

∂xL

∂w

 [x1(p, w) · · · xL(p, w)
]

=


∂x1

∂p1
· · · ∂x1

∂pL
...

...
∂xL

∂p1
· · · ∂xL

∂pL

+

x1
∂x1

∂w
· · · xL

∂x1

∂w
...

...
x1

∂xL

∂w
· · · xL

∂xL

∂w


=


∂x1

∂p1
+ x1

∂x1

∂w
· · · ∂x1

∂pL
+ xL

∂x1

∂w
...

...
∂xL

∂p1
+ x1

∂xL

∂w
. . . ∂xL

∂pL
+ xL

∂xL

∂w


Proposition 2.12. S(p, w) is negative semidefinite.

Proof. Let dp := (dp1, . . . , dpL) be an arbitrary element of RL. Then for all i,

dxi =
∂xi

∂p1
dp1 + · · ·+ ∂xi

∂pL
dpL +

∂xi

∂w
x1(p, w)dp1 + · · ·+ ∂xi

∂w
xL(p, w)dpL

=⇒ dx = Dpx(p, w)dp+Dwx(p, w) (x(p, w) · dp)
=
(
Dpx(p, w) +Dwx(p, w)x(p, w)

T
)
dp

By WARP, dp · dx ≤ 0, hence

dpT
(
Dpx(p, w) +Dwx(p, w)x(p, w)

T
)
dp ≤ 0

Since dp is arbitrary, this implies S(p, w) is negative semidefinite.

2.1.1 Appendix: More on the Slutsky Matrix

The following propositions are from Sections 2.E and 2.F of MWG.

Proposition A2.13. If x is homogeneous of degree 0, then

Dpx(p, w)p+Dwx(p, w)w = 0

for all p and w.
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Proof. Homogeneity of degree 0 implies

x(αp, αw)− x(p, w) = 0

for all α > 0. Differentiating with respect to α and applying the chain rule,
we obtain

Dαpx(αp, αw)p+Dαwx(αp, αw)w = 0

Since this is true for all α > 0, it is true in particular for α = 1. The result
follows.

Proposition A2.14. If x satisfies Walras’ law, then

(i) pTDpx(p, w) + x(p, w)T = 0T

and
(ii) pTDwx(p, w) = 1

Proof. Using matrix notation, Walras’ law is

pTx = w

Differentiating with respect to p and applying the multiplication rule yields

pTDpx+ xTI = 0T

while differentiating with respect to w gives (ii).

Proposition A2.15. If x is homogeneous of degree 0 and satisfies Walras’ law,
then

pTS(p, w) = S(p, w)p = 0

Proof.

pTS(p, w) = pTDpx(p, w) + pTDwx(p, w)x(p, w)
T

= −x(p, w)T + x(p, w)T

= 0

where the second equality follows from the previous proposition. By first
applying Walras’ law and then Proposition A2.13, we also get

S(p, w)p = Dpx(p, w)p+Dwx(p, w)x(p, w)
Tp

= Dpx(p, w)p+Dwx(p, w)w

= 0
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2.2 Consumer Choice from ≿

As before, let X := RL
+.

Definition 2.16. A utility function representing ≿ on X is a function
u : X → R such that for all x, y ∈ X:

u(x) ≥ u(y) if and only if x ≿ y

Proposition 2.17. If u : X → R represents ≿ on X and f : R → R is strictly
increasing, then f ◦ u represents ≿.

*Proof.

x ≿ y ⇐⇒ u(x) ≥ u(y) ⇐⇒ (f ◦ u)(x) ≥ (f ◦ u)(y)

Example 2.18. Lexicographic preferences, defined by

(x1, x2) ≿ (y1, y2) if and only if x1 > y1 or x1 = y1 and x2 ≥ y2

are rational but cannot be represented by a utility function.

Definition 2.19.

(i) The upper contour set, R(x) := {y ∈ X | y ≿ x}, is the set of
all bundles that are at least as good as x. Denote its complement by
P−1(x).

(ii) The lower contour set, R−1(x) = {y ∈ X | x ≿ y}, is the set of all
bundles that x is at least as good as. Denote its complement by P (x).4

Definition 2.20. The preference relation ≿ on X is continuous if R(x) and
R−1(x) are closed subsets of X for all x ∈ X.

Remark 2.21. Lexicographic preferences are not continuous. Let x := (0, 2)
and consider the sequence (( 1

n
, 1))∞n=1 in the upper contour set of x. This

sequence converges to a point outside the upper contour set, (0, 1) ≺ (0, 2).

Proposition 2.22 (Debreu’s theorem). Suppose the rational preference re-
lation ≿ on X is continuous. Then there is a continuous utility function
representing ≿.

4R(x), R−1(x), P (x) and P−1(x) are sometimes called the no-worse-than, no-better-than,
better-than and worse-than sets, respectively.
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Proof. We prove the proposition with the additional assumption of strict
monotonicity (see Definition 2.23).5

Choose any x ∈ RL
+. Let e = (1, 1, . . . , 1). Define the ray from the origin

as Z := {αe ∈ RL
+ | α ∈ R+}, which is closed. By continuity of ≿, R(x)

and R−1(x) are also closed. If follows that R(x) ∩ Z and R−1(x) ∩ Z are
closed. Call them S(x) and S−1(x). By monotonicity, x ≿ 0 and there exists
ᾱ such that ᾱe ≿ x. Thus, S(x) and S−1(x) are both nonempty. Furthermore,
completeness also implies that S(x)∪S−1(x) = Z. But the ray Z is connected
– that is, Z is not the disjoint union of two nonempty, closed subsets. Given
that S(x) and S−1(x) are nonempty and closed, they must not be disjoint. In
other words, S(x) ∩ S−1(x) = {α ∈ R+ | αe ∼ x} is nonempty.

Define u : RL
+ → R by u(x) = α, where α is defined as above. Say u(x) ≥ u(y).

Then x ∼ u(x)e ≿ u(y)e ∼ y by monotonicity. Conversely, say x ≿ y. Then
u(x)e ≿ u(y)e and thus u(x) ≥ u(y) by monotonicity. Therefore, u is a utility
function representing the preference relation ≿.

To show that u is continuous, note that by continuity of ≿, P−1(x) and P (x)
are open for any x ∈ RL

+. Fix x and y such that x ≻ y. Our choice of y
implies that y is in P−1(x) and openness of the latter implies so too is any y′

sufficiently close to y. This in turn implies that x ≻ y′ and so x ∈ P (y′), which
is open. Thus for all x′ sufficiently close to x, x′ ∈ P (y′), or x′ ≻ y′. Now fix
ε > 0 and note that (u(x) + ε)e ≻ x ≻ (u(x)− ε)e. From what we just found,
we know that for x′ sufficiently close to x, (u(x) + ε)e ≻ x′ ≻ (u(x)− ε)e. By
strict monotonicity, this implies u(x) + ε > u(x′) > u(x) − ε. Therefore, u is
continuous.

Definition 2.23. The preference relation ≿ is monotone if for all x, y ∈ X,
x ≥ y implies x ≿ y.6 It is strictly monotone if x ≥ y and x ̸= y implies
x ≻ y.

Remark 2.24. Strict monotonicity implies monotonicity.

Definition 2.25. The preference relation ≿ is locally non-satiated if for
every x ∈ X and δ > 0 there is a y ∈ X such that ∥x− y∥ ≤ δ and y ≻ x.

5Note that this is a complete proof, based primarily on the proof of Proposition 3.C.1 in
MWG and secondarily on sections 1.5 and 2.3 in Kreps. In the lecture, only a sketch of this
proof was given.

6This is the definition used in Kreps; the definition in MWG is slightly different. MWG
defines weak monotonicity as x ≫ y implying x ≻ y, which Kreps calls “strict monotonicity
for strict increases in the bundle.”
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Remark 2.26. Strict monotonicity implies local non-satiation.

Definition 2.27. The preference relation ≿ on X is convex if for all x, y, z ∈
X and all α ∈ [0, 1],

y ≿ x and z ≿ x =⇒ αy + (1− α)z ≿ x

It is strictly convex if for all x, y, z ∈ X and all α ∈ (0, 1),

y ≿ x and z ≿ x and y ̸= z =⇒ αy + (1− α)z ≻ x

Remark 2.28. Preferences are convex if and only if for every x ∈ X, R(x) is a
convex set.

Definition 2.29. The function u : RL
+ → R is quasiconcave if for all x, y ∈

RL
+ and any α ∈ [0, 1]

u(αx+ (1− α)y) ≥ min{u(x), u(y)}

Definition 2.30. The function u : RL
+ → R is concave if for all x, y ∈ RL

+

and any α ∈ [0, 1]

u(αx+ (1− α)y) ≥ αu(x) + (1− α)u(y)

Remark 2.31. Strict quasiconcavity and strict concavity are defined by restrict-
ing α to be in (0, 1), requiring that x ̸= y, and changing to a strict inequality
in the above definitions.

Proposition 2.32. u representing ≿ is quasiconcave if and only if ≿ is convex.

*Proof. Assuming quasiconcavity, u(y), u(z) ≥ u(x) implies u(αy+(1−α)z) ≥
min{u(y), u(z)} ≥ u(x). Conversely, suppose without loss of generality that
y ≿ z. Note also that z ≿ z. Thus by convexity of preferences, αy+(1−α)z ≿
z. So u(αy + (1− α)z) ≥ u(z) = min{u(y), u(z)}.

Remark 2.33. An analogous result holds if we make both properties strict.

2.2.1 Appendix: More on Utility Representations

Proposition A2.34. Suppose ≿ is a rational preference relation on a set X
(not necessarily RL

+). Any of the following properties of X are sufficient to
guarantee the existence of a utility function representing ≿:7

7Note that each of these properties generalizes the previous, so strictly speaking the
sufficiency of (iii) implies the sufficiency of the other two.
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(i) X is finite.

(ii) X is countable.

(iii) X has a countable subset, X∗, such that if x, y ∈ X and x ≻ y then
there exists x∗ ∈ X∗ with x ≿ x∗ ≻ y.

Proof.

(i) Define u(x) := #R−1(x) and note that x ≿ y if and only if R−1(y) ⊆
R−1(x).

(ii) Enumerate X as {x1, x2, . . . } and define d : X → R by d(xi) =
(
1
2

)i
.

Then define u(x) :=
∑

y∈R−1(x) d(y).

(iii) Enumerate X∗ as {x∗
1, x

∗
2, . . . } and define d : X∗ → R by d(x∗

i ) =
(
1
2

)i
and u : X → R by u(x) =

∑
x∗∈X∗∩R−1(x) d(x

∗).

Proposition A2.35. If ≿ has a utility representation then it is rational.

Proof. For all x, y ∈ X, either u(x) ≥ u(y) or u(y) ≥ u(x), so ≿ is complete.
For all x, y, z ∈ X, u(x) ≥ u(y) and u(y) ≥ u(z) implies u(x) ≥ u(z). Thus ≿
is transitive.

Proposition A2.36. That ≿ has a utility representation does not imply that ≿
is continuous.

Proof. Let X := R+ and define the preference relation ≿ by

x ≿ y ⇐⇒ (x > 0 or y = 0)

R(1) = R++, which is not closed. Thus ≿ is not continuous. However, it does
have a utility representation given by

u(x) :=

{
1 if x > 0

0 if x = 0

Proposition A2.37. If ≿ can be represented by a continuous utility function u,
then ≿ is continuous.
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Proof. If u is continuous, thenR(x) = u−1[u(x),∞) andR−1(x) = u−1(−∞, u(x)]
are both closed.

Proposition A2.38. ≿ is continuous and can be represented by u does not imply
u is continuous.

Proof. This follows from Proposition 2.17.

Proposition A2.39. Lexicographic preferences cannot be represented by a util-
ity function.

Proof. Suppose that they can. First note that any utility function would have
to be injective, as a consumer with lexicographic preferences is never indifferent
between distinct bundles. Note also that for all x1 ∈ R, u(x1, 0) < u(x1, 1).
Because the rational numbers are dense in the real line, we know that there
is a rational number between u(x1, 0) and u(x1, 1). Call this rational number
q(x1), and define an associated function, q : R → Q. Clearly if x1 ̸= x2 then
q(x1) ̸= q(x2), so q is injective. This implies that the cardinality of R is less
than or equal to that of Q, a contradiction.

2.3 Consumer Optimization

Definition 2.40. The consumer’s problem is the optimization problem

max
x∈RL

+

u(x)

st p · x ≤ w
(2.1)

Proposition 2.41 (Properties of Walrasian demand correspondence). Let u
be a continuous utility function representing ≿ on RL

+.

(i) If p ∈ RL
++ and w ∈ R++, then there exists an x∗ ∈ RL

+ that solves the
consumer’s problem.

(ii) If λ > 0, then this x∗ also solves the consumer’s problem for λp and λw
(homogeneity of degree 0).

(iii) If in addition, ≿ satisfies local non-satiation, then p · x∗ = w for any
solution (Walras’ Law).
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(iv) If in addition, ≿ is strictly convex then x∗ is unique and the Walrasian
demand function

x : RL
++ × R++ → RL

+

is well-defined and continuous.

*Proof.

(i) Bp,w is nonempty and compact and u is continuous so, by the extreme
value theorem, u attains a maximum on Bp,w.

(ii) Observe that p · x ≤ w ⇐⇒ λp · x ≤ λw, so the constraint set is the
same in both problems.

(iii) Suppose not: suppose p · x∗ < w. Choose ε > 0 such that ∥x∗ − y∥ < ε
implies p · y < w. By local non-satiation, there exists y within ε distance
of x∗ such that y ≻ x, which is a contradiction.

(iv) Let x̂ be a distinct solution. Then by strict convexity of preferences, for
all α ∈ (0, 1), αx∗ + (1 − α)x̂ ≻ x∗. Moreover, convexity of the budget
set implies that αx∗ + (1 − α)x̂ is affordable, so this is a contradiction.
Continuity of x is proven in Kreps (Proposition 3.3).

Proposition 2.42 (Necessary conditions). Suppose

(i) The consumer’s preferences on RL
+ can be represented by a twice contin-

uously differentiable utility function u.

(ii) The preferences are strictly monotone.

(iii) p ≫ 0 and w > 0

If x∗ is an interior solution of (2.1), that is, a solution satisfying x∗ ≫ 0, then

MRSij(x
∗) :=

∂u(x∗)
∂xi

∂u(x∗)
∂xj

=
pi
pj

Proof. Strict monotonicity implies p·x∗ = w and ∂u(x∗)
∂xj

> 0. We know x∗ solves

(2.1) and the constraint qualification holds. By the Karush-Kuhn-Tucker con-
ditions, there exists λ > 0 such that ∇u(x∗) = λp. The result follows.

Proposition 2.43 (Sufficient conditions). Suppose, in addition to hypotheses
(i) to (iii) of the previous proposition, we have
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(iv) ≿ are strictly convex.

If x∗ satisfies x∗ ≫ 0 and p · x∗ = w, and there exists a λ > 0 such that

∇u(x∗) = λp

then x∗ is the unique solution to the consumer’s problem.

Proposition 2.44. Suppose that f : Rn → R and h : Rn → R are twice con-
tinuously differentiable functions, and consider the problem8

max
x

f(x)

st h(x) = 0
(2.2)

Suppose x∗ ∈ Rn and λ∗ > 0 are such that

∂L(x∗, λ∗)

∂xi

= 0

for i = 1, . . . , n, and
∂L(x∗, λ∗)

∂λ
= 0

where L(x, λ) := f(x)−λh(x) is the Lagrangian associated with (2.2). Suppose
further that the leading principal minors of the Hessian of L satisfy∣∣∣∣∣∣

0 Lλx1 Lλx2

Lx1λ Lx1x1 Lx1x2

Lx2λ Lx2x1 Lx2x2

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
0 Lλx1 Lλx2 Lλx3

Lx1λ Lx1x1 Lx1x2 Lx1x3

Lx2λ Lx2x1 Lx2x2 Lx2x3

Lx3λ Lx3x1 Lx3x2 Lx3x3

∣∣∣∣∣∣∣∣ < 0, . . .

at (x∗, λ∗). That is, for r ≥ 3, the r-th order leading principal minor is positive
if r is odd and negative if r is even. Then x∗ is a strict local maximizer of
f(x) subject to the constraint h(x) = 0.

Proof. Omitted.

Now we prove Proposition 2.43 using Proposition 2.44.

Proof of Proposition 2.43.

Set up the Lagrangian:

L(λ, x) = u(x) + λ(w − p · x)
8This is Theorem 5 in the optimization handout.
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By hypothesis, x∗ and λ∗ satisfy the first-order conditions:

p · x∗ = w

ui(x
∗) :=

∂u(x∗)

∂xi

= λ∗pi

for i = 1, . . . , L, and the Hessian satisfies:

H̄ =

∣∣∣∣∣∣∣∣∣
0 Lλx1 . . . LλxL

Lx1λ Lx1x1 . . . Lx1xL

...
...

. . .
...

LxLλ LxLx1 . . . LxLxL

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
0 −p1 . . . −pL

−p1 u11 . . . u1L
...

...
. . .

...
−pL uL1 . . . uLL

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
0 −u1

λ∗ . . . −uL

λ∗
−u1

λ∗ u11 . . . u1L
...

...
. . .

...
−uL

λ∗ uL1 . . . uLL

∣∣∣∣∣∣∣∣∣
=

(
− 1

λ∗

)2

∣∣∣∣∣∣∣∣∣
0 u1 . . . uL

u1 u11 . . . u1L
...

...
. . .

...
uL uL1 . . . uLL

∣∣∣∣∣∣∣∣∣
where the second-to-last inequality follows from the first-order conditions. Fi-
nally, by the strict quasiconcavity of u (or equivalently, the strict convexity of
preferences) the determinant in the last line is positive if L is even and nega-
tive if L is odd, and its leading principal minors alternate sign. The conditions
of Proposition 2.44 are met and thus x∗ is a strict local maximizer.

Now we want to show that x∗ is a strict global maximizer – in other words,
that x∗ is the unique solution to the consumer’s problem. Suppose there
is a distinct global maximizer x̄. Then x̄ ≿ x∗. Let α ∈ (0, 1) and consider
xα = αx∗+(1−α)x̄. Since the budget set is convex, xα is affordable. Moreover,
xα ≻ x∗ by the strict convexity of ≿. This is true for α arbitrarily close to
1, so this contradicts x∗ being a strict local maximizer. By the first part of
Proposition 2.41, we know that there exists some global maximizer. We have
shown that this global maximizer is unique and must be x∗.
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2.4 Indirect Utility Function

Definition 2.45. The indirect utility function, V : RL
++ × R++ → R, is

defined by

V (p, w) := max
x∈RL

+

u(x)

st p · x ≤ w

Remark 2.46. If x(p, w) is a solution then

V (p, w) = u(x(p, w))

Assumptions 2.47.

(i) ≿ on RL
+ are locally non-satiated

(ii) u is continuous

(iii) p ≫ 0 and w > 0

Proposition 2.48 (Properties of V ).

(i) Continuous.

(ii) Nonincreasing in pi for i = 1, . . . , L.

(iii) Strictly increasing in w.

(iv) Quasiconvex: that is, {(p, w) | V (p, w) ≤ k} is a convex set, for all k.

(v) Homogeneous of degree 0.

*Proof.

(i) In the case where the solution, x, is unique, V = u ◦ x. Continuity of
u is assumed, while continuity of x is proven in Proposition 2.41 (given
continuity of u). The general case is proven in Kreps Proposition 3.3.

(ii) Fix i and suppose p′i ≥ pi. Then Bp′,w ⊆ Bp,w and so V (p′, w) ≤ V (p, w).

(iii) Let x := x(p, w) and suppose w′ > w. Then p · x < w′ and by local
non-satiation, there exists x′ ≻ x such that p · x′ ≤ w′. This implies that
V (p, w′) ≥ u(x′) > u(x) = V (p, w).
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(iv) Suppose
x ∈ B(αp+ (1− α)p′, αw + (1− α)w′)

Then

αp · x+ (1− α)p′ · x ≤ αw + (1− α)w′

=⇒ α(p · x− w) + (1− α)(p′ · x− w′) ≤ 0

=⇒ p · x ≤ w or p′ · x ≤ w′

=⇒ x ∈ Bp,w ∪Bp′,w′

=⇒ B(αp+ (1− α)p′, αw + (1− α)w′) ⊆ Bp,w ∪Bp′,w′

=⇒ V (αp+ (1− α)p′, αw + (1− α)w′) ≤ max{V (p, w), V (p′, w′)}
=⇒ V is quasiconvex

(v) This follows from the Walrasian correspondence, X, being homogeneous
of degree 0 (Proposition 2.41(ii)).

Proposition 2.49. If u and x are continuously differentiable, then so too is
V and

∂V

∂w
= λ

where λ is the Lagrange multiplier in L(λ, x) = u(x) + λ(w − p · x).

Proof. This can be seen immediately as an application of the envelope theorem

∂V

∂w
=

∂u

∂w
+ λ

Note that u is not a function of w, so

∂u

∂w
= 0

The result follows. We can also obtain the result by applying the chain rule

∂V

∂w
=

L∑
i=1

∂u

∂xi

∂xi

∂w
= λ

L∑
i=1

pi
∂xi

∂w
= λ

where the last equality uses differentiation of both sides of Walras’ law with
respect to w.

Remark 2.50. This proposition gives economic meaning to the Lagrange mul-
tiplier: it is the marginal utility obtained from relaxing the budget constraint
by one unit of income.
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2.5 Expenditure Minimization

Definition 2.51. The expenditure minimization problem is the opti-
mization problem

min
x∈RL

+

p · x

st u(x) ≥ ū

Definition 2.52. The associated value function, the expenditure function,
is defined by

e(p, ū) := min
x∈RL

+

p · x

st u(x) ≥ ū

Definition 2.53. The Hicksian demand correspondence, H : R++×R ⇒
R+ gives the solutions to the expenditure minimization problem:

H(p, ū) := argmin
x∈RL

+

p · x

st u(x) ≥ ū

If H(p, ū) is singleton-valued for all p and ū, then we have the Hicksian
demand function, h : R++ × R → R+.

Proposition 2.54 (Properties of Hicksian demand correspondence). Let pref-
erences be continuous.

(i) If u(0) ≤ ū ≤ supx∈RL
+
u(x) where the right-hand side is possibly infinite,

then there exists an h∗ ∈ RL
+ that solves the EMP.

(ii) If λ > 0, then this h∗ also solves the consumer’s problem for λp and λw
(homogeneity of degree 0).

(iii) If h∗ solves the EMP, then u(h∗) = ū.

(iv) If in addition, ≿ is strictly convex then h∗ is unique and the Hicksian
demand function

h : RL
++ × R → RL

+

is well-defined and continuous.

*Proof.
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(i) By the continuity of u and the intermediate value theorem, there exists
x0 ∈ RL

+ such that u(x0) = ū. We can then restrict the constraint set to
{x ∈ RL

+ | u(x) ≥ ū and p · x ≤ p · x0} without changing the solution.
This set is nonempty and compact, so we can apply the extreme value
theorem.

(ii) This follows from p · h∗ ≥ p · x ⇐⇒ λp · h∗ ≥ λp · x.

(iii) Suppose u(h∗) > ū. Then, by continuity of u, there exists x ̸= h∗ such
that x ≤ h∗ and ū < u(x) < u(h∗). This implies that x is in the
constraint set and p · x < p · h∗, contradicting our choice of h∗.

(iv) The existence proof is identical to that of Proposition 2.41(iv), noting
that the constraint set is an interval in R and therefore convex. Conti-
nuity of h is proven in Kreps (Proposition 10.3).

Proposition 2.55 (Properties of e).

(i) Continuous.

(ii) Nondecreasing in pi for i = 1, . . . , L.

(iii) Strictly increasing in ū.

(iv) Homogeneous of degree 1 in p.

(v) Concave in p.

*Proof.

(i) See Kreps Proposition 10.3b.

(ii) Let p′ ≥ p and h′ ∈ H(p′, ū). Then

e(p′, ū) = p′ · h′ ≥ p · h′ ≥ e(p, ū)

(iii) Suppose not. Then there exists ū, ū′ such that ū′ > ū, and such that for
x ∈ H(p, ū), h′ ∈ H(p, ū′), we have p · x ≥ p · h′. By continuity of u, for
sufficiently large α ∈ (0, 1), u(αh′) > u(x). But p · x ≥ p · h′ > p · αh′,
contradicting the definition of x.

(iv) This follows from H being homogeneous of degree 0.

(v) Let p′′ := αp+ (1− α)p′ and h′′ ∈ H(p′′, ū). Then

e(p′′, ū) = p′′ ·h′′ = αp ·h′′+(1−α)p′ ·h′′ ≥ αe(p, ū)+ (1−α)e(p′, ū)
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Henceforth, we assume 2.47.

Proposition 2.56. Assume ≿ is continuous and locally non-satiated. Then:

(i) H(p, V (p, w)) = X(p, w)

(ii) X(p, e(p, ū)) = H(p, ū)

(iii) e(p, V (p, w)) = w

(iv) V (p, e(p, ū)) = ū

*Proof.

(i) Fix p and w. Let x∗ and h∗ be arbitrary elements of X(p, w) and
H(p, V (p, w)), respectively. Since u(x∗) = V (p, w) and h∗ minimizes ex-
penditure over consumption bundles satisfying u(x) ≥ V (p, w), we must
have p ·h∗ ≤ p ·x∗ ≤ w. By Proposition 2.54(iii), u(h∗) = V (p, w). Thus,
h∗ is a utility-maximizing element of Bp,w. In other words, h∗ ∈ X(p, w).
By Walras’ law, p · h∗ = w = p · x∗, so x∗ is an expenditure-minimizing
consumption bundle satisfying u(x∗) ≥ V (p, w). In other words, x∗ ∈
H(p, V (p, w)). Since x∗ and h∗ are arbitrary, H(p, V (p, w)) = X(p, w).

(ii) Fix p and ū ∈ [u(0), supu(x)]. Let x∗ and h∗ be arbitrary elements
of X(p, e(p, ū)) and H(p, ū), respectively. Since p · h∗ = e(p, ū) and x∗

maximizes utility over B(p, e(p, ū)), u(x∗) ≥ u(h∗) = ū. Moreover, by
definition p · x∗ ≤ e(p, ū) = p · h∗. Thus, x∗ also minimizes expenditure
over the constraint set. That is, x∗ ∈ H(p, ū). Then u(x∗) = ū = u(h∗).
Clearly, h∗ ∈ B(p, e(p, ū)) so h∗ ∈ X(p, e(p, ū)).

(iii) Let h∗ ∈ H(p, V (p, w)) = X(p, w). Then e(p, V (p, w)) = p · h∗ = w.

(iv) Let x∗ ∈ X(p, e(p, ū)). Then V (p, e(p, ū)) = u(x∗) = ū.

Corollary 2.57. If x and h are well-defined:

(i) h(p, V (p, w)) = x(p, w)

(ii) x(p, e(p, ū)) = h(p, ū)

Proposition 2.58 (Shephard’s lemma). In addition to Assumptions 2.47,
suppose that ≿ are strictly convex and that e ∈ C1. Then for p ≫ 0

hi(p, ū) =
∂e(p, ū)

∂pi

for i = 1, . . . , L.
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Proof. Fix some u∗ and some p∗ ≫ 0. Let x∗ = h(p∗, u∗) and define g(p) =
e(p, u∗) − p · x∗. Note that g(p) ≤ 0 for all p and g(p∗) = 0. So, g(p) is
maximized at p∗. Hence,

∂g(p∗)

∂pi
=

∂e(p∗, u∗)

∂pi
− x∗

i = 0

for i = 1, . . . , L. This implies that

∂e(p∗, u∗)

∂pi
= hi(p

∗, u∗)

Remark 2.59. Note that for a given ū ∈ R, e(p, ū) is not invariant to positive
monotonic transformations of the function u. For example, replacing u(x) with
v(x) := 2u(x) will change the value of e(p, ū).

Proposition 2.60 (Roy’s identity). In addition to Assumptions 2.47, sup-
pose that ≿ are strictly convex and that e, V ∈ C1. Then for p ≫ 0

xi(p, w) = −
∂V (p,w)

∂pi
∂V (p,w)

∂w

for i = 1, . . . , L.

Proof. Let p∗ ≫ 0 and u∗ := u(x(p∗, w∗)) = V (p∗, w∗). Then by Proposi-
tion 2.56, u∗ = V (p∗, e(p∗, u∗)). Taking the derivative with respect to pi and
evaluating at p∗i , we obtain

0 =
∂V (p∗, w∗)

∂pi
+

∂V (p∗, w∗)

∂w

∂e(p∗, u∗)

∂pi

So

xi(p
∗, w∗) = hi(p

∗, u∗) =
∂e(p∗, u∗)

∂pi
= −

∂V (p∗,w∗)
∂pi

∂V (p∗,w∗)
∂w

2.6 The Slutsky Equation

Proposition 2.61 (The Slutsky equation). Suppose e and V are both twice
continuously differentiable. Fix p and w, and let u∗ := V (p, w). Then

∂xi(p, w)

∂pj
=

∂hi(p, u
∗)

∂pj︸ ︷︷ ︸
substitution effect

−xj(p, w)
∂xi(p, w)

∂w︸ ︷︷ ︸
income effect

(2.3)
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Proof. From Proposition 2.56, we have hi(p, u
∗) = xi(p, e(p, u

∗)). Differentiat-
ing both sides with respect to pj, we obtain

∂hi(p, u
∗)

∂pj
=

∂xi(p, w)

∂pj
+

∂xi(p, w)

∂w

∂e(p, u∗)

∂pj

Now use ∂e(p,u∗)
∂pj

= hj(p, u
∗) = xj(p, w).

Remark 2.62. In matrix form, the Slutsky equation is
∂x1(p,w)

∂p1
· · · ∂x1(p,w)

∂pL
...

...
∂xL(p,w)

∂p1
· · · ∂xL(p,w)

∂pL

 =


∂h1(p,u∗)

∂p1
· · · ∂h1(p,u∗)

∂pL
...

...
∂hL(p,u

∗)
∂p1

· · · ∂hL(p,u
∗)

∂pL


−


∂x1(p,w)

∂w
...

∂xL(p,w)
∂w

 [x1(p, w) · · · xL(p, w)
]

or equivalently

Dpx(p, w) = Dph(p, u
∗)−Dwx(p, w)x(p, w)

T

Comparing with Definition 2.11, we can see that

Dph(p, V (p, w)) = S(p, w)

Proposition 2.63. S(p, w) is negative semidefinite.9 If e is twice continuously
differentiable, then S(p, w) is symmetric.

Proof. For symmetry, we have

S(p, w) = Dph(p, u
∗) =

[
∂hi(p, u

∗)

∂pj

]
ij

=

[
∂2e(p, u∗)

∂pj∂pi

]
ij

=

[
∂2e(p, u∗)

∂pi∂pj

]
ij

=

[
∂hj(p, u

∗)

∂pi

]
ij

= Dph(p, u
∗)T = S(p, w)T

where the fourth equality follows from Young’s theorem. The above sequence
of equalities also shows that S(p, w) is the Hessian of e. Therefore, negative
semidefiniteness of S(p, w) follows from the concavity of e.

9This part of the proof is just an alternative way of proving Proposition 2.12.
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2.7 Envelope Theorem

Theorem 2.64 (Envelope theorem). Let

V (a) := max
x∈Rn

+

f(x, a)

st g(x, a) = 0

Then
∂V (a)

∂a
=

∂f(x∗(a), a)

∂a
+ λ∗(a)

∂g(x∗(a), a)

∂a

where (x∗, λ∗) is the solution to the maximization problem.

Proof. Let x(a) := argmaxx∈Rn
+
f(x, a) st g(x, a) = 0. Then V (a) = f(x(a), a)

and

∂V (a)

∂a
=

n∑
i=1

(
∂f(x(a), a)

∂xi

∂xi(a)

∂a

)
+

∂f(x(a), a)

∂a

= λ(a)
n∑

i=1

(
∂g(x(a), a)

∂xi

∂xi(a)

∂a

)
+

∂f(x(a), a)

∂a

= λ(a)
∂g(x(a), a)

∂a
+

∂f(x(a), a)

∂a

where the second equality uses the first-order conditions and the third uses
the derivative of the constraint equation with respect to a.

2.8 Integrability

Remark 2.65. Suppose x : RL
++ × R++ → RL

+ is a continuously differentiable
Marshallian demand function generated by rational, continuous and locally
non-satiated preferences. We know that x must satisfy:

(i) Walras’ law: p · x(p, w) = w

(ii) Homogeneity of degree 0

(iii) Symmetric, negative semidefinite Slutsky matrix,[
∂xi(p, w)

∂pj
+ xj(p, w)

∂xi(p, w)

∂w

]
ij

We want to show that these necessary conditions are also sufficient for the
existence of rational generating preferences.
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Proposition 2.66 (Recovering the expenditure function from demand). Sup-
pose x : RL

++ × R++ → RL
+ is a continuously differentiable function satisfying

(i) to (iii) above. Then we can recover an expenditure function satisfying:

∂e(p, ū)

∂pi
= xi(p, e(p, ū))

for i = 1, 2, . . . , L and for all p and all w.

Proof. Fix some (p0, w0) ∈ RL
++ × R++. Let x0 = x(p0, w0). Assign utility

ū0 to x0 (we can do this because preferences are invariant under a positive
monotonic transformation of the utility function). Using Propositions 2.56
and 2.58, we obtain the following system of partial differential equations:

∂e(p, ū0)

∂pi
= xi(p, e(p, ū

0))

for i = 1, . . . , L, with initial condition:

e(p0, ū0) = w0

A result from the theory of partial differential equations, Frobenius’ theorem,
tells us that this system has a solution e(p, ū0) if assumption (iii), symmetry
of the Slutsky matrix, holds. Moreover, the solution e(p, ū0) is concave in p
by negative semidefiniteness of the Slutsky matrix.

Remark 2.67. Once we have obtained the expenditure function, we can use
Proposition 2.56 to obtain the indirect utility function. Namely, from the
identity e(p, V (p, w)) = w.

Proposition 2.68 (Recovering preferences from the indirect utility function).
For some (p0, w0), let x0 := x(p0, w0) be such that x0 ≫ 0. Then

u(x0) = min
p

V (p, w0)

st p · x0 = w0

Proof. Consider any p such that p · x0 = w0. As x0 is feasible at p,

x(p, w0) ≿ x0

and
V (p, w0) ≥ V (p0, w0) = u(x0)

So p0 minimizes V (p, w0) subject to p·x0 = w0 and u(x0) equals the minimized
value.
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Example 2.69. Suppose we are given a demand function,

xi(p, w) :=
αiw

pi

where
∑L

i=1 αi = 1 and αi > 0 for i = 1, . . . , L. First we recover the expendi-
ture function from x.

∂e(p, ū)

∂pi
= hi(p, ū) = xi(p, e(p, ū)) =

αie(p, ū)

pi

This gives
∂ log e(p, ū)

∂pi
=

1

e(p, ū)

∂e(p, ū)

∂pi
=

αi

pi

Integrating with respect to pi, we obtain

log e(p, ū) = αi log pi + Ci(p−i, ū)

Following the same steps we could also obtain

log e(p, ū) = αj log pj + Cj(p−j, ū)

Observe that the “constant” of integration Ci includes the term αj log pj for
all j ̸= i as well as some “constant” in ū. Hence,

log e(p, ū) =
L∑
i=1

αi log pi + C(ū)

Let p0 := (1, . . . , 1). Then,

log e(p0, ū) = C(ū)

Note that e is strictly increasing in u, so without loss of generality we can
transform the utility function u(x) to e(p0, u(x)). Thus we can rewrite

log e(p, ū) =
L∑
i=1

αi log pi + log ū

implying
e(p, ū) = pα1

1 . . . pαL
L ū

Next, we recover the indirect utility function from e. We know that e(p, V (p, w)) =
w. Thus,

logw = log e(p, V (p, w)) =
L∑
i=1

αi log pi + log V (p, w)
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and
V (p, w) =

w

pα1
1 . . . pαL

L

We now apply Proposition 2.68:

u(x) = min
p

w

pα1
1 . . . pαL

L

st p · x = w

To solve the minimization problem, we set up the Lagrangian:

L(p) = −w
L∏
i=1

p−αi
i + λ(p · x− w)

and obtain the first order conditions

wαip
−αi−1
i

∏
j ̸=i

p
−αj

j + λxi = 0

for i = 1, . . . , L. These imply

αi

αj

=
xi

xj

pi
pj

for all i, j. Summing across j, using the fact that the αj sum to 1 and applying
Walras’ law, we get

pi =
αi

xi

w

Plug back in to get

u(x) =
w

pα1
1 . . . pαL

L

=
w

wC

L∏
i=1

xαi
i =

1

C

L∏
i=1

xαi
i

where C :=
∏L

i=1 α
αi
i . Because C > 0, we can represent the same preferences

by

u(x) :=
L∏
i=1

xαi
i
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2.9 Welfare

Remark 2.70. Consider a change in price and income from (p0, w0) to (p1, w1).
We want to know what effect this has on the consumer’s welfare. We might
compare V (p0, w0) to V (p1, w1). However, V isn’t uniquely determined by
the consumer’s preferences: it depends on our choice of u to represent those
preferences, which is unique only up to a positive monotonic transformation.

Assumptions 2.71. We assume that the consumer’s preferences are rational,
continuous, and locally non-satiated.

Remark 2.72. Note that, for fixed p̄, e(p̄, V (p, w)) is a valid indirect utility
function, as it is strictly increasing in V . Moreover, it is invariant under
a positive monotonic transformation of u. That is, if V and V ′ are indirect
utility functions derived from utility functions U and U ′ representing the same
preference, then e(p̄, V (p, w)) = e(p̄, V ′(p, w)).

Definition 2.73. A money metric indirect utility function is an indirect
utility function of the form e(p̄, V (p, w)), for some fixed p̄.

What p̄ should we choose? Henceforth, we only consider changes in prices –
wealth is fixed at w. Let prices change from p0 to p1. Let u0 := V (p0, w) and
u1 := V (p1, w).

Definition 2.74. The compensating variation is the amount of money,
CV , such that the consumer is indifferent between having w at the old prices
and w − CV at the new prices.

CV (p0, p1, w) := e(p1, u1)− e(p1, u0) = w − e(p1, u0)

Definition 2.75. The equivalent variation is the amount of money, EV ,
such that the consumer is indifferent between having w at the new prices and
w + EV at the old prices.

EV (p0, p1, w) := e(p0, u1)− e(p0, u0) = e(p0, u1)− w

Remark 2.76. Both compensating and equivalent variations are positive when
the price changes make the consumer better off and negative when the price
changes make the consumer worse off.

Proposition 2.77. Suppose the price of only one good changes. Without loss
of generality, let that good have index 1. Then

EV (p0, p1, w) =

∫ p01

p11

h1(p1, p−1, u
1)dp1
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and

CV (p0, p1, w) =

∫ p01

p11

h1(p1, p−1, u
0)dp1

Proof. We assume that h1 is well-defined and integrable with respect to p1.
In fact, this can be proven from the hypotheses of the proposition: see Kreps
Proposition 12.10.

EV (p0, p1, w) = e(p0, u1)− w

= e(p0, u1)− e(p1, u1)

=

∫ p01

p11

h1(p1, p−1, u
1)dp1

CV (p0, p1, w) = w − e(p1, u0)

= e(p0, u0)− e(p1, u0)

=

∫ p01

p11

h1(p1, p−1, u
0)dp1

2.9.1 Quasilinear Preferences

Definition 2.78. Let X := R2
+ and normalize p2 := 1. Let u : R2

+ → R be
given by

u(x, y) = v(x) + y

where v is some function of x. The preferences represented by u are called
quasilinear preferences.

Remark 2.79. In practice, v will often have a “nice” functional form such as
log x or

√
x.

Proposition 2.80. Suppose that the consumer has quasilinear preferences
with strictly increasing, strictly concave, continuously differentiable v that fixes
0 (v(0) = 0) and has the Inada condition: limx↓0 v

′(x) = +∞. Suppose that
the price of good 1 changes from p01 to p11 and that at both prices we have an
interior solution. Then the associated compensating and equivalent variations
are equal:

CV (p0, p1, w) = EV (p0, p1, w)

Proof. Following Proposition 2.77, it suffices to show that h1(p, u
0) = h1(p, u

1)
for p01 ≤ p1 ≤ p11. This is true if x1(p, e(p, u

0)) = x1(p, e(p, u
1)). It suffices,
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then, to show that x1(p, w) does not depend upon w for p01 ≤ p1 ≤ p11. The
consumer’s problem is the following:

max
x

v(x) + w − p1x

This has an interior solution if w > p1x (the Inada condition prevents a bound-
ary solution at x = 0). By assumption, this is true for p01 and p11, and thus
must be true for any p1 between those prices. Moreover, we know that v is
differentiable, so x(p, w) can be obtained from the first order condition:

v′(x)− p1 = 0

This condition implies that, for p1 in this interval, x(p, w) does not depend
upon w, as required.

2.10 Aggegration

Assumptions 2.81.

(i) I Consumers i = 1, . . . , I.

(ii) Individual preferences, ≿i, are rational and locally non-satiated.

(iii) Individual wealths wi > 0.

(iv) Aggregate wealth w :=
∑I

i=1w
i

(v) Prices p ≫ 0

Definition 2.82. We define aggregate demand by

x(p, w1, . . . , wI) =
I∑

i=1

xi(p, wi)

Definition 2.83. A representative consumer exists if the aggregate de-
mand function, x(p, w), is the Walrasian demand function generated by some
rational preference relation ≿ onX, with wealth equal to the aggregate wealth.

Remark 2.84. Walras’ law and homogeneity of degree 0 hold true in the ag-
gregate. WARP may not. For example, if

x1
j(p, w

1) :=

{
w1/pj if pj < pk for k ̸= j

0 otherwise
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and

x2
j(p, w

2) :=
w2

Lpj

then aggregate demand for good j is given by

xj(p, w
1, w2) :=

{
Lw1+w2

Lpj
if pj < pk for k ̸= j

w2

Lpj
otherwise

The individual consumer’s choices satisfy WARP. However, the candidate rep-
resentative consumer will make different choices from the same budget set,
Bp,w1+w2 , depending upon the relative values of w1 and w2, violating WARP.

Definition 2.85. An indirect utility function is said to have the Gorman
form (in some region) if it is of the form

V i(p, wi) := ai(p) + b(p)wi

(in that region) where b(p) > 0 for all p and both ai(p) and b(p) are twice
continuously differentiable.

Proposition 2.86. An indirect utility function having the Gorman form has
a Walrasian demand function of the form

xi
j(p, w

i) := Ai
j(p) +Bj(p)w

i

where Ai
j(p) := − 1

b(p)
∂ai(p)
∂pj

and Bj(p) := − 1
b(p)

∂b(p)
∂pj

.

Proof. Use Roy’s identity.

Proposition 2.87. If I ≥ 2 and there exists a representative consumer, then
individual demand functions have the Gorman form.

Proof. First we show that the Walrasian demand functions are affine in wealth:

∂2xi
j

∂(wi)2
=

∂

∂wi

(
∂xj

∂wi

)
=

∂

∂wi

(
∂xj

∂wh

)
=

∂

∂wi

(
∂xh

j

∂wh

)
= 0

where the last equality follows from the fact that xi is not a function of wh,
and thus neither are its derivatives. We can therefore write

xi
j(p, w

i) = Ai
j(p) +Bi

j(p)w
i
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Moreover, if aggregate demand is a function of w and not the relative distri-
bution of individual wealths, then we can write

∂xi
j

∂wi
=

∂xj

∂wi
=

∂xj

∂w

∂w

∂wi
=

∂xj

∂w

∂w

∂wh
=

∂xj

∂wh
=

∂xh
j

∂wh

which implies that the coefficient on wi in xi(p, wi) is equal to that on wh in
xh(p, wh), or

xi
j(p, w

i) = Ai
j(p) +Bj(p)w

i

Definition 2.88. A Walrasian demand function x(p, w) satisfies the uncom-
pensated law of demand if for any w and any price change from p to p′ we
have

(p′ − p) · (x(p′, w)− x(p, w)) ≤ 0

with inequality if x(p′, w) ̸= x(p, w).

Remark 2.89. Contrast this with the compensated law of demand. Here, there
is no compensating change in wealth.

Proposition 2.90. If every consumer’s Walrasian demand function satisfies
the uncompensated law of demand, then x(p, w) also satisfies the uncompen-
sated law of demand and WARP.

*Proof.

(i) First we prove that if all the individual demands satisfy the ULD, then
so to does aggregate demand. Say aggregate demand x(p, w) ̸= x(p′, w).
Then there exists some i such that xi(p, wi) ̸= xi(p′, wi). By hypothesis,
xi satisfies the ULD, so

(p′ − p) · (xi(p′, wi)− xi(p, wi)) < 0

for all such i. Summing over i, we get

(p′ − p) · (x(p′, w)− x(p, w)) < 0.

(ii) Now we prove that if a Walrasian demand function satisfies the ULD,
then it also satisfies WARP. Suppose again that x(p, w) ̸= x(p′, w′) and
x(p′, w′) is feasible at (p, w): p · x(p′, w′) ≤ w. Let p′′ := w

w′p
′. By

homogeneity of degree 0,

x(p′′, w) = x
( w
w′p

′, w
)
= x(p′, w′)
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By ULD,
(p′′ − p) · (x(p′′, w)− x(p, w)) < 0

Multiplying out the left-hand side and applying Walras’ law and our
assumption that p · x(p′, w′) ≤ w, this becomes

w − p′′ · x(p, w)− w + w < 0

or equivalently
w

w′p
′ · x(p, w) = p′′ · x(p, w) > w

which implies
p′ · x(p, w) > w′

Thus WARP is satisfied.

Proposition 2.91. If the indirect utility function of each consumer has the
Gorman form globally, then there exists a representative consumer.

*Proof. The aggregate demand function

xj (p, w) =
I∑

i=1

Ai
j(p) +Bj(p)w

depends only on the sum, and not the relative distribution of, (w1, . . . , wI).
Note that if we fix any p, because each xi is a valid Walrasian demand function,

0 = lim
wi↓0

xi
j(p, w

i) = Ai
j(p) = − 1

b(p)

∂ai(p)

∂pj

for all j. Therefore, we must have

xi
j(p, w

i) = Bj(p)w
i

and
V i(p, wi) = ai + b(p)wi

The latter implies

0 ≥ ∂V i

∂pj
=

∂b

∂pj
wi

which in turn implies

0 ≤ Bj(p) =
∂xi

j

∂wi
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Because xi is a valid Walrasian demand function, we know it must satisfy
WARP and therefore the Hicksian demand for each good is nonincreasing in
own price (Proposition 2.10). Recall the Slutsky equation (2.3):10

∂xi
j(p, w)

∂pj
=

∂hi
j(p, u

∗)

∂pj
− xi

j(p, w)
∂xi

j(p, w)

∂w

From what we’ve shown, we know that the right-hand side is nonpositive, so
xi
j(p, w) is nonincreasing in pj for all j. It follows immediately that xi satisfies

the uncompensated law of demand, for each i. By Proposition 2.90, this is
sufficient to ensure that x(p, w) satisfies WARP. This in turn implies that
the associated Slutsky matrix, S(p, w), is negative semidefinite (Proposition
2.12). Moreover, we know that Walras’ law and homogeneity of degree 0 hold
in the aggregate. If follows from Section 2.8 (Integrability) that x(p, w) is a
Walrasian demand function generated by some rational preferences.

10Specifically, for a change in own price.
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3 Production

3.1 Firm

Assumptions 3.1.

(i) L commodities

(ii) Production plan y ∈ RL

(1) Net input: good i such that yi < 0

(2) Net output: good j such that yj > 0

(iii) Production possibility set, Y ⊆ RL of feasible production plans

(iv) Prices, p ≥ 0, are unaffected by the activity of the firm.

We will also often assume:

Assumptions 3.2.

(i) Y is nonempty, closed and (strictly) convex.11

(ii) Free disposal: If y ∈ Y and y′ ≤ y then y′ ∈ Y .

Definition 3.3. A production plan, y ∈ Y is efficient if there does not exist
y′ ∈ Y such that y′ ≥ y and y′i > yi for some i.

In the case of a single output, we partition y into output q ∈ R+ and inputs
z ∈ RL−1

+ . This allows us to define the following:

Definition 3.4. The production function f : RL−1
+ → R+ is defined by

f(z) = max q

st (q,−z) ∈ Y

Definition 3.5. The input requirement set

V (q) := {z ∈ RL−1
+ | (q,−z) ∈ Y }

gives all the input vectors that can be used to produce the output q.

11These properties are required for the general existence and/or uniqueness of the max-
imizers and minimizers defined in this section. In particular, strict convexity allows us to
speak exclusively of demand and supply functions, rather than correspondences. An ad-
ditional more technical property, the recession-cone property, is also required: see Kreps
Proposition 9.7.
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Definition 3.6. The isoquant

Q(q) := {z ∈ RL−1
+ | z ∈ V (q) and z /∈ V (q′) for any q′ > q}

gives all the input vectors that can be used to produce at most q units of
output.

3.2 Cost minimization

Assumptions 3.7.

(i) L− 1 inputs z

(ii) One output q = f(z)

(iii) f ∈ C2

(iv) Input price w ∈ RL−1
+

Remark 3.8. Inputs with zero prices will not affect the decision-making of the
firm and can thus be ignored.

The firm’s cost minimization problem is

min
z∈RL−1

+

w · z

st f(z) = q

Definition 3.9. The associated value function is called the cost function:

C(w, q) := min
z∈RL−1

+

w · z

st f(z) = q

Proposition 3.10 (Properties of the cost function).

(i) C is homogeneous of degree 1 in w.

(ii) C is concave in w.

(iii) If we assume free disposal, then C is nondecreasing in q.

(iv) If f is homogeneous of degree k in z, then C is homogeneous of degree 1
k

in q.

*Proof.
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(i) Increasing w by a factor of α is a positive monotonic transformation and
therefore does not affect the optimal choice of z, but does increase w · z
by that factor.

(ii) Let w,w′ ∈ RL−1
+ . Suppose C(w, q) = w · z and C(w′, q) = w′ · z′. Let

w′′ = αw + (1− α)w′ for some α ∈ [0, 1]. Then, for z′′ a cost minimizer
at w′′,

C(w′′, q) = w′′ · z′′

= (αw + (1− α)w′) · z′′

= αw · z′′ + (1− α)w′ · z′′

We know w·z′′ ≥ C(w, q) and w′·z′′ ≥ C(w′, q). So C(w′′, q) ≥ αC(w, q)+
(1− α)C(w′, q).

(iii) Suppose q′ > q. By free disposal, q can be produced from the same input
vector used to produce q′.

(iv) Homogeneity of degree k of f implies

f(z) = q ⇐⇒ 1

q
f(z) = 1 ⇐⇒ f

(
z

q1/k

)
= 1

Therefore,

C(w, q) = min
z

w · z st f(z) = q

= min
z

w · z st f

(
z

q1/k

)
= 1

= q1/k min
z

w · z

q1/k
st f

(
z

q1/k

)
= 1

= q1/kC(w, 1)

3.3 Homogeneous functions

Definition 3.11. f : X ⊆ Rn → R is homogeneous of degree k if

f(αx) = αkf(x)

where k is a nonnegative integer, for all α > 0, x ∈ X

Proposition 3.12. If f is homogeneous of degree k, then for i = 1, 2, . . . , n,
∂f
∂xi

is homogeneous of degree k − 1.
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*Proof. Let fi :=
∂f
∂xi

.

f(αx) = αkf(x) hod k

αfi(αx) = αkfi(x) differentiating wrt xi

fi(αx) = αk−1fi(x) dividing by α

=⇒ fi(αx) is homogenous of degree k − 1

Proposition 3.13 (Euler’s formula). If f is homogeneous of degree k and
differentiable, then at any x

n∑
i=1

∂f(x)

∂xi

xi = kf(x)

*Proof.

f(αx) = αkf(x) hod k
n∑

i=1

fi(αx)xi = kαk−1fi(x) differentiating wrt α

n∑
i=1

fi(x)xi = kfi(x) evaluating at α = 1

Proposition 3.14. If the production function f is homogeneous of degree k,
then

MRTSij(z) :=

∂f(z)
∂zi

∂f(z)
∂zj

=

∂f(αz)
∂zi

∂f(αz)
∂zj

= MRTSij(αz)

Proof.
fi(αz)

fj(αz)
=

αk−1fi(z)

αk−1fj(z)
=

fi(z)

fj(z)
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3.4 Profit maximization

The firm’s profit maximization problem is

max
y

p · y

st y ∈ Y

Definition 3.15. The associated value function is called the profit function:

π(p) :=max
y

p · y

st y ∈ Y

In the single-output case, this becomes

π(p, w) := max
z∈RL−1

+

pf(z)− w · z

Henceforth, we consider only the single-output case.

Proposition 3.16 (Properties of the profit function).

(i) Homogeneous of degree 1.

(ii) Nondecreasing in output price p.

(iii) Nonincreasing in input prices w.

(iv) Convex in (p, w).

(v) Continuous.

*Proof.

(i) maxz α(pf(z)− w · z) = αmaxz pf(z)− w · z.

(ii) p′ ≥ p =⇒ p′f(z) ≥ pf(z) for all z.

(iii) w′ ≥ w =⇒ w′ · z ≥ w · z.

(iv) Let (p′′, w′′) := α(p, w) + (1 − α)(p′, w′) and z, z′, z′′ be the solution to
the profit maximization problem with the corresponding output prices
and input price vectors. Then by definition of z and z′,

π(p, w) = pf(z)− w · z ≥ pf(z′′)− w · z′′

π(p′, w′) = p′f(z′)− w′ · z′ ≥ p′f(z′′)− w′ · z′′
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implying

απ(p, w) + (1− α)π(p′, w′) ≥ α(pf(z′′)− w · z′′)
+ (1− α)(p′f(z′′)− w′ · z′′)

= (αp+ (1− α)p′)f(z′′)

− (αw + (1− α)w′) · z′′

= π(p′′, z′′)

(v) See Kreps Proposition 9.9.

Remark 3.17. Note that π being convex in (p, w) implies that π is convex in
p and w individually.

Definition 3.18. The unconditional input demand function

x(p, w) := argmax
z∈RL−1

+

pf(z)− w · z

is the solution to the profit maximization problem. The output supply
function

q(p, w) := f(x(p, w))

is the output level when the profit is maximized.

Proposition 3.19 (Hotelling’s lemma). If π is differentiable,12 then for
(p, w) ∈ RL

++,

q(p, w) =
∂π(p, w)

∂p

xj(p, w) = −∂π(p, w)

∂wj

Proof. Apply the Envelope Theorem and note that x(p, w) is the profit maxi-
mizer and q(p, w) is the production function evaluated at the maximizer.

12In fact, if the output supply and unconditional demand functions are well-defined –
or equivalently, the associated correspondences are singleton-valued – then π is necessarily
differentiable. See Kreps Proposition 9.22. An analogous result holds for the cost function:
see Kreps Proposition 9.24j.
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Definition 3.20. The conditional input demand function

z(w, q) := argmin
z∈RL−1

+

w · z

st f(z) = q

is the solution to the cost minimization problem.

Proposition 3.21 (Shepard’s lemma). If C is differentiable, then for w ∈
RL−1

++ ,

zi(w, q) =
∂C(w, q)

∂wi

Proof. Similarly, apply the Envelope Theorem to the cost function (the value
function of the cost minimization problem). Note that the Envelope Theorem
also holds true for minimization problems. Equivalently, we can rewrite

−C(w, q) := max
z∈RL−1

+

−w · z st f(z) = q.

and apply the regular Envelope Theorem.

Proposition 3.22. Suppose that the profit function is twice continuously dif-
ferentiable. Then

(i)
∂q(p, w)

∂p
≥ 0

(ii)
∂xj(p, w)

∂wj

≤ 0

(iii)
∂xj(p, w)

∂wi

=
∂xi(p, w)

∂wj

Proof. By applying Hotelling’s lemma, note that

D2π(p, w) =


∂q(p,w)

∂p
∂q(p,w)
∂w1

. . . ∂q(p,w)
∂wn

−∂x1(p,w)
∂p

−∂x1(p,w)
∂w1

. . . −∂x1(p,w)
∂wn

...
...

. . .
...

−∂xn(p,w)
∂p

−∂xn(p,w)
∂w1

. . . −∂xn(p,w)
∂wn


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is symmetric and positive semidefinite because the profit function π is twice
continuously differentiable and convex. Then, (i) and (ii) follows from the fact
that a positive semidefinite matrix has nonnegative diagonal entries, and (iii)
follows from symmetry.

Proposition 3.23. Suppose that the cost function is twice continuously dif-
ferentiable. Then

(i)
∂zi(w, q)

∂wi

≤ 0

(ii)
∂zi(w, q)

∂wj

=
∂zj(w, q)

∂wi

(iii)
∂MC(w, q)

∂wi

=
∂zi(w, q)

∂q
=⇒

{
> 0 Normal Input
< 0 Inferior Input

where MC(w, q) = ∂C(w,q)
∂q

.

Proof. Using Shepard’s lemma, write the Hessian of C as

D2C(w, q) =


∂MC(w,q)

∂q
∂MC(w,q)

∂w1
. . . ∂MC(w,q)

∂wn
∂z1(w,q)

∂q
∂z1(w,q)

∂w1
. . . ∂z1(w,q)

∂wn

...
...

. . .
...

∂zn(w,q)
∂q

∂zn(w,q)
∂w1

. . . ∂zn(w,q)
∂wn


Then, (ii) and (iii) follow from the symmetry of the second derivatives. Since
C is concave in w, the sub-matrix

∂z1(w,q)
∂w1

. . . ∂z1(w,q)
∂wn

...
. . .

...
∂zn(w,q)

∂w1
. . . ∂zn(w,q)

∂wn


is negative semidefinite and its diagonal entries must be nonpositive. This
proves (i).
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3.5 Comparative Statics

Assumptions 3.24.

(i) Two inputs (x1, x2)

(ii) One output q = f(x)

(iii) f ∈ C2 and the Hessian, Hf , is negative definite

(iv) f(0, x2) = f(x1, 0) = 0, i.e., both inputs necessary

(v) Inada conditions on x1, x2

(vi) Output price p > 0

(vii) Input price w ≫ 0

Consider the profit maximization problem:

max
x∈R2

++

pf(x)− w · x

The first order conditions are

pf1(x)− w1 = 0

pf2(x)− w2 = 0

Since the Lagrangian is strictly concave, the first order conditions are sufficient.
To determine the sign of ∂x1(p,w)

∂w1
, we apply the Implicit Function Theorem.

Since Hf is negative definite,

H(x) =

[
pf11(x) pf12(x)
pf21(x) pf22(x)

]
has strictly positive determinant. This satisfies the condition for the IFT, so
there exists an implicit function

x(p, w) = (x1(p, w), x2(p, w))

which is C1 near (x, p, w). Writing x as an implicit function of (p, w), we have

pf1(x(p, w))− w1 = 0

pf2(x(p, w))− w2 = 0

Taking the derivative with respect to w1 gives

pf11
∂x1

∂w1

+ pf12
∂x2

∂w1

− 1 = 0

pf21
∂x1

∂w1

+ pf22
∂x2

∂w1

= 0
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Writing it in matrix form,[
pf11 pf12
pf21 pf22

] [ ∂x1

∂w1
∂x2

∂w1

]
=

[
1
0

]
Since the first matrix is non-singular, invert it and find that

∂x1

∂w1

=
pf22

|H(x)|
< 0

∂x2

∂w1

=
−pf12
|H(x)|

where the inequality is from the negative definiteness of Hf . Thus we have
shown that the demand for an input always decreases with its price.

To determine the effect of a price change on output, i.e., the sign of ∂q
∂w1

, we
write

q(p, w) = f(x(p, w))

and take the derivative with respect to w1:

∂q

∂w1

= f1
∂x1

∂w1

+ f2
∂x2

∂w1

=
p(f1f22 − f2f12)

|H(x)|
where the sign depends on the term f1f22 − f2f12. To find this, we consider
the cost minimization problem:

min
x∈R2

++

w · x

st f(x) = q

The first order conditions are

−w1 + λf1(x) = 0

−w2 + λf2(x) = 0

q − f(x) = 0

where λ(w, q) is the Lagrangian multiplier. Taking the derivative with respect
to q gives:

∂λ

∂q
f1 + λ

∂f1
∂x1

∂x1

∂q
+ λ

∂f1
∂x2

∂x2

∂q
= 0

∂λ

∂q
f2 + λ

∂f2
∂x1

∂x1

∂q
+ λ

∂f2
∂x2

∂x2

∂q
= 0

1− ∂f1
∂x1

∂x1

∂q
− ∂f1

∂x2

∂x2

∂q
= 0
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Writing it in matrix form,λf11 λf12 f1
λf21 λf22 f2
f1 f2 0




∂x1

∂q
∂x2

∂q
∂λ
∂q

 =

00
1


where the first matrix is the Hessian of the Lagrangian, Hc(x), and is thus
invertible. By Cramer’s Rule,

∂x1

∂q
=

∣∣∣∣∣∣
0 λf12 f1
0 λf22 f2
1 f2 0

∣∣∣∣∣∣
|Hc(x)|

=
λ(f12f2 − f22f1)

|Hc(x)|

{
> 0 Normal Input
< 0 Inferior Input

where λ and |Hc(x)| are strictly positive. Combined with the result from the
profit maximization problem, we conclude:

(i) If input 1 is normal, ∂x1

∂q
> 0, then f12f2 − f22f1 > 0 and ∂q

∂w1
< 0.

w1 ↑ =⇒ q ↓ =⇒ x1 ↓

(ii) If input 1 is inferior, ∂x1

∂q
< 0, then f12f2 − f22f1 < 0 and ∂q

∂w1
> 0.

w1 ↑ =⇒ q ↑ =⇒ x1 ↓

In either case, this reinforces the substitution effect where x1 necessarily de-
creases when w1 increases, keeping output level q fixed.

3.6 Duality

Fix an output level q and suppose we observe C(w, q) for all w ≫ 0. We can
recover an “outer bound” of the (unobserved) input requirement set,

V ∗(q) := {x ∈ RL−1
+ | w · x ≥ C(w, q) for all w ∈ RL−1

++ }

Proposition 3.25. V ∗(q) is convex.
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Proof. Suppose x, x′ ∈ V ∗(q). Let α ∈ [0, 1] and x′′ := αx+(1−α)x′. We want
to show that x′′ ∈ V ∗(q). Since x ∈ V ∗(q), w · x ≥ C(w, q) for all w ∈ RL−1

++

and similarly x′ ∈ V ∗(q) implies w · x′ ≥ C(w, q) for all w ∈ RL−1
++ . Then

w · x′′ = αw · x+ (1− α)w · x′ ≥ C(w, q)

Thus x′′ ∈ V ∗(q).

Remark 3.26. This doesn’t imply that the true input requirement set V (q) is
convex, but it does imply that the non-convex part of V (q) is not economically
relevant since a cost-minimizing firm would never choose something in that
region of V (q).

Proposition 3.27 (Relationship between V (q) and V ∗(q)).

(i) V (q) ⊆ V ∗(q).

(ii) If V (q) is closed, convex and comprehensive upward,13 then V (q) =
V ∗(q).

*Proof.

(i) Suppose x /∈ V ∗(q). We want to show x /∈ V (q). If x /∈ V ∗(q) then there
exists some w ∈ RL−1

++ such that w ·x < C(w, q). If x ∈ V (q) then C(w, q)
is not the minimum, contradicting the definition of C.

(ii) Suppose not. In particular, suppose x ∈ V ∗(q) and x /∈ V (q). V (q) and
{x} are both closed, convex, disjoint, nonempty subsets of RL−1 and {x}
is compact. Applying a version of the separating hyperplane theorem,14

we obtain w∗ ̸= 0 such that w∗ ·x < w∗ ·x′ for all x′ ∈ V (q). In particular,
w∗ ·x < C(w∗, q), which contradicts the definition of V ∗(q). We also want
to show that w∗ ≥ 0. Suppose instead that for some i, w∗

i < 0. Because
V (q) is comprehensive upward, this implies we can choose x′ ∈ V (q) with
xi sufficiently large that w∗ · x′ < w∗ · x, contradicting our choice of w∗.

Now, let
C∗(w, q) := min

x∈V ∗(q)
w · x

13V (q) is comprehensive upward if x ∈ V (q) and x′ ≥ x imply x′ ∈ V (q). That is, the same
output can always be produced using more input. If Y has the free disposal property, then
for all q, V (q) is comprehensive upward. The converse is not true. See Kreps Proposition
9.23c.

14Covered in the math class.
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Not Closed

x1

x2

Not Convex

x1

x2

Not Comprehensive Upward

x1

x2

Figure 1: Three classes of V (q) for which V (q) ̸= V ∗(q)

Proposition 3.28.
C∗(w, q) = C(w, q)

Proof. V (q) ⊆ V ∗(q) implies C(w, q) ≥ C∗(w, q). Suppose that for some
w̄ ∈ RL−1

++ , we have C∗(w̄, q) = w̄ · x̄ < C(w̄, q). Then x̄ /∈ V ∗(q) which
contradicts the definition of C∗. This implies C∗(w, q) ≥ C(w, q) for all w ∈
RL−1

++ . Combining both inequalities, we have C∗(w, q) = C(w, q).
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4 Risk, Uncertainty, Ambiguity

4.1 Decision Making Under Uncertainty

Assumptions 4.1.

(i) Finite set of prizes, X := {x1, x2, . . . , xn}.

(ii) Set of probability distributions, P , on X. That is, P is the subset of Rn
+

consisting of all p := (p1, . . . , pn) such that
∑n

i=1 pi = 1. We interpret pi
as Pr(xi) for i = 1, . . . , n. Elements of P are also called simple probability
distributions or simple lotteries.

(iii) We can also have compound lotteries – probability distributions over
elements of P . These are regarded as identical to the simple lotteries to
which they can be reduced. For example, if X := {x1, x2}, p := (1

2
, 1
2
)

and q := (1
4
, 3
4
), then the compound lottery c :=

[
Pr(p) = 2

3
,Pr(q) = 1

3

]
is treated as the simple lottery s := ( 5

12
, 7
12
). We often write c = 2

3
p+ 1

3
q.

(iv) Preferences, ≿, over P .

Definition 4.2. The preference relation ≿ on P is rational if it is complete
and transitive.

Definition 4.3. The preference relation ≿ on P is continuous if for any
p, q, r ∈ P , the sets {α ∈ [0, 1] | αp + (1 − α)q ≿ r} and {α ∈ [0, 1] | r ≿
αp+ (1− α)q} are closed.

Definition 4.4. The preference relation ≿ on P satisfies independence if
for all p, q, r ∈ P and α ∈ (0, 1),

p ≿ q ⇐⇒ αp+ (1− α)r ≿ αq + (1− α)r

Lemma 4.5. If ≿ is complete and continuous, then for any p, q, r ∈ P such
that p ≻ r ≻ q, there exists α ∈ (0, 1) such that αp+ (1− α)q ∼ r.

*Proof. Continuity implies that the sets {α ∈ [0, 1] | αp + (1 − α)q ≿ r} and
{α ∈ [0, 1] | r ≿ αp+(1−α)q} are closed. Completeness implies that they are
nonempty and partition [0, 1], which is connected. Connectedness implies that
[0, 1] cannot be partitioned into two nonempty, closed, and disjoint subsets.
Therefore, the sets cannot be disjoint. Thus, their intersection {α ∈ [0, 1] |
αp+ (1− α)q ∼ r} is nonempty.
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Lemma 4.6. If ≿ satisfies independence, then for any p, q ∈ P such that
p ≻ q, and for any α, β ∈ [0, 1],

βp+ (1− β)q ≻ αp+ (1− α)q ⇐⇒ β > α (4.1)

Proof. ( ⇐= ) Let γ := β−α
1−α

βp+ (1− β)q = β

(
1− α

1− α

)
p+ (1− β)

(
1− α

1− α

)
q

=

(
β − α

1− α

)
p+

(
(1− β)α

1− α

)
p+ (1− γ)(1− α)q

= γp+ (1− γ)[αp+ (1− α)q]

≻ γ[αp+ (1− α)q] + (1− γ)[αp+ (1− α)q]

= αp+ (1− α)q

where the strict preference step follows from repeated application of indepen-
dence.

( =⇒ ) Say α ≥ β. Then, by hypothesis,

βp+ (1− α)q + (α− β)q ≻ βp+ (1− α)q + (α− β)p

=⇒ q ≻ (1 + β − α)q + (α− β)p

=⇒ q ≻ p

Proposition 4.7 (Expected utility theorem/ Von Neumann–Morgen-
stern utility theorem). A preference relation ≿ on P satisfies rationality,
continuity, and independence if and only if there exists a Bernoulli utility
function u : X → R and a utility function, U : P → R given by U(p) =∑

x∈X u(x)p(x), representing the preference relation. In other words, for any
p, q ∈ P ,

p ≿ q ⇐⇒
∑
x∈X

u(x)p(x) ≥
∑
x∈X

u(x)q(x)

where p(x) and q(x) are the probabilities of x under p and q.

Proof. With a finite set of prizes, we claim that there are best and worst
probabilities. Call them B,W ∈ P and let B ≻ W .

Step 1 By Lemma 4.5, for any p ∈ P there is an αp ∈ [0, 1] such that

p ∼ αpB + (1− αp)W (4.2)
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Step 2 Lemma 4.6 implies that αp is unique.

Proof. Suppose βp also satisfies (4.2). Negating both sides of (4.1), we
get βp ≥ αp and αp ≥ βp, or equivalently αp = βp.

Step 3
p ≿ q ⇐⇒ αp ≥ αq

Proof. ( ⇐= )

p ∼ αpB + (1− αp)W ≿ αqB + (1− αq)W ∼ q

where indifference relations follow from Step 1 and the weak preference
relation follows from Lemma 4.6.

( =⇒ )
αpB + (1− αp)W ∼ p ≿ q ∼ αqB + (1− αq)W

By Lemma 4.6, this implies αp ≥ αq.

Step 4 Let U : P → R be given by U(p) := αp. Then U represents ≿.

Proof. This follows immediately from the previous step.

Step 5 U : P → R is linear in convex combinations. That is, for any p, q ∈ P
and α ∈ [0, 1]

U(αp+ (1− α)q) = αU(p) + (1− α)U(q)

Proof. We know

p ∼ αpB + (1− αp)W

q ∼ αqB + (1− αq)W

So,

αp+ (1− α)q ∼ α[αpB + (1− αp)W ] + (1− α)[αqB + (1− αq)W ]

= [ααp + (1− α)αq]B + [α(1− αp) + (1− α)(1− αq)]W

= [ααp + (1− α)αq]B + [1− ααp − (1− α)αq]W

Thus,

U(αp+ (1− α)q) = ααp + (1− α)αq

= αU(p) + (1− α)U(q)
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Step 6

U(p) =
∑
x∈X

p(x)u(x)

Proof. Note that any p ∈ P can be written as∑
x∈X

p(x)δx = p

where δx ∈ P has singleton support {x} and puts Pr(x) = 1. Thus,

U(p) = U

(∑
x∈X

p(x)δx

)
=
∑
x∈X

p(x)U(δx)

Proposition 4.8. Expected utility representations are unique up to a positive
affine transformation: Suppose U provides an expected utility representation
of ≿ in the sense of the previous proposition. Then V also provides an ex-
pected utility representation of the same preferences if and only if there exists
constants A,B ∈ R such that A > 0 and V := AU +B.

*Proof. We prove the “if” direction. Because V is a positive monotonic trans-
formation of U , we know that it represents the same preferences (Proposition
2.17). Moreover, for p, q ∈ P and α ∈ [0, 1],

V (αp+ (1− α)q) = AU(αp+ (1− α)q) +B

= AαU(p) + A(1− α)U(q) +B

= α[AU(p) +B] + (1− α)[AU(q) +B]

= αV (p) + (1− α)V (q)

For the proof of the converse, see pages 94 and 95 of Kreps.

Example 4.9. SupposeX := {x, y, z}, p, q ∈ P , and≿ on P satisfies rationality,
continuity, and independence. By the expected utility theorem,

U(p) = u(x)p(x) + u(y)p(y) + u(z)p(z)

is a valid utility representation of ≿. Suppose p ∼ q, then U(p) = U(q).
Consider α ∈ (0, 1) and a linear combination of the two probabilities r =

56



αp+ (1− α)q ∈ P . Then

U(r) = u(x)[αp(x) + (1− α)q(x)] + u(y)[αp(y) + (1− α)q(y)]

+ u(z)[αp(z) + (1− α)q(z)]

= αU(p) + (1− α)U(q)

= U(p) = U(q)

This implies that the indifference curves over probabilities are straight lines.
In fact, on an indifference curve with utility level ū,

ū = u(x)p(x) + u(y)p(y) + u(z)[1− p(x)− p(y)]

=⇒ p(y) =
u(z)− ū

u(z)− u(y)
+

[
u(x)− u(z)

u(z)− u(y)

]
p(x)

The slope of the indifference curve is given by u(x)−u(z)
u(z)−u(y)

. Suppose z = 0,
x = −1, y = 1. If the slope is bigger than 1, then the Bernoulli utility
function is concave: the person is risk averse.

4.1.1 Money Prizes

We now look at the case where x ∈ X is a quantity of money. We assume that
(Bernoulli) utility is strictly increasing in money.

Proposition 4.10. For p ∈ P , define Ep(x) =
∑

x∈X xp(x). Suppose that for
all p ∈ P , δEp ≿ p. This holds if and only if u is concave.

*Proof. Suppose u is not concave. Then

U(δEp) = u(αx+ (1− α)x′) < αu(x) + (1− α)u(x′) = U(p)

for some p ∈ P and some α ∈ [0, 1]. That is, p ≻ δEp . Conversely, suppose
that u is concave. Then

U(δEp) = u

(∑
x

p(x)x

)
≥
∑
x

p(x)u(x) = U(p)

for all p ∈ P , where the inequality is an application of Jensen’s inequality. We
have, then, δEp ≿ p.

Definition 4.11. A certainty equivalent for a lottery p is a prize c satisfying
δc ∼ p. If utility is strictly concave, every lottery has a unique certainty
equivalent, which we denote by c(p).
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Definition 4.12. If the certainty equivalent is unique, the risk premium of
a lottery p is given by

r(p) := E p− c(p)

Definition 4.13. The coefficient of absolute risk aversion is given by

λ(x) := −u′′(x)

u′(x)

Definition 4.14. The coefficient of relative risk aversion is given by

λ(x) := −u′′(x)x

u′(x)

Example 4.15. Insurance problem.

A consumer starts with wealthW . Any one of the following mutually exclusive
events can happen:

(i) She incurs loss L1, with probability p1.

(ii) She incurs loss L2, with probability p2.

(iii) She incurs no loss, with probability 1− p1 − p2.

For each i, let the insurance pay πi if loss Li is incurred. The cost of this
insurance is qiπi. The consumer needs to choose (π1, π2). Assume that u′ > 0
and u′′ < 0. We can write the consumer’s problem as

max
π1,π2

{p1u(WL1) + p2U(WL2) + (1− p1 − p2)U(WNL)}

st 0 ≤ π1 ≤ L1 and 0 ≤ π2 ≤ L2

where

WL1
:= W − (q1π1 + q2π2)− L1 + π1

WL2
:= W − (q1π1 + q2π2)− L2 + π2

WNL := W − (q1π1 + q2π2)

The first-order conditions are

p1u
′(WL1)(1− q1) + p2u

′(WL2)(−q1) + (1− p1 − p2)u
′(WNL)(−q1) = 0

p1u
′(WL1)(−q2) + p2u

′(WL2)(1− q2) + (1− p1 − p2)u
′(WNL)(−q2) = 0
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implying

p1u
′(WL1)

(
1− q1
q1

)
− p2u

′(WL2) = −p1u
′(WL1) + p2u

′(WL2)

(
1− q2
q2

)
Simplifying, we get

p1
q1
u′(WL1) =

p2
q2
u′(WL2)

Suppose p1/q1 = p2/q2 = α. In other words, the price of insurance is a constant
markup over the probability of incurring the loss. Then because u′′ > 0,

u′(WL1) = u′(WL2)

=⇒ WL1 = WL2

=⇒ π1 − L1 = π2 − L2

The last line implies that in this case, it is optimal to have the same “de-
ductible” for different losses. Suppose in particular, that α = 1. That is,
q1 = p1 and q2 = p2. Plugging this and the equality above back into the
first-order conditions gives

p1u
′(WL)(1− p1) + p2u

′(WL)(−p1) + (1− p1 − p2)u
′(WNL)(−p1) = 0

=⇒ u′(WL)[p1(1− p1)− p1p2] = u′(WNL)p1(1− p1 − p2)

=⇒ u′(WL) = u′(WNL)

=⇒ WL = WNL

=⇒ π1 − L1 = 0

where the last line uses the definitions of WL1 and WNL. Therefore, π1 =
L1 and π2 = L2: the consumer buys full insurance.

4.1.2 Infinite set of prizes

We generalize the definition of a simple probability distribution to infinite X:

Definition 4.16. A simple probability distribution on X is a p ∈ P that
has a finite support. That is, it puts positive probability only on some finite
subset of X. Denote by PS the subset of P consisting of all simple probability
distributions on X.

Remark 4.17. All the results we proved for finite X also hold for infinite X
when we restrict ourselves to simple probability distributions. In particular,
the expected utility theorem holds.
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Now we consider non-simple probability distributions on infinite X.

Assumptions 4.18.

(i) Infinite set of prizes, X := Rn.

(ii) Set of all probability distributions, P , on X.

(iii) Preferences, ≿, over P .

Definition 4.19. We say that a sequence of probability distributions (pn)n∈N
in P converges weakly to p if∫

X

f(x)dpn(x) →
∫
X

f(x)dp(x)

for all bounded continuous functions f : X → R.

Definition 4.20. Preferences, ≿, are continuous in the weak topology
on P if for any p ∈ P , the sets {q ∈ P | q ≿ p} and {q ∈ P | p ≿ q} are both
closed.

Proposition 4.21. A preference relation ≿ on P is rational, satisfies the
independence axiom and is continuous in the weak topology on P if and only
if there is a bounded, continuous (Bernoulli) utility function u : X → R such
that

p ≿ q ⇐⇒
∫
X

u(x)dp(x) ≥
∫
X

u(x)dq(x)

Proof. Omitted.

Example 4.22. Asset allocation problem.

An investor must allocate her initial wealth, x0, between two assets:

(i) A risk-free asset giving certain return equal to the amount invested.

(ii) A risky asset giving random return r ∼ N (r̄, σ2
r). If she invests s now at

price p, she will get rs in the future. Assume r̄ ≥ p.

The investor aims to maximize the expected utility of her future wealth, x.
Given s, her future wealth is a random variable, x ∼ N (x̄, σ2

x), where x̄ =
x0 − ps+ r̄s and σ2

x = s2σ2
r . Her Bernoulli utility function is given by15

u(x) := − exp(−λx)

15This is a constant absolute risk aversion (CARA) utility function. It can easily be shown
that the coefficient of absolute risk aversion is λ.
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where λ > 0. It can be shown that

E[u(x)] = − exp

[
−λ

(
x̄− λ

2
σ2
x

)]
We can therefore write her maximization problem as

max
s

{
x̄− λ

2
σ2
x

}
= max

s

{
x0 − ps+ r̄s− λ

2
s2σ2

r

}
The first-order condition is

r̄ − p− λsσ2
r = 0

=⇒ s∗ =
r̄ − p

λσ2
r

4.2 Subjective Expected Utility

4.2.1 Anscombe-Aumann Acts

Assumptions 4.23.

(i) Finite set of the states of the world, S.

(ii) Set of prizes, X.

(iii) Set of simple probability distributions on prizes, P .

(iv) Set of acts H := P S: the set of all h : S → P . For each state s, h specifies
an objective lottery h(s) ∈ P with h(s)(x) an objective probability of x
conditional on s.16 For clarity we will use the (abuse of) notation h(x | s)
for h(s)(x).

(v) Preferences, ≿, on H.

Definition 4.24. For h, g ∈ H and α ∈ [0, 1], a compound act αh + (1 −
α)g ∈ H is defined by

αh(· | s) + (1− α)g(· | s)

for each s ∈ S.

16In Kreps, elements of P are called roulette lotteries and those of H are called horse-
race lotteries. This alludes to the idea that roulette wheels yield outcomes according to
commonly-known objective probabilities, whereas individuals may hold distinct subjective
probabilities over horse races.
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Definition 4.25. The preference relation ≿ on H satisfies state indepen-
dence if for any p, q ∈ P , any state s∗ ∈ S and acts h, g ∈ H defined by

h(· | s) =
{
p if s = s∗

r if s ̸= s∗
and g(· | s) =

{
q if s = s∗

r if s ̸= s∗

p ≿ q if and only if h ≿ g.17

Proposition 4.26 (Subjective expected utility theorem/Anscombe-Aumann
utility theorem). A preference relation ≿ on H satisfies rationality, conti-
nuity, independence,18 and state independence if and only if ≿ is represented
by a function U : H → R defined by

U(h) =
∑
s

π(s)
∑
x

h(x | s)u(x)

where u : X → R is a Bernoulli utility function and π is a probability distribu-
tion on S with π(s) > 0 for all s ∈ S. In this case, (u, π) is called a subjective
expected utility (SEU) representation of ≿.

Definition 4.27. For f, h ∈ H, define

fAh(s) :=

{
f(s) if s ∈ A

h(s) if s /∈ A

Definition 4.28. Define a preference relation, ≿A on H, such that f ≿A g if
for all h ∈ H:

fAh ≿ gAh

We say that f is at least as good as g given A.

Proposition 4.29. Suppose ≿ has a SEU representation (u, π). Then for any
A ⊆ S with π(A) > 0,

f ≿A g

if and only if∑
s∈A

π(s | A)
∑
x∈X

f(x | s)u(x) ≥
∑
s∈A

π(s | A)
∑
x∈X

g(x | s)u(x)

17To be rigorous, since ≿ is defined on acts, p and q here should be the acts hp and hq

that give – regardless of the state of the world – the lotteries p and q respectively.
18Here, rationality, continuity, and independence are defined as in Section 4.1, but with

acts f, g, h replacing objective probabilities p, q, r.
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Proof. By definition, f ≿A g is equivalent to fAh ≿ gAh for all h ∈ H. With
the SEU representation of ≿, this implies that∑

s∈A

π(s)
∑
x∈X

f(x | s)u(x) +
∑
s/∈A

π(s)
∑
x∈X

h(x | s)u(x) ≥∑
s∈A

π(s)
∑
x∈X

g(x | s)u(x) +
∑
s/∈A

π(s)
∑
x∈X

h(x | s)u(x)

Cancelling the common term,∑
s∈A

π(s)
∑
x∈X

f(x | s)u(x) ≥
∑
s∈A

π(s)
∑
x∈X

g(x | s)u(x)

=⇒
∑
s∈A

π(s)

π(A)

∑
x∈X

f(x | s)u(x) ≥
∑
s∈A

π(s)

π(A)

∑
x∈X

g(x | s)u(x)

=⇒
∑
s∈A

π(s | A)
∑
x∈X

g(x | s)u(x) ≥
∑
s∈A

π(s | A)
∑
x∈X

h(x | s)u(x)

where the last implication uses Bayes’ rule.

4.2.2 Value of Information

Proposition 4.30. If the decision maker is an SEU maximizer, ex-ante in-
formation is always (weakly) valued.

Proof. Suppose the information is whether the state is an element of A. That
is, the information is s ∈ A or s ∈ AC where A ⊆ S. Suppose without the
information h∗ ∈ H is optimal, h∗

A is optimal given A, and h∗
AC given AC. From

the SEU representation of ≿,∑
s∈A

π(s | A)
∑
x∈X

h∗
A(x | s)u(x) ≥

∑
s∈A

π(s | A)
∑
x∈X

h∗(x | s)u(x)∑
s∈AC

π(s | AC)
∑
x∈X

h∗
AC(x | s)u(x) ≥

∑
s∈AC

π(s | AC)
∑
x∈X

h∗(x | s)u(x)

Multiply both sides of the first inequality by π(A) and both sides of the second
by π(AC), and summing them gives

π(A)
∑
s∈A

π(s | A)
∑
x∈X

h∗
A(x | s)u(x)

+ π(AC)
∑
s∈AC

π(s | AC)
∑
x∈X

h∗
AC(x | s)u(x) ≥

∑
s

π(s)
∑
x∈X

h∗(x | s)u(x)
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where the left-hand-side is the ex-ante optimal expected utility of having the
information and the right-hand-side is the optimal expected utility without
information. Therefore, having the information is weakly preferred.

Example 4.31. Betting on a coin flip.

The decision-maker will win $30 if she is correct and lose $50 if she is wrong.
She is risk neutral with u(x) = x. Suppose the coin is either fair, has heads
on both sides (2H) or neither side (2T ) with equal probability, 1/3. Without
any information, she would not bet because the expected utility of betting is

U(bet) =
1

2
u(30) +

1

2
u(−50) < 0 = U(don’t bet)

Suppose now the person has the choice to observe one flip and then bet. How
much would she be willing to pay to receive this information? Without loss of
generality, suppose the first flip gives heads, and denote this event byH. Then,
by Bayesian updating, we can summarize the prior and posterior probabilities:

States Pr(S) Pr(H | S) Pr(S | H)

2H 1/3 1 2/3
Fair 1/3 1/2 1/3
2T 1/3 0 0

where

Pr(2H | H) =
Pr(H | 2H) · Pr(2H)

Pr(H)
=

1 · 1
3

1 · 1
3
+ 1

2
· 1
3
+ 0 · 1

3

=
2

3

Thus, the conditional probability of getting heads in the second flip is

Pr(H2 | H) =
2

3
· 1 + 1

3
· 1
2
+ 0 · 0 =

5

6
and that of getting tails is

Pr(T2 | H) =
1

6
Therefore, the person will bet on heads if she observes heads on the first toss,
and her subjective expected utility is

U(bet on heads | H) =
5

6
u(30) +

1

6
u(−50) =

50

3
By symmetry, observing tails on the first flip and betting on tails in the fol-
lowing flip will yield the same expected utility. Hence, the value of observing
one flip is 50

3
.

64



4.2.3 Learning

Example 4.32. Two-armed bandit problem.

Suppose at each date t = 1, . . . , T , the decision-maker can choose to open one
of two boxes, A and B. Box A gives a payoff of 1 dollar for sure, while box
B gives a payoff of 2 dollars with probability θ and nothing with probability
1 − θ. The value of θ depends on the states of the world. In the good state,
θ = p > 1

2
and in the bad state, θ = q < 1

2
. The decision-maker’s prior

probability of the good state being the true state is λ1. She discounts future
profits by β where 0 ≤ β < 1. She has a Bernoulli utility function u(x) = x
and is an SEU maximizer.

Consider the simple case where T = 1: a single-period decision problem. She
will open box A if and only if

1 ≥ 2λ1p+ 2(1− λ1)q

⇐⇒ 1− 2q

2p− 2q
≥ λ1

Otherwise, she will open box B. Let λ∗ := 1−2q
2p−2q

. The value function at t = 1
is:

V (λ1) =

{
1 if λ∗ ≥ λ1

2λ1p+ 2(1− λ1)q if λ∗ ≤ λ1

Now, consider T = 2 and denote her choice in period t by

at :=

{
0 if choose A in period t

1 if choose B in period t

Denote her observation in period 1 by

σ1 :=


∅ if a1 = 0

0 with probability λ1(1− p) + (1− λ1)(1− q) if a1 = 1

2 with probability λ1p+ (1− λ1)q if a1 = 1

Then, by applying Bayes’ rule to update her beliefs about the true state, given
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the observation σ1,

λ2(σ1) = Pr(θ = p | σ1)

=


λ1 if σ1 = ∅
Pr(σ1=0|θ=p) Pr(θ=p)

Pr(σ1=0)
if σ1 = 0

Pr(σ1=2|θ=p) Pr(θ=p)
Pr(σ1=2)

if σ1 = 2

=


λ1 if σ1 = ∅

(1−p)λ1

λ1(1−p)+(1−λ1)(1−q)
if σ1 = 0

pλ1

λ1p+(1−λ1)q
if σ1 = 2

We solve the problem by backward induction. At t = 2, her decision problem
is maximizing the one-period expected payoff given her updated belief λ2(σ1),
which can be seen as the same problem as in the T = 1 case. Therefore, the
value function is analogous:

V (λ2(σ1)) =

{
1 if λ∗ ≥ λ2(σ1)

2λ2(σ1)p+ 2(1− λ2(σ1))q if λ∗ ≤ λ2(σ1)

Then, at t = 1, her decision problem is to maximize the two-periods expected
utility:

max
a1∈{0,1}

(1− a1) + a1 (2λ1p+ 2(1− λ1)q) + β E[V (λ2(σ1)) | λ1, a1]

Remark 4.33. If at = 0 for some t (opening box A in period t), then λt+1(σt) =
λt. The belief is not updated and the optimal action at t + 1 will still be
at+1 = 0. In other words, once the decision-maker opens the safe box, she will
continue to do so for all future periods.

Remark 4.34. Even if the problem has an infinite horizon, it may not be
optimal to open box B and learn the true state. As long as β < 1, there exists
initial beliefs such that the decision-maker will open box A in the first period.
In fact, if T = ∞, it can be shown that as long as

1− 2q(1− p)− β

2p− 2q(1− β)− β
> λ1

the decision-maker will always open box A.
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Remark 4.35. Note that the value function at each period is a convex function
of λ. And in the example above,

E[λ2(σ1)] = λ1 Pr(a1 = 0) + ((1− p)λ1 + pλ1) Pr(a1 = 1)

= λ1 Pr(a1 = 0) + λ1 Pr(a1 = 1)

= λ1

More generally,

E[posterior probability] = prior probability

This can be readily seen from the law of iterated expectations:

ED[E[X|D]] = E[X]

where D denotes observation (information) and the first expectation is taken
over possible values of D. This, combined with the convexity of V (λ) and
Jensen’s inequality, gives us

E[V (posterior probability)] ≥ V (E[posterior probability]) = V (prior probability)

This shows that the convexity of V makes information valuable.

4.2.4 Ambiguity Aversion

Definition 4.36. A preference relation ≿ on H satisfies certainty indepen-
dence if for all f, g ∈ H, h ∈ H a constant act,19 and α ∈ (0, 1)

f ≻ g ⇐⇒ αf + (1− α)h ≻ αg + (1− α)h

Definition 4.37. A preference relation ≿ on H satisfies uncertainty aver-
sion if for all f, g ∈ H and α ∈ (0, 1)

f ∼ g =⇒ αf + (1− α)g ≿ f ∼ g

Proposition 4.38 (Max-min expected utility – Gilboa & Schmeidler). A pref-
erence relation ≿ on H satisfies rationality, continuity, state independence,
certainty independence, and uncertainty aversion if and only if there exist a

19A constant act maps every state to the same objective probability distribution.
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utility function u : X → R and a closed and convex set Π of probability distri-
butions over states such that the function

V (h) := min
π∈Π

∑
s∈S

π(s)
∑
x∈X

h(x | s)u(x)

represents ≿ on H. In other words, the individual’s decision problem is the
max-min problem

max
h∈H

min
π∈Π

∑
s∈S

π(s)
∑
x∈X

h(x | s)u(x)

Example 4.39. Consider an asset allocation example, similar to Example 4.22.
As before, an investor allocates her initial wealth x0 between two assets:

(i) A risk-free asset that returns the amount invested.

(ii) A risky asset with price p and return r ∼ N(r̄, σ2
r).

She has Bernoulli utility on wealth, u(x) := − exp(−x). There are two states
of the world, one in which the expected return is r̄L and another in which it is
r̄H > r̄L. Let s be the amount of the risky asset that the individual purchases.
Using the result from Example 4.22, the expected utility equals

(r̄ − p)s− 1

2
σ2
rs

2 + x0

If the investor is a G-S type decision-maker, her decision problem is

max
s

min
r̄∈{r̄L,r̄H}

{
(r̄ − p)s− 1

2
σ2
rs

2

}
That is, for each s she evaluates the expected utility under the worst state and
then chooses s to maximize this minimum. It is easy to see that the expected
utility function attains minimum at r̄L for s > 0 and at r̄H for s < 0. Using
this observation and taking first order conditions, we have

s∗ =


r̄L−p
σ2
r

if p < r̄L

0 if r̄L < p < r̄H
r̄H−p
σ2
r

if p > r̄H

Remark 4.40. We could replace the state space {r̄L, r̄H} with the interval
[r̄L, r̄H ] without affecting the result.
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