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Worked with Fenglin Ye on Exercise 5, Exercise 6, and additional exercises Exercise 1.

Exercise 1. False. Consider the example of f(x) = |x| on X = [−10, 10]. This function is not differentiable
at x0 = 0, since limx↘x0

f(x)−f(x0)
x−x0

= 1, and limx↗x0

f(x)−f(x0)
x−x0

= −1. Since limx→x0

f(x)−f(x0)
x−x0

DNE, f is
not differentiable at x0. It is, however, continuous at x0.

Exercise 3. Prove the chain rule.

Proof. Suppose that f : X ⊆ R → R is differentiable at x0 ∈ int(X) and that g : Y → R (where f(X) ⊆ Y )
is differentiable at f(x0). This means that f ′(x0) exists and g′(f(x0)) exist. Consider the limit:

lim
x→x0

(g ◦ f)(x)− (g ◦ f)(x0)

x− x0
= lim

x→x0

g(f(x))− g(f(x0))

f(x)− f(x0)

f(x)− f(x0)

x− x0

and since f is differentiable and therefore continuous, x → x0 =⇒ f(x) → f(x0), and

= lim
f(x)→f(x0)

g(f(x))− g(f(x0))

f(x)− f(x0)
lim

x→x0

f(x)− f(x0)

x− x0
= g′(f(x0))f

′(x0) = (g′ ◦ f)(x0)f
′(x0)

Since both of the above derivatives exist, their limits are finite, so this limit exists and is finite. Thus, we
have that (g ◦ f)′(x0) = (g′ ◦ f)(x0)f

′(x0)

Exercise 4. Prove: Suppose f : (a, b) ⊆ R → R, and f is strictly increasing and differentiable on (a, b).
Then 󰀃

f−1
󰀄′
(f(x)) =

1

f ′(x)
∀ x ∈ (a, b)

Proof. Fix some x0 ∈ (a, b). Consider the limit:

lim
f(x)→f(x0)

f−1(f(x))− f−1(f(x0))

f(x)− f(x0)
= lim

x→x0

x− x0

f(x)− f(x0)
=

1

f ′(x0)

Which follows from the fact that f−1(f(x)) = x and the fact that f is differentiable (and therefore continuous)
and strictly increasing implies that as x → x0, f(x) → f(x0).

Exercise 5. Prove: Let [a, b] be a compact interval in R and suppose f : [a, b] → R is continuous and
differentiable on (a, b). If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

Proof. By the Mean Value Theorem, we have that f(b) − f(a) = f ′(c)(b − a) for some c ∈ (a, b). Since
f ′(x) = 0 ∀ x ∈ (a, b), f(b) − f(a) = 0 =⇒ f(a) = f(b). Say that f(a) = f(b) = y for some y ∈ R. Then
fix some x0 ∈ (a, b), and consider f(x0)− f(a). By the Mean Value Theorem, we have that f(x0)− f(a) =
f ′(c)(x0−a) for some c ∈ (a, x0). Since f ′(x) = 0 ∀ x ∈ (a, x0) ⊆ (a, b), f(x0)−f(a) = 0 ⇒ f(x0) = f(a) = y.
Since this holds for arbitrary x0 ∈ (a, b), it must be the case that f(x) = y ∀ x ∈ [a, b], and f is constant.
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Exercise 6. Prove: Suppose f : (a, b) ⊆ R → R, f ∈ Ck, and that f ′(x0) = f ′′(x0) = · · · = f (k−1)(x0) = 0
and f (k)(x0) ∕= 0. Then if k is even and f (k)(x0) > 0, f has a local minimum at x0.

Proof. We have that f (k)(x0) > 0 at x0, meaning that since f (k) is continuous, there exists ε > 0 such that
f (k)(y) > 0 ∀ y ∈ Bε(x0). Take some y ∈ Bε(x0) such that y > x0. Then by Taylor’s Theorem, there exists
x′ between x0 and y such that

f ′(y) = Pk−1(x0) +
f (k)(x′)

(k − 1)!
(y − x0)

k−1

Since f ′′(x0) = · · · = f (k−1)(x0) = 0, Pk−1(x0) = 0, and since (y − x0) > 0 and x′ ∈ Bε(x0),
f(k)(x′)
(k−1)! (y −

x0)
k−1 = f ′(y) > 0, meaning that since f ′(x0) = 0, f(x) > f(x0) for all x ∈ (x0, y).

Next, take some y′ < x0. Since y′ − x0 < 0, we have that f ′(y′) < 0 from Taylor’s Theorem. Then we have
f ′(x) < 0 for all x ∈ (y′, x0), so thus f(x) > f(x0).

Since f(x) > f(x0) for all x ∈ Bε(x0), x0 is a local minimum.

Exercise 1. Prove the following:
Theorem 1. Cauchy-Schwartz Inequality. For any x, y ∈ Rd,

|x · y| ≤ 󰀂x󰀂 · 󰀂y󰀂

Proof. Assume that 󰀂 · 󰀂 is the induced norm of the d-dimensional Euclidean space, the Euclidean norm,
i.e.,

󰀂x󰀂 =

󰁹󰁸󰁸󰁷
d󰁛

i=1

x2
i

We have that

|x · y| =

󰀏󰀏󰀏󰀏󰀏

d󰁛

i=1

xiyi

󰀏󰀏󰀏󰀏󰀏 ≤

󰁹󰁸󰁸󰁷
d󰁛

i=1

(xiyi)2

from the Triangle Inequality. Then this is equal to
󰁹󰁸󰁸󰁷

d󰁛

i=1

(xi)2(yi)2 =

󰁹󰁸󰁸󰁷
d󰁛

i=1

x2
i

d󰁛

i=1

y2i =

󰁹󰁸󰁸󰁷
d󰁛

i=1

x2
i

d󰁛

i=1

y2i = 󰀂x󰀂 · 󰀂y󰀂

Thus, |x · y| ≤ 󰀂x󰀂 · 󰀂y󰀂.
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