
ECON 6170 Module 7 and Problem Set 11 Answers

Patrick Ferguson*

Exercise 1. The Lagrangian of this problem is

L(x, µ, θ) = f (x, θ) +
K

∑
k=1

µkhk(x, θ)

Because the constraint qualification is satisfied and all function are continuously differentiable, the
hypotheses for the theorem of Lagrange are satisfied. Fix θ = θ0.

∇(x,µ)L(x∗, µ∗, θ0) = 0

at any solution x∗ for some µ∗. Define a new function, L : Rm × Rd+K → Rd+K defined by

L (θ, x, µ) := ∇(x,µ)L(x, µ, θ) =

(
∂L(x, µ, θ)

∂x1
, . . . ,

∂L(x, µ, θ)

∂xd
,

∂L(x, µ, θ)

∂µ1
, · · · ,

∂L(x, µ, θ)

∂µK

)
If we define y := (x, µ), then we can write L (θ0, y∗) = 0. Suppose we know that DyL (θ0, y∗) is
invertible (which is the case when each equation that defines the critical point of the Lagrangian has
content), we can then appeal to the IFT to conclude that there exists a continuously differentiable
function g : Bεθ

(θ0) ⊆ Rm → Bεy(y∗) ⊆ Rd+K such that

g(θ) = y ⇐⇒ ∇yL(y, θ) = 0

And
Dg(θ) =

[
D2

yL(x, µ, θ)
]−1

Dθ DyL(x, µ, θ)

This tells us how the critical points, (x∗, µ∗) change locally with the parameter θ. If these critical
points define solutions to the maximisation problem, then Dg(θ) tells us how those solutions
change locally with θ.

Exercise 2. 1 The Kuhn-Tucker theorem tells us that for any given value of θ, x∗(θ) and λ∗(θ) must
satisfy

∇x f (x∗(θ), θ) + λ∗(θ) · ∇xh(x∗(θ), θ) = 0 (1)

h(x∗(θ), θ) = 0 (2)

The latter implies
f ∗(θ) = f (x∗(θ), θ) = f (x∗(θ), θ) + λ∗(θ) · h(x∗(θ), θ)

*Based on solutions provided by Professor Takuma Habu.
1Solution modified from that written by Peter Ireland.
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Differentiating both sides with respect to θ yields

∇ f ∗(θ) = ∇x f (x∗(θ), θ) · ∇x∗(θ) +∇θ f (x∗(θ), θ)

+λ∗(θ) · [∇xh(x∗(θ), θ) · ∇x∗(θ) +∇θh(x∗(θ), θ)] +∇λ∗(θ) · h(x∗(θ), θ)

Applying (1), we get

∇ f ∗(θ) = ∇θ f (x∗(θ), θ) + λ∗(θ) · ∇θh(x∗(θ), θ) +∇λ∗(θ) · h(x∗(θ), θ)

And then applying (2), we get

∇ f ∗(θ) = ∇θ f (x∗(θ), θ) + λ∗(θ) · ∇θh(x∗(θ), θ)

Exercise 3. A maximum of S is a supremum of S that lies in S. Suppose x′, x′′ are maxima of S.
Then both are upper bounds for S. In particular, x′ ≥ x′′ and x′′ ≥ x′, so by antisymmetry, x′ = x′′.

Exercise 4.

x ∨ y

⇐⇒ x ≥ x & x ≥ y & (z ≥ x & z ≥ y =⇒ z ≥ x)

⇐⇒ x ≥ y

x ∧ y

⇐⇒ x ≤ x & x ≤ y & (z ≤ x & z ≤ y =⇒ z ≤ x)

⇐⇒ x ≤ y

¬(x ≥ y)

⇐⇒ x ∨ y ̸= x

⇐⇒ x ∨ y ̸= x & x ∨ y ≥ x

⇐⇒ x ∨ y > x

¬(x ≤ y)

⇐⇒ x ∧ y ̸= x

⇐⇒ x ∧ y ̸= x & x ∧ y ≤ x

⇐⇒ x ∧ y < x

Exercise 5.
{(0, 1), (1, 0)}

We will use the following Lemma in Exercise 6:

Lemma 6. f has increasing differences in (x, θ) if and only if f has increasing differences in (xi, θj; x−i, θ−j)

for all i ∈ {1, . . . , d} and all j ∈ {1, . . . , m}.
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Proof. Suppose f has increasing differences in (x, θ). In particular, suppose x′i ≥ xi, θ′j ≥ θj, x′ is x
with xi replaced by x′i , and θ′ is θ with θj replaced by θ′j. Then x′ ≥ x and θ′ ≥ θ, so

f (x′, θ′)− f (x, θ′) ≥ f (x′, θ)− f (x, θ)

or equivalently

f (x′i , θ′j; x−i, θ−j)− f (xi, θ′j; x−i, θ−j) ≥ f (x′i , θj; x−i, θ−j)− f (xi, θj; x−i, θ−j)

Conversely, suppose f has increasing differences in (xi, θj; x−i, θ−j) for all i ∈ {1, . . . , d} and all
j ∈ {1, . . . , m}. Suppose x′ ≥ x and θ′ ≥ θ. Then x′i ≥ xi for all i and θ′j ≥ θj for all j. Let
i ∈ {1, . . . , d} and xi := (x1, . . . , xi−1, x′i , . . . , xd). Then

f (xi, θ′)− f (xi+1, θ′)

≥ f (xi, θ1, θ′2, . . . , θ′m)− f (xi+1, θ1, θ′2, . . . , θ′m)

≥ f (xi, θ1, θ2, θ′3, . . . , θ′m)− f (xi+1, θ1, θ2, θ′3, . . . , θ′m)

≥ . . .

≥ f (xi, θ)− f (xi+1, θ)

Each step j follows from increasing differences in (xi, θj; x−i, θ−j). We can rewrite:

f (xi, θ′)− f (xi, θ) ≥ f (xi+1, θ′)− f (xi+1, θ)

Applying this iteratively to i = 1, 2, . . . , d, we have

f (x′, θ′)− f (x′, θ) ≥ f (x2, θ′)− f (x2, θ)

≥ f (x3, θ′)− f (x3, θ)

≥ . . .

≥ f (x, θ′)− f (x, θ)

Therefore, f has increasing differences in (x, θ).

Exercise 6. By the lemma above, f has increasing differences in (x, θ) if and only if, for all distinct
i, j and all ε, δ > 0,

f (xi + ε, θj + δ; x−i, θ−j)− f (xi + ε, θj; x−i, θ−j) ≥ f (xi, θj + δ; x−i, θ−j)− f (xi, θj; x−i, θ−j) (3)

Dividing both sides by δ and taking limits as δ ↘ 0, we have that

∂ f
∂θj

(xi + ε, θj; x−i, θ−j) ≥
∂ f
∂θj

(xi, θj; x−i, θ−j) (4)

Rewrite (4) as
∂ f
∂θj

(xi + ε, θj; x−i, θ−j)−
∂ f
∂θj

(xi, θj; x−i, θ−j) ≥ 0 (5)

Dividing both sides of (5) by ε and taking limits as ε ↘ 0, we get

∂2 f
∂xi∂θj

(x, θ) ≥ 0 (6)
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Conversely, (6) implies that
∂ f
∂θj

(x, θ)

is increasing in xi, which implies (5). Then (5) implies

f (xi + ε, θj; x−i, θ−j)− f (xi, θj; x−i, θ−j)

is increasing in θj, implying

f (xi + ε, θj + δ; x−i, θ−j)− f (xi, θj + δ; x−i, θ−j) ≥ f (xi + ε, θj; x−i, θ−j)− f (xi, θj; x−i, θ−j)

which is just a rearrangement of (3).

Exercise 7. Suppose f : X × Θ → R has single-crossing differences so that, for any θ′ > θ,

f
(
x′′, θ

)
≥ f

(
x′, θ

)
=⇒ f

(
x′′, θ′

)
≥ f

(
x′, θ′

)
f
(
x′′, θ

)
> f

(
x′, θ

)
=⇒ f

(
x′′, θ′

)
> f

(
x′, θ′

)
.

Because φ is strictly increasing in f (x, θ), each inequality continues to hold when we take φ(·, θ)

of both sides. Therefore,

φ( f
(
x′′, θ

)
, θ) ≥ φ( f

(
x′, θ

)
, θ) =⇒ φ( f

(
x′′, θ′

)
, θ′) ≥ φ( f

(
x′, θ′

)
, θ′)

φ( f
(
x′′, θ

)
, θ) > φ( f

(
x′, θ

)
, θ) =⇒ φ( f

(
x′′, θ′

)
, θ′) > φ( f

(
x′, θ′

)
, θ′)

as required.

Additional Exercises
Exercise 2. We assume f > 0 (this is necessary for log f to exist). If f is log-supermodular, then
log f is supermodular, so

log f (z) + log f (z′) ≤ log f (z ∨ z′) + log f (z ∧ z′)

or equivalently
f (z) f (z′) ≤ f (z ∨ z′) f (z ∧ z′)

Suppose z, z′ satisfy f (z) ≥ f (z ∧ z′). Then

f (z ∨ z′) f (z ∧ z′) ≥ f (z) f (z′) ≥ f (z ∧ z′) f (z′)

from which it follows that f (z ∨ z′) ≥ f (z′). Similarly, if f (z) > f (z ∧ z′), then the same argument
yields f (z ∨ z′) > f (z′). Therefore, f is quasi-supermodular.

Exercise 3. Write π(y, p,−q) := p f (y)− q · y. Then π has increasing differences in y, (p,−q):
given y′ ≥ y, p′ ≥ p, and q′ ≤ q,

p′ f (y′)− q′ · y − p′ f (y) + q′ · y = p′[ f (y′)− f (y)] ≥ p[ f (y′)− f (y)] = p f (y′)− q · y − p f (y) + q · y
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And π is supermodular in y for each (p,−q):

p f (y)− q · y + p f (y′)− q · y′ = p[ f (y) + f (y′)]− q · (y + y′)

= p[ f (y) + f (y′)]− q · (y ∨ y′ + y ∧ y′) ≤ p[ f (y ∨ y′) + f (y ∧ y′)]− q · (y ∨ y′ + y ∧ y′)

= p f (y ∨ y′)− q · (y ∨ y′) + p f (y ∧ y′)− q · (y ∧ y′)

Supermodularity implies quasi-supermodularity and increasing differences implies single-crossing
differences, so we can apply the Theorem of Milgrom and Shannon to obtain that X∗(p,−q) :=
arg maxy π(y, p,−q) is nondecreasing in the strong set order.

Exercise 4. Let (x′, p′) ≥ (x, p). Then

p′x′ − c(x′)− px′ + c(x′) = (p′ − p)x′ ≥ (p′ − p)x = p′x − c(x)− px + c(x)

so px − c(x) has increasing differences in (x, p). It is also supermodular in x for any p: assume
WLOG that x′ ≥ x

px − c(x) + px′ − c(x′) = p(x ∨ x′)− c(x ∨ x′) + p(x ∧ x′)− c(x ∧ x′)

Therefore, we can again apply the Theorem of Milgrom and Shannon.

Exercise 5. By the Theorem of Milgrom and Shannon,

Z∗∗(θ) := arg max{F(x, y, θ) | x ∈ R
d1
++ and y ∈ R

d2
++}

is nondecreasing in the strong set order. Then by Proposition 6, given θ′′ > θ′,

sup Z∗∗(θ′′) ≥ sup Z∗∗(θ′)

Z∗∗(θ′′) is a nonempty and compact sublattice of R
d1
++ × R

d2
++, so by Proposition 1, it is a subcom-

plete sublattice. By Corollary 1, it contains its supremum, so we can define

(x∗∗, y∗∗) := max Z∗∗(θ′′)

Then
(x∗∗, y∗∗) ≥ sup Z∗∗(θ′) ≥ (x′, y′)

Note that F(·, θ) being supermodular implies that F(·, y, θ) is supermodular for any y ∈ R
d2
++.

Moreover, Lemma 6 above implies that F having increasing differences in ((x, y), θ) implies f has
increasing differences in (x, θ; y). Furthermore, Lemma 6 above in combination with Lemma 1
from the lecture notes implies that if F(·, θ) is supermodular then F has increasing differences in
(x, y; θ). Applying Lemma 6 a final time, we obtain that F has increasing differences in (x, (y, θ)).
The Theorem of Milgrom and Shannon then implies that

Z∗(y, θ) := arg max{F(x, y, θ) | x ∈ R
d1
++}

is nondecreasing in the strong set order. Therefore, θ′′ > θ′ implies

x∗ := max Z∗(y′, θ′′) ≥ sup Z∗(y′, θ′) ≥ x′

Because y∗∗ ≥ y′, we also have that

x∗∗ = sup Z∗(y∗∗, θ′′) ≥ max Z∗(y′, θ′′) = x∗
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