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Exercise 8. Prove the following: Suppose f : X ⊆ Rd → Rm is differentiable at x0 ∈ int X. Then
∂ fi
∂xj

(x0) exists for any (i, j) ∈ {1, . . . , m} × {1, . . . , d} and

D f (x0) =

[
∂ fi

∂xj
(x0)

]
ij
=


∂ f1
∂x1

(x0) · · · ∂ f1
∂xd

(x0)
...

. . .
...

∂ fm
∂x1

(x0) · · · ∂ fm
∂xd

(x0)


Differentiability of f : X ⊆ Rd → Rm at x0 means that

∥ f (x0 + h⃗)− f (x0)− A⃗h∥m

∥⃗h∥d
→ 0

as h⃗ → 0, for some A ∈ Rm×d. For i ∈ {1, . . . , m} and j ∈ {1, . . . , d}, we want to show that1

lim
h→0

fi(x0 + hej)− fi(x0)

h

exists, and equals the (i, j)-th entry of A. To do so, it suffices to show that∣∣∣∣ fi(x0 + hej)− fi(x0)

h
− aij

∣∣∣∣
is bounded above by by some function that converges to zero with h. Letting Ai• be the i-th row of
A as a vector in Rd, we can rewrite this as∣∣∣∣∣ fi(x0 + hej)− fi(x0)− AT

i•hej

h

∣∣∣∣∣ =
∣∣∣∣∣ fi(x0 + hej)− fi(x0)− AT

i•hej

∥hej∥d

∣∣∣∣∣
≤ 1

∥hej∥d

√
m

∑
i=1

[
fi(x0 + hej)− fi(x0)− AT

i•hej
]2

=
∥ f (x0 + hej)− f (x0)− Ahej∥m

∥hej∥d
(∗)

But hej is a sequence of d-vectors converging to zero with h, so (∗) converges to zero as h → 0.

1Note that h⃗ above is a d-vector, whereas here it is a scalar.
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Exercise 11. Prove Young’s Theorem for the case when d = 2.

To simplify notation, I write x := (x1, x2) (i.e., drop the 0 subscript). Define

r(h1, h2) := f (x1 + h1, x2 + h2)− f (x1 + h1, x2)

t(h1, h2) := f (x1 + h1, x2 + h2)− f (x1, x2 + h2)

Then

r(h1, h2)− r(0, h2) = f (x1 + h1, x2 + h2)− f (x1 + h1, x2)− f (x1, x2 + h2) + f (x1, x2)

= t(h1, h2)− t(h1, 0)

By the mean-value theorem applied to r(·, h2) and t(h1, ·)

∂r(c1, h2)

∂x1
h1 =

∂t(h1, c2)

∂x2
h2

for some c1 ∈ (0, h1) and c2 ∈ (0, h2). Rewriting in terms of f ,

h1

(
∂ f (x1 + c1, x2 + h2)

∂x1
− ∂ f (x1 + c1, x2)

∂x1

)
= h2

(
∂ f (x1 + h1, x2 + c2)

∂x2
− ∂ f (x1, x2 + c2)

∂x2

)
Applying the mean value theorem to ∂ f (x1+c1,·)

∂x1
and ∂ f (·,x2+c2)

∂x2
,

h1h2
∂2 f (x1 + c1, γ2)

∂x2∂x1
= h2h1

∂2 f (γ1, x2 + c2)

∂x1∂x2

for some γ1 ∈ (x1, x1 + h1), γ2 ∈ (x2, x2 + h2). We can divide both sides by h1h2 to get

∂2 f (x1 + c1, γ2)

∂x2∂x1
=

∂2 f (γ1, x2 + c2)

∂x1∂x2

Note that as h1 → 0, c1 → 0 and γ1 → x1; and as h2 → 0, c2 → 0 and γ2 → x2. Taking the limit of
both sides as h1, h2 → 0 and using that f ∈ C2,

∂2 f (x1, x2)

∂x2∂x1
=

∂2 f (x1, x2)

∂x1∂x2

Exercise 12. Let f : X ⊆ Rd → R, where X is nonempty, open and convex. For any x, v ∈ Rd, let
Sx,v := {t ∈ R | x + tv ∈ X} and define gx,v : Sx,v → R as gx,v(t) := f (x + tv). Then, f is concave
(resp. strictly concave) on X if and only if gx,v is concave (resp. strictly concave) for all x, v ∈ Rd

with v ̸= 0. Prove this.

The following diagrams illustrate this question visually, for the function f : X ⊆ R2 → R, given

by f (x1, x2) := 2
√

1 − x2
1 − x2

2, where X := {(x1, x2) | ∥(x1, x2)∥ ≤ 1} is the closed unit ball in R2.
The mapping h : Sx,v → X is given by hx,v(t) := x + tv
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x1

x2

dom f
v

0

h0,v(S0,v)

t

x3

g0,v(t)

0
S0,v

We can see that g0,v inherits the concavity of f .

Suppose first that f is concave on X. Fix any x, v ∈ Rd with v ̸= 0. For any t, t′ ∈ Sx,v and any
α ∈ [0, 1],

gx,v
(
αt + (1 − α) t′

)
= f

(
x +

(
αt + (1 − α) t′

)
v
)

= f
(
α (x + tv) + (1 − α)

(
x + t′v

))
≥ α f (x + tv) + (1 − α) f

(
x + t′v

)
= αgx,v (t) + (1 − α) gx,v

(
t′
)

Hence, gx,v(·) is concave. Conversely, suppose that for any x, v ∈ Rd with v ̸= 0, gx,v(·) is concave.
Pick any z1, z2 ∈ X and any α ∈ [0, 1]. Letting x = z1 and v = z2 − z1, observe that gx,v(0) = f (z1),
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gx,v(1) = f (z2), and

gx,v (α) = f (z1 + α (z2 − z1)) = f ((1 − α) z1 + αz2)

Since gx,v(·) is concave, for any α ∈ (0, 1),

f ((1 − α) z1 + αz2) = gx,v (α)

= gx,v ((1 − α) · 0 + α · 1)

≥ (1 − α) gx,v (0) + αgx,v (1)

= (1 − α) f (z1) + α f (z2)

i.e., f is concave. The proof case for strict concavity is analogous.
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