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Motivation for asymptotic theory
• We derived the distribution of X̄n under normal distribution
assumption

• This can be quite restrictive

• What happens when the population is not normal?

• What is the distribution of nonlinear transformations of X̄n?

• Idea: Allow sample size n to grow to infinity and investigate
the behavior of the estimators as this happens

• Pros: provide useful approximations of the finite-sample case;
simpler results

• Cons: never realistic

• Main tools of asymptotic theory

• Law of large numbers (LLN)

• Central limit theorem (CLT)

• Continuous mapping theorem (CMT)
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1. Convergence in Probability
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Asymptotic limits
• Definition: A sequence of numbers an has the limit a, or

converges to a as n → ∞ if for all δ > 0, there exists some
nδ such that for all n ≥ nδ, |an − a| ≤ δ

• Notations to indicate“an converges to a” include:

an → a, as n → ∞; or lim
n→∞

an = a

• Intuitively, an gets arbitrarily close to a as n → ∞

Figure: Limit of a sequence of numbers
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Motivation for convergence in probability

• A (non-random) sequence may converge to a limit. What
about a sequence of random variables?

• For example, X̄n is a sequence of random variables indexed by
sample size n

• As n changes, the distribution of X̄n also changes

• In what sense does X̄n converge when n becomes large?

• Since X̄n is random, we need to modify definition of
convergence and limit

• There are different ways to define convergence of sequence of
random variables
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Convergence in probability
• Let {Xn, n = 1, 2, . . .} be a sequence of random variables

• Let X be another random variable (X could be a constant)

• Definition: We say Xn converges in probability to X if
for all δ > 0

lim
n→∞

P{|Xn − X | > δ} = 0

or equivalently

lim
n→∞

P{|Xn − X | ≤ δ} = 1

or equivalently, for all δ > 0, ε > 0, there exists some nδ,ε
such that for all n ≥ nδ,ε

P{|Xn − X | > δ} < ε

i.e.
P{|Xn − X | ≤ δ} ≥ 1− ε

• Notations to indicate convergence in probability include

Xn
p→ X , plimXn = X , Xn = X + op(1)
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Example

• Consider discrete random variable Zn such that

P{Zn = 0} = 1− 1

n

P{Zn = an} =
1

n

where an is an arbitrary sequence

• We can show Zn
p→ 0 since for each δ > 0

P{|Zn − 0| > δ} ≤ P{Zn = an} =
1

n
→ 0
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Convergence in probability of vectors

• Let Xn, X be k × 1 random vector with jth element denoted
as Xnj , j = 1 . . . k

• Then Xn
p→ X if and only if Xnj

p→ Xj for each j = 1 . . . k

• Convergence in probability of a vector is defined as
convergence in probability of all elements in the vector

• Same would apply for matrices
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Consistency

• Definition: An estimator θ̂n based on a sample of size n for
parameter θ is (weakly) consistent if θ̂n− θ

p→ 0, i.e., θ̂n
p→ θ

• Consistency is

• an asymptotic property of an estimator

• typically a minimum requirement for any estimator

• a different notion compared to finite sample property such as
unbiasedness

• In fact, many estimators are biased or asymptotically biased
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Asymptotic unbiasedness

• Definition: An estimator θ̂n based on a sample of size n for
parameter θ is asymptotically unbiased (AU) if

lim
n→∞

{
E[θ̂n]− θ

}
=
{

lim
n→∞

E[θ̂n]
}
− θ = 0

• Theorem: Consistency and asymptotic unbiasedness do not
imply each other
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• Proof: (by counterexamples)

• (1): show AU⇏Consistency

• Suppose population is X ∼ N(µ, σ2). Parameter of interest is
µ. Given a sample {X1,X2 . . .Xn} drawn from X , let

µ̂ = X1

• Since E[µ̂] = E[X1] = µ, µ̂ is unbiased and thus AU

• But P{|µ̂− µ| > δ} = P{|X − µ| > δ} ↛ 0 as n → ∞. Thus
not consistent
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• (2): show Consistency⇏AU

• Consider the following artificial example

• Suppose true parameter is θ, and θ̂n is binary

P{θ̂n = θ} = 1− 1

n
, P{θ̂n = n} =

1

n

• θ̂n is consistent since for all δ > 0

P{|θ̂n − θ| > δ} ≤ P{θ̂n = n} =
1

n
→ 0, as n → ∞

• However θ̂n is not AU since

E[θ̂n] = θ

(
1− 1

n

)
+

1

n
n = θ − θ

n
+

n

n

→ θ + 1, as n → ∞
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Continuous mapping theorem

• Theorem: Let Xn, X be k × 1 random vectors. If Xn
p→ X

and g is a real valued continuous function, then

g(Xn)
p→ g(X )

• Corollary 1 [Slutsky’s theorem]: Let g be continuous at c.
Then

Xn
p→ c ⇒ g(Xn)

p→ g(c)

• Corollary 2: Xn
p→ X ⇒ ∥Xn − X∥ p→ 0, where ∥· ∥ is the

Euclidean norm
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2. Proving Convergence in Probability
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Markov inequality
• Definition: Let X be a random variable and A be an event.

An indicator function is

1{X ∈ A} =

{
1 if X ∈ A

0 if X /∈ A

• Note E[1{X ∈ A}] = P{X ∈ A}
• Theorem [Markov Inequality]: For each r > 0

P{|X | > δ} ≤ E[|X |r ]
δr

, for all δ > 0

provided E[|X |r ] < ∞
• Proof

P{|X | > δ} = E[1{|X | > δ}]

≤ E
[
1{|X | > δ} |X |r

δr

]
=

1

δr
E [1{|X | > δ}|X |r ]

≤ E [|X |r ]
δr
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Application: convergence in r−th mean implies
convergence in probability

• Definition: Assuming E[|X |r ] < ∞. Then Xn converges in
r − th mean, written as Xn →r X , if

lim
n→∞

E [|Xn − X |r ] = 0

• Theorem: For any r > 0

Xn →r X implies Xn
p→ X

• Proof: by Markov inequality

P{|Xn − X | > δ} ≤ E [|Xn − X |r ]
δr

→ 0, as n → ∞
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Application: consistency by mean square convergence

• “Mean square convergence” is convergence in r−th mean for
r = 2

• We can also show estimator θ̂n
p→ θ if

E[θ̂n − θ]2︸ ︷︷ ︸
mean square error

→ 0, as n → ∞

• Since

E[θ̂n − θ]2︸ ︷︷ ︸
mean square error

=
[
bias(θ̂n)

]2
+ var(θ̂n)

• We can show estimator θ̂n
p→ θ if

bias(θ̂n) → 0, and var(θ̂n) → 0, as n → ∞
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Convergence in r−th mean implies AU

• Theorem: θ̂n →r θ for some r ≥ 1 implies lim
n→∞

E[θ̂n] = θ

• Proof: Note

E[θ̂n]− θ ≤ |E[θ̂n − θ]|
≤ E[|θ̂n − θ|] (Jensen’s Inequality)

≤
{
E|θ̂n − θ|r

}1/r
(Jensen’s Inequality again)

→ 0, as n → ∞

• Remark: θ̂n →r θ , g continuous ⇒g(θ̂n)
p→ g(θ)

However, it is NOT true that g(θ̂n) →r g(θ). E|g(θ̂n)|r might
not even exist
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Chebyshev’s inequality

• By applying Markov inequality with r = 2 and replacing X
with demeaned version X − EX

we have Chebyshev’s Inequality

P{|X − EX | > δ} ≤ E[|X − EX |2]
δ2

=
var(X )

δ2
, for all δ > 0

• Implication

• An estimator θ̂n
p→ E

[
θ̂n

]
if var[θ̂n] is vanishing to zero
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Application: Chebyshev’s weak law of large numbers

• Theorem: If {Xi , i = 1, . . . n} are i.i.d with mean µ and finite
variance σ2, then

X̄n
p→ µ

• Proof: Recall we’ve shown under i.i.d assumption,

EX̄n = µ, var(X̄n) =
σ2

n

Applying Chebyshev’s Inequality yields

P{|X̄n−µ| > δ} = P{|X̄n−EX̄n| > δ} ≤ var(X̄n)

δ2
=

σ2

nδ2
→ 0, for all δ > 0
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Application: Khinchine’s Weak Law of Large Numbers

• Theorem: If {Xi , i = 1, . . . n} are i.i.d with E|Xi | < ∞, then

X̄n
p→ E[Xi ] = µ

• Notice Khinchine’s WLLN does not require finiteness of
variance and thus is a stronger result than Chebyshev’s LLN

• Khinchine’s WLLN is often referred to as“the WLLN”

• Proof is technical and done by showing

E[|X̄n − µ|] → 0,

or convergence in r−th mean when r = 1
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Khinchine’s WLLN for vector case

• We now extend Khinchine’s WLLN to vector case

• Theorem: Suppose Xi ∈ Rm, i = 1 . . . n are iid distributed
and E ∥Xi∥ = E ∥X∥ < ∞, then

X̄n
p→ EX

as n → ∞

• Note E ∥X∥ < ∞ if and only if E|Xj | < ∞ for all j = 1, ...,m
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3. Almost Sure Convergence
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Almost sure convergence

• Convergence in probability is sometimes called weak
convergence

• A stronger concept is almost sure convergence, also known
as strong convergence, or convergence with probability
one

• Definition: We say Xn converges almost surely to X ,
denoted Xn

a.s.→ X , if

P
{

lim
n→∞

Xn = X
}
= 1

or equivalently, for all δ > 0 and ε > 0

P{|Xm − X | ≤ δ for all m ≥ nδ,ε} > 1− ε

• Theorem: Xn
a.s.→ X implies Xn

p→ X
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Proof
• Proposition: If (C ⇒ D), then P{C} ≤ P{D}
• Recall Xn

p→ X if for all δ > 0, ε > 0
there exists some nδ,ε such that for all m ≥ nδ,ε

P{|Xm − X | ≤ δ} > 1− ε

• Xn
a.s→ X if for all δ > 0, ε > 0

there exists some nδ,ε such that for all m ≥ nδ,ε

P{|Xm − X | ≤ δ for all m ≥ nδ,ε} > 1− ε

⇐⇒P
{
∩∞

m=nδ,ε{|Xm − X | ≤ δ}
}
> 1− ε

• Take

D = |Xm − X | ≤ δ for any m ≥ nδ,ε

C = ∩∞
m=nδ,ε{|Xm − X | ≤ δ}

• Clearly C ⇒ D. Hence for any m ≥ nδ,ε

P{|Xm − X | ≤ δ} = P{D}

≥ P{C} = P
{
∩∞

m=nδ,ε{|Xm − X | ≤ δ}
}

> 1− ε
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Strong law of large numbers (SLLN)

• Theorem: if Xi , i = 1 . . . n are i.i.d with finite mean
E|Xi | = E|X | < ∞, then

X̄n
a.s.→ EX

• SLLN is a stronger asymptotic result

• Proof uses more advanced tools

• For most practical purposes weak laws of large numbers are
sufficient
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4. Stochastic Orders of Magnitude
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Introduction

• It is convenient to have simple symbols for random variables
and vectors which converge in probability to zero or are
stochastically bounded

• Definition: [Nonstochastic orders]

For nonstochastic sequences xn and fn, n = 1, . . .

1 (small oh) xn = o(fn) if
xn
fn

→ 0 as n → ∞.

2 (big oh) xn = O(fn) if
xn
fn

is bounded for all sufficiently large n,
that is

there exists some M < ∞ such that for all n ≥ nM ,

∣∣∣∣xnfn
∣∣∣∣ < M
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Stochastic orders of magnitude

• Definition: [Stochastic orders]

Let Xn and fn, n = 1, . . . be a sequence of random variables
and constants

1 (small oh-p) Xn = op(fn) if
Xn

fn

p→ 0

2 (big oh-p) Xn = Op(fn) if
Xn

fn
is bounded in probability, that is

for all ε > 0, there exists a constant Mε < ∞ and nε,M > 0
such that

P

{∣∣∣∣Xn

fn

∣∣∣∣ > Mε

}
< ε, for all n ≥ nε,M

• Xn = op(1) simply means Xn
p→ 0
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• Theorem: If Xn
p→ c for some constant c, then Xn = Op(1)

• Proof: For each ε > 0, we must find some constant Cε such
that for each ε > 0

P{|Xn| > Cε} ≤ ε, for all n ≥ nε,C

• Since Xn
p→ c, we know for each ε > 0, and each δ > 0

P{|Xn − c| > δ} < ε, for all n≥ nδ,ε (1)

• By triangle inequality

|Xn| ≤ |Xn − c|+ |c| (2)

• Pick C = |c|+ δ. Combining (1) and (2) yield

P{|Xn| > C} = P{|Xn| > |c|+ δ}
≤ P{|Xn − c|+ |c| > |c|+ δ}
= P{|Xn − c| > δ}
< ε, for all n ≥ nδ,ε
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Algebra of stochastic orders

1 If Xn = Op(fn), Yn = Op(gn), then

• XnYn = Op(fngn)

• Xn + Yn = Op(max(fn, gn))

2 We can replace O by o everywhere in ❶

3 If Xn = Op(fn), Yn = op(gn), then XnYn = op(fngn)

4 If Xn = Op(fn) and
fn
gn

→ 0, then Xn = op(gn)
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Why stochastic symbols are useful?

• We use stochastic orders because we want a simple
characterization of how fast Xn converges to X in probability

• Example: Suppose {Xi , i = 1 . . . n} are i.i.d with finite finite
variance σ2. We know from weak law of large numbers

X̄n
p→ µ

• But how fast does X̄n converge to µ?
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• To tackle this, recall by Chebyshev’s inequality

P{|X̄n − µ| > δ} ≤ σ2

nδ2
, for all δ > 0

• It also implies that for all δ

P

{
|X̄n − µ|

1√
n

> δ

}
= P

{
|X̄n − µ| > 1√

n
δ

}
≤ σ2

δ2
(3)

• From (3), for each ε > 0, we can choose Cε =
σ√
ε
such that

P

{
|X̄n − µ|

1√
n

> Cε

}
≤ ε

• Hence X̄n − µ = Op(
1√
n
), or equivalently X̄n = µ+ Op(

1√
n
)

• X̄n converges to µ at a rate no slower than 1√
n
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Derive stochastic order from bounded moments

• Theorem: Xn = Op

{
[E|Xn|r ]

1
r

}
for r > 0

• Proof: For each ε > 0, pick Cε =
(
1
ε

) 1
r

It follows by Markov Inequality

P

{∣∣∣∣∣ Xn

[E|Xn|r ]
1
r

∣∣∣∣∣ > Cε

}
= P

{
|Xn| > [E|Xn|r ]

1
r Cε

}
≤ E|Xn|r

E|Xn|rC r
ε

=
1

C r
ε

= ε
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5. Convergence in Distribution
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Motivation

• From previous sections we show sample mean converge to
population mean in probability

• And we are also able to characterize is convergence rate by
using stochastic symbols

• However, for most economic applications, this is not enough

• In order to do inference, we also need to approximate the
sampling distribution of sample mean

• Sampling distribution is a function of the unknown population
distribution F and sample size n

• Study the sampling distribution by letting n → ∞
• Hopefully after some standardization, as n → ∞, the sampling

distribution becomes much more tractable than the unknown F
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Convergence in distribution

• Let FX (x) = P{X ≤ x} be the distribution function of
random variable X

• Consider a sequence of random variables Xn with distribution
function FXn(x) = P{Xn ≤ x}

• Definition: Xn converges in distribution to X (Xn
d→ X ) if

FXn(a) → FX (a) as n → ∞

for all a where FX (a) is continuous
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Equivalent conditions for convergence in distribution

• Technically it is often difficult to show Xn
d→ X by working

directly with cdf. Following theorem guarantees that instead
we can work with characteristic function

• Theorem: Xn
d→ X ⇔ CXn(t) → CX (t), as n → ∞ for all t,

where CX (t) = E[exp(itX )] is the characteristic function of X
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Relationship between
p→,

d→ and Op(1)

• Theorem

1 Xn
p→ X ⇒ Xn

d→ X

2 Xn
p→ c ⇐⇒ Xn

d→ c for some constant c

3 Xn
d→ X ⇒ Xn = Op(1)
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Proof for statement ➋

• (1): show Xn
p→ c ⇒ Xn

d→ c

• The cdf of a constant variable X such that P{X = c} = 1 is
degenerate

P{X ≤ x} =

{
0 if x < c

1 if x ≥ c

• We need to show
• (a) For each δ > 0, P{Xn ≤ c − δ} → 0 as n → ∞
• (b) For each δ > 0, P{Xn ≤ c + δ} → 1 as n → ∞

• To see (a), note

P{Xn ≤ c − δ} = P{Xn − c ≤ −δ} ≤ P{|Xn − c| ≥ δ} → 0

by definition of Xn
p→ c

• To see (b), it suffices to show P{Xn > c + δ} → 0 as n → ∞
and the proof is similar to (a)
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• (2): show Xn
d→ c ⇒ Xn

p→ c

• Note for each δ > 0,

P{|Xn − c| > δ} = P{Xn − c > δ}+ P{Xn − c < −δ}
≤ 1− FXn(δ + c) + FXn(c − δ)

→ 1− 1 + 0 = 0, as n → ∞
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Asymptotic distribution of sample mean

• The aim is to approximate the distribution of X̄n as n → ∞

• By weak law of large numbers X̄n
p→ µ. Thus X̄n

d→ µ

• The asymptotic distribution of X̄n degenerates to µ

• In order to get more useful results, we need to rescale X̄n so
that it has a stable distribution

• Since var(X̄n) =
σ2

n , consider

Zn =
√
n

(
X̄n − µ

σ

)
• Note E[Zn] = 0, var(Zn) = 1. The distribution of Zn is
“stabilized”

• We aim to find the asymptotic distribution of Zn
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Lindeberg-Lévy central limit theorem

• Theorem: If Xi , i = 1, . . . , n are i.i.d and EX 2
i < ∞ then

Zn
d→ N(0, 1), or equivalently,

√
n
(
X̄n − µ

) d→N(0, σ2)

where E[Xi ] = µ and σ2 = var(Xi )
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Proof of Lindeberg-Lévy CLT
• Wlog, assume µ = 0

• We show CZn(t) → exp
(
− t2

2

)
as n → ∞, since exp

(
− t2

2

)
is

the CF of a standard normal

• Note Zn =
√
n
(
X̄n−µ

σ

)
=
∑n

j=1 xjn, where

xjn =
(Xj−µ)

σ
√
n

=
Xj

σ
√
n
.

CZn(t) = E[exp(itZn)] = E

exp
it

n∑
j=1

xjn


=

n∏
j=1

E[exp(itxjn)](by independence)

= {E[exp(itx1n)]}n (by indentical distribution)

=

{
CX1

(
t

σ
√
n

)}n

where CX1 (s) = E[exp(isX1)] is the CF of X1
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• Since EX 2
1 < ∞, by Taylor’s Theorem

CX1 (s) = CX1 (0)︸ ︷︷ ︸
1

+ isEX1︸︷︷︸
0

+
i2s2

2
EX 2

1︸︷︷︸
σ2

+ o(s2), as s → 0

• Hence for each fixed t,

CX1

(
t

σ
√
n

)
= 1− t2

2n
+ o

(
t2

σ2n

)
• And for each fixed t, as n → ∞

CZn(t) =

{
1− t2

2n
+ o

(
t2

σ2n

)}n

→ e−
t2

2

since
(
1 + a

n

)n → ea as n → ∞. Conclusion follows
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Multivariate central limit theorem

• Theorem: [Cramér-Wold Device]
For a sequence of random vectors Xn ∈ Rk ,

Xn
d→ X ⇐⇒ λ′Xn

d→ λ′X , for all λ ∈ Rk

• The above theorem implies that
to show a random vector Xn is asymptotically multivariate
normal, it is necessary and sufficient to show that any linear
combination of elements of Xn is asymptotically univariate
normal

• Theorem: [Multivariate Lindeberg-Lévy CLT]
If Xi , i = 1, . . . , n are i.i.d and E ∥Xi∥2 < ∞ then

√
n(X̄n − µ)

d→ N(0,Σ),

where µ = E[Xi ] and Σ = E [(Xi − µ)(Xi − µ)′]
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6. Delta Method
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Motivation

• So far we consider X̄n to estimate E[Xi ]

• Same idea applies to transformation of X , say g(X )

• We can obtain LLN and CLT like

µ̂ =
1

n

n∑
i=1

g(Xi )
p→ E[g(X )] = µ

√
n(µ̂− µ)

d→ N(0, var(g(X )))

• Just replace“X”with“g(X )” in previous slides
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Functions of moments

• How about functions of moments

β = h(µ) = h(E[g(X )])

where h(· ) is a possibly nonlinear transformation

• Natural estimator is plug-in estimator

β̂ = h(µ̂),where µ̂ =
1

n

n∑
i=1

g(Xi )

• How do we derive the asymptotic distribution of β̂?
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Continuous mapping theorem

• Theorem: For random vectors Xn ∈ Rk and X ∈ Rk

Xn
d→ X , g is continuous ⇒ g(Xn)

d→ g(X )

• Convergence in distribution is preserved under continuous
transformations

• Theorem: If Xn
d→ X and cn

p→ c, then

• Xn + cn
d→ X + c

• Xncn
d→ Xc

• Xn

cn

d→ X
c provided c ̸= 0
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• Example 1: Xn
d→ X ∼ N(0, Ik) ⇒ X ′

nXn
d→ X ′X ∼ χ2

k

• Example 2: [Normal approximation with estimated variance]

• Suppose
√
n
(

X̄n−µ
σ

)
d→ N(0, 1) and σ̂ is a consistent estimator

of σ > 0

• Then
√
n
(

X̄n−µ
σ̂

)
=

√
n
(

X̄n−µ
σ

) (
σ
σ̂

) d→ N(0, 1)
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Delta method

• Now let us derive asymptotic distribution of β̂ = h(µ̂)

• Note that β̂ is written as function of µ̂ (not
√
n(µ̂− µ)), so

CMT is not directly applicable

• Key step is first-order Taylor expansion (by assuming
differentiability of h(· ))

β̂ = h(µ̂) = h(µ) +
∂h(u)

∂u′
|u=µ∗(µ̂− µ)

where µ∗ is on the line joining µ̂ and µ. Then

√
n(β̂ − h(µ)) =

∂h(u)

∂u′
|u=µ∗

√
n(µ̂− µ)

so we can use asymptotic distribution of
√
n(µ̂− µ) and CMT
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• Theorem: If
√
n(µ̂− µ)

d→ ξ and h(· ) is a function
continuously differentiable in a neighborhood µ, then

√
n(h(µ̂)− h(µ))

d→ H′ξ,

where H′ = ∂
∂u′ h(u) | u=µ

In particular, if ξ ∼ N(0,V ), then

√
n(h(θ̂)− h(θ))

d→ N(0,H′VH) (4)

When µ and h are scalar in (4)

√
n(h(µ̂)− h(µ))

d→ N

(
0,

(
∂

∂u
h(u) | u=µ

)2

V

)


