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Patrick Ferguson

Exercise 1. The base cases k = 1,2 hold by definition of a convex set. Suppose that the proposition
is true for the case k. That is, if {aq,...,ax} C [0,1] satisfy Zé‘:l a; and {x1,...,x¢} C S then

k
Z w;x; €8S
i=1

Suppose {A1,..., Ak} € [0,1] sum to 1 and {x1,..., X1} € S. If A; = 1 then we are done.

Otherwise, define
Aj

2;'{:1 Aj
fori=1,...,k. Then {aq,...,a;r} C [0,1] satisfy Zﬁ'{:l «; and so

n; =

k A
X = Z T ! xX; €S
i=1 Zj:l ]

by the induction hypothesis. Let y = 2;?:1 Aj. Then € [0,1]. By the base case,

k+1
Z/\xz Yx+ (1 —7)x41 €8

Exercise 2. Let x,y € Ngee S and a € [0,1]. Then x,y € S for all S € C and so, by convexity of
each, ax + (1 —a)y € Sfor all S € C. It follows that ax + (1 — &)y € Ngec S-

Exercise 3. Let C denote the set of all finite convex combinations of elements of S.

By Proposition 1, we know that for every convex set T that contains S, every finite convex
combination of elements of S is an element of T. Since that holds for all T that contain S, every
finite convex combination of elements of S is in the intersection of all T that contain S, which is
co(S). C is, therefore, a subset of co(S).

Let x = }./' a;x; and y = 1" Bjy; be convex combinations of elements in S. Then

A+ (1-A)y = ZAax1+Zl— )Byi

is also a convex combination of elements of S, so C is convex. Clearly C contains S, so co(S) C C.



Exercise 4. True. This holds trivially for the empty set. Suppose, then, that S is nonempty and
open. Let z € co(S). Then we can write

for some x; € S and «; € [0,1] that sum to 1. Openness of S implies that for each x;, there exists ¢;
such that B, (x;) € S. Let e = min{e¢; | i = 1,...,n}. Then we can write

for all i. Take w € B¢(z). We want to show that w € co(S), which would imply B,(z) C co(S).
This, in turn, would be sufficient to prove openness of co(S). Write
n n n
Ww=z+w—z= Zaixi+w—z: Zuci(xi+w—z) =: szlyi
i=1 i=1 i=1

where y; := x; + w — z for all i. Thus w is a convex combination of y1,...,y,, soif y1,...,y, €S,
we would have w € co(S). But for all 7,

lyi —xif| = [[xi+w—z—xi| = [[w—z[ <e
so y; € Be(x;) C S.
T TN Y3

Exercise 5. False. Take the set
{(x,y) e R* | x #0and y > 1/x°}

This set is closed, but its convex hull is R x R, which is not closed.




Exercise 6. To show that co(X) is bounded, fix a point y € X. Let M := sup{||x|| | x € X}. Let z
be a point in co(X). For some m € N, z can be written as a convex combination of m points in X.
Write

where } " a0, =1and 0 < a; <1fori=1,2,...,m. Then

m
2]l =

m m
wixi|| < Y aillx] <) aiM=M
1 i—1

i= i=1

To show that co(X) is closed, fix a sequence in co(X), (x;), converging to x € R". Using
Carathéodory’s Theorem, for all i € IN we can write

Xi =wi1Xinx+... + & p1Xint1

where the a; lie in [0,1] and sum to 1, and the x;; are points in X. By the compactness of X,
each sequence (x;)icn has a subsequence that converges to a point, x; € X. Moreover, by the
compactness of [0,1], each («;)icn has a subsequence that converges to a number, &}, between 0
and 1. Passing to the subsequences,
li¥n x; = lizr_n(txﬂxill +o R Xip1) = 00X a1 X

Let x* := ajx] +... + a5 X, ;. Then (the subsequence) x; — x*. We want to show that
x* € co(X). It suffices to show that Y} a; = 1. But this is just the limit of the sequence
(Tt aix)ien = (1)ien, which is 1. Therefore, the sequence (x;) has a subsequence (x}) converging
to x* € co(X). But x; — x so x = x* € co(X). Since (x;) is an arbitrary convergent sequence in X,
X is closed.

Exercise 7. ¢0(S) is a convex set containing S, so co(S) C co(S). It is therefore a closed set
containing co(S), so cl(co(S)) C co(S).
Conversely, to show that co(S) C cl(co(S)), we need to show that the closure of a convex set is

itself convex. Then cl(co(S)) will be a closed, convex set containing co(S).

Let x and y be elements of cI(C), where C is some convex set. Then there exist sequences of
elements of C such that x, — x and y, — y. But then ax, + (1 — a)y, defines a sequence of
elements that are also in our convex set C. Moreover, ax, + (1 —a)y, — ax+ (1 —a)y, so the
latter is also in ¢/(C), implying cI(C) is convex.

Exercise 8. Take the example of
{(x,y) eR?* | x <0and y > 1/x%}

and
{(x,y) €eR* | x >0and y > 1/x%}

(compare Exercise [5). Both sets are closed. Any closed halfspace containing either must also
include the y-axis. Therefore, they are not strongly separated.



Exercise 9. Apply the Strong Separating Hyperplane Theorem, noting that {x} is a compact and
convex set disjoint from Y.

Exercise 10. Let X :=R xR, U{(1,0)} and Y := R x R__ U {(—1,0)}. Both sets are nonempty
and convex and they are disjoint from each another. The unique separating hyperplane is the
x-axis, (0,1) - (x,y) =0. But (0,1) - (1,0) =0and (0,1) - (—1,0) = 0.

Exercise 11. Suppose f : S — R is concave. Let (x,y) and (x/, ") be elements of the subgraph of f.
Then y < f(x) and iy’ < f(«'), so

wy+ (1 —a)y’ <af(x) + (1 -a)f(x) < flax+ (1 -a)x)
where the last inequality uses concavity of f. It follows that
a(x,y)+(1—a)(x,y) = (ax+ (1 —a)x,ay+ (1 —a)y’) € subS
Therefore, the subgraph of f is convex.

Conversely, if the subgraph of f is convex, then it contains the convex combination

a(x, f(x)) + (1= a)(x, f(x) = (ax + (1 —a)x, af (x) + (1 — &) f(x))
But this implies f(ax + (1 —a)x") > af(x) + (1 —a)f(x'), so f is concave.
The proof of the corresponding result for the epigraph of a convex function is analogous.
Exercise 12.
fAx+(1=A)x)=a-Ax+(1—=A)x")+b
=Aa-x+b)+(1—-A)(a-x'+b)
= Af(x) + (1= A)f(x")

Exercise 13. Suppose f is quasiconcave. Fix y € R and consider x, x" such that f(x), f(x") > y.
Then f(ax + (1 —a)x’) > min{f(x), f(x’)} > y. This implies convexity of the upper contour sets
of f.

Conversely, suppose the upper contour sets of f are all convex. Fix x, ¥’ € X. WLOG, f(x) > f(x')
so that both x and x’ both lie in the upper contour set of f with bound y = f(x’). Then their

convex combination ax + (1 — a)x” also lies in this upper contour set, so f(ax + (1 —a)x’) >
f(x") = min{f(x), f(x") }. It follows that f is quasiconcave.

f is quasiconvex <= —f is quasiconcave <= the upper contour sets of —f are convex. But the
upper contour sets of —f are clearly just the lower contour sets of f.

Exercise 14. True.
(ho f)(ax + (1 —a)x’) > h(min{f(x), f(x)})
= min{(ho f)(x), (ko f)(x')}
The analogous result does not hold for concave functions. For example, f(x) := x is concave and

h(x) := exp(x) is strictly increasing, but (exp of)(x) = exp(x) is strictly convex.
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Exercise 15. False. Consider the piecewise function given by

) {1 ifo<x<1

x ifx<Oorx>1

This function has a local maximum at x = 1/2, but no global maximum.

Exercise 1 (Additional exercise on PS 5).

(i) True.
(f +8)(ax+ (1 —a)x’) = fax+ (1 —a)x) + glax + (1 —a)x')
<af(x) + (1 -a)f(x') +ag(x) + (1 - a)g(x))
=a(f+8)(x)+ (1 -a)(f+g)(x)
(ii) False. For example, f(x) := —e* and g(x) := —e™* are both monotone (and hence quasicon-
vex). But (f + g)(x) = —e® — e~ ¥ is not quasiconvex, as for x = log?2, for example,
7+ (35+5(0) = +90) = 2> 2~
= _elogz B e13g2
= (f +8)(log2)
= (f+8)k)

= max{(f +¢)(x), (f +8)(=x)}

(iii) True. This follows from af(x) + (1 —a)f(x") > min{f(x), f(x’)} for a € [0, 1].

(iv) True. Follows as (iii) but with x # x" and strict inequality.



