
ECON 6130 Section 1 August 30, 2024FA

About TA sections:

TAs: Ekaterina Zubova (ez268@cornell.edu), Zheyang Zhu (zz792@cornell.edu)

Section time and location: 8:40am - 9:55am Uris Hall 262 (section 201),
Goldwin Smith Hall 236 (section 202)

Office hours: Tuesdays 5-7 pm in Uris Hall 451 (Ekaterina), Thursdays 5-7 pm
in Uris Hall 429 (Zheyang). Other times available by appointment (just send us
an email!)

Our plan for today:1

• A brief overview of math you will need in this course (and most likely in other
courses too): optimization, concavity, IFT

• Standard properties of utility functions

• Risk aversion

• Equilibrium concepts

• Euler equation

• Consumption Smoothing

• Transversality Condition

1Materials adapted from notes provided by a previous Teaching Assistant, Zhuoheng Xu.
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1. Math Review

1.1 Optimization

Unconstrained optimization: Suppose f(x) : Rn → R is C2. Then:

• x∗ - a local maximum (necessary conditions): 1) ∂f(x∗)
∂xi

= 0 ∀i ∈ {1, ..., n}, 2)
H(x∗) is negative semi-definite (NSD).

• x∗ - a strict local maximum (sufficient conditions): 1) ∂f(x∗)
∂xi

= 0 ∀i ∈
{1, ..., n}, 2) H(x∗) is negative definite (ND).

• If f(x) : Rn → R is concave over its entire domain, f(x) attains a global maxi-
mum at x∗ ⇐⇒ ∂f(x∗)

∂xi
= 0 ∀i ∈ {1, ..., n} (necessary and sufficient).

Constrained optimization: We usually solve these problems using the Lagrangian
function. It is important to remember that, in general, first-order conditions are only
necessary but not sufficient. However, if the objective function and all the constraints
are concave and smooth functions on a convex domain, necessary conditions are also
sufficient. (Check the Kuhn-Tucker theorem for more details).

Remark: Lagrange multipliers indicate marginal values of the constraints, i.e., "how
much the objective function would improve if the constraint was relaxed by one unit".
In macroeconomics, the vector of Lagrange multipliers λ is often referred to as "the
vector of shadow prices". We will talk about it in more detail in following sections.

1.2 Concavity

Some useful properties of concave functions:

• If f(x) and g(x) are concave (convex), then af(x)+ bg(x) is concave (convex) for
(a, b) > (0, 0).

• If f(x) is concave (convex) and g(x) is concave (convex) and increasing, then
g(f(x)) is concave (convex).

• If f(x) and g(x) are concave (convex), then min{f(x), g(x)} (max{f(x), g(x)})
is concave (convex).
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1.3 Implicit Function Theorem

Let F : Rn × Rm → Rm be continuously differentiable. Suppose y = g(x) implicitly
defines y as a function of x near (x0,y0), where F (x0,y0) = 0.

If the Jacobian matrix ∂F
∂y (x0,y0) is invertible, then there exists an open set U ⊆ Rn

containing x0 and a unique continuously differentiable function g : U → Rm such that:

F (x,g(x)) = 0 ∀x ∈ U.

Additionally, the partial derivatives of g can be found using:

∂g
∂x

= −
(
∂F

∂y

)−1
∂F

∂x
.

Intuition: The implicit function theorem helps us understand how one variable
adjusts in response to changes in another while maintaining equilibrium.

Example: Consider a consumer optimizing their utility U(x, y) subject to a budget
constraint px1 + qx2 = y, where x1 and x2 are quantities of two goods (for example, a
consumption good and an investment good), p and q are their respective prices, and y

is the income.

The consumer’s problem can be formulated as:

max
x,y

U(x, y)

subject to
px1 + qx2 − y = 0.

Let F (x1, x2, λ) =
(

∂L
∂x1

, ∂L
∂x2

, ∂L
∂λ

)
, where L(x1, x2, λ) = U(x, y) + λ(y − px1 − qx2) is

the Lagrangian.

At the optimum (x∗, y∗, λ∗), the first-order conditions are:

F (x∗, y∗, λ∗) = 0.
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That is, at the optimum: 
∂L
∂x1

= ∂U
∂x1

− λp = 0

∂L
∂x2

= ∂U
∂x2

− λq = 0

∂L
∂λ

= y − px1 − qx2 = 0

Suppose we find an optimal solution (x∗
1, x

∗
2, λ

∗). The implicit function theorem tells
us that if the Jacobian matrix of the partial derivatives of F with respect to (x1, x2, λ) is
invertible at (x∗

1, x
∗
2, λ

∗), then near this point, there exists a function (x1, x2) = g(p, q, y)
that describes how the quantities of goods x1 and x2 adjust in response to changes in
prices and income.

Intuition (what we usually call "comparative statics"): If the prices of the goods or
the consumer’s income changes slightly, the implicit function theorem guarantees that
we can find new optimal quantities x and y that continue to maximize utility under
the new conditions. This means the consumer adjusts their consumption smoothly in
response to changes in prices and income, maintaining an optimal utility level.

Remark In Macro Qs, it is often the case that utility function is not given a spe-
cific functional form, so we cannot get a closed-form solution for consumption. If the
question asks for how consumption changes with some parameter, consider using IFT.
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2. Utility functions

2.1 Standard properties

We often assume utility functions to be:

1. Continuous
Interpretation: goods are infinitely divisible, (rational) preferences are contin-
uous.

2. Strictly increasing U ′(·) > 0

Interpretation: consuming more is always more preferable then consuming less.

3. Twice continuously differentiable C2

Interpretation: for convenience because we want to check second order condi-
tions.

4. Strictly concave U ′′(·) < 0

Interpretation: diminishing marginal utility + risk aversion (Jensen’s inequal-
ity).

5. Inada conditions limx→0 U
′(x) = +∞, limx→∞ U ′(x) = 0

Interpretation: marginal utility is extremely high at very low levels of con-
sumption, reflecting the critical importance of additional consumption when re-
sources are scarce, and marginal utility approaches zero at very high levels of
consumption, indicating that additional consumption provides little extra satis-
faction when resources are abundant; practical implication - the utility function
is well-behaved at the extreme points and rules out corner solutions.

2.2 Classical utility functions in macroeconomics

Constant Relative Risk Aversion (CRRA):

U(C) =

C1−γ

1−γ
if γ ̸= 1

ln(C) if γ = 1

where C is consumption and γ is the coefficient of relative risk aversion. It implies
that the individual’s relative risk aversion remains constant regardless of the level of
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consumption. You can check it yourself by computing the Arrow–Pratt measure of
relative risk aversion:

rR(w) = −w · u′′(w)

u′(w)
= w · rA(w)

rR(w) = −w · u′′(w)

u′(w)
=

du′(w)
dw

· w
u′(w)

= −du′(w)

u′(w)

/
dw

w
= −%∆u′(w)

%∆(w)

This measure allows us to compare attitudes towards risky situations whose outcomes
are relative gains or losses from current wealth w.

Interpretation: The agent is willing to increase (decrease) the fraction of the port-
folio held in the risky asset if the relative risk aversion is decreasing (increasing), given
that there is an increase in wealth.

Constant Absolute Risk Aversion (CARA)

U(C) = −e−αC

where C is consumption and α is the coefficient of absolute risk aversion. It implies
that the individual’s absolute risk aversion remains constant regardless of the level of
consumption.

rA(w) = −u′′(w)

u′(w)

This measure allows us to compare attitudes towards risky situations whose outcomes
are absolute gains or losses from current wealth w. Note it is only a local measure of
risk aversion - when comparing across agents, we say one is more/less risk averse than
the other at a given wealth level w.

Interpretation: The agent is willing to invest more (less) in the risky asset if
the absolute risk aversion is decreasing (increasing), given that there is an increase in
wealth.
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3. Equilibrium

3.1 Equilibrium concept

Most general definition of an equilibrium:

An equilibrium is an allocation (or a sequence of allocations) and a system of prices
such that:

• Given prices, agents solve their optimization problems (e.g., households maximize
their utility and firms maximize their profits);

• Markets clear.

Partial equilibrium analysis considers "some", not all markets, assuming other
markets remain unchanged and there are no interactions with them. For example, in
the consumption-saving from the lecture note, we consider an agent in isolation and
assume that yt, Rt are exogenous.

General equilibrium analysis considers the interactions effects across all markets,
ensuring that all markets in the economy are in equilibrium simultaneously and cap-
turing the interdependence of markets.

3.2 Euler equation

Recall the partial equilibrium model from class. The household takes income {yt}
and interest rate {Rt} as given. Assume standard properties for utility function (see
above).

max
{ct,bt+1}

∞∑
t=0

βtu(ct)

subject to:
ct + bt+1 ≤ yt +Rtbt (1)

bt+1 ≥ −A (2)

ct ≥ 0 (3)

b0 given (4)
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Remark: In problems like this, the discount factor β is typically assumed to be
between 0 and 1, capturing the idea that one unit of instantaneous utility tomorrow is
less valuable than a unit of utility today.

Before solving, look at the constraints again:

• Notice that for any {ct}∞t=0, if there is any time t such that ct = 0, the series
is not a solution (recall utility function properties: strictly increasing, concave,
satisfies the Inada condition). Hence, non-negativity of consumption constraints
are not binding.

• A is assumed to be large, so the debt limit is never reached.

Using the Lagrange multiplier method:

L =
∞∑
t=0

βt [u(ct) + λt (yt +Rbt − (ct + bt+1))]

Necessary conditions for optimum:

∂L
∂ct

= u′(ct)− λt = 0

∂L
∂bt+1

= −λt + βRt+1λt+1 = 0

Combine to get the Euler Equation:

u′(ct) = βRt+1u
′(ct+1) or equivalently,

u′(ct)

βu′(ct+1)
= Rt+1

Interpretation: Euler equation describes optimal intertemporal choice:

• LHS = Marginal rate of substitution between ct and ct+1

• RHS = Gross interest rate at time t+ 1
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• u′(ct) = βRt+1u
′(ct+1): in equilibrium, the marginal benefit of consuming one

additional unit today is the same as the discounted marginal benefit of saving
that one additional unit for tomorrow.

Remark on the Lagrangian:

• At optimum, the Lagrange multiplier equals marginal utility, which is basically
the value of consumption perceived by the agent.

• There are alternative ways to write down the Lagrangian, and they will yield
essentially the same equilibrium, but the interpretation of Lagrange multiplier
will change. Compare:

L =
∞∑
t=0

βt [u(ct)− λt (ct + bt+1 − yt −Rtbt)]

Lagrange multiplier ≡ value of consumption at period t perceived by the agent at
period t

L =
∞∑
t=0

[
βtu(ct)− λt (ct + bt+1 − yt −Rtbt)

]
Lagrange multiplier ≡ value of consumption at period t perceived by the agent at

period 0 ≡ “the present value” of consumption at period t
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4. Interpreting Equilibrium

4.1 Consumption Smoothing

Consumption smoothing describes the desire of a stable path of consumption (an
implication of concave utility; related to risk aversion). People desire to translate their
consumption from periods of high income to periods of low income to obtain more
stability and predictability. There exists many states of the world, which means there
are many possible outcomes that can occur throughout an individual’s life. Therefore,
to reduce the uncertainty that occurs, people choose to give up some consumption
today to prevent against an adverse outcome in the future. This can also be viewed as
a result of the Permanent Income Hypothesis (PIH) in a deterministic context.

Intuition: Concave utility and Jensen’s inequality (a sure amount would always be
preferred over a risky bet with the same expected value).

Endowment stream yt can be volatile (deterministically volatile for now) and we
want to look at the conditions such that we have ct = c. From Euler equation and
strict concavity of u(·), consumption is constant if and only if Rt+1 = R = 1/β.

From time t budget constraint

bt =
1

R
(c+ bt+1 − yt)

Take b0 as given. Iterate over bt to get

b0 =
c− y0
R

+
c− y1
R2

+
c− y2
R3

+
b3
R3

=
∞∑
t=0

c− yt
Rt+1

+ lim
t→∞

bt+1

Rt+1

Impose limt→∞
bt+1

Rt+1 = 0 (i.e., agents do not value bond holdings “after the world
ends”). Rearrange the expression above to solve for c:

c = (1− β)×

(
Rb0 +

∞∑
t=0

yt
Rt

)
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4.2 Understanding Transversality Condition (TVC)

Important to understand and remember: The TVC is an optimality condition
of the problem. That is, every infinite horizon problem has a TVC condition associated
to the optimal path. Without it, optimality conditions listed above are only necessary,
but not sufficient.

Intuition: Consider the consumption-saving problem in the lecture, but in finite
horizon. The maximization problem is then formulated as:

max
{ct,bt+1}

T∑
t=0

βtu(ct)

Note that all the budget constraints hold as before, including the terminal one:

cT + bT+1 = yT +RT bT

There are only T periods in this economy, is there an incentive for us to save bT+1?
No. In other words, we need the present value of the "meaningless investment" bT+1

to be zero:

βTu′(cT ) · bT+1 = 0 - Present Value of Marginal Terminal Consumption

Analogously, in an infinite-horizon problem, even though we do not have a "terminal
period", the intuition is still the same. Take the limit:

lim
T→∞

βTu′(cT )bT+1 = 0 - TVC

If β = 1/R, and ct = c, then if we drop the constant u′(c) and divide it by some
finite constant R, the TVC becomes (as in the lecture slides):

lim
T→∞

bT+1

RT+1
= 0
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