
1. Real Sequences

Takuma Habu∗

takumahabu@cornell.edu

26th August 2024

1 Real numbers

1.1 N, Z, Q, R

Definition 1. N := {1, 2, . . .} is the set of natural numbers (sometimes 0 is included in N). Z :=

{. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers. Q := {a/b : a ∈ Z, b ∈ N} is the set of rational
numbers. Finally, R is the set of real numbers.

Remark 1. N is closed under the operations of addition and multiplication; i.e., the sum and the
product of any two natural numbers is a natural number. However , N is not closed under subtraction
and division. Z (unlike the natural numbers) is closed under subtraction, but not division. Finally,
the set of rational numbers, Q is closed under all four operations. However, the set of rational
numbers is not complete, that is, the rational number line, Q, has a “gap” at each irrational value.
We have the following relationships:

N ⊂ Z ⊂ Q ⊂ R.

We will skip the axioms that defines these sets of numbers and instead take the following charac-
terising property of R (completeness) as an axiom.

1.2 Completeness of R

Definition 2. Let S be a subset of R (i.e., S ⊆ R). If b ∈ R is such that b ≥ s for every s in S

(∀s ∈ S), then b is an upper bound of S. If such an upper bound for S exists, then we say S is
bounded (from) above. Lower bounds are defined analogously. S is bounded if it is bounded above
and below.

Definition 3. Let S ⊆ R be bounded above. Suppose there exists β such that:

(i) β is an upper bound of S

(ii) if γ < β, then γ is not an upper bound of S
∗Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes

are heavily based.
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Then, β is called the least upper bound of S, or its supremum, written supS.
Symmetrically, suppose S ⊆ R is bounded below. Then, α is the greatest lower bound or infimum

of S, written inf S, if it is a lower bound of S and if every γ > α is not a lower bound of S.

Exercise 1. Requirement (ii) in the definition of supS above can be written as: ∀ϵ > 0, ∃s ∈ S

such that s > supS − ϵ (why?) What is the equivalent condition for the greatest lower bound?

Exercise 2. Why can we write “the” least upper bound? (Formally, prove that supS is unique: if
β and β′ both satisfy the definition, then β = β′.)

Exercise 3. TFU (True, False, Uncertain): If supS exists, then supS ∈ S.

Axiom 1 (Completeness Axiom). If S is a nonempty subset of R which is bounded above, then
supS exists (in R).

Remark 2. This is not true in, for example, Q: the set S = {x ∈ Q : x2 < 2} is bounded, but the
only candidate for supS, s =

√
2, doesn’t belong to Q.

Exercise 4. Let S ⊂ R be nonempty and bounded. Prove that inf S ≤ supS. What can you say
if inf S = supS?

Exercise 5. Recall the formal definition of maximum and minimum of a set (don’t look them
up—model your definitions on those of supremum and infimum). TFU: Every set (in R) has a
maximum. Every bounded set has a maximum.

Exercise 6. TFU: If S ⊆ R has a maximum maxS, then maxS = supS.

Exercise 7 (PS1). Let S and T be nonempty and bounded subsets of R. TFU: sup(S ∪ T ) =

max{supS, supT}.

1.3 Density of Q in R

Proposition 1 (Archimedean property). If a > 0 and b ∈ R, then there exists an n ∈ N such that
na > b.

Proof. Suppose instead that there exist a > 0 and b ∈ R such that na ≤ b for all n ∈ N. In
particular, this means that b is an upper bound for the set S := {na : n ∈ N}. Since S is nonempty
and S ⊆ R, by the Completeness axiom, s := supS exists. Since a > 0, s− a < s. Therefore s− a

in not an upper bound for S, and so s− a < ma for some m ∈ N . Rearranging, s < (m+ 1)a: but
this contradicts that s is an upper bound for s because (m+1)a is also in S (since m+1 ∈ N). ■

Proposition 2 (Archimedean property). The set N of natural numbers is unbounded from above
in R.

Exercise 8. Prove that Proposition 1 and Proposition 2 are equivalent: Proposition 1 follows from
Proposition 2 and vice versa.

Exercise 9. TFU: If ϵ > 0, then there exists an n ∈ N such that 1
n < ϵ < n.

Proposition 3 (Density of Q in R). For any x, y ∈ R with y > x, there exists q ∈ Q such that
x < q < y.
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Proof. Fix x, y ∈ R such that y > x. By Proposition 1 (set n = y − x and b = 1), there exists an
n ∈ N such that n(y − x) > 1 ⇔ ny > nx + 1. Let m := min{k ∈ Z : k > na}.1 By definition,
na < m and na ≥ m− 1 (why?) and so na < m ≤ 1 + na < nb. Letting q := m

n and noting that q

is rational completes the proof. ■

Exercise 10. TFU: If a < b, then there exist infinitely many rationals between a and b.

1.4 Extended real numbers

Definition 4. Let +∞ (or just ∞) be a symbol that satisfies a < +∞ for all a ∈ R. Symmetrically,
the symbol −∞ satisfies a > −∞, for all a ∈ R. Finally, −∞ < +∞. We call R := R∪ {−∞,+∞}
the extended real line.

Remark 3. +∞ and −∞ are not real numbers, so statements on real numbers do not (automatically)
extend to them. Plausible facts like a+∞ = ∞, (−∞)+(−∞) = −∞, etc. are true in R. However,
expressions like +∞+ (−∞), ∞ · 0, etc. are left undefined (just like 1/0 is undefined in R).

Definition 5. Let S ⊆ R be unbounded above. Then we define supS := +∞. Analogously, if S is
unbounded below, then inf S := −∞. (A strict reading of the definition of supremum and infimum,
now in R, shows that these definitions are not new.)

Remark 4. With this last definition and the Completeness axiom, we can say that all subsets of R
have a supremum and an infimum (possibly in R).

Exercise 11. According to a strict interpretation of the definition of supremum and infimum, what
are sup ∅ and inf ∅ (where ∅ is the empty set)?

2 Sequences

Definition 6. A sequence (in R) is a function x : N → R. Instead of using the standard notation
x(n) for functions we use xn. Some (equivalent) notations for a sequence x are:

(x1, x2, . . .) ≡ (xn)
∞
n=1 ≡ (xn)n∈N ≡ (xn)n ≡ (xn).

For brevity, we will generally adopt the notation (xn)n if no confusion arise.

Remark 5. You will often see sequences denoted as {xn}∞n=1. Braces exclusively for sets, which are
unordered: {2, 3} is the same set as {3, 2}, which are both the same as {2, 3, 2, 2, 2, 3} (with some
abuse of notation), etc.

Example 1. Consider the sequence (1,−1, 1,−1, . . .) = ((−1)n)∞n=1. (Make sure you understand
the notation on the right hand side of the equality.) Its set of values is {(−1)n : n ∈ N} = {1,−1}.
Seen as a function, {1,−1} is the range and N is the domain (like it is for all sequences).

1One way to formally prove the existence of m is to prove that every nonempty subset of Z that is bounded from
below has a minimum.
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2.1 Convergence of a sequence

Definition 7. A sequence (xn)n converges to x ∈ R if: for every ϵ > 0, there exists N ∈ N such
that n > N implies |xn − x| < ϵ. The point x is called the limit of (xn)n, and we write

lim
n→∞

xn = x or xn → x.

Exercise 12. TFU: If a sequence has a limit, then the limit is unique. Hint: recall the triangle
inequality : |a− b| ≤ |a− c|+ |c− b|, for all a, b, c ∈ R.

Proposition 4 (Sandwich rule). Suppose that a sequence (xn)n converges to x and that a ≤ xn ≤ b

for all n ∈ N for some a, b ∈ R, b > a. Then, a ≤ x ≤ b.

Proof. Suppose that xn ≥ a for all n ∈ N but a > x. Define ϵ := a − x > 0. Since xn → x, there
exists n ∈ N sufficiently large such that

xn − x ≤ |xn − x| < ϵ = a− x ⇒ a > xn,

which is a contradiction. Symmetric argument for xn ≤ b for all n ∈ N shows that we must also
have x ≤ b. ■

Exercise 13. Find the limit (if they exist) of the following sequences, or show that they do not
exist.

(i) (an)n = ( 1n )n

(ii) (bn)n = ((−1)n)n

(iii) (cn)n = ((−1)2n)n

Exercise 14 (PS2). TFU: Suppose (xn) and (yn) are Real sequences and that xn → x and yn → y.
Then, (i) (xn + yn)n → x+ y, (ii) xnyn → xy, (iii) xn − yn → x− y, (iv) 1

xn
→ 1

x ; (v) xn

yn
→ x

y .

Exercise 15. TFU: a sequence (xn)n converges to x if and only if there exists ϵ > 0 such that all
terms xn are contained in (x− ϵ, x+ ϵ).

Exercise 16. TFU: a sequence (xn)n converges to x if and only if for all ϵ > 0 all but finitely
many terms xn’s are contained in (x− ϵ, x+ ϵ).

Exercise 17. TFU: a sequence (xn)n converges to x if and only if for all ϵ > 0 infinitely many
terms are contained in (x− ϵ, x+ ϵ).

Exercise 18 (PS2). TFU: a sequence (xn)n converges to x if and only if for all ϵ > 0 infinitely
many terms are contained in (x− ϵ, x+ ϵ), and x is the only number with this property.

2.1.1 Infinite limits

Definition 8. A sequence (xn) diverges to (or converges to) +∞ if for every M ∈ R there exists
N ∈ N such that xn ≥ M for all n ≥ N . We write limxn = +∞ or xn → +∞ as before. Divergence
to (convergence to) −∞ is defined analogously.
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Remark 6. Informally, a sequence diverges to +∞ (resp. −∞) if it has arbitrarily large (resp.
small) elements in its tail.

Exercise 19. TFU: If a sequence does not converge, then it diverges to either +∞ or −∞.

Exercise 20. TFU: Let (xn) diverge to +∞ and yn → y > 0 (y can be finite or +∞). Then,
limxnyn exists (and is ...?).

Exercise 21. TFU: Let (xn) diverge to +∞ and yn → 0. Then, limxnyn exists (and is ...?).

2.1.2 Bounded sequences

Definition 9. A sequence (xn) is bounded if its set of values {xn : n ∈ N} is bounded. Bounded
above and bounded below are defined in the same manner.

Exercise 22. TFU: Every bounded sequence is convergent.

Exercise 23 (PS2). TFU: Every convergent sequence (with a finite limit) is bounded.

Exercise 24. TFU: A sequence diverges to +∞ if and only if the sequence if unbounded.

2.1.3 Monotone sequences

Definition 10. A sequence (xn)n is nondecreasing if xn ≤ xn+1, for every n ∈ N. It is strictly
increasing if xn < xn+1 for every n ∈ N. To avoid ambiguity, I will try not to use the term
“increasing”. Definitions of nonincreasing and strictly decreasing sequences are analogous. Finally,
a sequence is monotone if it is either nondecreasing or nonincreasing.

Exercise 25. Complete the following: A sequence is both nondecreasing and nonincreasing if and
only if it is ....

Proposition 5. If (xn)n is bounded and monotone, then it converges.

Proof. We will prove the statement for a nondecreasing sequence (xn)n. The statement for nonin-
creasing sequences follow from the fact that (xn)n is nonincreasing if and only if (−xn) is non-
decreasing. So suppose (xn)n is bounded and nondecreasing. By the Completeness axiom, u :=

sup{xn : n ∈ N} < +∞ exists. We want to show that xn → u. Fix any ϵ > 0. Since u − ϵ is
not an upper bound for (xn)n (why?), there exists N ∈ N such that xN > u − ϵ. Since (xn)n is
nondecreasing, for all n > N , we also have xn > u − ϵ. By definition of u, xn ≤ u for all n ∈ N.
Combining these, u− ϵ < xn ≤ u for all n > N and hence |xn − u| < ϵ for all n > N . This proves
that xn → u. ■

Proposition 6. If (xn)n is unbounded and nondecreasing, then it diverges to +∞. Similarly, if
(xn)n is unbounded and nonincreasing, then it diverges to −∞.

Proof. Let M > 0. Since {xn : n ∈ N} is unbounded by hypothesis and it is bounded below by x1

(why?), it must be unbounded above. Then, there exists N ∈ N such that xN > M . Since (xn)n

is nondecreasing, xn ≥ xN > M for all n > N , which shows that limxn = +∞. The proof for the
case in which (xn)n is nonincreasing is analogous.. ■
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Remark 7. Combining these two propositions gives the Monotone Convergence Theorem for Real
sequences; i.e., all monotone sequences either converge to a finite x ∈ R (either the supremum or
the infimum of {xn : n ∈ N}) or diverge to ±∞. Thus, if (xn)n is a monotone sequence, limxn is
always a meaningful expression. This is particularly useful because we did not compute the limit
value. A similar thing will happen with Cauchy sequences.

Corollary 1. A monotone sequence (xn)n converges if and only if it is bounded.

2.2 Subsequences

Definition 11. Let (xn) be a sequence. A subsequence of (xn) is a sequence obtained by (only)
deleting elements of (xn). More formally, a subsequence of (xn) is any sequence (xnk

)k where (nk)k

is a strictly increasing sequence of non-negative integers.

Exercise 26 (PS2). TFU: If a sequence converges, then every subsequence converges (to the same
limit).

Exercise 27 (PS2). TFU: If a sequence is bounded, then every subsequence is bounded.

Exercise 28 (PS2). TFU: If a sequence is unbounded, then every subsequence is unbounded.

Exercise 29 (PS2). TFU: If a sequence is unbounded, then it has a subsequence which is bounded.

2.3 The Bolzano-Weierstrass theorem

Proposition 7. Every sequence (xn)n has a monotonic subsequence.

Proof. For each n ∈ N define the set Sn := {xn, xn+1, . . .}.
If S1 has no maximum element,2 then construct a subsequence (xnk

)k as follows.

n1 := 1

n2 := n1 +min {k′ ∈ N : xn1+k′ ≥ xn1
}

:=
...

nk := nk−1 +min
{
k′ ∈ N : xnk−1+k′ ≥ xnk−1

}
∀k = 3, 4 . . . .

Observe that xn2
is the first term in (xn1+1, xn1+2, . . .) that is greater than xn1

= x1. Moreover,
xn2

is well-defined because S1 has no maximum—if there weren’t such a term, then xn1
= x1 would

be the maximum of S1. Similarly, xn3
is well-defined as the first term in (xn2+1, xn2+2, . . .) that is

greater than xn2
. If there weren’t such a term, then xn2

> xm for all m ≥ n2; also, xn2
≥ xm for

all m < n2 by construction; so xn3
would be the maximum of S1. Observe that, by construction,

(xnk
)k is nondecreasing.

Suppose that S1 has the maximum element but there exists Sn (for some n > 1) that has
no maximum element. Then, we could reapply the same argument from above to construct a
nondecreasing subsequence by taking letting xn1

:= xn.
2Since I only left this definition as an exercise, let me give it formally: b ∈ R is the maximum of set S ⊂ R if b ∈ S

and b ≥ s for all s ∈ S. The minimum is defined analogously. Note that unbounded sets do not have maximum or
minimum.

- 6 -



ECON 6170 Fall 2024 1. Real Sequences

The only remaining case is if maxSn exists for all n ∈ N. Consider the following recursively
defined sequence of indices:

n1 = min {m ∈ N : xm = maxS1}

nk+1 = min {m ∈ N : xm = maxSnk+1} ∀k ∈ N.

(Note that Sn is a set, hence maxSn is just a number, and not a set of maximisers.) The subsequence
(xnk

)k is nonincreasing because the sets Sn are nested appropriately. ■

Exercise 30. TFU: Referring to the previous proof, if maxS1 does not exist then neither do
maxSn, for all n = 2, 3 . . ...

Exercise 31 (PS2). In the second part of the proof of Proposition 7, can you replace min{m ∈ N :

xm = maxSnk+1} with max{m ∈ N : xm = maxSnk+1}?

Theorem 1 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Proof. Let (xn)n be a bounded sequence. By Proposition 7, it has a monotonic subsequence (xnk
)k.

By Exercise 27, (xnk
)k is bounded. By Proposition 5, monotone and bounded sequences converge.

■

2.4 lim sup and lim inf

Definition 12. The limit superior (read “lim sup”) of a sequence (xn) is

lim sup
n→∞

xn := lim
m→∞

sup {xn : n ≥ m} .

The limit inferior (“lim inf”) is

lim inf
n→∞

xn := lim
m→∞

inf {xn : n ≥ m} .

Proposition 8. Limit superior and limit inferior of a sequence always exist.

Proof. We prove the case for lim sup. Define an := sup{xk : k ≥ n, k ∈ N}.
Suppose first that an < ∞ for all n ∈ N. Then, we must have an+1 ≤ an for all n ∈ N since

an+1 is a supremum over a smaller set than an. Thus, (an)n is monotone decreasing. If (an)n is
unbounded, (an) diverges to −∞ (Proposition 6); if, instead, (an)n is bounded, then (an) converges
to a limit a = sup{an : n ∈ N} (Proposition 5).

Suppose instead that an = ∞ for some n ∈ N. If there are finitely many such n’s, an < ∞ for all
n > N for some sufficiently large N . Applying the previous argument implies that lim supn→∞ xn

is well-defined. If, instead, an = ∞ for all n ∈ N, then the limit of an is +∞. ■

Proposition 9. Let (xn) be a sequence. If lim inf xn = lim supxn, then limxn is well-defined and
limxn = lim inf xn = lim supxn.

Proof. Suppose lim inf xn = lim supxn = x ∈ R. (The cases ±∞ are easier and left as an exercise.)
Fix any ϵ > 0. By definition of lim sup, there exists N0 ∈ N such that |x − sup{xn : n ≥ N0}| < ϵ

(why?). In particular, sup{xn : n ≥ N0} < x+ ϵ, so xn < x+ ϵ for all n > N0. In the same fashion
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(how?), we can prove that there exists N1 such that xn > x − ϵ for all n > N1. Putting these
together, for all n > max{N0, N1}, x− ϵ < xn < x+ ϵ; equivalently, |xn − x| < ϵ, which is what we
wanted to prove. ■

Exercise 32 (PS2). TFU: If (xn)n is a sequence, there exists an M ∈ N such that lim supxn =

sup{xn : n ≥ M}.

Exercise 33 (PS2). Replace ⋆ with an appropriate symbol, then prove: For any sequences (xn),
(yn),

lim sup
n→∞

(xn + yn) ⋆ lim sup
n→∞

xn + lim sup
n→∞

yn

provided the right hand side is not of the form ∞+ (−∞) (which is undefined).

Exercise 34 (PS2). Consider the following non-theorem: Let xn → x ≥ 0 and (yn) be any sequence.
Then lim supxnyn = x lim sup yn. Disprove this, then identify a tiny change to the assumptions
that makes it true (but don’t prove it).

2.5 Cauchy Sequences

Definition 13. A sequence (xn)n is Cauchy if, for every ϵ > 0, there exists N ∈ N such that
|xn − xm| < ϵ for all n,m > N .

In words, a sequence (xn)n is Cauchy if the distance between two elements in the tail of the
sequence can be made arbitrarily small. The crucial distinction between Cauchy sequences and a
convergent sequence is that the former does not refer to the limit point the sequence whereas the
latter requires the limit point to exist.

Proposition 10. If (xn)n converges to x ∈ R, then (xn)n is Cauchy.

Proof. Fix ϵ > 0. Since xn → x, there exists N ∈ N such that |xn − x| < ϵ
2 for all n > N . Since it

is just a change of labels, it is also the case that for all m > N , |xm −x| < ϵ
2 . Next, by the triangle

inequality
|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |x− xm| < ϵ

2
+

ϵ

2
= ϵ.

Hence, (xn)n is Cauchy. ■

Proposition 11. If (xn)n is Cauchy, then it is bounded.

Proof. If (xn)n is Cauchy, then, in particular, for ϵ = 1, there exists N ∈ N such that |xn−xm| < 1

for all n,m > N . In particular, this holds fixing m = N +1. The “reverse” triangle inequality3 then
gives |xn| < |xN+1|+ 1, for all n > N . Now take M = max{|xN+1|+ 1, |x0|, . . . , |xN |} < +∞ and
note that |xn| ≤ M for all n ∈ N. Hence (xn)n is bounded. ■

Proposition 12. If (xn)n is a Cauchy sequence and there is a subsequence (xnk
)k that converges

to x ∈ R, then (xn)n converges to x as well.

Exercise 35. Prove Proposition 12.

Theorem 2 (Cauchy criterion). A sequence (xn)n is convergent if and only if it is Cauchy.
3That is, |x− y| ≥ ||x| − |y||.
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Proof. There are two implications to prove. The “only if” was Proposition 10. Let us prove the “if”
part. Suppose that (xn) is a Cauchy sequence. By Proposition 11, (xn)n is bounded. Now since
(xn)n is a bounded sequence, by the Bolzano-Weierstrass Theorem there is a subsequence (xnk

)k

which converges. Then, by Proposition 12, we know that (xn)n must converge as well. ■

Remark 8. A (metric) space is called complete if every Cauchy sequence is convergent. Thus, the
previous result establishes that R is complete. . Completeness is the idea that the set has no “holes”.
For example, Q is not complete because there are Cauchy sequences that are not convergent (e.g.,
take a sequence that converges to

√
2 /∈ Q). We like to work with complete spaces because it ensures

that solutions exist; e.g., we want to be able to solve x2 = 2!

2.6 Sequences in Rd

So far, we have only considered sequences in R; i.e., (xn)n such that xn ∈ R for all n ∈ N. All the
results we discussed above can be extended to the case when xn ∈ Rd (i.e., a product space of R)
for all n ∈ N for any d ∈ N. Recall that we measured “distance” between two real numbers using
the absolute value of the different (| · |).

Definition 14. If x ∈ Rd, write x = (x1, . . . , xk). The Euclidean distance between x,y ∈ Rd is
given by

∥x− y∥d =

√√√√ d∑
i=1

(xi − yi)
2
.

We often simply write ∥ · ∥ (without the subscript d).

We now define xn → x if for all ϵ > 0, there exists N ∈ N such that ∥xn −x∥ < ϵ for all n > N .
To extend the previous results, one can use the fact that a sequence (xn) in Rd converging to a
limit x is equivalent to convergence in each coordinate. Let xn,i denote the ith element of xn ∈ Rd.

Proposition 13. A sequence (xn)n in Rd converges to a limit x if and only if xn,i → xi for all
i ∈ {1, . . . , d}.

Proof. First, suppose that xn → x. We wish to show that xn,i → xi for all i ∈ {1, . . . , d}; i.e.,
for each i ∈ {1, . . . , d}, and for any ϵi > 0, there exists Nϵi ∈ N such that |xn,i − xi| < ϵi for all
n > Nϵi . Let ϵi = ϵ > 0 for all i ∈ {1, . . . , d}. By definition of xn → x, we know that there exists
Nϵ ∈ N such that, for all n > Nϵ,

ϵ >

√√√√ d∑
i=1

|xn,i − xi|2 ≥
√

|xn,j − xj |2 = |xn,j − xj | ,

for any j ∈ {1, . . . , d}. For each i ∈ {1, . . . , d}, by setting Nϵi = Nϵ, we have shown that xn,i → xi.
Next, suppose that xn,i → xi for all i ∈ {1, . . . , d}. We wish to show that xn → x; i.e., for

any ϵ > 0, there exists Nϵ ∈ N such that ∥xn − x∥ < ϵ for all n > Nϵ. Define η := ϵ/
√
d. For

each i ∈ {1, . . . , d}, by definition of xn,i → xi, there exists Nη
i ∈ N such that |xn,i − xi| < η for

all n > Nη
i . Define Nϵ := max{Nη

1 , . . . , N
η
d } which is well defined since d is finite. Then, for any
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n > Ne, we have

|xn,i − xi| < η =
ϵ√
d
∀i ∈ {1, . . . , d}

⇔ ∥xn − x∥ =

√√√√ d∑
i=1

|xn,i − xi|2 <

√√√√ d∑
i=1

(
ϵ√
d

)2

= ϵ. ■
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