
Econ 6170: Mid-Term 2

14 November 2024

You have the full class time to complete the following problems. You are to work alone. You
are allowed one sheet of notes (double sided on any dimension of paper). Please write out your
answer neatly below each question, and use a new sheet of paper if you need more space than
provided. When using extra sheets, make sure to write out your name and the relevant question
number. In your answers, you are free to cite results that you can recall from class or previous
problem sets unless explicitly stated otherwise. The exam is out of 26 points.
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Question 1 (6 points) Let X, Y and Z be some Euclidean space (possibly of different dimensions).
Suppose that F : X ⇒ Y and G : Y ⇒ Z are compact-valued and continuous. Define G ◦ F : X ⇒ Z
as

x 7→ {z ∈ Z : ∃y ∈ F (x) , z ∈ G (y)} .

(i) Show that G ◦ F is upper hemi-continuous.

(ii) Show that G ◦ F is lower hemi-continuous.

· · · · · ·

Solution 1. (i) Fix x and sequences (xn)n, (yn)n and (zn)n in X, Y and Z, respectively, such that
xn → x, and yn ∈ F(xn) and zn ∈ G(yn) for all n ∈ N. By upper hemicontinuity of F, there is a
convergent subsequence of (ynk )k with a limit point y is in F(x). By upper hemicontinuity of G,
there is a sub-subsequence of (znkℓ

)ℓ with a limit point z in G(y). Hence, (znkℓ
)ℓ is a convergent

subsequence of (zn) that converges to z ∈ (G ◦ F)(x).
(ii) Pick any z ∈ (G ◦ F)(x) and a sequence (xn)n such that xn → x. We wish to find N ∈ N

and a sequence (zn)n such that zn → z and zn ∈ (G ◦ F)(xn) for all n > N. Since z ∈ (G ◦ F)(x),
there exist y ∈ F(x) such that z ∈ G(y). By lower hemicontinuity of F, there exists N1 ∈ N and
(yn)n such that yn → y and yn ∈ F(xn) for all n > N1. By lower hemicontinuity of G, there exist
N2 ∈ N and (zn)n such that zn → z and zn ∈ G(yn) for all n > N2. Letting N = max{N1, N2}, the
sequence sequence (zn)n satisfies the desired property.
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Question 1 continued
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Question 2 (5 points) Assume the supplies of soy and corn are affected only by the amount of
rainfall (denoted r) and the prices of both soy and corn (denoted ps and pc respectively). For
simplicity, assume that the supply of both goods increases with more rainfall.

(i) Letting Si and Di denote the supply and demand of i ∈ {s, c} respectively, write down the
two conditions that characterise the competitive equilibrium prices of both goods.
Hint: Don’t think too hard!

(ii) By appealing to the implicit function theorem, give an expression for how the equilibrium
prices of each good is affected by r. Be sure to state the conditions on Si and Di required to
apply the implicit function theorem.

(iii) Suppose the supply and demand for good i ∈ {s, c} is unaffected by the price of good j ∈
{s, c}\{i}. Use the expression from (ii) to show that equilibrium price of both goods are
decreasing with more rainfall.
Hint: You may assume that demand is decreasing in own price and supply is increasing in
own price.

· · · · · ·

Solution 2. (i)
Si (p∗s , p∗c , r) = Di (p∗s , p∗c ) ∀i ∈ {s, c} .

(ii) Let p = (ps, pc) and, for each i ∈ {s, c}, define fi : R2 × R → R as

fi (p, r) := Si (p, r)− Di (p) .

Define f : R2 × R → R2 as f := ( fs, fc). Given any r, equilibrium price vector p∗ solves

f (p∗, r) = 0.

To apply IFT, we need that f is C1 and

Dp f (p, r) =

[ ∂ fs
∂ps

∂ fs
∂pc

∂ fc
∂ps

∂ fc
∂pc

]

to be invertible. In this case, there exist a function p∗(·) in the neighbourhood of r that is a com-
petitive equilibrium and

Drp∗ (r) =

[
dp∗s (r)

dr
dp∗c (r)

dr

]
= −

(
Dp f (p∗ (r) , r)

)−1
[

d fs(p∗(r),r)
dr

d fc(p∗(r),r)
dr

]

= −
[

x11 x21

x21 x22

] [
dSs(p∗(r),r)

dr
dSc(p∗(r),r)

dr

]
.

Thus,
dp∗i (r)

dr
= −xi1

dSs (p∗ (r) , r)
dr

− xi2
dSc (p∗ (r) , r)

dr
∀i ∈ {s, c} .
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(iii) If supply and demand for one good is unaffected by the price of the other, then

Dp f (p, r) =

[ ∂ fs
∂ps

∂ fs
∂pc

∂ fc
∂ps

∂ fc
∂pc

]
=

[ ∂ fs
∂ps

0

0 ∂ fc
∂pc

]
,

where
∂ fs

∂ps
=

∂Si (p, r)
∂ps

− ∂Di (p)
∂ps

> 0.

Then,
dp∗i (r)

dr
= − 1

∂ fs
∂ps

dSs (p∗ (r) , r)
dr

< 0.
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Question 2 continued
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Question 3 (7 points) Suppose that f : R → R is convex. Define a correspondence ∂ f : R ⇒ R

via
x0 7→ {s ∈ R : f (x) ≥ f (x0) + s (x − x0) ∀x ∈ R} .

(i) Suppose f (x) := x2. Show that ∂ f (0) = {0}.
Hint: Try drawing a graph of f (x). A graphical argument will suffice (for this and the next
part of the question only).

(ii) Suppose f (x) := |x|. Show that ∂ f (0) = [−1, 1].

(iii) Show that ∂ f is closed- and convex-valued.

(iv) Show that f attains a global minimum at x∗ ∈ R if and only if 0 ∈ ∂ f (x∗).
Hint: Start by writing down the inequality that ensures that x∗ ∈ R is a global minimum.

(v) Suppose f is differentiable. Show that ∂ f is singleton-valued. What is the (unique) element
of ∂ f (x0) for any x0 ∈ R?

Remark: ∂ f (x0) is called the subdifferential of f at x0 ∈ R.

· · · · · ·

Solution 3. (i) Since x0 = 0 and f (x0) = 0 ≤ x2 = f (x) for all x ∈ R, 0 ∈ ∂ f (0). By way of
contradiction, suppose s ∈ ∂ f (0) with s ̸= 0 so that

f (x) = x2 ≥ sx ∀x ∈ R.

If s > 0, we must have that, for any x > 0,

f (x) = (x)2 ≥ sx ⇔ x ≥ s

and we can always find x ∈ (0, s) that violates the inequality to get a contradiction. If s < 0, then
we must have that, for any x < 0,

(x)2 ≥ sx ⇔ x ≤ s

and we can always find x ∈ (s, 0) that violates this inequality to get a contradiction.
(ii) Set x0 = 0 and note that f (x0) = |0| = 0. Suppose x > 0, then

f (x) = x ≥ sx ⇔ s ≤ 1

and if x < 0,
f (x) = −x ≥ sx ⇔ s ≥ −1.

If x = 0, then any s satisfies the constraint. Hence, ∂ f (0) = [−1, 1].
(iii) Fix some x0 ∈ R. Let (sn)n be a sequence in ∂ f (x0) converging to some s ∈ R. Then,

f (x) ≥ f (x0) + sn (x − x0) ∀x ∈ R ∀n ∈ N.
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Since the right-hand side is affine in sn, clearly,

f (x) ≥ f (x0) + s (x − x0) ∀x ∈ R.

Hence, ∂ f (x0) is closed. Since x0was chosen arbitrarily, we conclude that ∂ f is closed-valued.
To see that ∂ f is convex-valued. Fix some x0 ∈ R and s, s′ ∈ ∂ f (x0). Then, for any x ∈ R,

f (x) ≥ f (x0) + s (x − x0) , f (x0) + s′ (x − x0)

and so for any α ∈ [0, 1],

f (x) ≥ f (x0) +
(
αs + (1 − α) s′

)
(x − x0) .

Hence, ∂ f is convex-valued.
(iv) x∗ ∈ R is a global minimum if and only if f (x) ≥ f (x∗) for all x ∈ R. The inequality holds

if and only if
f (x) ≥ f (x∗) = f (x∗) + 0 (x − x∗) ∀x ∈ R.

That is, 0 ∈ ∂ f (x∗).
(v) Suppose s satisfies

f (x) ≥ f (x0) + s (x − x0) ∀x ∈ R.

Then,
f (x)− f (x0)

x − x0
≥ s ∀x > x0

so that taking limit as x ↘ x0 gives that

f ′ (x0) ≥ s.

Since
f (x)− f (x0)

x − x0
≤ s ∀x < x0,

so that taking limit as x ↗ x0 gives that

f ′ (x0) ≤ s.

hence s = f ′(x0); i.e., ∂ f (x0) = { f ′(x0)}.
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Question 3 continued
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Question 4 (8 points) Consider the following linear programming problem:

p∗ = max
x∈Rd

f⊤x s.t. Ax ≥ b,

where f ∈ Rd, b ∈ RJ and A ∈ RJ×d.

(i) Write the “KKT necessary conditions” for the problem. Use λ to denote the Lagrangian
multipliers. What is its dimension?

(ii) What is the constraint qualification for this problem? What condition(s) are the necessary
conditions for the existence of Lagrangian multipliers that satisfy the KKT necessary condi-
tions?

(iii) Suppose you found the Lagrangian multipliers λ∗ that satisfy the KKT necessary conditions.
Suppose a unique solution x∗ exists. Given an expression for p∗ in terms of components of
A and b.
Hint: Assume the first J∗ ≤ J constraints are binding.

(iv) Write the Lagrangian, L(x, λ), for this problem. For any λ, what is the solution to

d∗ (λ) = sup
x∈Rd

L (x, λ)?

Hint: Collect the terms on x and remember that sup can be ±∞.

(v) Show that d∗(λ∗) = p∗.

· · · · · ·

Solution 4. (i) Nonnegativity: λ ≥ 0. Constraints: Ax ≥ b. Complementary slackness:

λj
(

Aj·x − bj
)
= 0 ∀j ∈ {1, 2, . . . , J} ,

where Aj· denote the jth row of A; FOC:

f⊤ + λ⊤A = 0.

(ii) The usual constraint qualification that rank(A⊤) equals the number of binding constraints
at an optimal. Note that the condition does not depend on the value of x and so it either holds
everywhere or it doesn’t hold anywhere.

(iii) An optimal x∗ ∈ Rd must satisfy constraints, Ax∗ ≥ b, and complementary slackness
conditions. Thus, for any λ∗

j > 0, we must have

Aj·x∗ = bj.

Let us denote the first J∗ constraints as binding ones (i.e., λ∗
j > 0 if and only if j ∈ {1, . . . , J∗}).
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Then, 
A1·

...
AJ∗ ·


︸ ︷︷ ︸

A∗

x∗ =


b1·
...

bJ∗ ·


︸ ︷︷ ︸

b∗

.

Since we assume x∗ is unique, then x∗ = (A∗)−1b∗ and so

p∗ = f⊤x∗ = f⊤(A∗)−1b∗

(iv) The Lagrangian is given by

L (x, λ) = f⊤x + λ · (Ax − b)

=
(

f⊤ + λ⊤A
)

x − λ · b.

Thus,

sup
x∈Rd

L (x, λ) = sup
x∈Rd

(
f⊤ + λ⊤A

)
x − λ⊤b

=

−λ⊤b if f⊤ + λ⊤A = 0

∞ if f⊤ + λ⊤A ̸= 0

(v) Since λ∗ solves the KKT necessary conditions:

f⊤ + (λ∗)⊤ A = 0.

Recall that the last J − J∗ components of λ∗ are zeros and so

f⊤ + (λ∗)⊤ A = f⊤ +
[
λ∗

1 , · · · , λ∗
J∗
]

A∗ = 0

so that [
λ∗

1 , · · · , λ∗
J∗
]
= −f⊤ (A∗)−1 .

Hence,
d∗ (λ∗) = − (λ∗)⊤ b = f⊤ (A∗)−1 b∗ = p∗.
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Question 4 continued
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