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1 Static optimisation problems

Our goal is to be able to solve the following type of problem, which we will call the primal problem.

sup f (x)
x€R4

st hy (x) =0Vk e {l,...,K},
gj(x)20v36{177*]}7

where f,hg,g; : RY — R for all k € {1,...,K} and j € {1,...J}. By “solve”, we want to obtain
the set of maximisers, i.e., x that satisfy the constraints and maximises the objective function.
This, in turn, allows us to compute the maximised objective function. We will also think about
comparative statistics; i.e., how the maximisers and thus the objective function change as we “vary”
the optimisation problem.

Since sup —f = —inf f, once we know how to solve maximisation problems, we also know how
to solve minimisation problems. In economics, we tend to focus on maximisation problems, whereas
in mathematics/computer science, the focus is on minimisation problems.

Define h(x) = (hr(x))i, and g(x) = (g;(x))7_, (think of them as column vectors). Also
define I' C R? as the set of all x € R? that satisfies the constraints in the primal problem; i.e.,

Fi={xeR’:hy(x)=0Vke{l,....K}, gj (x) >0Vje{l,...,J}}.
This allows us to write the primal problem succinctly as

sup £ ().

xel’

Given any x € R%, we say that a constraint is binding if it holds with equality, and slack if the

constraint is satisfied but is not binding.

*Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes
are heavily based.
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Exercise 1. Suppose I'1 CT's C R? and f : R — R. Prove that

sup f(x) < sup f(x).
xel x€ls

Exercise 2. Suppose I' C R% and f: R? — R. If g : R — R is a strictly increasing function, then

{xexir0=swr@} = {xex (00 =smo(ran}.

zel zel’
How does the result change if ¢ was a weakly increasing function?

Remark 1. Note that g(f(x)) = kf(x) + ¢ for any k > 0 and ¢ € R is a strictly increasing function
so that above also tells us that multiplying the objective by a strictly positive constant and adding

constant to the objective function leaves the set of maximisers unchanged.

2 Unconstrained optimisation

Let us first consider the problem of maximising a function without any constraints.

Proposition 1. Suppose f : X C R? — R has a local maximum or a local minimum at x* € int(X)

and that f is differentiable at x*. Then, X* satisfies the first-order condition; i.e.,
Vfx*)=0.

Proof. Suppose X is open. We already proved this for the case when d = 1 (Proposition 6 in 5.
Differentiation). To extend the result to the case when d > 1, suppose that f has a local maximum
(resp. minimum) at x* € int(X). Fix any v € RN\{0}, Sy, = {t € R : x* +tv € X} and
define g : Sy — R where g(t) == f(x* + tv). Observe that g, must have a local maximum (resp.
minimum) at 0. Since g : R — R, we must have ¢/(0) = Vf(x*)v = 0. Since v € R4\{0} was
chosen arbitrarily, this implies that V f(x*) = 0. |

Remark 2. The intuition for this comes from our discussion about gradient vectors. Recall that
V f(x) is the direction that leads to the largest increase in the value of f. Together with the fact
that f(x) + Vf(x)h approximates f(x + h), it follows that if Vf(x) # 0, we can move in the
direction of V f(x), i.e., h = ¢V f(x) for some ¢ > 0, to increase the value of f. Thus, for a point to
be maximum or a minimum, it must be that there is no direction in which we can move from the

point to increase the value of f; i.e., Vf(x) = 0.

Any x € int(X) that satisfies the first-order condition is called a critical point of f. Although
first-order condition is necessary for a point to be a local maximum or a local minimum (assuming
differentiability), it is not sufficient (e.g., f(x) = 2®). This leads us to the idea of second-order

conditions that helps us distinguish between local maxima and minima.

Proposition 2. Suppose f is C? on X C R, If f has a local mazimum (resp. local minimum) at

x € int(X), then D?f(x) is negative semidefinite (resp. positive semidefinite).

Proof. Suppose X is open and that f has a local maximum at x € X. Fix v € R?\{0} and let
Sy ={teR:x+tv e X} and define g : Sy, — R where g(t) .= f(x +tv) . Define h: S, — X as

9.
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h(t) = x+tv. Then, g.(t) = f(h(t)) and h/(t) = v so that

d
40 =i n®)v =Y L nw.

(why can we replace total derivatives with partial derivatives?) Therefore,

" _ o a2f T D2
G =303 g (N vy = VT DA ().

i=1 j=1

If f has a local maximum at x, then g has a local maximum at 0. Hence, ¢’(0) = 0. Moreover, we
cannot have ¢g”(0) > 0: if it were, then z is also a local minimum (PS7) meaning that ¢’ must be
constant at = which contradicts that ¢”(0) > 0. Hence, it follows that ¢”’(0) < 0. This, in turn,
implies that v D?f(x)v < 0. Since this holds for all v € R? | it follows that D?f(x) is negative

semidefinite. [ |

Proposition 3. Suppose f is C2 on X C R, If Vf(x) = 0 and D?f(x) is negative definite (resp.

positive definite) at some x € X, then x is a strict local mazimum (resp. minimum,).

Remark 3. Focusing on maxima, so far, what we have shown the following. Suppose f is C2 on X
and x € int(X). We have shown the following necessary conditions for x to be a local maximum:
the first-order necessary condition: V f(x) = 0; and the second-order necessary condition: D? f(x)
is negative semidefinite. We also have the following sufficient condition: If V f(x) = 0 and D? f(x) is
negative definite, then x is a strict local maximum. Notice, in particular, that if we have x € int(X)
such that Vf(x) = 0 but D?f(x) is negative semidefinite (but not negative definite), we cannot
conclude that x is a local maximum; but we cannot rule out the possibility that x is a local
maximum! Situation will be improved if we could either (i) strengthen the necessary second-order
condition to be about negative definiteness of D?f(x); or (ii) strengthen the sufficient second-order
condition to require D?f(x) to be negative semidefinite (while perhaps giving up on the strictness

of local maximum). The following examples demonstrates that we can’t.

(i) Conmsider f : R — R such that f(z) == —z%. Since f(-) < 0 and f(0) = 0, it follows that 0
is a (global) maximum of f. However, f”/(0) = 0 so that, viewed as a 1 x 1 matrix, f”/(0) is

negative semidefinite but not negative definite.

(ii) Consider f: R — R such that f(z) := 3. Then, f’(0) = f”(0) = 0. Thus, f”(0), viewed as a
1 x 1 matrix. is negative semidefinite but not negative definite. Observe that 0 would satisfy
the condition for the sufficiency of second-order condition if we had relaxed the condition to

allow for negative definiteness. However, 0 is neither a local maximum nor a local minimum

of f.

The point of this (long) remark is that second-order condition isn’t all that useful. All hope is not

lost, however!

Proposition 4. Suppose f is differentiable on X, where int(X) is convex, and that f is concave.

Fiz x* € int(X). The following are equivalent:

(i) Vf(x*) = 0.
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(i) f has a local mazimum at x*.
(iii) f has a global mazimum at x*.
Exercise 3 (PS9). Prove Proposition 4. Hint: Use Proposition 14 from “5. Differentiation.’

Remark 4. Why does this result work when second-order conditions did not...? Remember that
the second-order condition was about the property of the Hessian at a particular point. However,

concavity of f is about the Hessian at all points in the domain of f.

Remark 5. First-order approach can only help to identify maximum /minimum in the interior of the
domain of f. Thus, if the domain of f is closed, even if we know that an interior point maximises

f, we must still check that that f is not maximised at some boundary point.

Remark 6. Recall that if f is strictly concave, then f is strictly quasiconcave (PS5). Thus, if we add
to Proposition 4 that f is strictly concave, then we know that x* € int(X) such that Vf(x*) =0
(if it exists) must be unique. Moreover, if we add that X is compact, then we know that that a
maximum exists by Weierstrass theorem. Hence, we can conclude that f attains a global maximum
at x* such that Vf(x*) = Oor at some x* € X\int(X) .

3 Constrained optimisation

3.1 Necessity: Equality constraints

Theorem 1 (Theorem of Lagrange). Let f: R — R and h : R? — R where hy, is C* for each

ke {l,...,K}. Suppose x* is a local mazimum or minimum of f on the constraint set
I'={xeR’:h(x)=0}.

Suppose that!
rank (Dh (x*)) = K. (1)

Then, there exists Lagrange multipliers p* = (u;’;)le € RX such that

K
V) + Y upVhi (x7) = 01q. (2)

k=1
Proof. Note first that Dh is a K X d matrix and that rank(Dh) < min{K,d}. Hence, if K > d,
then (1) cannot be satisfied. Thus, we may assume that K < d and further assume that the K x K
submatrix of Dh(x*) that has full rank consists of the first K rows and K columns of Dh(x*).
For each x € T, we write x = (w,z) € RE x RI"K. Let Vo f (a 1 x K matrix) and V,f (a
1 x (d — K) matrix) denote the derivative of f with respect to w variables along and z variables
alone, respectively. Dyh (a K x K matrix) and D,h (a K x (d— K) matrix) are defined analogously.

We will treat p* € RX as a 1 x K matrix. Let x* = (w*,z*) € T’ denote a local maximum (or

IRecall that any matrix X € R™*X" can be viewed as a collection of (row or column) vectors. Thus, we can
consider the linear space that the vectors span. The linear space spanned by the columns of X is the column space
of X. The column rank of X is the rank of the column space of X (recall that rank of a linear space equals the
cardinality of (any) basis of that space). The linear space spanned by the rows of X, i.e., span({x1,...,Xm}), is the
row space of X. The row rank of X is the rank of the row space of X. Finally, recall that column and row ranks are
equal.
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a local minimum) of f in the constraint set that satisfies (1). We want to show that there exists
p* € RE such that

VWf(W*7Z*)+IJ’DWh(W*aZ*):Ol><K7 (3)
Vaf (W",27) + pDyh (W",27) = 01 (- k)- (4)
The condition (1) allows us to appeal to the Implicit Function Theorem to deliver an open

set V. C R? K that contains z* and a C! function b : V — RX such that b(z*) = w* and

h(b(-),) = 0k x1 on V. Treating the two sides of the equality as functions of z, we obtain
Dwh (b(z),z) Db(z) + D,h (b(2) ,2) = Oxx(a—K) V2 € V.
Since Dhyw (w*,z*) has full rank, it is invertible so that
Db(z*) = — [Dyh (w*,z*)] "' Dyh (w*,2*).
Define p* € RE by
pt = =V f (W, z") [Dywh (w*,z°)] 7"
Then,

K
D uiVhi (x°) = p*Dyh (w*,2%) = =V f (", 2%),
k=1

which gives (3). It remains to show (4). Define F': V — R as F(z) := f(b(z),z) for all z € V. Since
f has a local maximum at (w*,z*) = (b(z*),2z*), I also has a local maximum at z*. Since V is
open, z* is an unconstrained local maximum of F and the first-order conditions for an unconstrained

maximum implies that VF(z*) = 0; i.e.,
0=VF (2")=Vw/f(b(z"),2")Db(z*)+ V.f (b(z"),z")
=Vwf(w* 2z") (— [Dwh (W™, z*)]f1 D,h (W*,z*)) + V.f(w*,z")

= Vaof (W",27) + " Doh (W, 27) ;

i.e., we have shown (4). |

Remark 7. The condition (1) is called the constraint qualification under equality constraints and

plays a central role in the proof to deliver the existence of the Lagrange multipliers pu* € RX.

Remark 8. Just as in the case of unconstrained optimisation, there exist second-order conditions
that allows one to distinguish between local maximum and local minimum in equality constrained
optimisation problem that are similar to Propositions (2) and (3).2 Importantly, they have similar

limitations as in the unconstrained case.

2See, for example, Sundaram Theorem 5.4.
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3.2 Necessity: Inequality constraints

Let f : R — R be concave and C! and consider the following problem:

L.z > 0.
max f(x) st.x>0

Ignoring the constraint, the solution T satisfies the first-order condition
f' @ =o.
There are three cases to consider: (i) T < 0; (ii) Z = 0; and (iii) T > 0. Let 2™ denote the solution
to the constrained problem. In each of the three cases (try drawing!), we have
(i) z* =0 and f'(z*) < 0;
(ii) * =0 and f'(z*) =0;
(iii) z* > 0 and f/'(z*) = 0.

Observe that the product of the two, i.e., z* f'(x*), is zero in all three cases. However, z* f/(z*) = 0
is not a sufficient condition as you can see from case (iii). There, we see that the point x = 0 at
which f’(x) > 0 also satisfies the condition, yet x is not an optimum. To rule this case out, we
must add that f/(2*) < 0. Together with the constraint itself, observe that we have identified three

conditions:

We will see that all these conditions are also important when we generalise the problem to multivariate-

many-constraints case.

Theorem 2 (KKT Theorem). Let f : R? — R and g; : R? — R be C! for each j € {1,...,J}.

Suppose x* is a local maximum of f on the constraint set
F={xeR’:g;(x)>0Vje{l,...,J}}.
Let E C{1,...,J} denote the set of binding constraints at z* and let gg == (g;)jcr. Suppose that’

rank (Dgg (x*)) = |E|. (5)

3Recall that any matrix X € R™*™ can be viewed as a collection of (row or column) vectors. Thus, we can
consider the linear space that the vectors span. The linear space spanned by the columns of X is the column space
of X. The column rank of X is the rank of the column space of X (recall that rank of a linear space equals the
cardinality of (any) basis of that space). The linear space spanned by the rows of X, i.e., span({x1,...,Xm}), is the
row space of X. The row rank of X is the rank of the row space of X. Finally, recall that column and row ranks are
equal.
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Then, there exists X* = (X5)7_, € R” such that

j=1
N>0Vje{l,... T}, (6)
)\;gj(x*)ZOVJE{].,,J}7 (7)
J
V() + ) AV (x) =01 (8)
j=1

If x* is a local minimum of f on T, then (8) becomes V f(x*) — 3, ; \;Vg;(x*) = o'.

Proof. Let x* be a local maximum of f on the set I' such that (5) holds. Let E denote the set of
binding constraints at x*. We want to show that there exists A* € R’ such that: (i) A; > 0 and
Ajhj(x*) =0 for all j € {1,...,J}; and (i) Vf(a*) + X7, \;Vg;(x*) = 0.

With the exception of the nonnegative of the vector A* we can proceed as in the proof of
Theorem of Lagrange. Without loss of generality, suppose that the first J* := |E| constraints are
binding and that the last J — J* constraints are slack. For each j € {1,...,J}, define

Vj::{XERd:gi(x)>0},

and define V' = ﬂj:J*—H Vi. Because g; is continuous, V; is open for each j € {1,...,J} (why?)
and so V is also open (why?). Let I'* C T be the equality-constrained set given by

r ::Vﬂ{XERd:gj(x):OVje{1,...,]*}}.

By construction, x* € I'*. Since x* is a local maximum of f on I, it is also a local maximum of f

on I'*. Together with (5), by the Theorem of Lagrange, there exists a vector pu* € R’" such that

J*

Vf(x*)+ Zu;ng (x*) = 01xq-

j=1

Define A" = (\1)7_, e R/ as

wioifje{l,...,J*}

P .
0 ifje{J +1,...,J}

J

We will show that A\* satisfies the required properties. First, observe that

J J*
V@) + D AV (x") = Vf (@) + Y uiVe; (x7) = Orcas
Jj=1 Jj=1
i.e., (8) is satisfied. Since g;(x*) =0 for all j € {1,...,J*}, \jg;(x*) =0 for all j € {1,...,J"}.
For j € {J* +1,...,J}, we have A7 = 0 so that A;g;(x*) = 0. Hence, we've shown (7). It remains
to show (6). By construction of A*, it suffices to show that A; >0 forall je{l,...,J*}. Let us
first show that A} > 0. To this end, define x € R? and v € R, and functions G = (Gy,...,G ) :
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R — R/ by

Let DGy denote the (J* x d matrix) derivative of G with respect to the x variables alone and let
VG, denote the (k x 1 matrix) derivative of G with respect to . Note that DxG(-,y) = Dgg(-)
and V,G(x,-) = (—1,0,...,0) for all x € R<. By definition of G, G(x*,0) = 0+ x; and rank of

rank (DxG (x*,7v)) = rank (Dgg (x*)) = |E| = J".

By the Implicit Function Theorem, there exits an open ball around 0 € R denoted B and a function
¢ : B — R? that is C! such that £(0) = x* and

G(£(),7)=0Vy€B.

Treating both sides of the equation as functions of v and differentiating both sides and evaluation

at £(0) = x* gives
DyG (x*,0) D (0) + V,G (x*,0) = 0 & Dygg (x*) DE(0) + (—1,0,...,0) =0,
where D¢ is a d x 1 matrix. That is,

1 ifj=1

Vg (x)De() =4 7 .
0 ifjef2... J)

Using (8) and the fact that \; =0 for all j € {J*+1,...,J},

J
Vi (x)DEO) =~ | Y AVg; (x) | DE(0) = —Au.
j=1

To complete the proof we will show that V f(x*)DE(0) < 0 which implies —A\; < 0 & A > 0.
Toward this goal, we first show that there is a 4* > 0 such that for all v € [0,7*), () € T}; i.e.,
for each j € {1,...,J}, g;(&(v)) > 0 for all v € [0,7%). If v > 0, since G;(&{(7),y) = 0 for all
je{l,...,J*}, we have

v>0 ifj=1

alEm=, itje{2,...,J}

For j € {J*+1,...,J}, we have g;(£(0)) = g;(x*) > 0. Since both g; and & are continuous, we can
choose ~ sufficiently small, say v € (0,v*), such that

g](g(’Y))>0VJ:{J*+177J}

We have thus shown that there exists v* > 0 such that £(y) € T for all v € [0,v*).
Because £(0) = x* is a local maximum of f on I and () € T for all v € [0,~*), it follows that
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for ~ sufficiently close to 0, we must have

Taking limits as v \, 0, above gives us that

0= Vf(£(0)) DE(0) =V (x") DE(0).

Hence, we have now shown that A\; > 0. Analogous argument shows that /\;*- > 0 for all j €
{2,...,J*} and the proof is complete. [ |

Remark 9. Suppose d = 1 and the only constraint is the nonnegativity constraint; i.e., J = 1 and

g1(z) = x. Then, KKT first-order conditions become
AT >0, Njz* =0, f(z) = -\

and so we can write it as
(@) <0, z*f' () =0,
and, of course, we must have g;(z*) = 2* > 0. These are the exact conditions we had before!

The properties (6), (7) and (8) are together referred to as the KKT first-order conditions. Let
us go through the theorem carefully.

Complementary slackness (7) is referred to as the complementary slackness conditions. Since
g;j(z) > 0 from the constraint and A} > 0, (7) tells us that: (i) if g;(=*) > 0, then A} = 0; and (ii) if
A} >0, then g;(2*) = 0. That is, if one inequality is not strict (i.e., “slack”), then the other cannot
be.

Nonnegativity constraints Suppose that the ¢th constraint is a nonnegativity constraint on

some x;, i € {1,...,d}; i.e., ge(x) = z;, > 0. Since Vg,(x*) = e;,, (8) is given by

+ ) AV, (x") — Ne;, =0.
jeaN{e

Note that (6) ensures that A} > 0 and, together with (7), we know that if xf > 0, then A} = 0.
Thus, we can rewrite above as: for all i € {1,...,d}\{i¢}

*agﬁ * 7% * *8-9] *\
8361 +Z>\ axi(x)+2)\jaxi (x*) =0

and
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Constraint qualification The condition (5) is called the constraint qualification. To understand

this, notice first that we can rewrite (8) as

Vi) =) (=X) Vg ()

jeJ

ie, Vf(x*) is a linear combination of the gradients Vg;(x*), ..., Vgs(x*). Moreover, by com-
plimentary slackness, since A; = 0 for all non-binding constraints, V f(x*) is, in fact, a linear
combination of (Vg;)jcr. Letting £ = {1,...,|E|}, the constraint qualification is the requirement
that |E| x d matrix

9, 9,

5oy (X)) G (X)

Vyr (X7) = : :
99|E| (% 99|B| (%
oz (X ) Oy, ( ) |B|xd

has rank |E|. Since rank(Vgg(x*)) < min{|E|, d}, this is possible only if d > |E|. One implication
of the rank qualification is therefore that the {Vg;};cr are linearly independent.

Example 1. Let f, g : R? — R be given by f(z,y) = —(2% + »?) and g(z,y) == (z — 1)% — ¢?,
respectively. Consider the problem of maximising f on I' := {(z,y) € R? : g(x,y) > 0}. Let us
argue that solution to this constrained problem is (z*,y*) = (1,0). first, the function f reaches
a maximum when x? + y? reaches a minimum. Since the constraint requires (z — 1)® > y2, and
y? > 0 for all y € R, the smallest absolute value of 2 in the constraint set is z = 1. And the
smallest absolute value of y in the constraint set is y = 0. Thus, (z*,y*) = (1,0). Observe that the
constraint is binding at the optimum. Note that

Dg(a*,y") = (3" —1*.2y") = (0,0)

so that it has rank less than the number of binding constraints (i.e., 1). Thus, the constraint

qualification fails in this case. Moreover, we have
Df(a*,y") = (=22%, =2y") = (-2,0)

and so there cannot exist A > 0 such that Df(z*,y*) + ADg(z*,y*) = (0,0); i.e., conclusion of

Theorem 2 also fails.

Remark 10. Since any equality constraints can be written as a two inequality constraints (i.e.,
hi(x) = 0 if and only if hi(x) > 0 and —hy(x) > 0), Theorem 3 can be applied to optimisation
problems with both equality and inequality constraints. However, recall that for constraint qual-
ification to be satisfied, we must have d > |FE|, where |E| is the number of binding constraints.
Thus, treating equality constraints as inequality constraints may lead to violation of constraint

qualification. Luckily, we can treat equality constraints separately from inequality constraints.

Theorem 3. Let f : R? = R and gj R? — R be C! for each j € {1,...,J}. Suppose x* is a local

mazimum of f on the constraint set

F={xeR': hy(x)=0Vke{l,....K}, g;(x) >0Vje{l,....,J}}

- 10 -
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Let E C{1,...,J} denote the set of binding constraints at z* and let gg == (g;)jcr. Suppose that!

rank (D[ hixi) D — K +|E|. 9)

9 (X

Then, there exists p* € RE and \* = (/\;f)j':l € R’ such that

N >0Vied{l,...,J}, (10)

Ajgi (x*)=0Vje{l,....,J}, (11)
K J

V(@) + > ppAhy (x7) + Y ANV (x*) =0 (12)
k=1 j=1

3.3 Sufficiency: Inequality constraints

As in the first-order condition for unconstrained problems, the KKT first-order conditions are only

necessary for a local maximum or a local minimum and not sufficient.

Example 2. Suppose f(z) = 2® with the constraint that g(z) := = > 0. As noted above z* = 0 is
not a local maximum or a minimum. At z = 0, the constraint is binding so that E = {1}. Then,
g’ (z*) = 1 = |E| so that constraint qualification is satisfied. Moreover, A* = 0 satisfies the KKT

first-order conditions since
F(2*) + XNVg (x)=3(0)>+0-1=0.

Theorem 4 (Sufficiency of KKT with concavity). Let f : R? — R and g; : R? — R for each
j€{1,...,J} are all be C' and concave. Suppose there exists X\* = ()\;f)j:l € R that satisfies the
KKT first-order conditions; i.e., (6), (7) and (8). Then, x* is a global mazximum of f on on the

constraint set T .= {x € R1: g; >0Vj € {1,...,J}}.

Proof. Let us prove an interim result first. Say that a point y € R? points into set X C R? at
x € X if there is w > 0 such that (x + ny) € X for all n € (0,w).

Lemma 1. Suppose X C R is a convex set and f : X — R is a concave function. Then, x*

mazimises f on X if and only if Dy f(x*) < 0 for all y pointing into X at x*.

Proof. Suppose x* maximises a concave f : X — R on a convex X C R?. Let y € R? point into X
at x*. Since x* is the maximiser, we have f(x*) > f(x* +ny) for all n > 0 such that x* +ny € X

(and such 7 exists for sufficiently small n). Rearranging and taking limits yields

0> lim J(xX*+ny) — f(x¥)
7\0 n

= Dy f (x")

as desired.

4Recall that any matrix X € R™X™ can be viewed as a collection of (row or column) vectors. Thus, we can
consider the linear space that the vectors span. The linear space spanned by the columns of X is the column space
of X. The column rank of X is the rank of the column space of X (recall that rank of a linear space equals the
cardinality of (any) basis of that space). The linear space spanned by the rows of X, i.e., span({x1,...,Xm}), is the
row space of X. The row rank of X is the rank of the row space of X. Finally, recall that column and row ranks are
equal.
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Conversely, suppose Dy, f(x*) < 0 for all y pointing into X at x*. If x* does not maximise f on
X, there exists z € X with f(z) > f(x*). Let y :== z — x*. Then, since x*+1-y € X and X is

convex, y points into X at x*. But for n € (0, 1), because f is concave,

[ +n(z—x")) = f((1-n)x"+nz)
> (1 —n)f(x")+nf(2)
=f(x")+nlf(z) = f(x")]
so that
fx"+n(z—x")) - f(x%)
7

Observe that left-hand side converges to Dy f(x*) as n N\, 0 so that Dy f(x*) > 0; a contradiction.
|

= f(z) = f(x")>0.

We prove the sufficiency part first by using the fact that if a function is differentiable at a point,
then directional derivative exists in all directions and is given by the dot product of the partial
derivatives and the direction. So suppose there exists A* € Ri that satisfies the KKT first-order
conditions. Let

Vj = {xERd:gj(x)ZO}.

Suppose x1,x2 € X, Pick any A € (0,1) and let z := Ax; + (1 — A\)x2. Because g; is concave,
X is convex for all j € {1,...,J} (why?). Hence, ﬂ'j]=1 V; =T is also convex (why?). Since f is
concave, all that remains to show is that V f(x*)y < 0 for all y pointing into X at x* and we can
then appeal to the lemma above. Suppose some y points into I" at x*. We will show that, for each
j€{l,...,J}, we have \¥Vg;(x*)y > 0, which by (8), would imply Vf(x*)y < 0. Observe that,
by definition of y, there exists € > 0 such that x* + ty € X for all ¢ € (0,¢). By our choice of T', it
follows that g;(x* +ty) > 0 for all j € {1,...,J} for all ¢t € (0,¢). Fix any j € {1,...,J}. There
are two possibilities: either g;(x*) > 0 or g;(x*) = 0. In the first case, A} = 0 by (7) and so clearly
AiVg;(x*)y > 0. In the second case, we have

g; (x* +ty) —g; (x¥)
t

>0Vte (0,¢).

Taking limits as ¢ N, 0, we obtain Dyg(x*) = Vg;(x*)y > 0. Since A\ > 0 by (6), we have
AVgi(x*)y > 0. [ |

Remark 11. One can show that if f and g;’s are all C! and concave and the following condition,

called Slater’s condition, holds
Ix Ry g;(x)>0V5€{l,...,J}. (13)

Then, KKT first-order conditions are both necessary and sufficient. That is, the Slater’s condition
can be used as an alternative to the constraint qualification condition to ensure that KKT first-order

conditions are necessary (when f and g;’s are all concave).

Theorem 5 (Sufficiency of KKT with quasiconcavity). Let f : R — R and g; : R? — R for each
j €{l,...,J be C' and quasiconcave. Suppose there exists x* € R% and X € R’ that satisfy all
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the constraints (i.e., x* €T :={x € R¥:g; >0Vj € {1,...,J}}) and satisfy the KKT first-order
conditions (i.e., (6), (7) and (8)). Then, x* mazimises f on T provided that at least one of the

following condition holds:
Vf(x*)#0 or f is concave. (14)

Proof. First observe that the set X; := {x € R?: g;(x) > 0} is convex because g; is quasiconcave
(why?). Thus, X = ﬂjzl X is also convex.

Lemma 2. Under the hypothesis of the theorem, V f(x*)(y —x*) <0 for ally € X.

Proof. By hypothesis, we have
J
V) (y = x) = =D AV () (y - x7).
j=1

It suffices to show that A\;Vg,;(x*)(y — x*) > 0 for each j € {1,...,J} and any y € X. Fix
je{l,...,J} and y € X. We have that either g;(x*) > 0 or g;(x*) = 0. In the first case,
A7 =0 by (7) and so clearly A\iVg;(x*)(y —x*) = 0. In the second case, because X is convex,
x*+tly—x*)=(1—-t)x* +ty € X for all t € (0,1). Because g; is quasiconcave,

g5 (1 =) x" + ty) > min {g; (x7), g; (¥)} > 0

so that (recall g;(x*) = 0),
0 (L0 +1y) g, (x)
t
Taking limits as ¢ \, 0 establishes that Dy_xg(x*) = Vg(x*)(y —x*) > 0. Since A} > 0 from (6),
it follows that A\}Vg;(x*)(y —x*) > 0. |

0<

Suppose first that Vf (x*) # 0. Then, there exists w € R? such that Vf(x*)w < 0. Let
z = x* 4+ w so that Vf(x*)(z — x*) < 0. Pick any y € X. For ¢t € (0,1), let

y(t) =1 —t)y+tz, x(t) = (1—t)x" +tz.
Fixing any ¢ € (0,1), we have
V") (x(t) —x") =tVf(x")(z-x") <0
and, by lemma above, we also have
VIE)y@)—y)=01-t)VfE")(y—x") <0.

Summing the inequalities yield
Vi) (y () —x7) <0.

Toward a contradiction, suppose that f(y(t)) > f(x*). Since f is quasiconcave, for any « € (0, 1),

f+aly®t)—x7) =f((1-a)x" +ay (1) Zmin{f (x),y ()} = f (x).
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Hence,
S +aly)—x") - f&)

(07

>0Vae (0,1).

Taking limits as o \, 0 (recall f is continuous), the left-hand side converges to Dy )_x-f(x*) =
VF(x*)(y(t) — x*) > 0, which is a contradiction. Hence, we must have f(y(t)) < f(x*). Since
this holds for all ¢ € (0,1), taking limits as ¢ — 1, we have f(y) < f(x*) which establishes the
optimality of x*.

Suppose now that f is concave. By repeating the arguments in the proof for the sufficiency of
KKT with concavity, we can show that Vf(x*)y < 0 for all y pointing into X at x*. Since f is

concave and X is convex, Lemma (1) then establishes that x* is optimal. ]

Remark 12. Observe that Theorem 5 does not give necessary conditions for x* to be an op-
timum—indeed the conditions in the theorem are not necessary unless, for example, the constraint

qualification is met at x*.

Exercise 4. Let f,g: R — R be given by

x3 ifxz<0
f(z)=40 ifo<x<1, g(x) ==z
(z—1)7 ifz>1

Verify that f and g are both C' and quasiconcave and that f is not concave. Show that, for any
x* € [0,1], we can find A* > 0 such that (z*, \*) satisfies the KKT first-order conditions. Finally,
argue that no * € [0,1] can be a solution to the constrained optimisation problem of maximising
fonT :={xeR:g(x) >0} What can you conclude about Theorem 5 from this?

Remark 13. Recall that the set of maximisers do not change when we transform the objective
function using a strictly increasing function. Hence, even if f is not concave, if we can apply a
strictly increasing transformation of f that is concave, then we can apply the theorem above to

obtain the maximisers.
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