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Introduction

The note is a collection of concepts and results that I scrounged from many places that I think you
will find useful in navigating and completing your first year in the field of economics at Cornell
University. It is intended to be a self-contained reference for you as you progress in your first year.
The course itself prioritises practicality, rather than rigour. We will only go over proofs that deepens
your understanding of the relevant result and/or to help you familiarise yourselves with the proof
techniques that would be useful in your core classes. We will not be spending time to practice the
mathematics you cover—you will be doing that throughout the rest of the year. Finally, even if
some materials seem esoteric at times (especially at the beginning of the class), I promise you that
there is a good reason behind why we are going over them.

Tips for success Reading books and notes and listening to lectures (i.e. passing learning) won’t
work—you have to learn actively by working through the proofs and examples we go over in class
(active reading), taking notes during class (active listening), and solving practice questions. Working
in groups is strongly encouraged BUT always try to work through all problems on your own before
meeting with others. And check your understanding by explaining it to others!

Textbooks

• Sundaram, “A First Course in Optimization Theory”.

• Simon and Blume, “Mathematics for Economists”.

• Sydsaester, Hammond, Seierstad and Strom, “Further Mathematics for Economic Analysis”.

• Hansen, “Probability and Statistics for Economists”

If you find any mistakes and/or typos, please let me know by emailing me at takumahabu@cornell.edu.
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Part I

Foundational concepts

1 Preliminaries

Throughout, I will use the symbol “ :=” to define things.1 For example, if I want to define a function
f to be a constant function that always equals 1, I will write f(x) := 1. Note that I can write 1 := 2

and it wouldn’t technically be wrong—it just means that I will use 1 to mean 2 (of course, I will
not write such nonsense!).

I denote N := {1, 2, . . .} as the set of natural numbers,2 Z := {. . . ,−2,−1, 0, 1, 2, . . .} as the
set of integers, Q := {a

b : a ∈ Z, b ∈ N} as the set of rational numbers, and R as the set of real
numbers.

1.1 Proofs

1.1.1 Propositional logic

A proposition is a statement that has either value true (T) or false (F) but not both. Let p and
q be two propositions. Two statements p and q are logically equivalent, written p ≡ q, if they
always have the same truth/false value; i.e., they have the same truth values. Write the negation
of proposition p as ¬p (read “not p”). The compound statement “p and q” is written p ∧ q. The
compound statement “p or q” is written p∨ q. The table below sets is a truth table the truth values
of negation and compounding of proposition(s).

Table 1: A truth table.

p q ¬p ¬q p ∧ q p ∨ q
T T F F T T
T F F T F T
F T T F F T
F F T T F F

Exercise 1 (De Morgan’s laws). When negating compound statements, prove that we can move
the negation “inside” and flip the “sign” as below:

¬ (p ∨ q) ≡ ¬p ∧ ¬q,
¬ (p ∧ q) ≡ ¬p ∨ ¬q.

A statement that is always false is called a contradiction (e.g., p ∧ (¬p)). A statement that is
always true is called a tautology (e.g., p ∨ (¬p)).

We say p implies q, denoted p ⇒ q , if it is the case that “if p (is true), then q (is true);”
importantly, no conclusion about q can be drawn if p is false. The converse of p⇒ q is q ⇒ p (read
either as “if q, then p” or “p only if q”). A two-way implication, written p ⇔ q (read if and only if
(iff)), means p⇒ q and q ⇒ p; i.e.,

p⇔ q ≡ (p⇒ q) ∧ (q ⇒ p).

The contrapositive of p⇒ q is ¬q ⇒ ¬p.
1Other notations include ∆

= and =def .
2Sometime people also include 0 as part of N.
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Exercise 2 (Truth table). Extend the truth table, Table 1, to include p ⇒ q, q ⇒ p, p ⇔ q, and
¬q ⇒ ¬p.

Exercise 3 (Modus Ponens). Suppose it is the case that “if it is raining, then there are clouds”
and “it is raining.” Can you conclude whether there are any clouds?

Exercise 4 (Modus Tollens). Suppose it is the case that “if it is raining, then there are clouds”
and “there are no clouds.” Can you conclude whether it is raining?

A variable proposition, or predicates, are propositions whose truth value depends on some other
parameter, say x that can take values from a collection of values X. Write p(x) as the truth value
of statement p given parameter x. Say that p(x) is sufficient for q(x) if p(x) ⇒ q(x) is true for all
possible values of x, and say that p(x) is necessary for q(x) if the converse, q(x) ⇒ p(x), is true for
all possible values of x. The statement “∀x ∈ X, p(x)”, or equivalently, “p(x) ∀x ∈ X”, means that
p(x) is true for all possible parameter x in X. The symbol ∀ is called the universal quantifier and
can also be read as “for every.” The statement “∃x ∈ X, p(x)” means that p(x) is true for some
parameter x in X. The symbol ∃ is called the existential qualifier and can also be read as “there
exists” or “for at least one.” Write ∃! to mean “there exists unique”.

Proposition 1. When negating qualifiers, we can move the negation “inside” and swap the “sign”
as below:

¬ (∀x ∈ X, p (x)) ≡ (∃x ∈ X, ¬p (x)) ,
¬ (∃x ∈ X, p (x)) ≡ (∀x ∈ X, ¬p (x)) .

Proof. Note that
∀x ∈ X, p (x) ≡ p (x) ∧ p (x′) ∧ · · · .

Applying De Morgan law repeatedly to gives

¬ (∀x ∈ X, p (x)) ≡ ¬p (x) ∨ ¬p (x) ∧ · · ·

and so there must be at least one x in X for which p(x) is false. The proof for the negation of the
existential qualifier is analogous. ■

Exercise 5. Read the following statement.

∀ϵ > 0, ∃δϵ,x > 0, |y − f (s)| < ϵ ∀s ∈ S\ {x} : |x− s| < δϵ,x.

Convince yourself that the statement above can equivalently be written as

∀ϵ > 0, ∃δϵ,x > 0, (|x− s| < δϵ,x, s ∈ S\ {x}) ⇒ |y − f (s)| < ϵ.

Finally, write and read the negation of the statement(s) above?

1.1.2 Proof methods

A proof of a statement shows that the statement is always true given some assumptions. An example
does not constitute a proof; however, a counterexample can be used to show that a statement is
false (i.e., can be used to disprove a statement). Following are the main methods to approach a
proof.

• Deduction/direct proof: Start with what you know, set up a chain of argument to end up
with what you wanted to show.
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• Contraposition: direct proof of the contrapositive statement.

• Contradiction: Assume that the required result is false then work to obtain a contradiction.

• Induction: Prove the base case (e.g., n = 0) then the induction step while assuming the
induction hypothesis (assume it holds for n, then show that this implies the result for n+1).
Then, invoke the Principle of Mathematical Induction.

Principle of Mathematical Induction If S is a subset of N such that 1 ∈ S and i + 1 ∈ S

whenever i ∈ S, then S = N.

Example 1. Suppose we wish to prove that the sum of the first n natural numbers is n(n+1)
2 for

any n ∈ N.

• A direct proof is to fix n ∈ N, and let the sum be Sn:

Sn = 1 + 2 + · · ·+ (n− 1) + n.

Writing in reverse order:
Sn = n+ (n− 1) + · · ·+ 2 + 1.

And os
2Sn = (n+ 1) + (n+ 1) + · · ·+ (n+ 1) + (n+ 1) .

Rearranging gives Sn = n(n+1)
2 . Since we chose n arbitrarily, the result holds for all n ∈ N.

• A proof by induction proceeds first by ensuring that the base case n = 1 holds—the sum of
just the first natural number is just 1. From that formula, we also have S1 = 1(1+1)

2 = 1.
Thus, the formula holds for n = 1. To proceed, now suppose that the formula holds for some
specific value of n, say n = k for some k ∈ N. We ask now if the formula holds for n = k+ 1.
That is, suppose

Sk = 1 + 2 + · · ·+ k − 1 + k =
k (k + 1)

2
.

Then,

Sk+1 = Sk + (k + 1) =
k (k + 1)

2
+ (k + 1) =

(k + 1) (k + 1 + 1)

2
.

Because the last expression is the same as the formula for Sk when we replace k by k+1, we
can conclude that if the formula is correct for k, then it is also correct for k + 1. Finally, we
invoke the Principle of Mathematical Induction to conclude that formula is correct for all n.

Example 2 (Proof by induction). We take the overlapping generation (OLG) model that you will
cover in Macroeconomics. An agent, or a generation, that lives for two periods is born in each time
period t ∈ N. Let xit ∈ R and eit ∈ R+ denote generation i’s consumption and endowment in period
t respectively in a pure exchange economy. Assume that there is an “initial old” generation in t = 1

whose consumption is denoted x01. By assumption, xit = 0 and eit = 0 for all t /∈ N\{i, i + 1}, and
each generation have strictly positive endowments while they are alive; i.e., for all i ∈ N, eit > 0 for
t ∈ {i, i+ 1}. Market clearing (or feasibility) condition is that

xt−1
t + xtt = et−1

t + ett ∀t ∈ N.

Let pt ∈ R+ be the price of goods in period t, then the budget constraint for generation t ∈ N is

ptx
t
t + pt+1x

t
t+1 = pte

t
t + pt+1e

t
t+1, (1.1)
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where we have implicitly assumed that the preferences are strictly increasing so that the, budget
constraint binds. We will prove by induction that any competitive equilibrium is autarky (meaning
no trade); i.e., for any price vector,

xt−1
t = et−1

t , xtt = ett ∀t ∈ N. (1.2)

First, we prove the base case: Since the initial old care only about consumption in t = 1, it
must be that

x01 = e01.

Combining with the period-1 market-clearing condition, x01 + x11 = e01 + e11, implies

x11 = e11.

Thus, (1.2) holds for t = 1.
Now, we make the inductive hypothesis that (1.2) holds for some period t > 1. The goal is

to show that (1.2) then holds for period t + 1. Since xtt = ett by the inductive hypothesis, budget
constraint, (1.1), implies that xtt+1 = ett+1. Combining this with the period-t + 1 market clearing
condition, xtt+1 + xt+1

t+1 = ett+1 + et+1
t+1, yields that xt+1

t+1 = et+1
t+1. Thus, (1.2) indeed holds for period

t+ 1.
Therefore, by induction, (1.2) holds for all t ∈ N.

Remark 1. I often write “TFU: [some statement]”. The TFU stands “True, False, or Uncertain,”
what I mean here is that I’m looking for a proof of the statement (the “T” case), or a counterexample
(the “F” case), or cases in which the statement is sometimes true and other times false (the “U”
case).

1.2 Sets

A set X is a collection of objects or elements. If x is an element of X, we write x ∈ X and if x is
not an element of X, then we write x /∈ X. The symbol ∅ := {x : x ̸= x} denotes the empty set
and ∅ ⊆ X for any set X. A set X is nonempty if X ̸= ∅.

Suppose X and Y are sets. Then, X is a subset of Y if every element of X is also an element
of Y ; i.e.,

X ⊆ Y ⇔ ∀x ∈ X, x ∈ Y.

The set X is a proper subset of Y if X is a subset of Y and, in addition, there exists y /∈ X such
that y ∈ Y .3

X ⊂ Y ⇔ (∀x ∈ X, x ∈ Y ) ∧ (∃y ∈ Y, y /∈ X) .

Two sets X and Y are equal if every element of one is contained in the other; i.e.,

X = Y ⇔ (X ⊆ Y ) ∧ (Y ⊆ X) ⇔ (z ∈ X ⇔ z ∈ Y ) .

The union of two sets X and Y are defined as

X ∪ Y := {z : (z ∈ X) ∨ (z ∈ Y )} .

The intersection of two sets X and Y are defined as

X ∩ Y := {z : (z ∈ X) ∧ (z ∈ Y )} ≡ {z ∈ X : z ∈ Y } ≡ {z ∈ Y : z ∈ X} .
3Rather confusingly, some write ⊂ to mean ⊆, in which case a proper subset is denoted ⊊ or ⫋.
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The intersection and union are both commutative (i.e., X ∩ Y = Y ∩X and X ∪ Y = Y ∪X) and
associative (i.e., (X ∩ Y ) ∩ Z = X ∩ (Y ∩ Z) and (X ∪ Y ) ∪ Z = X ∪ (Y ∪ Z)). Moreover,

X ∩ Y = X ⇔ X ⊆ Y,

X ∪ Y = X ⇔ Y ⊆ X.

Let I be some set, and Xi be sets for each i ∈ I. We refer to {Xi}i∈I as a collection of sets (i.e., a
set of sets) and I as an index set. Denote the union and intersection of all Xi’s, respectively, as

⋃

i∈I

Xi := {x : ∃i ∈ I, x ∈ Xi} ,
⋂

i∈I

Xi := {x : ∀i ∈ I, x ∈ Xi} .

When I = {1, . . . , n} for some n ∈ N, we may also write {Xi}ni=1,
⋃n

i=1Xi and
⋂n

i=1Xi. The
intersection is distributive with respect to the union; i.e.,

Y ∩
(⋃

i∈I

Xi

)
=
⋃

i∈I

(Y ∩Xi) ;

The union is distributive with respect to the intersection; i.e.,

Y ∪
(⋂

i∈I

Xi

)
=
⋂

i∈I

(Y ∪Xi) .

The two sets X and Y are disjoint if they do not share elements; i.e., if X ∩Y = ∅. The difference
of two sets X and Y , or complement of Y relative to X,4 are defined as

X\Y := {z : (z ∈ X) ∧ (z /∈ Y )} ≡ {x ∈ X : x /∈ Y } .

If X and Y are disjoint, then X\Y = X. Let Z bet the set of all “relevant” objects and suppose
X ⊆ X. The complement of X is defined as

Xc := Z\X.

Note x /∈ X ⇔ x ∈ Xc and (Xc)c = X.
Suppose (Xi)i∈I ⊆ Z. De Morgan’s laws tell us that

(⋃

i∈I

Ai

)c

≡
⋂

i∈I

Ac
i ,

(⋂

i∈I

Ai

)c

≡
⋃

i∈I

Ac
i .

Given a set X, the power set of X, denoted 2X or P(X), is the collection of all subsets of X
(including the empty set); i.e.,

2X ≡ P(X) := {S : S ⊆ X} .

Set of all sets is not well defined (google Russell’s paradox )—this is a potential issue that can arise
in, for example, information design when thinking about the set of all possible “signals” about an
unknown state of the world.

4Sometimes, X\Y is written X − Y .
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Example 3. Let X := {a, b, c}. Then,

2X = {∅, {a} , {b} , {c} , {a, b} , {b, c} , {a, c} , X} .

The cardinality of a set X, denoted |X|, is the number of elements the set X contains. The set
X is finite if |X| <∞ and infinite if it is not finite. If X is finite, then

X ⊂ Y ⇒ |X| < |Y | .

Given two sets X and Y , and x ∈ X and y ∈ Y , (x, y) is an ordered pair (or a tuple) such that
(x, y) is different from (y, x). The Cartesian product of two sets X and Y is the set of all ordered
pairs; i.e.,

X × Y := {(x, y) : x ∈ X, y ∈ Y } .

More generally, given a finite index set I = {1, . . . , n}, the Cartesian product of sets X1, . . . , Xn is
the set of all n-tuples; i.e.,5

×n
i=1Xi := {(x1, . . . , xn) : xi ∈ Xi ∀i ∈ {1, . . . , n}} .

If Xi = X for all i ∈ I (and |I| = n), then we write

Xn ≡ ×i∈IXi.

A partition of Y is a collection of disjoint sets whose union is Y ; i.e., a collection {Xi}ni=1 is a
partition of Y if (

n⋃

i=1

Xi = Y

)
∧ (Xi ∩Xj = ∅ ∀i ̸= j) .

(“∀i ̸= j” means ∀(i, j) ∈ {(x, y) ∈ {1, . . . , n}2 : x ̸= y}.)

1.3 Binary relations, partial and total orders

1.3.1 Binary relations

Given sets X and Y , R ⊆ X × Y is called a binary relation from X to Y . Write

xRy ⇔ (x, y) ∈ R,

¬xRy ⇔ (x, y) /∈ R.

The inverse of a binary relation R from X to Y is a binary relation from Y to X defined as

R−1 := {(y, x) ∈ Y ×X : (x, y) ∈ R} .

Say that a binary relation on X is:

• reflexive if ∀x ∈ X, xRx;

• symmetric if ∀x, y ∈ X, xRy ⇔ yRx;

• transitive if ∀x, y, z ∈ X, (xRy ∧ yRz) ⇒ xRz;

• antisymmetric if ∀x, y ∈ X, (xRy ∧ yRx) ⇒ x = y (i.e., rules out ties);

• complete if ∀x, y ∈ X, either xRy or yRx (i.e., every pair is ordered).
5Sometimes, Cartesian product is also written as

∏
i∈I Xi.
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Note, in particular, that completeness implies reflexiveness.

1.3.2 Other relations

A binary relation ≥ on X (i.e., ≥⊆ X ×X) is:

• a preorder if it is reflexive and transitive;

• an equivalence relation, denoted ∼, if it is reflexive, symmetric and transitive;

• a partial order if it is reflexive, transitive and antisymmetric

• a total order if it is complete, transitive and antisymmetric.6

Given a partial order on X, say that (X,≥) is a partially ordered set (poset). Given a total order
on X, say that (X,≥) is a totally order set (toset).

For any x ∈ X, equivalence class of x relative to ∼ is defined as

[x]∼ := {y ∈ X : y ∼ x} .

A quotient set of X relative to ∼, denoted X/ ∼, is the class of all equivalence classes relative to
∼; i.e.,

X/ ∼:= {[x]∼ : x ∈ X} .

Totally ordered set is a special case of partially ordered sets. Based on a partially ordered set
(X,≥), we may define

> :=
{
(x, y) ∈ X2 : (x ≥ y) ∧ ¬ (y ≥ x)

}
,

≤ :=≥−1,

< :=>−1 .

Observe that if ≥ is a binary relation on X, then ≥ is a binary relation on any S ⊆ X. A rational
preference relation on X is a binary relation on X that is complete and transitive. You will see
more of this in consumer theory.

Example 4. (R,≥) is a total order defined as:

≥:=
{
(x, y) ∈ R2 : y − x is nonnegative

}
.

However, (Rn,≥) with n ∈ N\{1} is a partial order defined as

≥:= {((xi)ni=1 , (yi)
n
i=1) ∈ Rn × Rn : yi − xi is nonnegative ∀i ∈ {1, . . . , n}} .

Observe that above is not complete (e.g., with n = 2, (1, 2) and (2, 1) are not ordered).

Example 5. Given a set X, (2X ,⊆) is a partial order.

There are many other examples of partial orders: e.g., first-order and second-order stochastic
dominance of distributions, ordering of utility functions using absolute risk aversion.

6Some people refer to total orders as linear orders.
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1.3.3 Upper and lower bounds

Let (X,≥) be a partially ordered set and S ⊆ X. An element u ∈ X is an upper bound of S if,
∀s ∈ S, u ≥ s. If such an u exists, then we say that the set S is bounded from above. An element in
S is a maximum of S if it is an upper bound of S and we denote it as maxS. Similarly, ℓ ∈ X is a
lower bound of S if, ∀s ∈ S, ℓ ≤ s . If such an ℓ exists, then we say that the set S is bounded from
below. A set S is bounded if its both bounded from above and bounded from below. An element is
a minimum of S if it is a lower bound of S and we denote it as minS.

An element is the least upper bound or the supremum of S, denoted supS, if (i) supS is an
upper bound of S; and (ii) supS ≤ u for any upper bound u of S. An element is the greatest lower
bound or the infimum of S, denoted inf S ∈ X, if (i) infX is a lower bound of S; and (ii) infX ≥ ℓ

for any lower bound ℓ ∈ X of S.
Whenever a maximum or a minimum of S exists, they must be unique so that it make sense to

refer to them as the maximum or minimum.

Proposition 2. If a maximum or a minimum of S exists, then it must be unique.

Proof. By way of contradiction (BWOC), suppose that there are two distinct maxima of S, denoted
s1 and s2, where s1 ̸= s2. By definition of maximum, s1, s2 ≥ s ∀s ∈ S. In particular, it must be
that

s1 ≥ s2 and s2 ≥ s1.

Since S is a partially ordered set, antisymmetry implies that s1 = s2; a contradiction. ■

By definition, the supremum is the minimum of the set of upper bounds and the infimum is the
maximum of the set of lower bounds.

Proposition 3. If a maximum exists, then it is also the supremum. If a minimum exists, then it
is also the infimum.

The following tells us that taking supreme of a smaller set is lower and infimum of a smaller set
is greater.

Proposition 4. Suppose that S ⊆ X where (X,≥) is a partially ordered set. If supS and supX

exist, then supS ≤ supX. If inf S and infX exist, then inf S ≥ infX.

Proof. Since supX is an upper bound of X and S ⊆ X, supX is also an upper bound of S. Since
supS is the least upper bound of S, we must have supS ≤ supX. Since infX is a lower bound of
X and S ⊆ X, infX is also a lower bound of S. Since inf S is the greatest lower bound of S, we
must have infX ≤ inf S. ■

Supremum or infimum may not exist even when upper or lower bounds exist. For example,
suppose X := R\{0} and S := {x ∈ R : x < 0}. Then, S ⊆ X, (X,≤) is a partially ordered set,
and, for example, 1 ∈ X is an upper bound of S. However, there is no least upper bound. Thus,
we say that a partially ordered set (X,≤) has the least upper bound (resp. greatest lower bound)
property if any nonempty subset of X bounded from above (resp. below) has a least upper (resp.
greatest lower) bound. We will study such sets in details in ECON 6701 in the context of lattices.
We also briefly mention a lemma that we will use a little later.

Lemma 1 (Zorn’s lemma). Suppose a partially order set (X,≥) has the property that every totally
ordered subset of X has an upper bound in X. Then, the set X contains at least one maximal
element.
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1.4 Functions

A function (or a mapping) f is a binary relation f from X to Y such that: ∀x ∈ X, (i) ∃y ∈ Y ,
(x, y) ∈ f ; and (ii) (x, y1), (x, y2) ∈ f ⇒ y1 = y2. That is, a function assigns a single element in Y
to every element in X. A function from X to Y is denoted

f : X → Y or f ∈ Y X

and the assigned element is denoted f(x). We call X as the domain and Y as the codomain of f .
If X = Y , then the function is a self-map on X.

The image of a set S ⊆ X under a function f : X → Y is

f (S) := {y ∈ Y : ∃s ∈ S, f (s) = y} .

The range of f : X → Y is the set of all values that f can generate in its codomain and is denoted
f(X). It is possible that f(X) ⊂ Y .

The graph of a function f : X → Y is defined

gr (f) := {(x, y) ∈ X × Y : y = f (x)} ,

The preimage (or the inverse image) of f : X → Y is defined as subset of the set of all elements in
the domain that maps to members of the codomain; i.e.,

f−1 (Y ) := {x ∈ X : f (x) ∈ Y } .

Proposition 5. Suppose f : X → Y , X1, X2 ⊆ X, and Y1, Y2 ⊆ Y .

(i) X1 ⊆ X2 ⇒ f(X1) ⊆ f(X2) and Y1 ⊆ Y2 ⇒ f−1(Y1) ⊆ f−1(Y2);

(ii) f(X1 ∪X2) = f(X1) ∪ f(X2);

(iii) f(X1 ∩X2) ⊆ f(X1) ∩ f(X2) (why not equal?);

(iv) f−1(Y1 ∪ Y2) = f−1(Y1) ∪ f−1(Y2);

(v) f−1(Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2) (why is this equal?);

(vi) f−1(Y \Y1) = X\f−1(Y ).

Exercise 6. In the previous proposition, given an example in which (iii) holds “strictly.” Prove
(v).

A function f : X → Y is:

• one-one or injective if every x ∈ X is assigned to a unique element in Y ; i.e.,

∀x1, x2 ∈ X, f (x1) = f (x2) ⇒ x1 = x2.

• onto or surjective if, for all y ∈ Y , there exists x ∈ X such that f(x) = y; i.e.,

f (X) = Y ;

• bijective if it is injective and surjective so that every element in the domain is mapped to a
unique element in the codomain;

• invertible if the inverse image mapping is a function from Y to X.
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Figure 1.1: Functions.
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(b) Not a function.
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(c) An injective (but not
surjective) function.
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(d) A surjective (but not
injective) function.
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Observe that preimage of f , f−1, may not be a function if multiple x’s are assigned to the same
element y ∈ Y . We say that a function f is invertible if its preimage is itself a function.

Proposition 6. A function is invertible if and only if it is bijective.

Exercise 7. Prove the proposition above.

Suppose S ⊆ X ⊆ Z and f : X → Y . The restriction of f to S is a function f |S : S → Y

defined as
f |S (s) := f (s) .

An extension of f to Z is a function f∗ : Z → Y such that f∗|X = f .
A projection from X×Y onto X is a function f : X×Y → X defined by f(x, y) := x. Similarly,

a projection from X × Y onto Y is a function f : X × Y → Y defined by f(x, y) := y.

Proposition 7. Suppose f : X → Y , A ⊆ X, and B ⊆ Y .

(i) f(f−1(Y )) = f(X) and f−1(f(X)) = X;

(ii) f(f−1(B)) ⊆ B with equality if f is surjective;

(iii) A ⊆ f−1(f(A)) with equality if f is injective.

Exercise 8. Prove the previous proposition.

Remark 2 (Cardinality of sets). For example, X = {1, 2, 3, 4} is numerically equivalent to Y =

{4, 7, 10, 13} under the (bijective) function f(x) = 3x+ 1. A set X is countable if it is numerically
equivalent to N and uncountable if it is not countable. Note Q is countable while R is uncountable.

1.4.1 Composition and arithmetic of functions

Given two functions f : X → Y and g : Y → Z, the composite function is a mapping from X to Z
defined as

g ◦ f := g (f (x)) ∀x ∈ X.

The composite operation is associative (i.e., (h ◦ g) ◦ f = h ◦ (g ◦ f)) but not commutative (i.e.,
g ◦ f ̸= f ◦ g).

If f, g : X → Y , then:

• the sum, denoted f + g, is defined by (f + g)(x) := f(x) + g(x);

• multiplication by a scalar constant, denoted λf with λ ∈ R, is defined by (λf)(x) := λf(x);

• the product, denoted fg, is defined by (fg)(x) := f(x)g(x);

• the quotient, denoted f
g , is defined by ( fg )(x) :=

f(x)
g(x) .
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1.4.2 Monotonicity

When both the domain and codomain of functions are ordered sets, we can talk about monotonicity
of a function.

Suppose (X,≥X) and (Y,≥Y ) are posets, then a function f : X → Y is

• weakly increasing (or nondecreasing) if ∀x, x′ ∈ X, x ≥X x′ ⇒ f(x) ≥Y f(x′);

• weakly decreasing (or nonincreasing) if ∀x, x′ ∈ X, x ≥X x′ ⇒ f(x) ≤Y f(x′);

• strictly increasing if ∀x, x′ ∈ X, x >X x′ ⇒ f(x) >Y f(x′);

• strictly decreasing if ∀x, x′ ∈ X, x >X x′ ⇒ f(x) <Y f(x′).

A monotone function is a function that is either weakly increasing or weakly decreasing. A strictly
monotone function is either strictly increasing or strictly decreasing.

1.4.3 Correspondence

A correspondence F is a binary relation F from X to Y such that: ∀x ∈ X, ∃y ∈ Y , (x, y) ∈ F .
That is, a correspondence assigns not-necessarily single elements Y to every element in X; it is a
generalisation of a function by removing the uniqueness requirement. A correspondence F from X

to Y is denoted
F : X ⇒ Y.

We will study correspondences in detail in ECON 6170.

1.5 Fields

The goal now is to formalise the idea of “numbers”. We want to allow for number system that allows
basic operations like addition and multiplication. We may define additions and multiplications as
binary operations, which are functions from X ×X to X.

A field is a 3-tuple (X,+, ·), where X is a set and +, · : X ×X → X that satisfy the following
properties:

• (Associativity) (x+ y) + z = x+ (y + z) and x · (y · z) = (x · y) · z ∀x, y, z ∈ X;

• (Commutativity) x+ y = y + x and x · y = y · x ∀x, y ∈ X;

• (Distributivity) x · (y + z) = x · y + x · z ∀x, y, z ∈ X;

• (Existence of identity elements) ∃!0, 1 ∈ X, x+ 0 = 0 + x = x and x · 1 = 1 · x = x ∀x ∈ X;

• (Existence of inverse elements) ∀x ∈ X, ∃!(−x) ∈ X, x + (−x) = (−x) + x = 0 and ∀x ∈
X\{0}, ∃!x−1. x · x−1 = x−1 · x = 1.

Given a field (X,+, ·), + is the addition operation and · is the multiplication operation. Given
a field (X,+, ·), we can define the subtraction operation as − : X × X → X such that x − y ≡
−(x, y) := x+(−y) and the division operation as ·

· : X ×X → X such that x
y ≡ ·

· (x, y) := x · y−1.7

We often simply say that X is a field without specifying + and ·.
Note that N is closed under the operations of addition and multiplication; i.e., the sum and

the product of any two natural numbers is a natural number. However, N is not closed under
subtraction and division (examples?). Z (unlike the natural numbers) is closed under subtraction,
but not division (check). Finally, the set of rational numbers, Q is closed under all four operations.

7Strictly speaking, ·
· is not a binary operation since 1/0 is not defined in X.
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Proposition 8. R and Q are fields while N and Z are not.

An ordered field is a 4-tuple (X,+, ·,≥) such that (X,+, ·) is a field and ≥ is a partial order on
X that is compatible with the operations + and · meaning

x ≥ y ⇒ x+ z ≥ y + z ∀x, y, z ∈ X,

x · z ≥ y · z ∀x, y, z ∈ X : z ≥ 0.

Given an ordered field, we define

X+ := {x ∈ X : x ≥ 0} , X− := {x ∈ X : x ≤ 0} ,
X++ := {x ∈ X : x > 0} , X−− := {x ∈ X : x < 0} .

In particular, we write Rn
+ to denote nonnegative real vectors with n ∈ N components, and Rn

++

to denote the set of vectors with n ∈ N components whose individual components are all strictly
positive.

Let (X,+, ·,≥) be an ordered field. Define the absolute value function, | · | : X → X, as

|x| :=
{
x if x ≥ 0,

−x if x < 0.

The following proposition tells us that the Triangle Inequality is derived from the properties of an
ordered field.

Proposition 9 (Triangle Inequality). Let (X,+, ·,≥) be an ordered field. Then,

|x+ y| ≤ |x|+ |y| ∀x, y ∈ X. (1.3)

Lemma 2. For any x, y, z ∈ X, (i) x+ y = x+ z ⇔ y = z; (ii) − (−x) = x; and (iii) − (x+ y) =

−x+−y.

Proof. (i) For any w ∈ X, we have w = 0 + w = (−x+ x) + w = −x+ (x+ w). Letting w = y, if
x+ y = x+ z, we obtain

y = −x+ (x+ y) = −x+ (x+ z) = (−x+ x) + z = 0 + z = z.

For the converse, follow the steps in reverse.
(ii)

x = x+ 0 = x+ (−x− (−x)) = (x+−x) +− (−x) = 0 +− (−x) .

(iii) Since the additive inverse of x+ y is unique, the claim follows since

(x+ y) + (−x+−y) = (x+ y) + (−y +−x)
= x+ (y + (−y +−x))
= x+ ((y +−y) +−x)
= x+ (0 +−x)
= x+−x = 0. ■

Proof of Proposition 9. We first show that (a) |x| ≥ x. If x ≥ 0, then |x| = x by definition. If
x < 0, then

|x| = −x ≡ 0 +−x ≥ x+−x ≡ 0 ≥ x.
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Next, we show that (b) x ≥ 0 ⇒ −x ≤ 0 and x ≤ 0 ⇒ −x ≥ 0. Suppose x ≥ 0, then

0 ≡ x+ (−x) ≥ 0 + (−x) ≡ −x.

Suppose instead x ≤ 0, then

0 ≡ x+ (−x) ≤ 0 + (−x) ≡ −x⇔ −x ≥ 0.

Next, we show that (c) x ≥ −|x|. If x ≥ 0 so that x = |x|, then x ≥ 0 ≥ −x = −|x|, where the
second inequality follows from (b). If x < 0, then |x| = −x so that x = −(−x) = −|x|, where we
used (ii) from Lemma 2.

We now show that (d) x ≥ y ⇒ −y ≥ −x .

x = x+ 0 = x+ (−y + y) ≥ y + (x+−x) = y + 0 = y

⇔ (x+ y)− y ≥ (x+ y) +−x = (y + x) +−x
⇔ −y ≥ −x,

where, in the last line, we used the (i) from Lemma 2.
We are now ready to prove the triangle inequality. It suffices to show that

|x|+ |y| ≥ x+ y and |x|+ |y| ≥ − (x+ y) .

By applying (a) twice,
|x|+ |y| ≥ x+ |y| ≥ x+ y.

Apply (c) twice gives

x+ y ≥ − |x|+ y ≥ − |x|+− |y| = − (|x|+ |y|) ,

where we used (iii) from Lemma 2 in the last equality. By (d) and (ii) from Lemma 2, we have

x+ y ≥ − (|x|+ |y|) ⇒ |x|+ |y| = − (− (|x|+ |y|)) ≥ − (x+ y) . ■

Corollary 1. Let (X,+, ·,≥) be an ordered field. Then, for any n ∈ N,

|x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn| ∀x1, . . . , xn ∈ X.

Proof. The inequality trivially holds if n = 1. For n ≥ 2, we prove this by induction on n. For
n = 2, we have already shown that the inequality holds. We now make the inductive hypothesis
that the inequality holds some arbitrary n > 2. Our goal is to to show that the expression holds
for n+ 1. Define zn := x1 + · · ·+ xn. By Proposition 9, since zn, xn+1 ∈ X,

|zn + xn+1| ≤ |zn|+ |xn+1| .

By the induction hypothesis, |zn| ≤ |x1|+ · · ·+ |xn| so that

|zn|+ |xn+1| ≤ |x1|+ · · ·+ |xn|+ |xn+1| .

Combining, we have that

|x1 + · · ·+ xn + xn+1| = |zn + xn+1| ≤ |x1|+ · · ·+ |xn|+ |xn+1| .

The desired result then follows by the Principle of Mathematical Induction.
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We also have the following (the second is called the reverse triangle inequality). ■

Proposition 10. Let (X,+, ·,≥) be an ordered field. Then, ∀x, y ∈ X, (i) |x · y| = |x| · |y|; and
(ii) |x− y| ≥ ||x| − |y||.

We can define operations on correspondences too. For example, the sumset of two sets X and
Y is defined as

X + Y := {x+ y : (x, y) ∈ X × Y } .

1.5.1 Real numbers, R

Recall the various sets of numbers:

N ⊂ Z ⊂ Q ⊂ R ⊂ C,

where C is the set of complex numbers, R is the set of real numbers, Q is the set of rational numbers
(i.e., numbers that can be expressed as fractions), Z is the set of integers, and N is the set of natural
numbers.8 You may know that there is a sense in which Q has “holes” and the set of real number,
R, is obtained by filling in these holes. We will not attempt to construct numbers formally, and
only note that the crucial difference between Q and R is the following.

Axiom 1 (Completeness Axiom). Every nonempty subset S of R that is bounded from above (resp.
below) has a supremum (resp. infimum) in R.

Given X ⊆ R, if X is not bounded above, we write supX = ∞. If X is not bounded below, we
write infX = −∞.

We have already noted that, (R,≥) is a total order and that (R,+, ·,≥) is an ordered field.
Thus, above tells us that R is a complete ordered field.

Proposition 11 (The Archimedean Property). For any (x, y) ∈ R × R++, there exists an n ∈ N
such that x < n · y.

Proof. By way of contradiction, suppose that the claim is false; i.e., ∃(x, y) ∈ R × R++ such that
x ≥ n ·y for all n ∈ N. In other words, there must exist y ∈ R++ such that {n ·y : n ∈ N} is bounded
from above (by x). But then s := sup{n · y : n ∈ N} would be a real number by the Completeness
Axiom. Since y > 0 and s is the least upper bound, it must be that s − y < s is not an upper
bound of {n · y : n ∈ N}; i.e., there exists an n∗ ∈ N such that s − y < n∗ · y ⇔ s < (n∗ + 1) · y,
which contradicts the choice of s as an upper bound. ■

We often use the Archimedean Property reformulated (check) as follows:

∀ϵ > 0, ∃n ∈ N,
1

n
< ϵ.

We say that E ⊆ R is dense in R, if an element of E lies between any two real numbers. The
Archimedean Property is used to establish that rational numbers are dense in real numbers.

Corollary 2. For any x, y ∈ R such that x < y, there exists q ∈ Q such that x < q < y.

Proof. Fix x, y ∈ R such that y > x. By the Archimedean Property (Proposition 11)—setting
y = y − x > 0 and x = 1—there exists an n ∈ N such that n(y − x) > 1 ⇔ ny > nx + 1.
Let m := min{k ∈ Z : k > na}.9 By definition, na < m and na ≥ m − 1 (why?) and so
na < m ≤ 1 + na < nb. Letting q := m

n and noting that q is rational completes the proof. ■
8I will use the convention that 0 /∈ N ≡ {1, 2, . . .}.
9One way to formally prove the existence of m is to prove that every nonempty subset of N that is bounded from

below has a minimum.
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Exercise 9. Let x, y ∈ R. Prove that, for all ϵ > 0, x ≤ y + ϵ⇒ x ≤ y.

Exercise 10. Let x, y ∈ R. Prove that, |x− y| ≤ ϵ for all ϵ > 0 implies x = y.

1.5.2 Extended real numbers

The extended real numbers is the set that contains R, −∞ and ∞, denoted

R := R ∪ {−∞,∞} .

We extend the total order ≥ of R to R by letting ∞ > −∞ and ∞ > x > −∞ for all x ∈ R.
Thus, (R,≥) is a totally ordered set. The benefit from doing so is that every subset S in R has an
infimum and a supremum. We can extend the standard operations of addition and multiplication
to R: for any x ∈ R,

x+∞ := ∞ =: ∞+ x, ∞+∞ := ∞,

x−∞ := −∞ =: −∞+ x, −∞+−∞ := −∞,

x · ∞ :=

{
∞ if 0 < x ≤ ∞
−∞ if −∞ ≤ x < 0

=: ∞ · x,

x · (−∞) :=

{
−∞ if 0 < x ≤ ∞
∞ if −∞ ≤ x < 0

=: (−∞) · x.

Note that +∞ and −∞ are not real numbers. Thus, statements on real numbers do not (automat-
ically) extend to them. Plausible facts like x+∞ = ∞, (−∞) + (−∞) = −∞, etc. are true in R.
However, expressions like +∞+ (−∞), ∞ · 0, etc. are left undefined (just like 1/0 is undefined in
R). Consequently, R is not a field.

1.5.3 Intervals

For any x, y ∈ R, with x < y, we can define the following intervals:

(x, y) {z ∈ R : x < z < y} , (x, y] := (x, y) ∪ {y} ,
[x, y] := {z ∈ R : x ≤ z ≤ y} , [x, y) := {x} ∪ (x, y) .

We refer to (x, y) as an open interval, (x, y] and [x, y) as semi-open (or half-open) intervals, and
[x, y] as a closed interval. A set S ⊆ R is open if, for each x ∈ S, there exists r > 0 such that
(x− r, x+ r) ⊆ S. We will generalise these concepts when we go over topology.

Real intervals are bounded and of length given by the difference. An interval is nondegenerate
if y − x > 0. We assume that intervals are nondegenerate whenever we write (x, y), (x, y] or [x, y).
Unbounded intervals are defined as

(x,∞) := {z ∈ R : z > x} , [x,∞) := {x} ∪ (x,∞) ,

(−∞, y) := {z ∈ R : z < y} ,(−∞, y] := (−∞, y) ∪ {y} .

Note that

sup (−∞, y) = sup (x, y) = sup (x, y] = y,

inf (x,∞) = inf (x, y) = inf [x, y) = x.

The Completeness Axiom says that every nonempty subset S of R that fits in an interval of finite
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length has both an infimum and a supremum. Conversely, if S does not fit in any interval of the
form (−∞, b), then supS does not exist and we write supS = ∞. Similarly, if S does not fit in the
interval of the form (x,∞), then inf S does not exist and we write inf S = −∞.

As we will study more in ECON 6701, an interval that is both closed and bounded are compact.

1.5.4 Rn

Consider R2 and define the additive and multiplicative operator as

x+ y ≡ +(x, y) := (x1 + y1, x2 + y2) ,

x · y ≡ · (x, y) := (x1y1 − x2y2, x1y2 + x2y1) ,

we can show that (R2,+, ·) is a field, with the additive identity (0, 0), the multiplicative identity
(1, 0), the additive inverse (of x) as (−x1,−x2), and the multiplicative inverse (of x) ((x1 + x2 · x2 ·
x−1
1 )−1,−x2x−1

1 (x1 + x2 · x2 · x−1
1 )−1).10 Note that this allows complex numbers, C, to be a field.

However, it turns out that generalisation of the example above is not possible. We will simply
state the following result.

Proposition 12. Rn cannot be a field for any n > 2 with n ∈ N.

This fact motivates us to generalise fields to linear spaces so that we can deal with Rn.

1.6 Complex numbers

While it is somewhat rare, complex numbers do pop up in economics such as when studying the
stability of dynamic systems in macroeconomics and in econometrics. Let us go over complex
numbers briefly.

Consider the equation x2 + 1 = 0 which has no solutions in real numbers. We know that a
quadratic equations generally have 0, 1 or 2 solutions. What complex numbers allows us to do
(among other things!) is to think that quadratic equations always have two solutions. We do so
by extending the of real numbers. Let i denote the solution to i2 = −1. With this notation, it is
clear that the equation x2 + 1 = 0 has exactly two solutions, x = i and x = −i. More generally, a
complex number is a number of the form a + ib, for any a, b ∈ R. The set of all complex numbers
if denoted C.

Two complex numbers are added or multiplied term by term using the usual rules of algebra,
remembering that i2 = −1.

Example 6. Let z := a+ bi and w := c+ di. Then,

z + w = (a+ c) + (b+ d) i,

−w = −c− di

z − w = (a− c) + (b− d) i

zw = (a+ bi) (c+ di) = ac+ adi+ bci+ bdi2

= (ac− bd) + (adi+ bc) ,

10The multiplicative operator cannot be defined as a dot product operator (i.e., x · y ̸= x1y1 + x2y2) since the
result would be in R and not R2 (recall multiplicative operator is a function from R2 × R2 to R2). Similarly,
x · y = (x1 · y1, x2 · y2) is not a valid operator since (0, 1) would not have a multiplicative inverse. To see this, first
observe that the multiplicative identity must be (1, 1). Then, for (y1, y2) to be the multiplicative inverse of (0, 1), it
implies a contradiction since

(1, 1) = (0, 1) · (y1, y2) = (0, y2) ⇒ 1 = 0.
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and finally
z = w ⇔ (a = c) ∧ (b = d) .

Every complex number z = a+ bi can be represented by a point (a, b) in the (x, y) plane called
complex plane, where the x-axis corresponds to the real part (a) and y-axis corresponds to the
imaginary part (b). The point (a, b) can be expressed in polar coordinates; i.e., by a pair ⟨r, θ⟩,
where r is the distance from the origin to the point (a, b) and θ is the angle, measured in radians,
relative to the x-axis. Recalling some trigonometry gives that

a = r cos θ and b = r sin θ.

Note that
a2 + b2 = r2 cos2 θ + r2 sin2 θ = r2

(
cos2 θ + sin2 θ

)
︸ ︷︷ ︸

=1

= r2

and so r =
√
a2 + b2. Moreover,

b

a
=
r sin θ

r cos θ
= tanθ ⇔ θ = arctan

(
b

a

)
.

Since θ ≡ θ+2kπ for any k ∈ Z, we usually define the principal value of the argument to lie in the
range 0 ≤ θ < 2π. Using polar coordinates, one can show that, given z1 = ⟨r1, θ1⟩ and z2 = ⟨r2, θ2⟩

z1z2 = ⟨r1r2, θ1 + θ2⟩
z−m
1 =

〈
r−m
1 ,−mθ1

〉
∀m ∈ N,

z1
z2

=

〈
r1
r2
, θ1 − θ2

〉
.

Note that (these are called Maclauren series—infinite Taylor expansions)

ex = 1 + x+
x2

2!
+ · · · ,

cosx = 1− x2

2!
+
x4

4!
− · · · ,

sinx = x− x3

3!
+
x5

5!
− · · · .

For z ∈ C, define

ez := 1 + z +
z2

2!
+ · · · .

If we now write z = iθ (where θ ∈ R), then

eiθ = 1 + iθ +
(iθ)

2

2!
+ · · · = cos θ + i sin θ,

which is known as the Euler’s formula. In this way, any complex number z = r(cos θ+sin θ) can be
written as z = reiθ which allows us to use the usual laws of algebra to obtain the rules of algebra
above (with polar coordinates).
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2 Structures on spaces

A space is another word for a set, which itself is just a collection of objects. Here, we will introduce
various structures we can place on sets. We will first introduce the concept of a linear structure and
study linear spaces (sometimes called vector spaces). We also briefly introduce a metric structure
to introduce distance between objects into a space (not necessarily linear). We then explore further
structure that we can place on linear spaces: a norm structure, which gives us the concept of size of
objectives, and an inner product structure, which gives us the concept of angles. We will find that
every inner product space is a normed space, which, in turn, is a metric space. Note that a metric
space need not be linear while normed and an inner product spaces are defined on a linear spaces.
Finally, we introduce topology, which gives us a way to think about neighbourhoods of elements of
the space.

2.1 Linear space

We have already seen that Rn can be endowed with an order structure so that any two elements can
be meaningfully compared. We also saw that R has a “linear” (i.e., algebraic) structure meaning
that we can add and multiply any two elements.11 However, we saw that Rn is not a field in
general which makes us wonder whether Rn has a linear structure. We will see here that Rn is also
endowed with a linear structure in the sense that we can “add” and “scale” any two elements. We
will formalise the “linearity” using the concept of a linear space (of which Rn would be an example).

A linear space (or a vector space) over a field F is a 4-tuple (V, (F,+F , ·F ),+, ·), where V is the
set of elements called vectors, (F,+F , ·F ) is a field, a binary operation + : V ×V → V called vector
addition, and a binary operation · : F × V → V called scalar multiplication such that

• (Closure) x+ y ∈ V ∀x,y ∈ V and λ · x ∈ V ∀x ∈ V ∀λ ∈ F ;

• (Associativity) (x+ y) + z = x+ (y+ z) ∀x,y, z ∈ V , and (λ ·F β) · x = λ · (β · x) ∀λ, β ∈ F

∀x ∈ V ;

• (Commutativity) x+ y = y + x ∀x,y ∈ V ;

• (Distributivity) λ · (y + z) = λ · y + λ · z ∀x,y ∈ V ∀λ ∈ F , and (λ +F β) · x = λ · x + β · x
∀λ, β ∈ F ∀x ∈ V ;

• (Existence of identity) ∃!0 ∈ V , x+ 0 = 0+ x = x and ∃1 ∈ F , 1 · x = x ∀x ∈ V ;

• (Existence of additive inverse) ∀x ∈ V , ∃!(−x) ∈ V , x+ (−x) = 0.

We express elements of linear space V in bold,12 and say that V is a linear space without specifying
F , +F and ·F . We also often do not distinguish between +F and + or ·F and ·. We refer to 0 as
the origin or the zero vector, and refer to any x ∈ V \{0} as a nonzero vector.

We can define vector subtraction as − : V × V → V such that x− y ≡ −(x,y) := x+ (−y) and
scalar division as ·

· : F × V → V such that x
λ ≡ ·

· (λ,x) := λ−1 · x. Note also that: (i) 0 is unique
(why?); (ii) (−x) is unique for all x ∈ V ; (iii) −x = (−1) ·x ∀x ∈ V ; and (iv) 0 ·x = 0 ∀x ∈ V and
λ · 0 = 0 ∀λ ∈ F .

Example 7. A trivial example of a linear space is the set {0}, which is a single set consisting of
the origin. Any linear space that contains more than one vector is nontrivial.

11By linear, we mean that we can add and scale elements.
12You might see x⃗ instead of x.
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Example 8. A familiar example of a linear space is the Euclidean space, (Rn,+, ·), where the
vector addition and scalar multiplication are defined in a component-by-component manner. i.e.,
∀x,y ∈ Rn, λ ∈ R ,

(x1, . . . , xn) + (y1, . . . , yn) ≡ x+ y := (x1 + y1, . . . , xn + yn) ,

λ · (x1, . . . , xn) ≡ λ · x := (λ · x1, . . . , λ · xn) .

However, note that Rn
++ is not a linear space (does not contain the origin) nor is Rn

+ a linear space
(since, under the usual operations, it does not contain additive inverse for nonzero vectors).

Example 9. Given a nonempty set X, and the set of all real-valued functions on X,

V :=
{
f : f ∈ RX

}
,

is a linear space with

(f + g) (x) := f (x) + g (x) ,

(λf) (x) := λ · f (x) ,
(0) (x) := 0,

(−f) (x) := −f (x) .

We will see that sequences and and matrices are both real-valued functions, it follows that the set
of all sequences and the set of all matrices are both linear spaces.

Given a linear space (V, (F,+F , ·F ),+, ·), a (resp. proper) subset S of V is a (resp. proper)
linear subspace of (V, (F,+F , ·F ),+, ·) if (S, (F,+F , ·F ),+|S , ·|S) is a linear space. For an example
of S ⊆ V that is not a linear subspace, let V = Rn and S be any subset such that 0 /∈ S. The
following gives us a quick way to check whether a subspace is linear.

Proposition 13. Let (V, (F,+F , ·F ),+, ·) be a linear space and S be a nonempty (resp. proper)
subset of V . Then, (S, (F,+F , ·F ),+|S , ·|S) is a (resp. proper) linear subspace of V if and only if
α · x+ β · y ∈ S ∀α, β ∈ F ∀x,y ∈ S.

From the proposition above, it is immediate that [0, 1] is not a linear subspace of R (why?)
whereas {x ∈ R2 : x1 + x2 = 0} is a linear subspace of R2.

Given Y and Z that are subspaces of a linear space (V, (F,+F , ·F ),+, ·), the sum space of Y
and Z, denoted Y + Z, is given by

Y + Z := {y + z : y ∈ Y, z ∈ Z} .

Further, if Y ∩ Z = {0}, then the sum space is called a direct sum of Y and Z and is denoted
Y ⊕ Z. Any x ∈ Y ⊕ Z has a unique representation as x = y + z where y ∈ Y and z ∈ Z.

Proposition 14. Intersections and sum space of linear subspaces are a linear subspaces.

Exercise 11. Show that a union of linear subspaces need not be a linear subspace.

From now on, unless otherwise specified, assume if F = R, +R and ·R are the usual addition and
multiplication operators on R. Whenever the underlying field of a linear space is R (i.e., a linear
space is over R), we will simply write (V,+, ·).

- 26 -



Math Review 2024

2.1.1 Linear, affine and convex combinations

Given a linear space (V,+, ·) and (xi) ∈ V∞, define, ∀n ∈ N,

n∑

i=1

xi := x1 + · · ·+ xn,

n∑

i=k

xi :=

n−k+1∑

i=1

xi+k−1.

Given a linear space (V,+, ·) and vectors x1, . . . ,xn ∈ V for some n ∈ N, a linear combination of
x1, . . . ,xn is a vector λ1 · x1 + · · ·+ λn · xn for some coefficients of linear combination λ1, . . . , λn ∈
R. An affine combination of x1, . . . ,xnis a linear combination of x1, . . . ,xn for some coefficients
λ1, . . . , λn ∈ R (i.e., weights can be negative) such that

∑n
i=1 λi = 1. A convex combination of

x1, . . . ,xn is a linear combination of x1, . . . ,xn for some coefficients λ1, . . . , λn ∈ R+ (weights must
be nonnegative) such that

∑n
i=1 λi = 1.

2.1.2 Span, affine, and convex hull

Let (V,+, ·) be a linear space. Fix a nonempty subset S of V .
The span of S, denoted span(S), is the set of all linear combinations of (finitely many) elements

of S; i.e.,13

span (S) :=

{
n∑

i=1

λixi : n ∈ N and (xi, λi) ∈ S × R ∀i ∈ {1, . . . , n}
}
.

Note that span(∅) = span({0}) = {0}, span(V ) = V and span({x}) = {λ · x : λ ∈ R}. Say that a
set S spans a set E if E = span(S). It follows from Proposition 13 that span(S) is a linear subspace
(why?) and we refer to it as the linear subspace spanned (or generated) by S.

The affine hull of S, denoted aff(S), is the set of all affine combinations of (finitely many)
elements of S; i.e.,

aff(S) :=

{
n∑

i=1

λixi : n ∈ N and (xi, λi) ∈ S × R ∀i ∈ {1, . . . , n} with
n∑

i=1

λi = 1

}
.

Note aff(∅) = {0}. Note that aff(S) need not be a linear subspace. However, for all x ∈ S,

aff (S) = span (S − {x}) + {x}
≡ {y + x : y ∈ span ({s− x : s ∈ S})} .

That is, if we translate vectors in S by a vector −x ∈ S, then its span is equal to the affine hull
of S translated by −x. Since span(S − {x}) is a linear subspace, we also realise that aff(S) is a
translation away from being a linear subspace.

The convex hull of S, denoted co(S), is the set of all convex combinations of (finitely many)
elements of S; i.e.,

co (S) :=

{
n∑

i=1

λixi : n ∈ N and (xi, λi) ∈ S × R+ ∀i ∈ {1, . . . , n} with
n∑

i=1

λi = 1

}
.

13Equivalently, span(S) is the smallest linear subspace that contains S; i.e.,

span (S) ≡
⋂

{W : (W is a linear subspace of V ) ∧ (S ⊆W )} .
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2.1.3 Convex sets

A subset S of a linear space (V,+, ·) is convex if it contains all convex combinations of pairs in S;
i.e.,

S ⊆ V convex ⇔ λS + (1− λ)S = S ∀λ ∈ [0, 1] .

Here are some properties of convex sets.

Proposition 15. Suppose (Sα)α∈A is a collection of convex sets in a linear space (V,+, ·). Then,⋂
α∈A Sα is convex.

Proof. Take any s1, s2 ∈ S :=
⋂

α∈A Sα so that s1, s2 ∈ Sα for all α ∈ A. Since each Sα is convex,
any convex combination of s1 and s2 are also in each Sα and are also in S. ■

Exercise 12. Suppose S1 and S2 are both convex subsets in a linear space (V,+, ·). Then, S1+S2

is convex.

Proposition 16. Let S ⊆ X be a subset in a linear space (V,+, ·). S is convex if and only if it
contains all convex combinations of elements in S.

Proof. We prove this by induction on n. For n = 1, then since s = 1 · s ∈ S for all s ∈ S, convex
combination of n = 1 element is contained in S. Make the induction hypothesis that S contains
convex combinations of n elements. We wish to show that S also contains convex combinations of
n+ 1 elements. The Principle of Mathematical Induction will take care of the rest.

s =

n+1∑

i=1

λisi

be a convex combination of n+ 1 elements in S so that
∑n+1

i=1 λi = 1. Since

s :=

n+1∑

i=2

λi∑n+1
j=2 λj

si

is a convex combination of n elements in S, s ∈ S by the induction hypothesis. Then,

s = λ1s1 +

(
n+1∑

i=2

λi

)
n+1∑

j=2

λj∑n+1
i=2 λi

sj

= λ1s1 +

(
n+1∑

i=2

λi

)
s = λ1s1 + (1− λ1) s.

Thus, by definition of a convex set, s ∈ S. ■

2.1.4 Algebraic and relative interior

Consider the interval (0, 1) in R and a point x ∈ (0, 1). Observe that some part of the line segment
between x and any other point in R (excluding the endpoint x) is contained (0, 1); i.e., for any
x ∈ (0, 1) and any y ∈ R, there exists z ∈ co({x, y})\{x} such that co({x, z}) ⊆ (0, 1). In this
sense, all points of (0, 1) are in the “interior” of (0, 1). However, we could not do the same for
(0, 1]—the line segment between x = 1 and z = 2, say, intersects (0, 1] at only at the end point 1.

To formalise this idea, let S be a subset of a linear space (V,+, ·). An element x ∈ S is an
algebraic interior point of S (in V ) if, for any y ∈ V , there exists an αy > 0 such that

(1− α)x+ αy ∈ S ∀0 ≤ α ≤ αy.
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The set of all algebraic interior points of S in V is called the algebraic interior of S (in V ) and
is denoted al-intV (S). If S ⊆ al-intV (S), then we say that S is algebraically open in V . If x ∈
al-intV (S), then one can move linearly from x towards any direction in the linear space V without
leaving the set S immediately.

The natural “mother space” of a convex set is its affine hull. In particular, if S is a subset of
a linear space V with 0 ∈ S, then we do not need vectors in V \span(S). But nothing changes
if we drop the assumption that 0 ∈ S except that we should now consider aff(S) (why?). Thus,
the algebraic interior of a subset S of a linear space relative to its affine hull, aff(S), is of primary
importance in convex analysis.

An element x ∈ S is an relative interior point of S if, for any y ∈ aff(S), there exists an αy > 0

such that
(1− α)x+ αy ∈ S ∀0 ≤ α ≤ αy.

The set of all relative interior points of S in V is called the relative interior of S (in V ) and is
denoted ri(S). If S ⊆ ri(S), then we say that S is relatively open. If x ∈ ri(S), then one can move
from x towards any direction in aff(S) without leaving the set S immediately.

Note that

al-intV (S) =

{
ri (S) if aff (S) = V

∅ if aff (S) ⊂ V
.

The first case is obvious (is it?) and so we focus on the latter case. So suppose aff(S) ⊂ V and
take any x∗ ∈ S and let Y := span(S − {x∗}) = aff(S)− {x∗}. That aff(S) is a proper subset of V
means that Y is a proper linear subspace of V . Thus, we can find w ∈ V \Y and notice that

(1− α) z+ αw /∈ Y ∀z ∈ Y ∀α ∈ (0, 1];

otherwise, we would contradict w /∈ Y . But then

(1− α) (z+ x∗) + α (w + x∗) /∈ Y + {x∗} = aff (S) ∀z ∈ Y ∀α ∈ (0, 1].

Letting y = w + x∗, therefore, we find (1 − α)x + αy /∈ Y for any x ∈ S and any 0 < α ≤ 1; i.e.,
al-intV (S) = ∅.

2.1.5 Ray, half lines, cones, and conical hull

A subset of a linear space (V,+, ·) is a ray if it is a set of nonnegative multiples of some vector; i.e.,
{αx : α ∈ R+) for some x ∈ V . A half line is a translation of a ray; i.e., {αx : α ∈ R+}+ {x0} for
some x,x0 ∈ V . A cone is a set that contains all of its rays; i.e.,

S ⊆ V cone ⇔ αx ∈ S ∀α ∈ R+ ∀x ∈ S.

A set S ⊆ V is convex cone if it is both convex and cone.

Proposition 17. A convex cone contains all nonnegative (finite) linear combinations of its ele-
ments.

Proof. Let S be a convex cone in a linear space (V,+, ·). Take an arbitrary nonnegative linear
combinations of elements in S,

x =

n∑

i=1

λisi

for some n ∈ N, (λi)
n
i=1 ∈ Rn

+ and {s1, . . . , sn} ⊆ S. We wish to show that x ∈ S. If λ1 =

· · · = λn = 0, then x = 0 = λs for any s ∈ S; i.e., x ∈ S. If (λi)
n
i=1 is a nonzero vector, then
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λ :=
∑n

i=1 λi > 0. Then,

x =

n∑

i=1

λi
λ

(λsi) .

Since S is a cone, λsi ∈ S and, by construction,
∑n

i=1 λi/λ = 1. Hence, x is a convex combination
of elements in S; i.e., x ∈ S. ■

The convex conical hull of S, denoted coni(S), is the set of all nonnegative linear combinations
of (finitely many) elements of S; i.e.,

coni (S) :=

{
n∑

i=1

λixi : n ∈ N and (xi, λi) ∈ S × R+ ∀i ∈ {1, . . . , n}
}
.

2.1.6 Linear dependence and independence

Fix a linear space (V,+, ·). A subset S ⊆ V is linearly dependent in V if it either equals {0} or
at least one of the vectors, say x ∈ S, can be expressed as a linear combination of finitely many
vectors in S\{x}. For any n ∈ N, any distinct vectors x1, . . . ,xn ∈ V are linearly dependent if
{x1, . . . ,xn} is linearly dependent in V . The following is immediate from the definition of span.

Proposition 18. Given a linear space (V,+, ·), a subset S of V \{0} is linearly dependent in V if
and only if there exists an x ∈ S such that x ∈ span(S\{x}).

A subset S ⊆ V is linearly independent in V if no finite subset of it is linearly dependent in
V . For any n ∈ N, the vectors x1, . . . ,xn ∈ V are linearly independent if {x1, . . . ,xn} is linearly
independent in V .

Proposition 19. Given a linear space (V,+, ·), for any n ∈ N, vectors x1, . . . ,xn ∈ V are linearly
independent if and only if ∀(λi)ni=1 ∈ Rn,

n∑

i=1

λixi = 0 ⇒ λ1 = · · · = λn = 0.

Proof. Fix some n ∈ N. (Sufficiency) Suppose that vectors x1, . . . ,xn ∈ V are linearly independent.
By way of contradiction, suppose there exists (λi)ni=1 ∈ Rn such that

∑n
i=1 λixi = 0 but λj ̸= 0 for

some j ∈ {1, . . . n}. Then,

λjxj = −
∑

i ̸=j

λixi ⇔ xj =
∑

i ̸=j

(
−λi
λj

)
xi.

That is, xj can be expressed as a linear combination of {x1, . . . ,xn}\{xj}, which contradicts the
hypothesis that x1, . . . ,xn are linearly independent.

(Necessity) Suppose that ∀(λi)ni=1 ∈ Rn,
∑n

i=1 λixi = 0 implies that λ1 = · · · = λn = 0. Toward
a contradiction, suppose that x1, . . . ,xn is not linearly independent. Without loss of generality, we
may assume that there exists (µi)

n−1
i=1 ∈ Rn−1 such that

xn =

n−1∑

i=1

µixi ⇔ 0 =

n−1∑

i=1

µixi − xn =

n∑

i=1

µixi,

where the last equality follows by defining µn := −1. But above contradicts the hypothesis that
implies that µn = 0. ■
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Note that the empty set ∅ and any singleton set except for {0} are linearly independent set in
any linear space.

The proposition above tells us that there is at most one way of expressing vectors as a linear
combination of linearly independent vectors.

Corollary 3. Given a linear space (V,+, ·), suppose that x1, . . . ,xn ∈ V are linearly independent.
Let (λi)

n
i=1, (µi)

n
i=1 ∈ Rn.

n∑

i=1

λi · xi =

n∑

i=1

µi · xi ⇒ λi = µi ∀i ∈ {1, . . . , n} .

Proof. Follows from Proposition 19 and the observation that

n∑

i=1

λi · xi =

n∑

i=1

µi · xi ⇔
n∑

i=1

(λi − µi) · xi = 0. ■

The following fundamental result about linear dependency is that there cannot be more than n
linearly independent vectors in a linear space spanned by n vectors.

Proposition 20. Suppose (V,+, ·) is a linear space and X,Y ⊆ V . If Y is linearly independent in
V and Y ⊆ span(X), then |Y | ≤ |X|.

Proof. Suppose (V,+, ·) is a linear space and X,Y ⊆ V and that Y is linearly independent in V

and Y ⊆ span(X). If X = ∅, then span(X) = {0} and so Y ∈ {∅, {0}}. Since Y must be linearly
independent, it must be Y = ∅ ⇒ |Y | = 0 so the claim follows. Similarly if |X| = ∞, then there is
nothing to prove. Suppose that n := |X| ∈ N and write X ≡ {x1, . . . ,xn}. Toward a contradiction,
suppose that |Y | > n. Take any y1 ∈ Y . By linear independence of Y ≡ {y1, . . . ,ym} (m > n),
y1 ̸= 0. Since y1 ∈ span(X), there exists nonzero (λ1i )

n
i=1 ∈ Rn such that

y1 =

n∑

i=1

λ1ixi.

Let λ11 be the nonzero coefficient, then

x1 =
1

λ11
y1 +

n∑

i=2

(
−λ

1
i

λ11

)
xi

so that x1 can be expressed as a linear combination of y1,x2, . . . ,xn, and any linear combination
of x1, . . . ,xn can be expressed as a linear combination of y1,x2, . . . ,xn by replacing x1 with the
expression above. Thus,

span ({y1,x2, . . . ,xn}) = span (X) .

Next, we take y2 ∈ span(X) which is nonzero by the linear independence of Y and

y2 =

n∑

i=1

λ2ixi = λ21

(
1

λ11
y1 +

n∑

i=2

(
−λ

1
i

λ11

)
xi

)
+

n∑

i=2

λ2ixi

=
λ21
λ11

y1 +

n∑

i=2

λ21

(
λ2i −

λ1i
λ11

)
xi

for some nonzero (λ2i )
n
i=1 ∈ Rn. Since Y is linearly independent, it cannot be that the only nonzero

coefficient is that for y1. Hence, we may pick a nonzero coefficient and call it the coefficient on
x2. Rearranging the expression above shows that x2 can be expressed as a linear combination of
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y1,y2,x3, . . . ,xn so that
span ({y1,y2,x3, . . . ,xn}) = span (X) .

Repeating the same process successively, we can find vectors y1, . . . ,yn such that

span ({y1, . . . ,yn}) = span (X) .

This means that, any y ∈ Y \{y1, . . . ,yn} (and such y exists since |Y | > n) can be written as a
linear combination of {y1, . . . ,yn}; contradicting the linear independence of Y . ■

2.1.7 Basis

We want to think of a minimum set of vectors that allows us to construct a given linear space. We
call such a set a basis. Formally, a (Hamel) basis of a linear space (V,+, ·) is the smallest subset of
V that spans V ; i.e., S is a basis of (V,+, ·) if (i) V = span(S); and (ii) V = span(T ) implies T ⊂ S

is false. The following proposition allows us to replace condition (ii) with linear independence, and
this is the definition you often find.

Proposition 21. A subset S of a linear space (V,+, ·) is a basis for V if and only if S is linearly
independent and V = span(S).

Proof. (Sufficiency) Suppose that S ≡ {s1, . . . , sn} is linearly independent and V = span(S). To
show that S is a basis for V , it suffices to show that for any T ≡ {t1, . . . , tm} such that V = span(T ),
we have that ¬(T ⊂ S). Toward a contradiction, suppose that ti ∈ S for all i = {1, . . . ,m} and
suppose for some sj /∈ T—without loss, we may assume that s1 /∈ T . These imply that every
ti equals some sj ̸= s1; i.e., there exists f : {1, . . . ,m} → {2, . . . , n} such that ti = sf(i) for all
i ∈ {1, . . . ,m}. Since span(S) = V = span(T ), s1 ∈ span(T ); i.e., there exists nonzero (γi)

n
i=1 ∈ Rn

such that

s1 =

m∑

i=1

γiti =

m∑

i=1

γisf(i).

But this implies that s1 is a linear combination of {s2, . . . , sn} = S\{s1}, which contradicts the fact
that S is linearly independent.

(Necessity) Suppose that S is a basis for V . Then, by definition, V = span(S) and so it
remains to show that S is linearly independent. Toward a contradiction, suppose that S is linearly
dependent; i.e., there exists x ∈ S such that x ∈ span(S\{x}). But this implies that span(S\{x}) =
span(S) = V and we also have S\{x} ⊂ S; the latter contradicts condition (ii) in the definition of
basis. ■

Since V = span(S), any x ∈ V can be expressed as a linear combination of vectors in S :=

{s1, . . . , sn}. That is,

∀x ∈ V, ∃(λi(x))ni=1 ∈ Rn, x =

n∑

i=1

λi(x)si.

We think of (x)S := (λi(x))
n
i=1 as the coordinate of the vector x relative to the basis S. Moreover,

the fact that S is linearly independent means, by Corollary 3, that coordinate of each x ∈ V is
unique.

For any n ∈ N and i ∈ {1, . . . , n}, the ith unit vector in Rn, denoted by, ei, is the n-vector
whose ith term equals 1 and whose all other terms equal 0. Since S = {ei : i ∈ {1, . . . , n}} is
linearly independent and span(S) = Rn, it is a basis, and in fact, we refer to it as the canonical
basis of the linear space (Rn,+, ·). However, basis of Rn is not unique, and, in fact, any linearly
independent set of vectors of cardinality n is a basis of Rn. Nevertheless, the following result tells
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us that any basis has the same number of elements; i.e., coordinate of the vector any x ∈ V has
the same number of elements.

Exercise 13. Any two bases of a finite-dimensional linear space have the same number of elements.

We define the rank of S ⊆ V , denoted rank(S), as the cardinality of any one if its basis. Rank
of the whole linear space is the dimension, denoted dim(V ) := rank(V ). We say that a linear space
(V,+, ·) is dim(V ) dimensional. If dim(V ) is not finite, we refer to V as being infinite dimensional
and write dim(X) = ∞. The trivial linear space {0} has a dimension of 0.

Theorem 1. Every linear space has a basis.

Proof. When the linear space has a finite dimension, the result follows from the definition. The
proof is a little more complicated when the linear space is infinite dimensional and relies on Zorn’s
lemma (Lemma 1). Let (*) denote the property of a set that any finite subset of itself is linearly
independent. Define a partial orderer (P,⊇) as

P :=
{
S ∈ 2V : S satisfies (*)

}
.

To be able to apply Zorn’s lemma, we show that every totally ordered subset of P has an upper
bound (in P ). Fix any T ⊆ P that is a totally ordered set. Define M :=

⋃
S∈T S. Then, M is an

upper bound of T since
M ⊇ B ∀B ∈ T.

It remains to show that M ∈ P ; i.e., we must verify that M satisfies (*). Take any m1, . . . ,mn ∈M

for some n ∈ N. By definition of M , there exists B1, . . . , Bn ∈ T such that

mi ∈ Bi ∀i ∈ {1, . . . , n} .

Since T is a totally ordered set, there exists Bk for some k ∈ {1, . . . , n} such that

Bk ⊇ Bi ∀i ∈ {1, . . . , n} ⇒ m1, . . . ,mn ∈ Bk.

Moreover, since Bk ∈ T ⊆ P , Bk satisfies (*). Thus, m1, . . . ,mn are linearly independent. Since
m1, . . . ,mn was arbitrary, it follows that M ∈ P .

By Zorn’s lemma, we may conclude that there exists S ∈ P that is maximal and, by construction,
S satisfies (*). To show that S is a basis, it suffices to show that any vector in V can be written as
a finite linear combination of vectors in S. Fix any x ∈ V and let S̃ = S ∪ {x}.

• Case 1: x ∈ S. Then, x is a linear combination of elements of S trivially and we are done.

• Case 2: x ∈ V \S. Then, S ⊂ S̃, which implies that S̃ /∈ P by the maximality of S. Thus,
there exists a finite subset of S that is not linearly independent. By Proposition 19, this
means that there exists s1 . . . , sn ∈ S̃ such that

n∑

i=1

λisi = 0 (2.1)

for some (λi)
n
i=1 ∈ Rn with λj ̸= 0 for some j ∈ {1, . . . , n}.

• Subcase a: s1 . . . , sn ∈ S. This is not possible since S satisfies (*) so that (2.1) implies
λ1 = · · · = λn = 0 by Proposition 19.

• Subcase b: for some sj , x = sj /∈ S and si ∈ S for all i ∈ {1, . . . , n}\{j}. Without loss
of generality, suppose j = 1. Note that λ1 ̸= 0, otherwise, we would have

∑n
i=2 λisi =
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0 from (2.1) and Proposition 19 together with the fact that s2, . . . , sn ∈ S (so that
s2, . . . , sn are linearly independent) implies λ2 = · · · = λn = 0, which contradicts the
fact that λj ̸= 0 for some j ∈ {1, . . . , n}. Since λ1 ̸= 0, we may rearrange (2.1) to obtain

x = s1 =

n∑

i=2

(
− λi
λ1

)
si;

i.e., x is a linear combination of vectors in S.

Note that a Hamel basis need not be countable. ■

Corollary 4. Let (V,+, ·) be a finite-dimensional linear space and let (S,+|S , ·|S) be its linear
subspace. Then,

dimS ≤ dimV

and the inequality is strict if S is a proper subspace.

Proof. Suppose S ⊆ V . By Theorem 1, V and S have bases and denote them, respectively, by BV

and BS . Since BS is linearly independent by Proposition 21 and every s ∈ S can be expressed as
a linear combination of BV , we have BS ⊆ span(BV ). Then, by Proposition 20,

dim (S) = |BS | ≤ |BV | = dim (V ) .

Now suppose that S ⊂ V . Thus, there exists x ∈ V such that x /∈ S. Letting BS denote a basis
for S. The claim is that BS ∪ {x} is linearly independent. Suppose not, then x must be a linear
combination of vectors in BS , which implies that x ∈ span(BS) = S, contradicting that x /∈ S.
Hence, dim(S) = |BS | ≤ |BV | = dim(V ) in this case. ■

Proposition 22. Suppose (V,+, ·) is a linear space with dimV <∞. Then, any linearly independ-
ent set W ⊆ V with |W | = dimV is a basis of V .

Proof. Suppose that (V,+, ·) is a linear space with n = dimV < ∞. Let S := {s1, . . . , sn} be a
basis of V which exists by Theorem 1. Let W := {w1, . . . ,wn} ⊆ V be a linearly independent set.
By Proposition 21, it suffices to show that span(W ) = V . We follow the argument outlined in the
proof of Proposition 20. Since w1 ∈ span(S) = V , there exists nonzero (λ1i )

n
i=1 ∈ Rn such that

w1 =

n∑

i=1

λ1i si.

Let λ11 be the nonzero coefficient, then

s1 =
1

λ11
w1 +

n∑

i=2

(
−λ

1
i

λ11

)
si

so that s1 can be expressed as a linear combination of w1, s2, . . . , sn, and any linear combination
of s1, . . . , sn can be expressed as a linear combination of w1, s2, . . . , sn by replacing s1 with the
expression above. Thus,

span ({w1, s2, . . . , sn}) = span (S) = V.
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Next, we take w2 ∈ span(X) which is nonzero by the linear independence of W and

w2 =

n∑

i=1

λ2i si = λ21

(
1

λ11
w1 +

n∑

i=2

(
−λ

1
i

λ11

)
si

)
+

n∑

i=2

λ2i si

=
λ21
λ11

w1 +

n∑

i=2

λ21

(
λ2i −

λ1i
λ11

)
si

for some nonzero (λ2i )
n
i=1 ∈ Rn. Since W is linearly independent, it cannot be that the only nonzero

coefficient is that for w1. Hence, we may pick a nonzero coefficient and call it the coefficient on
s2. Rearranging the expression above shows that s2 can be expressed as a linear combination of
w1,w2, s3, . . . , sn so that

span ({w1,w2, s3, . . . , sn}) = span (S) = V.

Repeating the same process successively, we realise that

span (W ) = span (S) = V. ■

From now on, I will generally refer to a linear space (V,+, ·) as V .

2.1.8 Linear transformations

In a linear space, we talk about linear combination of vectors. An important class of functions
are ones that maps from one linear space into another linear space in a way that preserves linear
combinations. We refer to them as linear transformations (or linear operators or linear maps). A
real-valued linear transformation is a linear functional on V .

Formally, let (V,+V , ·V ) and W = (W,+W , ·W ) be two linear spaces. A function L : V →W is
a linear transformation if

L (λ ·V x+V y) = λ ·W L (x) +W L (y) ∀x,y ∈ V ∀λ ∈ R. (2.2)

For brevity, we will not be explicit about the sets that + and · operators relate. The set of all
linear transformations from a linear space V to a linear space W is denoted L(V,W ). A linear
maps preserves the origin since

L (0V ) = L (0 ·V v) = 0 ·W L (v) = 0W ,

where 0V and 0W are the zeros in linear spaces V and W respectively.

Exercise 14. Show that L : V →W is a linear transformation if and only if, for any x,y ∈ V and
λ ∈ R,

L (x+ y) = L (x) + L (y) and L (λx) = λL (x) .

Example 10. Let V =W = R2 and f : V →W .

(i) f(x1, x2) := (x1 + 2x2, x2 − x1) is a linear transformation (check).

(ii) f(x1, x2) := (2,−1) is not a linear transformation because (0, 0) is mapped to (2,−1).

(iii) f(x1, x2) := (0, 0) is a linear transformation (check).
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(iv) f(x1, x2) := (x21, x2) is not a linear transformation because

f (λ (x1, x2) + (y1, y2)) = f (λx1 + y1, λx2 + y2)

=
(
λ2x21 + y21 + 2λx1y1, λx2 + y2

)

̸=
(
λx21 + y21 , λx2 + y2

)

= λ
(
x21, x2

)
+
(
y21 , y2

)
= λf (x1, x2) + f (y1, y2) .

Example 11. Let V be a linear space of all functions with continuous first derivatives defined on
R (why is this a linear space?), and W the linear space of all real-valued functions defined on R.
Let D : V →W be the function that maps a function f ∈ V into its derivative; i.e.,

D (f) := f ′.

You should know that

D (f + g) = D (f) +D (g) and D (λf) = λD (f) .

Hence, D is a linear transformation.

Example 12. Let V be the linear space of all continuous functions defined on R, and W be
the linear space of functions with continuous first derivatives defined on R. For any x ∈ R, Let
Jx : V →W be the function that maps a function f ∈ V into the integral; i.e.,

J (f) :=

∫ x

0

f (t) dt.

You should know that

J (f + g) ≡
∫ x

0

(f (t) + g (t)) dt =

∫ x

0

f (t) dt+

∫ x

0

g (t) dt ≡ J (f) + J (g)

and
J (λf) =

∫ x

0

λf (t) dt = λ

∫ x

0

f (t) dt ≡ λJ (f) .

Hence, J is a linear transformation.

The image of L ∈ L(V,W ) is given by

im (L) := {y ∈W : ∃x ∈ V, L (x) = y} .

As usual, it is the values in the codomain that the linear transformation L can take values in. The
null space (or the kernel) is the subset of the domain that is mapped to the zero element in the
codomain:

null (L) ≡ ker (L) := {x ∈ V : L (x) = 0} .

The null space is a linear subspace of V since L(λx + y) = λL(x) + L(y) = 0 so that λx + y ∈ S

for all λ ∈ R and all x,y ∈ S.

Exercise 15. Consider f : R3 → R2 defined as f(x1, x2, x3) := (x1 + x2, x3). Find its image and
null space.

The rank of L is given by
rank (L) := dim (im (L)) .
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The nullity of L is the rank of the null space; i.e.,

nullity (L) := dim (null (L))

Proposition 23. Let V and W be linear spaces. Then, L ∈ L(V,W ) is injective if and only if
null(L) = {0V }.

Proof. Suppose that L ∈ L(V,W ) is injective; i.e., every element x ∈ V is mapped to a unique
element in W . As noted above, linear maps preserves the origin so L(0V ) = 0W . Thus, null(L) =
{0V }.

Conversely, suppose that null(L) = {0V }. Suppose that there exist x,y ∈ V such that L(x) =
L(y). Since L is linear, L(x) = L(y) implies that

L (x− y) = L (x)− L (y) = 0W .

Since null(L) = {0V }, it must be that x− y = 0 ⇔ x = y. ■

Theorem 2 (Rank-nullity theorem). Let V and W be two finite-dimensional linear space and
L ∈ L(V,W ). Then,

dimV = nullity (L) + rank (L) .

Corollary 5. Suppose dimV = dimW . Then, L ∈ L(V,W ) is surjective if and only if L is injective.
In particular, null(L) = {0V } if and only if L is bijective.

Proof. Suppose n = dimV = dimW . By Proposition 23 and the definition of nullity, L is injective
if and only if nullity(L) = 0. Then, by the Rank-nullity theorem (Theorem 2), L is injective if
and only if n = dimV = rank(L) ≡ dim(im(L)). That is, the image of L is a n-dimensional
subspace of the n-dimensional linear space W . But the only full-dimensional subspace of a finite-
dimensional linear space is itself and so this happens if and only if the image is all of W (i.e., when
im(L) ≡ L(V ) =W ). Thus, for any w ∈W , there must exist x ∈ V such that L(x) = w; i.e., L is
surjective. ■

A linear transformation L ∈ L(V,W ) is invertible if there exists L−1 :W → V such hat

L−1 (L (x)) = x ∀x ∈ V,

L
(
L−1 (w)

)
= w ∀w ∈W ;

i.e., L is invertible if it is surjective and injective.

Exercise 16. Let V and W be two linear spaces. If L ∈ L(V,W ) is invertible, then L−1 ∈ L(W,V );
i.e., L−1 is linear.

2.1.9 Isomorphism

Two finite-dimensional linear spaces (V,+V , ·V ) and W = (W,+W , ·W ) are isomorphic if there is
an invertible linear transformation L ∈ L(V,W ) called isomorphism.

Isomorphic linear spaces are essentially indistinguishable. We can think of them as relabelling
of each other because L being invertible means that L is surjective and injective; i.e., every element
of V is mapped to a unique element in W , and every element of W is mapped to a unique element
in V .

Proposition 24. Two finite-dimensional linear spaces (V,+V , ·V ) and W = (W,+W , ·W ) are iso-
morphic if and only if dimV = dimW .
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The following tells us that any finite-dimensional linear space over R is essentially indistinguish-
able from Rn.

Theorem 3. Every n-dimensional linear space (V, (R,+, ·)+V , ·V ) is isomorphic to Rn.

Proof. Let V be an n-dimensional linear space over R and let S = {s1, . . . , sn} denote a basis of
V . Recalling that S is linearly independent (Proposition 22), by Corollary 3, for each x ∈ V , there
exists unique (λi)

n
i=1 ∈ Rn such that x =

∑n
i=1 λisi. Define L : V → Rn by

L (x) = L

(
n∑

i=1

λisi

)
:= (λ1, . . . , λn) .

Since (λi)
n
i=1 is unique for each x ∈ V , L is injective. To show that L is surjective, take any

(αi)
n
i=1 ∈ Rn, then since V is a linear space,

∑n
i=1 αisi ∈ V . ■

2.1.10 Dual spaces

Let (V,+, ·) be a linear space (over the field R). The dual (linear) space of V is given by
(L(V,R),+, ·); i.e., the collection of all linear functionals on V along with addition and multi-
plication operator in the field R. The dual space of V is often denoted V ∗. When applied to vector
spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe meas-
ures and distributions. Consequently, the dual space is an important concept in (some parts of)
economics.

2.1.11 Convex, concave, quasiconcave and quasiconvex functions

Let (V,+, ·) be a linear space (over the field R). Given a convex X ⊆ V , a function f : X → R is

• concave if f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) for any x,y ∈ X and α ∈ [0, 1].

• convex if f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for any x,y ∈ X and α ∈ [0, 1].

• strictly concave if f(αx+ (1−α)y) > αf(x) + (1−α)f(y) for any two distinct x,y ∈ X and
α ∈ (0, 1).

• strictly convex if f(αx + (1 − α)y) < Mαf(x) + (1 − α)f(y) for any two distinct x,y ∈ X

and α ∈ (0, 1).

• quasi-concave if f(αx+ (1− α)y) ≥ min{f(x), f(y)} for any x, y ∈ X and α ∈ [0, 1].

• quasi-convex if f(αx+ (1− α)y) ≤ max{f(x), f(y)} for any x, y ∈ X and α ∈ [0, 1].

• strictly quasi-concave if f(αx + (1 − α)y) > min{f(x), f(y)} for all distinct x, y ∈ X and
α ∈ (0, 1).

• strictly quasi-convex if f(αx + (1 − α)y) < max{f(x), f(y)} for all distinct x, y ∈ X and
α ∈ (0, 1).

If f is concave and convex, then f is affine. Concavity implies quasiconcavity, and convexity
implies quasiconvexity. Sums of concave functions are concave and sums of convex functions are
convex; however, sums of quasiconcave (resp. quasiconvex) functions need not be quasiconcave
(resp. quasiconvex).
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2.2 Metric spaces

A vector x ∈ V represents a point in the linear space V . Given two vectors x,y ∈ V , we can define
a notion of distance, called a metric, between these two points. A metric on an nonempty set X is
a function ρ : X2 → R that satisfies the following conditions:

• (nonnegativity) ρ(x, y) ≥ 0 ∀x, y ∈ X;

• (identity of indiscernibles) ρ(x, y) = 0 ⇔ x = y;

• (symmetry) ρ(x, y) = ρ(y, x) ∀x, y ∈ X;

• (triangle inequality) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) ∀x, y, z ∈ X.

A metric space is a pair (X, ρ), where X is a nonempty set and ρ is a metric on X. Observe that
metrics can be defined on any nonempty set X; in particular, X need not be a linear space.

Proposition 25. If (X, ρ) is a metric space, then any subspace (Y, ρ|Y ) with ∅ ̸= Y ⊆ X is a
metric space and is called a metric subspace of (X, ρ).

Example 13 (Examples and non-examples of metric spaces). ‌

(i) Euclidean metric space. (Rn, d), where d is the Euclidean distance given by

d (x,y) :=

√√√√
n∑

i=1

(xi − yi)
2
.

(ii) Discrete metric space. (X, ddiscrete), where X ̸= ∅ and

ddiscrete (x, y) = 1{x ̸=y}.

(iii) Product metric spaces. If (X, ρX) and (Y, ρY ) are metric spaces, then (X × Y, ρ) is a metric
space where

ρ ((x1, y1) , (x2, y2)) := [(ρX (x1, x2))
p
+ (ρY (y1, y2))

p
]
1/p (2.3)

for any p ≥ 1.

(iv) Sequence (ℓp) spaces. For any 0 < p ≤ ∞, ℓp spaces are the set of all sequences in R that is
p-summable; i.e.,

ℓp :=

{
(xn) ∈ R∞ :

∞∑

n=1

|xn|p <∞
}

∀0 < p <∞,

ℓ∞ :=

{
(xn) ∈ R∞ : sup

n
|xn| <∞

}
.

In particular, we call ℓ∞ the space of all bounded sequences. For any 0 < p <∞, (ℓp, ρ) with

ρ((xn), (yn)) :=

∞∑

n=1

|xn − yn|p

is a metric space. If p = ∞, then (ℓp, ρ) with ρ((xn), (yn)) := supn∈N |xn − yn| is a metric
space.
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(v) Bounded real-valued function space, (B(S), ρ∞), where

B (S) :=
{
f ∈ RS : sup {|f (x)| : x ∈ S} <∞

}

and ρ∞ is the sup-metric given by ρ∞(f, g) := supx∈S |f(x)− g(x)|.

(vi) Continuous real-valued function space, (C(S), ρ∞), where S is compact and

C (S) :=
{
f ∈ RS : f ∈ B (S) and f is continuous on S

}
.

(vii) Variation of information. Let P = {P1, P2, . . . , Pk} and Q = {Q1, Q2, . . . , Qℓ} be two parti-
tions of a set X with n ∈ N elements. Then, the variation of information between P and Q

is given by

V I (P,Q) := −
∑

i,j

|Pi ∩Qj |
n

[
log

( |Pi∩Qj |
n

|Pi|
n

)
+ log

( |Pi∩Qj |
n

|Qj |
n

)]
.

The variation of information is a metric.

(viii) The Kullback-Leibler (KL) divergence. Let P and Q denote the CDFs of two continuous
random variables on R. The KL divergence is given by

KL (P,Q) :=

∫ ∞

−∞
p (x) log

(
p (x)

q (x)

)
dx,

where p and q denote the probability densities of P and Q respectively. KL divergence is not
a metric because it is not symmetric and does not satisfy the triangle inequality.

Proposition 26 (Equivalent metrics). Let (X, ρ1) and (X, ρ2) be two metric spaces. The following
are equivalent.

(i) ρ1 and ρ2 are equivalent;

(ii) ∃α, β ∈ R+, αρ1(x, y) ≤ ρ2(x, y) ≤ βρ1(x, y) ∀x, y ∈ X;

(iii) ∃c > 0 such that c−1ρ1(x, y) ≤ ρ2(x, y) ≤ cρ1(x, y) ∀x, y ∈ X.

Proof. Define (i) as (ii). We show equivalence between (ii) and (iii).
(ii) ⇒ (iii). Suppose that (ii) holds and let α, β be the constant. We must have α ≤ β.

• Suppose α ≤ β ≤ 1. Then, 1/α ≥ 1 ≥ β so that we may set c := 1/α.

• Suppose α ≤ 1 ≤ β. Then, set c := β/α. Observe that c ≥ β and c−1 ≤ α.

• Suppose 1 ≤ α ≤ β. Then, set c := β. Then, 1/c ≤ 1 ≤ α.

(iii) ⇒ (ii). Let c > 0 satisfy the inequality. Define α := 1/c and β := c. ■

For example, if X = R2, then ρ1(x, y) := max{|x1 − y1|, |x2 − y2|} is equivalent to ρ2(x, y) :=
|(x1, x2)− (y1, y2)|. However, these are not equivalent to the discrete metric.

Let (X, ρX) and (Y, ρY ) be two metric spaces. A function f : X → Y is an isometry if

ρX (z, z′) = ρY (f (z) , f (z′)) ∀z, z′ ∈ X.

An isometric function can be thought of as relabelling of points inX . Note that isometry f : X → Y

must be injective as, otherwise, two distinct points in X could be mapped to the same point which
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would contradict the identity of indiscernibles property of the metric ρX . An isometry that is
bijective is called an isometric isomorphism. Metric spaces X and Y are isometric, denoted X = Y ,
if there exists an isometric isomorphism between them.

2.3 Normed spaces

We now introduce a concept of “size” to vectors in a linear space. A norm on a linear space V is a
function ∥ · ∥ : V → R that satisfies the following conditions:

(i) (positivity) ∥x∥ ≥ 0 ∀x ∈ V and ∥x∥ = 0 ⇔ x = 0;

(ii) (homogeneity) ∥αx∥ = |α| · ∥x∥ ∀x ∈ V ∀α ∈ R;

(iii) (triangle inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ∀x,y ∈ V .

A normed space (sometimes called the normed linear space) is a pair (V, ∥ · ∥), where V is a linear
space and ∥ · ∥ is a norm on V . Let S be a linear subspace of V (recall Proposition 13). Then,
(S, ∥ · ∥|S) is a normed subspace of (V, ∥ · ∥).

The natural metric, ρ, on a normed space (V, ∥ · ∥) is defined as

ρ (x,y) := ∥x− y∥ .

Two norms ∥·∥1 and ∥·∥2 on the same linear space V are equivalent if the induce equivalent natural
metrics. A linear transformation, L ∈ L(V,W ) between two normed space (V, ∥·∥V ) and (W, ∥·∥W )

is isometric if
∥L (x)∥W = ∥x∥V ∀x ∈ V. (2.4)

Example 14 (Examples and non-examples of normed spaces). ‌

• Euclidean normed space is Euclidean space Rn together with the Euclidean norm defined on
Rn, where ∥ · ∥ : Rn → R is given by

∥x∥ :=

√√√√
n∑

i=1

x2i .

We can extend the Euclidean norm into any arbitrary finite-dimensional linear space.

• If p ≥ 1, then the sequence space (ℓp, ∥·∥p) is a normed space with ∥(xn)∥p := (
∑∞

n=1 |xn|p)1/p.
Note the triangle inequality fails with 0 < p < 1.

• C (continuous function) space: (C(X), ∥·∥L∞), where, X is a complete metric space,14 C(X)

is the set of all real-valued continuous functions on X and ∥·∥L∞ is the sup norm (i.e.,
∥f∥L∞ := sup{|f(x)|} : x ∈ X}).

• C0,1([0, 1]) (Lipschitz-continuous function on the unit interval) space: (C0,1([0, 1]), ∥·∥C0,1([0,1])),
where

C0,1 ([0, 1]) :=
{
f : [0, 1] → R s.t. ∥f∥C0,1([0,1]) <∞

}
,

∥f∥C0,1([0,1]) := sup
x∈[0,1]

|f (x)|+ sup
x,y∈[0,1],x ̸=y

|f (x)− f (y)|
|x− y| .

14As we will see in ECON 6701, completeness refers whether every Cauchy sequences converges.
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• Lp (Lebesgue) space: (Lp (E) , ∥·∥Lp(E)) with 1 ≤ p ≤ ∞, where, for any measurable E ⊆ Rn,

Lp (E) :=
{
f : E → R s.t. ∥f∥Lp(E) <∞

}
,

∥f∥Lp(E) :=

{(∫
E
|f |p dx

)1/p if 1 ≤ p <∞,

supx∈E |f (x)| if p = ∞.

Let V be an n-dimensional linear space and S ⊆ V be a basis of V . Then, for each x ∈ V , there
exists (λi(x))

n
i=1 ∈ Rn such that x =

∑n
i=1 λi(x)si. Define | · |V : V → R by

|x|V :=

(
n∑

i=1

|λi (x)|2
)1/2

.

Proposition 27. Let V be an n-dimensional linear space. Then, (V, | · |V ), where | · |V is as defined
above, is a normed space.

Proof. It suffices to verify that | · |V is a norm on V .
Positivity. By construction |x|V ≥ 0 for all x ∈ V . Suppose first that x = 0. Since s1, . . . , sn

is a basis and thus linearly independent (Proposition 21), 0 = x =
∑n

i=1 λi(x)si implies λ1(x) =
· · · = λn(x) = 0 by Proposition 21.. Thus, |0|V = 0. Conversely, suppose that |x|V = 0. Then, by
construction, λ1(x) = · · · = λn(x) = 0 so that x =

∑n
i=1 λi(x)si = 0.

Homogeneity. Fix any x ∈ V and α ∈ R. Since αx =
∑n

i=1 αλi(x)si,

|αx|V =

(
n∑

i=1

|αλi (x)|2V

)1/2

= |α|
(

n∑

i=1

|λi (x)|2V

)1/2

= |α| |x|V .

Triangle inequality. Fix any x,y ∈ V . Then, since |λi(x) + λi(y)| ≤ |λi(x)| + |λi(y)| for each
i ∈ {1 . . . , n},

|x+ y|V =

(
n∑

i=1

|λi (x) + λi (y)|2
)1/2

≤
(

n∑

i=1

|λi (x)|2
)1/2

+

(
n∑

i=1

|λi (y)|2
)1/2

= |x|V + |y|V .

It follows that | · |V is a norm on V . ■

Proposition 28. All norms on finite-dimensional linear spaces are equivalent.

2.3.1 Geometric interpretation

Consider a point in z := (x, y) ∈ R2. The length of this vector (from the origin) in Cartesian
coordinate system, ∥z∥ is given by the Pythagorean theorem:

∥z∥2 = x2 + y2 ⇔ ∥z∥ =
√
x2 + y2.

Observe that this corresponds exactly to the Euclidean norm of vector z.
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2.4 Inner product spaces

Consider the linear space R2. We can think of any vectors x ∈ R2 as representing direction (from
the origin) or lines that connects the x and the origin. Given any two vectors x,y ∈ R2—or two
lines x,y ∈ R2—we can think about the angle between them. For example, we think of the x-axis
(represented by (1, 0)) and y-axis (represented by (0, 1)) as having an angle of 90 degrees between
them, and call them as being orthogonal. The inner product captures the notion of angle between
any two vectors of a linear space.

An inner product on a linear space V is a function ⟨·, ·⟩ : V ×V → R that satisfies the following
conditions:

• (positivity) ⟨x,x⟩ ≥ 0 ∀x ∈ V and ⟨x,x⟩ = 0 ⇔ x = 0;

• (symmetry) ⟨x,y⟩ = ⟨y,x⟩ ∀x,y ∈ V ;

• (linearity) ⟨α · x+ β · y, z⟩ = α · ⟨x, z⟩+ β · ⟨y, z⟩ ∀x,y, z ∈ V ∀α, β ∈ R.

An inner product space is a pair (V, ⟨·, ·⟩), where V is a linear space and ⟨·, ·⟩ is an inner product
on V . Two vectors x and y in an inner product space (V, ⟨·, ·⟩) are orthogonal if ⟨x,y⟩ = 0. Since

⟨x,0⟩ = ⟨x, 0 · y⟩ = 0 · ⟨x,y⟩ = 0,

any nonzero vector is orthogonal to the zero vector. Every inner product space (V, ⟨·⟩) is a normed
space with the following induced norm:

∥x∥ :=
√

⟨x,x⟩.

Example 15. An example of a inner product space is the Euclidean dot product defined on Rn,
where · : Rn × Rn → R is given by

x · y :=

n∑

i=1

xiyi.

The induced norm of the Euclidean dot product is indeed the Euclidean norm. Many inner product
can be defined on the same linear space V . For example, with V = Rn, with (wi)

n
i=1 ∈ Rn

++,

⟨x,y⟩ :=
n∑

i=1

wixiyi

is an inner product on Rn (called weighted Euclidean inner product). Some other examples:

• (L2(X), ⟨·, ·⟩) for some measurable X, where ⟨f, g⟩ =
∫
X
f(x)g(x)dx.

• (ℓ2(N), ⟨·, ·⟩), where ⟨(xn), (yn)⟩ =
∑∞

n=1 xnyn.15

Theorem 4 (Cauchy-Schwarz Inequality). Let (V, ⟨·, ·⟩) be an inner product space and ∥·∥ be the
induced norm. Then,

|⟨x,y⟩| ≤ ∥x∥ ∥y∥ ∀x,y ∈ V.

Exercise 17. Prove the Cauchy-Schwarz inequality.

Proposition 29 (Generalised Pythagorean theorem). Let (V, ⟨·, ·⟩) be an inner product space and
∥·∥ be the induced norm. Then,

∥x+ y∥2 = ∥x∥2 + 2 ⟨x,y⟩+ ∥y∥2 ∀x,y ∈ V.

15Holds also for ℓ2(Z) which is a space of sequences of the form (. . . , b−2, b−1, b0, b1, b2, . . .).
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In particular, if x and y are orthogonal, then

∥x+ y∥2 = ∥x∥2 + ∥y∥2 .

Proof. We use the linearity and symmetry property of the inner product:

∥x+ y∥2 = ⟨x+ y,x+ y⟩
= ⟨x,x+ y⟩+ ⟨y,x+ y⟩
= ⟨x,x⟩+ ⟨x,y⟩+ ⟨y,x⟩+ ⟨y,y⟩
= ∥x∥2 + 2 · ⟨x,y⟩+ ∥y∥2 .

Finally, recall that x and y are orthogonal if ⟨x,y⟩ = 0. ■

The following results says that sum of the squares of the lengths of the four sides of a parallel-
ogram equals the sum of the squares of the lengths of the two diagonals.

Corollary 6 (Parallelogram identity). Let (V, ⟨·, ·⟩) be an inner product space and ∥·∥ be the induced
norm. Then,

∥x− y∥2 + ∥x+ y∥2 = 2 ∥x∥2 + 2 ∥y∥2 ∀x,y ∈ V.

Proof. By the previous proposition,

∥x− y∥2 = ∥x+ (−1) · y∥2

= ∥x∥2 + 2 · ⟨x, (−1) · y⟩+ ∥(−1) · y∥2

= ∥x∥2 − 2 · ⟨x,y⟩+ |−1|2 ∥y∥2

= ∥x∥2 − 2 · ⟨x,y⟩+ ∥y∥2 .

Thus,

∥x− y∥2 + ∥x+ y∥2 =
(
∥x∥2 − 2 · ⟨x,y⟩+ ∥y∥2

)
+
(
∥x∥2 + 2 · ⟨x,y⟩+ ∥y∥2

)

= 2 ∥x∥2 + 2 ∥y∥2 . ■

2.4.1 Geometric interpretation

Let x, y and z represents the length of the three sides of a triangle and θ the angle between sides
of lengths x and y. The law of cosine, which is a generalisation of the Pythagorean theorem to
non-right triangles, says that

z2 = x2 + y2 − 2xy cos θ.

Since “length” of vector in R2 is represented by the Euclidean norm ∥ · ∥, abusing notation slightly
and letting x,y, z ∈ R2, we can rewrite the law of cosine as

∥z∥2 = ∥x∥2 + ∥y∥2 − 2 ∥x∥ ∥y∥ cos θ.

Using the fact that x = y + z ⇔ z = x− y,

2 ∥x∥ ∥y∥ cos θ = ∥x∥2 + ∥y∥2 − ∥x+ (−y)∥2

= ∥x∥2 + ∥y∥2 −
(
∥x∥2 − 2 ⟨x,y⟩+ ∥y∥2

)
= 2 ⟨x,y⟩

⇔ cos θ =
⟨x,y⟩
∥x∥ ∥y∥ =

⟨x,y⟩√
⟨x,x⟩ ⟨y,y⟩

.
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Hence, the angle between two vectors can be computed using the inner product. Observe that if
two vectors are orthogonal, i.e., ⟨x,y⟩ = 0, then the angle between them is cosθ = 0 so that θ is 90
degrees.

2.4.2 Orthogonal complements

Given an inner product space (V, ⟨·, ·⟩) and W ⊆ V , (W, ⟨·, ·⟩|W ) is a subspace of the inner product
space and is itself an inner product space. A vector x ∈ V is orthogonal to subspace W if it is
orthogonal to every vector in W ; i.e.,

⟨x,w⟩ = 0 ∀w ∈W.

The set of all vectors in V that are orthogonal to W is the orthogonal complement of W and denoted

W⊥ := {x ∈ V : ⟨x,w⟩ = 0 ∀w ∈W} ,

where ⊥ is read “perp.” Note W⊥ is a subspace of V , (W⊥)⊥ = W , and the only common vector
between W and W⊥ is 0. The last observation means that V is a direct sum of W and W⊥; i.e.,

V =W ⊕W⊥.

Hence, any x ∈ V can be uniquely expressed as x = w +w⊥, where w ∈W and w⊥ =W⊥.

Proposition 30. Let (V, ⟨·, ·⟩) be an inner product space. Then, {0}⊥ = V and V ⊥ = {0}.

Proof. Recall that ⟨0,x⟩ = 0 for all x ∈ V and hence {0}⊥ = V and V ⊥ = {0}. ■

Example 16. The orthogonal complement of a line W through the original in R2 is the line
perpendicular toW . The orthogonal complement of a lineW in R3 is the plane that is perpendicular
to W .

2.4.3 Orthonormal bases

A set of vectors {x1, . . . ,xn} ⊆ V of an inner product space (V, ⟨·, ·⟩) is an orthogonal set if all
pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has a
unit norm is called orthonormal. Since any vector x ∈ V can be normalised to have a unit norm by
dividing by ∥x∥, it follows that any orthogonal set of nonzero vectors can always be converted to
an orthonormal set via such normalisation. A basis consisting of orthonormal vectors in an inner
product space is an orthonormal basis, and a basis consisting of orthogonal vectors is an orthogonal
basis.

If V = Rn, the canonical basis, {ei}ni=1 is orthonormal since ∥ei∥ = 1 under the Euclidean norm.
In fact, it is an orthogonal basis since ⟨ei, ej⟩ = 0 for any i ̸= j.

We are often interested in finding orthonormal basis as it allows vectors to be expressed in a
simple manner.

Proposition 31. Suppose S := {s1, . . . , sn} is an orthogonal basis for an inner product space
(V, ⟨·, ·⟩) and let ∥·∥ be the induced norm. Then,

x =
n∑

i=1

⟨x, si⟩
∥si∥2

si ∀x ∈ V.
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Proof. By definition of a basis, for any x ∈ V , there exists (λi)
n
i=1 ∈ Rn such that x =

∑n
j=1 λjsj .

The result then follows because

⟨x, si⟩
∥si∥2

=
1

∥si∥2

〈
n∑

j=1

λjsj , si

〉
=

n∑

j=1

λj
⟨sj , si⟩
∥si∥2

= λi
⟨si, si⟩
∥si∥2

= λi,

where the penultimate equality uses the fact that si and sj for i ̸= j are orthogonal to each other
and the last equality uses the fact that ∥si∥ =

√
⟨si, si⟩. ■

We can think of (x)S := (⟨x, si⟩)ni=1 as the coordinates of the vector x ∈ V relative to the
orthonormal basis S = {s1, . . . , sn}. Expressing vectors in this way allows simple computation of
inner product, induced norm and induced metric associated with vector(s) in original coordinates.

Proposition 32. Suppose that S := {s1, . . . , sn} is an orthonormal basis for an inner product space
(V, ⟨·, ·⟩) and let ∥·∥ and d(·, ·) be the induced norm and induced metric, respectively. Then, for any
x,y ∈ V ,

⟨x,y⟩ =
n∑

i=1

⟨x, si⟩ · ⟨y, si⟩ =
n∑

i=1

xSi y
S
i ,

∥x∥ =

√√√√
n∑

i=1

⟨x, si⟩2 =

n∑

i=1

(
xSi
)2
,

d (x,y) =

√√√√
n∑

i=1

⟨x− y, si⟩2 =

√√√√
n∑

i=1

(
xSi − ySi

)2
.

where (xSi )
n
i=1 and (ySi )

n
i=1 are such that (x)S = (xSi )

n
i=1 and (y)S = (ySi )

n
i=1.

Proof. By the linearity of ⟨·, ·⟩,

⟨x,y⟩ =
〈

n∑

i=1

⟨x, si⟩ si,
n∑

i=1

⟨y, si⟩ si
〉

=

n∑

i=1

⟨x, si⟩ ·
〈
si,

n∑

j=1

⟨y, sj⟩ sj
〉

=

n∑

i=1

⟨x, si⟩ ·




n∑

j=1

⟨y, sj⟩ · ⟨si, sj⟩




=

n∑

i=1

n∑

j=1

⟨x, si⟩ · ⟨y, sj⟩ · ⟨si, sj⟩ .

Since ⟨si, sj⟩ = 0 for all i ̸= j and ⟨si, si⟩ = 1,

⟨x,y⟩ =
n∑

i=1

⟨x, si⟩ · ⟨y, si⟩ =
n∑

i=1

xSi y
S
i .

The expression for the induced norm follows from the fact that ∥x∥ =
√
⟨x,x⟩. The expression for

the induced metric comes from the fact that d(x,y) = ∥x− y∥. ■

Of course, the usefulness of orthonormal bases may be vacuous if they do not exist. Luckily, we
have the following result. The proof involves constructing an orthonormal basis from an arbitrary
basis (which we know exists by Theorem 19). The algorithm is called the Gram-Schmidt process.
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We first show that orthogonality implies linear independence.

Proposition 33. Suppose that S := {s1, . . . , sn} is an orthogonal set of nonzero vectors in an inner
product space (V, ⟨·, ·⟩). Then, S is linearly independent.

Proof. Take any (λi)
n
i=1 ∈ Rn such that

∑n
i=1 λisi = 0. By Proposition 19, it suffices to show that

λ1 = · · · = λn = 0. Since S is an orthogonal set, ∀i ∈ {1, . . . , n},

0 = ⟨0, si⟩ =
〈

n∑

j=1

λjsj , si

〉
=

n∑

j=1

λj ⟨sj , si⟩ = λi ⟨si, si⟩ .

Since each si is a nonzero vector ⟨si, si⟩ > 0 by positivity. Therefore, λi = 0 ∀i ∈ {1, . . . , n}. ■

Next we introduce the concept of orthogonal projections. This generalises the fact that each
vector x ∈ R2 can be expressed as sum of vectors along the x- and y-axes, which are orthogonal.

Proposition 34. Suppose W is a finite-dimensional subspace of an inner product space (V, ⟨·, ·⟩)
and that S := (s1, . . . , sn) is an orthogonal basis for W . Then, for any x ∈ V ,

projWx :=

n∑

i=1

⟨x, si⟩
∥si∥2

si ∈W,

projW⊥x := x− projWx ∈W⊥.

Proof. Take the premise of the proposition.
(i) projWx ∈W . Since ⟨x, si⟩/∥si∥2 ∈ R, projWx is a linear combination of vectors in S. Thus,

projWx ∈ span (S) =W,

where the last equality follows by the fact that S is a basis and Proposition 21.
(ii) projW⊥x ∈ W⊥. Define x⊥ := projW⊥x. We wish to show that ⟨x⊥,w⟩ = 0 ∀w ∈ W .

Using definitions and linearity of ⟨·, ·⟩,

〈
x⊥,w

〉
= ⟨x,w⟩ −

〈
n∑

i=1

⟨x, si⟩
∥si∥2

si,w

〉

= ⟨x,w⟩ −
n∑

i=1

⟨x, si⟩
∥si∥2

⟨si,w⟩ .

By Proposition 31, w =
∑n

i=1⟨w, si⟩si/∥si∥2 so that

〈
x⊥,w

〉
=

〈
x,

n∑

i=1

⟨w, si⟩
∥si∥2

si

〉
−

n∑

i=1

⟨x, si⟩
∥si∥2

⟨si,w⟩

=

n∑

i=1

⟨w, si⟩
∥si∥2

⟨x, si⟩ −
n∑

i=1

⟨x, si⟩
∥si∥2

⟨si,w⟩ = 0. ■

We refer to projWx as an orthogonal projection of x on W and orthogonal projection of x on W
as a component of x orthogonal to W . By Proposition 21 and Corollary 3, projections are unique
relative to each orthogonal basis. Put differently, each distinct orthonormal basis of W gives rise
to a unique projection of x on W .

Theorem 5. Every nonzero finite dimensional inner product space has an orthonormal basis.
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Proof. Let (V, ⟨·, ·⟩) be a nonzero inner product space. Since V is a linear space, by Theorem 19,
there exists a basis S = {s1, . . . , sn} so that V is n dimensional. The goal is to construct an
orthonormal basis, V = {v1, . . . ,vn}, from S (note that, if it exists, V must have the same number
of elements by Corollary 13.

Step 1 Define v1 := s1.

Step 2 Define v2 that is orthogonal to v1 by computing the component of s2 that is orthogonal
to W1 := span(v1). Note that v1 is the (trivially orthogonal) basis of W1 by construction, by
Proposition 34,

v2 := projW⊥
1
s2 = s2 −

⟨s2,v1⟩
∥v1∥2

· v1 ∈W⊥
1

For v2 to be a basis, we must have v2 ̸= 0. To show this, by way of contradiction, suppose
that v2 = 0, then

s2 =
⟨s2,v1⟩
∥v1∥2

· v1 =
⟨s2, s1⟩
∥s1∥2

· s1.

This implies that s2 is a scalar multiple of s1 so that s1 and s2 are linearly dependent.
However, this contradicts the fact that any basis is linearly independent (Proposition 21).

Step 3 Define v3 that is orthogonal to v1 and v2 by computing the component of s3 that is ortho-
gonal to W2 = span({v1,v2}). Since {v1,v2} is an orthogonal basis of W2 by construction,
by Proposition 34,

v3 := projW⊥
2
s3 = s3 −

⟨s3,v1⟩
∥v1∥2

· v1 −
⟨s3,v2⟩
∥v2∥2

· v2 ∈W⊥
2 .

If v3 = 0, then

s3 =
⟨s3,v1⟩
∥v1∥2

· v1 +
⟨s3,v2⟩
∥v2∥2

· v2

=
⟨s3,v1⟩
∥v1∥2

· s1 +
⟨s3,v2⟩
∥v2∥2

·
(
s2 −

⟨s2,v1⟩
∥v1∥2

· s1
)

so that s3 is a linear combination of s1 and s2, contradicting the fact that any basis is linearly
independent (Proposition 21).

Continuing in this way, after n steps, we will obtain an orthogonal set of vectors {v1, . . . ,vn}. To
conclude the proof, we must show that {v1, . . . ,vn} is a basis. By Proposition 21, it suffices to show
that {v1, . . . ,vn} is linearly independent and that span{v1, . . . ,vn} = V . Linear independence
follows from the fact that {v1, . . . ,vn} are orthogonal and Proposition 33. That span{v1, . . . ,vn} =

V follows from Proposition 22 because dimV = n and {v1, . . . ,vn} is linearly independent. ■

We can, in fact, apply the Gram-Schmidt process to any linearly independent set of vectors in
an inner product space to obtain an orthonormal set of vectors.

Corollary 7 (Projection Theorem). Suppose W is a finite dimensional subspace of an inner product
space (V, ⟨·, ·⟩). Then, for any x ∈ V , there exists an orthogonal projection of x on W , denoted
projWx ∈W , and component of x orthogonal to W , denoted projW⊥x ∈W⊥, such that

x = projWx+ projW⊥x.

Proof. Given Proposition 34, it suffices to show that W has an orthogonal basis. But we know that
W has an orthogonal basis from Theorem 5. ■
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Remark 3. Note that we can write

x = projWx+ (x− projWx) .

Does this look familiar?

Theorem 6 (Approximation Theorem). Suppose W is a finite dimensional subspace of an inner
product space (V, ⟨·, ·⟩). For any x ∈ V , projWx is the best approximation to x from W in the sense
that it is the element in W that minimises the distance between x and itself; i.e.,

∥x− projWx∥ < ∥x−w∥ ∀w ∈W\ {projWx} .

Proof. Adding and subtracting projWx, we can write

x−w = (x− projWx) + (projWx−w) .

By construction, projWx ∈ W so that projWx−w ∈W , and x− projWx = projW⊤x ∈W⊤. That
is, the two terms in the expression above are orthogonal. Then, by the Generalised Pythagorean
Theorem (Theorem 29),

∥x−w∥2 = ∥x− projWx∥2 + ∥projWx−w∥2 .

By positivity, the second term is strictly positive unless projWx = w. Thus, for any w ∈
W\{projWx},

∥x−w∥2 > ∥x− projWx∥2 ,

which implies the desired result. ■

Example 17 (Fourier series). A function of the form

τ (x) = c0 + c1 cos (x) + c2 cos (2x) + · · ·+ cn cos (nx)

+ d1 sin (x) + d2 sin (2x) + · · ·+ dn sin (nx)

is called a trigonometric polynomial, and if cn and dn are not both zero, then τ(x) is said to have
order n. It can be shown that

S := {1, cos (x) , cos (2x) , . . . , cos (nx) , sin (x) , sin (2x) , . . . , sin (nx)}

are linearly independent so that, for any interval [a, b] ⊆ R, they form a basis for a (2n + 1)-
dimensional subspace of C([a, b])] (i.e., continuous functions in the interval [a, b]). Let f ∈ C([0, 2π]),
where (C(0, 2π), ⟨·, ·⟩) is an inner product space with

⟨f ,g⟩ :=
∫ 2π

0

f (x) g (x) dx.

We wish to find the best approximation to f from W , where W ⊆ C([0, 2π]) is the space of
trigonometric polynomial functions of order n. By the Approximation Theorem (Theorem 6), the
best approximation is given by projW f , which requires to find orthonormal basis {g1, . . . ,g2n} from
W (see Proposition 34):

projW f =

2n∑

i=1

⟨f ,gi⟩gi.

Since S is a basis forW , we can obtain an orthonormal basis by applying the Gram-Schmidt process.
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The result is that

g0 =
1√
2π
, gi =

{
1√
π
cos (ix) if i ∈ {1, . . . , n}

1√
π
sin ((i− n)x) if i ∈ {n+ 1, . . . , 2n}

.

Define

c0 =
2√
2π

⟨f ,g0⟩ =
1

π

∫ 2π

0

f (x) dx

ci =
1√
π
⟨f ,gi⟩ =

1

π

∫ 2π

0

f (x) cos (ix) dx ∀i ∈ {1, . . . , n} ,

di =
1√
π
⟨f ,gn+i⟩ =

1

π

∫ 2π

0

f (x) sin (ix) dx ∀i ∈ {1, . . . , n} ,

then

projW f =
a0
2

+

(
n∑

i=1

ci cos (ix)

)
+

(
n∑

i=1

di sin (ix)

)
.

The coefficients (c0, c1, . . . , cn, d1, . . . , dn) are called the Fourier coefficients of f . It can be shown
that approximation improves as n→ ∞ so that

f (x) =
a0
2

+

∞∑

i=1

(ci cos (ix) + di sin (ix)) .

The right-hand side of this equation is called the Fourier series for f over the interval [0, 2π] .

2.5 Topologies

Let X be a nonempty set. A topology T for X is a collection of subsets of X, called open sets, that
have the following properties.

(i) The entire set, X, and the empty set, ∅, are open—i.e. ∅, X ∈ T .

(ii) The intersection of any finite collection of open sets is open—i.e. for any O = {O1, O2, . . . , On} ⊆
T ,
⋂n

i=1Oi ∈ T ;

(iii) The union of any collection of any open set is open—i.e. for any O ⊆ T ,
⋃

O∈O O ∈ T .

The pair (X, T ), where X is an nonempty set and T is a topology for X, is a topological space. For
any x ∈ X, an open set that contains x is a neighbourhood of x. A collection of neighbourhoods
of x, Bx, is called a base for the topology at x if, for any neighbourhood O of x, there exists a set
B ∈ Bx such that B ⊆ O. A collection of open sets B is called a base for the topology T if it
contains a base for the topology at each point in X. A base determines a unique topology on X

that consists of ∅, and the union of sets belonging to the base.

Proposition 35. A subset E ⊆ X is open if and only if, for each point x ∈ E, there is a neigh-
bourhood of x that is contained in E. That is,

E ∈ T ⇔ ∀x ∈ E, ∃Ox ∈ T , x ∈ Ox ⊆ E.

Proof. Let E ⊆ X, where (X, T ) is a topological space. Suppose that ∀x ∈ E, ∃Ox ∈ T , x ∈ Ox ⊆
E. Then,

x ∈ O :=
⋃

x′∈E

Ox′ ∀x ∈ E ⇒ E ⊆ O.
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Moreover, since Ox ⊆ E for all x ∈ E, it follows that O ⊆ E. That is, O = E. Finally, since O is a
union of open sets, by (iii) of the definition, O = E is an open set. Conversely, suppose that E is
open. Then, E is a neighbourhood of any x that is contained in E. ■

Proposition 36. Every open set is a union of neighbourhoods.

Proof. Let E ⊆ X be an open set, where (X, T ) is a topological space. For each x ∈ E, let Nx

be the open neighbourhood in E containing x, which must exist by proposition above. Consider
N :=

⋃
x∈E Nx. Since for every x, x ∈ Nx ⊆ N , it follows that U ⊆ N . Since every Nx ⊆ E, it also

follows that N ⊆ E. Thus, U = N . ■

For a subset E ⊆ X, a point x ∈ X is a point of closure of E provided that every neighbourhood
of x contains a point in E. The collection of points of closure of E is the closure of E, denoted by
E. Since E ⊆ E, if E contains all of its points of closure, i.e., E = E, then E is closed.

Proposition 37. A subset of a topological space X is open if and only if its complement in X is
closed.

Proof. First, suppose that E ⊆ X is open. Let x ∈ X be a point of closure of Ec = X\E; i.e.,
every neighbourhood of x contains a point in Ec. Then, x cannot belong to E because, otherwise,
there would be a neighbourhood of x that is contained in E and therefore does not intersect Ec.
Thus, x belongs to Ec and hence Ec is closed. Now suppose that Ec is closed; i.e., Ec contains all
of its points of closure. Let x ∈ E. Then, there must be a neighbourhood of x that is contained in
E, for otherwise, every neighbourhood of x would contain points in Ec and therefore x would be a
point of closure of Ec. Since Ec is closed, x would belong to Ec, which is a contradiction. ■

Remark 4. Above proposition combined with De Morgan’s law gives an alternative characterisation
of topological spaces using closed sets. A topology T for X is a collection of subsets of X, called
closed sets, that have the following properties.

(i) The entire set, X, and the empty set, ∅, are closed;

(ii) The union of any finite collection of closed sets is closed—i.e. for any C = {C1, C2, . . . , Cn} ⊆
T ,
⋃n

i=1 Ci is closed;

(iii) The intersection of any collection of any closed set is closed—i.e. for any C ⊆ T ,
⋂

C∈C C is
closed.

Given a topology (X, T ), the interior of S ⊆ X, denoted int(S), is the union of all subsets of S
that are open in X. A point that is in the interior of S is an interior point of S. If X is in fact a
metric space, then x ∈ X is an interior point of S if there exists r > 0 such that y is in S whenever
ρ(x, y) < r. The boundary of S ⊆ X, denoted bd(S) or ∂S, is the set of points in the closure of S
not belonging to the interior of S. A point that is in the boundary of S is a boundary point of S.

Example 18 (Examples of topologies). ‌

• Discrete topology. Let X be any nonempty set. The discrete topology for X is the collection
of all subsets of X. For discrete topology, every set containing a point is a neighbourhood of
that point. The discrete topology is induced by the discrete metric.

• Trivial topology. let X be any nonempty set. Then, {∅, X} is the trivial topology for X. The
only neighbourhood of a point is the whole set X.

• Topological subspaces. Given a topological space (X, T ) and a nonempty subset E ⊆ X, we
define the inherited topology S for E to consists of all sets of the form E ∩ O,where O ∈ T .
We call the topological space (E,S) a subspace of (X, T ).
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• Product topology. Let (X, T ) and (Y,S) be two topological spaces. In X × Y , consider the
collection of sets B consisting of O1 ×O2, where O1 is open in X and O2 is open in Y . Then,
(X × Y,B) is the product topology for X × Y .

• Metric topology. Let (X, ρ) be a metric space. Define an ball centred at x ∈ X with radius
r > 0 as

Br (x) := {y ∈ X : ρ (z, x) < r} .

Define a subset O ⊆ X to be open if, for every x ∈ O, Br(x) ⊆ O for some r > 0. The
collection of such open sets is the metric topology for X induced by the metric ρ.

• Strong (or norm) topology. Let V be a normed space. The metric topology for V induced by
the natural metric ρ is called the strong (or norm) topology for X.

Let X and Y be topological spaces. A function f : X → Y is continuous if, for any open set V ⊆ Y ,
f−1(V ) ≡ {x ∈ X : f(x) ∈ V } is an open subset of X.16

2.5.1 Order over topologies

Let T1 and T2 be two topologies for a nonempty set X. We say that T1 is weaker than T2 (or,
equivalently, T2 is stronger than T1) if T1 ⊆ T2. Thus, any open set in the weaker topology is also
open in the stronger topology. The converse is not necessarily true.

2.5.2 Compactness

Let (X, T ) be a topological space. A collection of sets S = {Sλ}λ∈Λ is a cover of a set S ⊆ X if
S ⊆ ⋃λ∈Λ Sλ. Let S be a cover of S. A subcover is a subset of S that is also a cover of S. If each
set Sλ is open, then S is an open cover. If Λ is a finite set, then S is a finite cover (note that each
set Sλ need not be finite). A subset S ⊆ X is compact (in X) if every open cover of S has a finite
subcover.

If X = Rn, then a subset S ⊆ X is compact if and only if S is closed and bounded (Heine-Borel
theorem). In a metric space, while compactness implies closedness and boundedness, the converse
only holds if the space is complete (i.e., if every Cauchy sequence is convergent). The usefulness
of compactness comes from the fact that any finite set has a maximum—thus, existence of finite
covers allows us to take a maximum among the finite subcovers.

2.5.3 Homeomorphism

Let (X, T ) and (Y,S) be two topological spaces. A function f : X → Y is a homeomorphism if f is
a bijection, f is continuous, and the inverse function f−1 is continuous. If such a homeomorphism
exists between X and Y , then they are homeomorphic and the two spaces have the same topolo-
gical properties (e.g., if a set is compact in one space, it is also compact in the other). In fact,
homeomorphic spaces induces an equivalence relation on topological spaces.

Example 19. An open interval (a, b) is homeomorphic to R. To see this, define f : (a, b) → R as
f(x) := 1

a−x + 1
b−x . Note that Rm and Rn are not homeomorphic if m ̸= n.

16Equivalently, f is continuous if inverse image of any closets set in Y are closed in X.
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3 Linear algebra

3.1 Matrices

For any m,n ∈ N, an m× n matrix (in R), denoted X, is a real-valued function

X : {1, . . . ,m} × {1, . . . , n} → R,

which we often represent as

X ≡ [xij ] ≡




x11 · · · x1n
...

. . .
...

xm1 · · · xmn


 ,

where xij := X(i, j) for each (i, j) ∈ {1, . . . ,m} × {1, . . . , n}. We may write [xij ]m×n to stress its
dimension. Thus, xij represents the ith row and jth column—or the ijth entry—of the matrix X.
Matrices are usually written with uppercase letters and its element with corresponding lowercase
letters.

Real numbers are 1 × 1 matrices, and a vector in Rn can be seen as either n × 1 or 1 × n

matrices. We often refer to n × 1 matrices as column vectors and 1 × n matrices as row vectors.
Unless otherwise specified, a vector is taken to be a column vector. A matrix whose entries all zero
is called a zero matrix. We call any matrices with m = n as (n × n) square matrices. A square
matrix X is diagonal if all its nondiagonal elements are zero; i.e., X is a diagonal matrix if aij = 0

∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : i ̸= j, and we write X = diag(a11, . . . , ann). An n × n square
matrix X is an identity matrix if X = diag(1, . . . , 1) and we denote it as In. A square matrix
X is upper (resp. lower) triangular if all its elements below its diagonals are zeros; i.e., aij = 0

∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : i > j (resp. aij = 0 ∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : i < j). A
diagonal matrix is both upper and lower triangular.

3.1.1 Space of matrices as a linear space

The set of all m× n matrices is denoted

Rm×n :=
{
X : X ∈ R{1,...,m}×{1,...,n}

}
.

We will define matrix addition and scalar multiplications so that (Rm×n, (R,+R, ·R),+, ·) is a linear
space.

Proposition 38. Given X,Y ∈ Rm×n and λ ∈ R, define + : Rm×n × Rm×n → Rm×n and
· : R× Rm×n → Rm×n as

X + Y ≡ +(X,Y ) := [xij + yij ],

λ ·X ≡ · (λ,X) := [λ ·R xij ].

Then, (Rm×n, (R,+R, ·R),+, ·) is a linear space of dimension m × n with zero given by the zero
matrix, the additive inverse of any X ∈ R is −1 ·X, and the multiplicative identity is 1.

Let Eij ∈ Rm×n be a matrix whose entries are all zero except the ijth entry which is equal to
1 . The set {Eij}i=1,...,m,j=1,...,n is a basis of Rm×n and is the canonical basis of the linear space
Rm×n.

Given anyX ∈ Rm×n, a matrixXcan be viewed as either a collection column vectors, {xj}j∈{1...,n},
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or a collection of row vectors, {xi}i∈{1,...,m}; i.e.,

X ≡




x11 · · · x1n
...

. . .
...

xm1 · · · xmn


 ≡

[
x1 · · ·xn

]
≡




x1

...
xm


 ,

where

xj :=




x1j
...

xmj




m×1

, xi :=
[
xi1 · · · xin

]
1×n

.

3.1.2 Multiplication

Given X ∈ Rm×n and Y ∈ Rn×r, their matrix multiplication (or product), denoted XY , is defined
as

XY :=

[
n∑

k=1

xikykj

]

m×r

=




∑n
k=1 x1kyk1 · · · ∑n

k=1 x1kykr
...

. . .
...∑n

k=1 xmkyk1 · · · ∑n
k=1 xmkykr


 .

Thus, matrix multiplication is defined only for matrices whose number of columns and rows are the
same, called conformable matrices. Matrix multiplication operation is not commutative; i.e.,

XY ̸= Y X.

We therefore distinguish between pre- and post-multiplications (or left- and right-multiplication)—pre-
multiplying (or left-multiplying) X by Y means Y X and post-multiplying (or right-multiplying) X
by Y means XY .

Given a matrix X ∈ Rm×n, let Dk ≡ (dii) ∈ Rk×k denote a k × k diagonal matrix. Then,

XDn =
[
d11x

1 · · · dnnx
n
]
, DmX =




d11x1

...
dmmxm


 .

Let 1j denote a column vector whose jth entry is 1 and all other entries are zeros. Similarly, let 1i

denote a row vector whose ith entry is 1 and all other entires are zeros. Then,

X1j = xj , 1iX = xi

and so
1iX1j = xij .

These are useful to keep in mind in econometrics (and especially when coding).
Another important fact is thatXY = 0 need not imply that A = 0 or B = 0 unlike multiplication

of real numbers.

Proposition 39. Suppose X ∈ Rm×n, Y ∈ Rn×r, Z ∈ Rr×s and λ ∈ R.

• Matrix product is distributive with respect to addition; i.e., X(Y + Z) = XY + XZ and
(X + Y )Z = XZ + Y Z.

• Matrix product is associative; i.e., X(Y Z) = (XY )Z.
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• X(λY ) = λ(XY ).

• Conformable identity matrix is the multiplicative identity; i.e., ImX = XIn = X.

• Zero matrix is absorbent; i.e., [0]k×mX = [0]k×n and X[0]n×k = [0]m×k.

• If X and Y are upper (resp. lower) triangular, then XY = Y X is also upper (resp. lower)
triangular.

For square matrices, we can define repeated products or powers of matrices. Given any X ∈
Rn×n and any k ∈ N,

Xk := X

k times︷ ︸︸ ︷
× · · ·×X, X0 := In.

A matrix X is idempotent if X2 = X.

Matrix product as a linear transformation Let V = Rn×r and W = Rm×r and define
LX : Rn×r → Rm×r as LX(Y ) := XY for some X ∈ Rm×n; i.e., we pre-multiply “vectors” in Rn×r

by X. Then, for any Y,Z ∈ V and α ∈ R, we have

LX (α · Y + Z) = X (α · Y + Z) = αXY +XZ = α · LX (Y ) + LX (Z) .

Thus, matrix X ∈ Rm×n is a linear transformation that maps vectors from linear space Rn×r to
linear space Rm×r. Since we can write XY as a linear combination of columns, xj , of X,

LX (Y ) = XY =
[ ∑n

j=1 yj1x
j · · · ∑n

j=1 yjrx
j
]
m×r

,

we can interpret pre-multiplication as a column transformation.
Suppose we now define MX : Rr×m → Rr×n as MX(Z) := ZX for some X ∈ Rm×n; i.e., we

post-multiply “vectors” in Rr×m by X. Since we can write ZX as a linear combination of rows, xi,
of X,

MX (Z) = ZX =




∑m
i=1 zrixi

...∑m
i=1 zrixi




r×n

,

we can interpret post-multiplication as a row transformation.

Linear transformations as matrices Let V and W be linear spaces (over R) with dimV = n

and dimW = m, respectively. Fix bases S = {s1, . . . , sn} for V and T = {t1, . . . , tm} for W . Take
any L ∈ L(V,W ). Then, for each j = {1, . . . , n}, since L(sj) ∈W , there exists (αij)

m
i=1 ∈ Rm such

that

L (sj) =

m∑

i=1

αijti.

Define

MV,W (L) := [αij ] =




α11 · · · α1n

...
. . .

...
αm1 · · · αmn




m×n

so that jth column of MV,W (L) is the coordinates of L(sj) with respect to T . That is,

L (x) =MV,W (L)x.
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This tells us that any linear transformation from V to W is equivalent to matrices once we fixed
the two bases.

Proposition 40. Let V and W be linear spaces with dimV = n and dimW = m. Then, the space
of linear transformations from V to W , L(V,W ) is isomorphic to the space of m × n matrices,
Rm×n. Moreover, if S = {s1, . . . , sn} is a basis for V and T = {t1, . . . , tm} is a basis for W , then

MV,W ∈ L
(
L (V,W ) ,Rm×n

)

and MV,W is an isomorphism from L(V,W ) to Rm×n.

Geometric interpretation of matrix product Any (z1, z2) ∈ R2 can be expressed as a point
on a graph. Suppose we consider linear transformations L : R2 → R2 defined as

L (z) := Xz =

[
x11 x12
x21 x22

] [
z1
z2

]
=

[
x11z1 + x12z2
x21z1 + x22z2

]
.

Consider the linear transformation of the unit square by pre-multiplication using matrix X. The
vertices in the unique square is then mapped to a parallelogram:

(0, 0) 7→ (0, 0) , (1, 0) 7→ (x11, x21) ,

(1, 1) 7→ (x11 + x12, x21 + x22) , (0, 1) 7→ (x12, x22) .

Thus, linear transformation here can be thought of as a change from the Cartesian coordinate
system to a new grid system with axes that are generally not at right angels, and each unit square
of the grid is transformed into a parallelogram.

The following are some standard transformations.

• Identity map: X = I2.

• Rotation through angle θ: X =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

• Reflection about y axis: X =

[ −1 0

0 1

]
.

• Reflection about x axis: X =

[
1 0

0 −1

]
.

• Reflection about y = x: X =

[
0 1

1 0

]
.

3.1.3 Span

Recall that any matrix X ∈ Rm×n can be viewed as a collection of (row or column) vectors. Thus,
we can consider the linear space that the vectors span. The linear space spanned by the columns
of X is the column space (or image) of X; i.e.,

im (X) := span
({

x1, . . . ,xn
})

≡





n∑

j=1

λjx
j : λj ∈ R ∀j ∈ {1, . . . , n}



 .

The column rank of X is the rank of the column space of X (recall that rank of a linear space
equals the cardinality of (any) basis of that space). The linear space spanned by the rows of X, i.e.,
span({x1, . . . ,xm}), is the row space of X. The row rank of X is the rank of the row space of X.
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Proposition 41. For any X ∈ Rm×n, rank(span({x1, . . . ,xn})) = rank(span({x1, . . . ,xm})).

The proposition above means that it is unambiguous to the rank of matrix X without reference
to row or column ranks. Hence, we simply write rank(X) to mean the rank of the column (or row)
space of matrix X.

Observe that rank(In) = n and each column (resp. row) are bases of column (resp. row) spaces.

Proposition 42. For any X ∈ Rm×n and Y ∈ Rn×r ,

rank (XY ) ≤ min {rank (X) , rank (Y )} .

Proof. Suppose X ∈ Rm×n and Y ∈ Rn×r and recall that each column of Z := XY is a linear
combination of columns of X. Hence, im(Z) ⊆ im(X) and im(Z) is a linear subspace of im(X).
Therefore, by Corollary 4,

rank (XY ) = dim (Z) ≤ dim (X) = rank (X) .

Similarly, recall that each row of XY is a linear combination of the rows in Y . Hence,

span ({z1, . . . , zm}) ⊆ span ({y1, . . . ,ym})

and span({z1, . . . , zm}) is a linear subspace of span({y1, . . . ,ym}). Therefore, by Corollary 4,

rank (XY ) = dim (Z) ≤ dim (Y ) = rank (Y ) .

Together, these imply that the desired inequality. ■

Corollary 8. Rank of an m× n matrix is always smaller than both m and n.

Proof. By the previous proposition and the fact that rank(In) = n,

rank (X) = rank (XIn) ≤ min {rank (X) , rank (In)} = min {rank (X) , n} ,
rank (X) = rank (ImX) ≤ min {rank (Im) , rank (X)} = min {m, rank (X)} .

Together, these imply that
rank (X) ≤ min {m,n} . ■

We say that matrix X ∈ Rm×n has full rank if rank(X) = min{m,n}.

Proposition 43. Suppose X ∈ Rm×n has rank k ≤ min{m,n}. Then, X has k linearly independent
columns and rows.

The null space (or the kernel) of matrix X ∈ Rm×n is the solutions to the homogenous system
of equations, Xz = 0; i.e.,

null (X) =
{
z ∈ Rn×1 : Xz = 0

}
.

The dimension of the null space of X is the nullity of X, denoted nullity(X) := dim(null(X)).

Theorem 7 (Rank-nullity theorem). Suppose X ∈ Rm×n, then

rank (X) + nullity (X) = n.
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3.1.4 Inverse

An n × n square matrix X is invertible (or nonsingular) if there exists a matrix Y ∈ Rn×n such
that

XY = Y X = In.

If it exists, we call Y the inverse matrix of X and denote it as X−1. Inverse matrices are unique
whenever they exist and has the property that (X−1)−1 = X.17 Matrices that are not invertible
are singular.

Proposition 44. Suppose X,Y ∈ Rn×n are invertible, then their matrix product is also invertible
and

(XY )
−1

= Y −1X−1.

We will not go over the general method of computing inverse matrices.18

Proposition 45. A triangular matrix (upper or lower) is nonsingular if and only if its diagonal
entires are nonzero. The inverse of an upper (resp. lower) triangular matrix is also upper (resp.
lower) triangular whenever they exist.

Above implies that a diagonal matrix is invertible if and only if the diagonal elements are
nonzero. Thus, I is always invertible.

Proposition 46. Suppose X ∈ Rn×n is an invertible, diagonal matrix. Then,

X−1 = diag

(
1

a11
, . . . ,

1

ann

)
.

Proposition 47. A square matrix X ∈ Rn×n is invertible if and only if rank(X) = n.

3.1.5 Transpose

Given X ∈ Rm×n, the transpose of X, denoted X⊤ or X ′, is the matrix obtained by placing the
ijth entries into the jith positions instead; i.e.,

X⊤ := [aji]n×m .

Note (X⊤)⊤ = X, transpose of a real number (i.e., a 1 × 1 matrix) is itself, and transpose of a
row vector is a column vector (and vice versa). We say that a matrix X is symmetric if it equals
its transpose; i.e., X = X⊤. Symmetric matrices must be square matrices. A diagonal matrix is
symmetric. Symmetries is preserved under matrix addition (and subtraction).

Proposition 48. Suppose X ∈ Rm×n, Y ∈ Rn×r and λ ∈ R.

• (λX)
⊤
= λX⊤.

• (X + Y )⊤ = X⊤ + Y ⊤.

• (XY )⊤ = Y ⊤X⊤.

• (X−1)⊤ = (X⊤)−1 whenever X is invertible.

• XX⊤ and X⊤X are symmetric matrices.

• If X is upper (resp. lower) triangular, then X⊤ is lower (resp. upper) triangular.
17Toward a contradiction, suppose X has two distinct inverses Y and Z. But Y = Y I = Y (XZ) = (Y X)Z = IZ =

Z; a contradiction.
18If you need to go over this, take a look at Sundaram §1.3.5.
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3.1.6 Trace

Given X ∈ Rn×n, the trace of X, denoted tr(X) is the sum of its diagonals; i.e.,

tr (X) :=

n∑

i=1

xii.

Proposition 49. Suppose X,Y ∈ Rn×n, λ ∈ R,

• Trance is a linear transformation: tr(λX + Y ) = λtr(X) + tr(Y ).

• tr(X) = tr(X⊤).

• If AB and BA are square matrices (but not necessarily A and B), then tr(AB) = tr(BA).

• Invariant under cyclic permutation: tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).

3.1.7 Determinant

The determinant of a square matrix X ∈ Rn×n, denoted det(X) (or |X|), is an a matrix defined
inductively in the following way:

(i) for a 1× 1 matrix X = x11, define its determinant as det(X) := x11;

(ii) for an n × n matrix with n ≥ 2, define its determinant via the cofactor of expansion of X
along the first row)

det (X) :=

n∑

j=1

(−1)
1+j

aijdet (X−1,−j) ,

where X−i,−j is the matrix X with the ith row and jth columns eliminated.19

This formula means that

X =

[
a11 a12
a21 a22

]
⇒ det (X) = a11a22 − a12a21

and

X =



a11 a12 a13
a21 a22 a23
a31 a32 a33




⇒ det (X) = a11 det

([
a22 a23
a32 a33

])
− a12 det

([
a21 a23
a31 a33

])
+ a13 det

([
a21 a22
a31 a32

])

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Proposition 50. Suppose X ∈ Rn×n.

• det(In) = 1.

• If X is triangular, then det(X) =
∏n

i=1 xii.

• det(XY ) = det(X) det(Y ).

• If X is invertible, then det(X−1) = 1/ det(X).

• If any two columns of X are equal, then det(X) = 0.

Proposition 51. A square matrix X ∈ Rn×n is invertible if and only if det(X) ̸= 0.
19In fact, we can define determinant using cofactor expansion along any arbitrary rows or columns of X.
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Geometric interpretation of determinant Recall that a linear transformation from R2 to R2

reshapes a unit square to a parallelogram in Cartesian coordinate system. It turns out that the area
of the parallelogram produced by transformation the unit square via matrix X is equal to |det(X)|
(the sign of det(X) tells us about the orientation of the parallelogram compared to the original
square). All of the standard transformations in the example are associated with matrices with
determinant of one. This means that these transformations preserve area. In contrast, consider the
following matrix, for some k1, k2 ∈ R,

X =

[
k1 0

0 k2

]
⇒ |det (X)| = |k1k2| .

This linear transformation scales area by a factor k1k2; it scales in the x-axis direction by a factor
k1 and in the y-axis direction of a factor k2.

Observe also that the matrices associated with the aforementioned standard linear transform-
ations are all invertible/nonsingular. This means that each point is mapped to a unique point so
that the transformations are reversible. In contrast, linear transformation via singular matrices
cannot be reversed uniquely. For example, consider the matrix

X =

[
1 2

2 4

]
⇒ |det (X)| = 0.

Observe that every point in (x, y) is mapped to some point on the same line y = 2x. This means
that there are many points that are mapped to the same point on the line y = 2x. For example,

(2, 2) ,

(
3,

1

2

)
7→ (4, 8) .

3.1.8 Kronecker product

Kronecker product is a function � : Rm×n × Rr×s → Rrm×ns defined by

X � Y :=




x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY


 .

(More generally, Kronecker product is a special case of a linear transformation, called tensor product,
applied to linear space of matrices.)

Example 20. Consider a panel data with dimensions i ∈ {1, . . . , N} and t ∈ {1, . . . , T}:

yit = x′
itγ + αi + δt + uit,

where yit ∈ R is the dependent variable, xit ∈ Rk is a column vector of independent variables,
γ ∈ Rk is the column vector of coefficients, αi ∈ R is the fixed effect, δt is the “time dummy” and
uit is the error term. To express the data in matrix form, we stack observations—let’s say first over
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t ∈ {1, . . . , T} for each i ∈ {1, . . . , N}:



y11
...
y1T
y21
...
y2T
...

yN1

...
yNT



NT×1

=




x′
11
...

x′
1T

x′
21
...

x′
2T
...

x′
N1
...

x′
NT



NT×k︸ ︷︷ ︸

:=X1

γk×1 +




ιT 0T · · · · · · 0T

0T ιT 0T · · · 0T

0T 0T
. . . . . .

...
...

...
. . . . . . 0T

0T 0T · · · 0T ιT



NT×N︸ ︷︷ ︸

:=X2




α1

...
αN




N×1︸ ︷︷ ︸
:=α

+




IT
IT
...
IT




NT×T︸ ︷︷ ︸
:=X3



δ1
...
δT




T×1︸ ︷︷ ︸
:=δ

+




u11
...

u1T
u21
...

u2T
...

uN1

...
uNT



NT×1︸ ︷︷ ︸

:=u

,

where ιT ∈ RT column vector of ones, 0T ∈ RT is a column vector of zeros, and IT ∈ RT×T is an
identity matrix. We can write above equivalently as

y = X1γ + (IN ⊗ ιT )︸ ︷︷ ︸
=X2

α+ (ιN ⊗ IT )︸ ︷︷ ︸
=X3

δ + u = Xβ + u,

where

X = [X1,X2,X3]NT×(k+N+T ) ,

β =
[
γ′,α′, δ′

]′
(k+N+T )×1

.
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Note that, given K := k +N + T ,

(X′X)K×K = [x̃11 · · · x̃1T · · · · · · x̃N1 · · · x̃NT ]




x̃′
11
...

x̃′
1T
...
...

x̃N1

...
x̃NT




=

N∑

i=1

T∑

t=1

x̃itx̃
′
it,

(X′u)K×1 = [x̃11 · · · x̃1T · · · · · · x̃N1 · · · x̃NT ]




u11
...

u1T
...
...

uN1

...
uNT




=

N∑

i=1

T∑

t=1

x̃ituit.

3.1.9 Space of matrices as an inner product space

Suppose y, z ∈ Rn×1 and X ∈ Rn×n is invertible. First, observe that Euclidean dot product can
be written as matrix product:

y · z =

n∑

i=1

yizi =
[
z1 · · · zn

]


y1
...
yn


 = z⊤y = y⊤z.

Since Xy, Xz ∈ Rn×1, we may consider the Euclidean dot product between the two:

Xy ·Xz = (Xy)
⊤
Xz = y⊤X⊤Xz.

The function ⟨·, ·⟩X : Rn × Rn → R defined by

⟨y, z⟩X := Xy ·Xz = y⊤X⊤Xz.

is an inner product and is called an inner product on Rn generated by X. The Euclidean dot
product is a special case in which X = In. Weighted Euclidean dot product is a special case in
which X = diag(w1, . . . , wn).

Proposition 52. (Rm×n, ⟨·, ·⟩) is an inner product space where

⟨X,Y ⟩ := tr
(
Y ⊤X

)
.

The following provides a geometric connection between the null space and row/column spaces
of a matrix.
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Proposition 53. Given X ∈ Rm×n,

null (X) = (span ({x1, . . . ,xm}))⊥ ,
null

(
X⊤) =

(
span

({
x1, . . . ,xn

}))⊥
= (im (X))

⊥
,

where the orthogonal complement is taken with respect to the Euclidean inner product.

Proof. Suppose X ∈ Rm×n and the we take the inner product to be the Euclidean dot product.
Take any y ∈ null(X). We first show that y is orthogonal to every vector in the row space of

X. By definition of null space,

Xy = 0 ⇔ xi · y = ⟨xi,y⟩ = 0 ∀i ∈ {1, . . . ,m} .

Thus, each xi (i.e., each row of matrix X) is orthogonal to y. By definition, for any x ∈
span({x1, . . . ,xm}), there exists (λi)

m
i=1 ∈ Rm such that x =

∑m
i=1 λixi. Thus,

⟨x,y⟩ =
〈

m∑

i=1

λixi,y

〉
=

m∑

i=1

λi ⟨xi,y⟩ = 0.

Hence, y is orthogonal to any element in the row space of X. Sine y was arbitrary, it follows that
every element of null (X) is orthogonal to the row space of X. Conversely, take any y⊥ that is
orthogonal to every row vector of X; i.e.,

〈
xi,y

⊥〉 = xi · y⊥ = 0 ∀i ∈ {1, . . . ,m} .

This implies that y⊥ ∈ null(X) since

Xy⊥ =




x11 · · · x1n
...

. . .
...

xm1 · · · xmn






y⊥1
...
y⊥n


 =




∑m
i=1 x1iy

⊥
i

...∑m
i=1 xmiy

⊥
i


 =




x1 · y⊥

...
xm · y⊥


 = 0.

Since y⊥ was chosen arbitrary, it follows that any vector that is orthogonal to every tow vector of
X is in the null space of X. We have now shown the first equality. To show the second equality,
observe that the column space of X is equal to the row space of X⊤. ■

Recall that in any inner product space V , the zero space ({0}) and V are orthogonal complement
of one another. Thus, if X ∈ Rn×n, to say that Ax = 0 has only the trivial solution (of x = 0)
is equivalent to saying that the orthogonal complement of the null space of X is all of Rn , or,
equivalently (by the proposition above), that the row space of X is all of Rn. This gives the
following characterisation.

Proposition 54. The following are equivalent.

• A matrix X ∈ Rn×n is invertible.

• (null(X))⊥ = Rn.

• (span({x1, . . . ,xm}))⊥ = {0}.

Theorem 8 (QR-decomposition). Suppose X ∈ Rm×n has linearly independent column vectors;
i.e., {x1, . . . ,xn} are linearly independent. Then, X can be decomposed as

X = QR,
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where Q ∈ Rm×n is a matrix with orthonormal column vectors and R ∈ Rn×n is an invertible upper
triangular matrix.

Proof. Let X ∈ Rm×n be a matrix with linearly independent column vectors {x1, . . . ,xn}. Then,
(im(X), ⟨·, ·⟩) is an inner product space with ⟨·, ·⟩ being the Euclidean dot product; moreover,
{x1, . . . ,xn} is a basis of im(X). Since {x1, . . . ,xn} is linearly independent, we can apply the
Gram-Schmidt process to obtain orthonormal an basis, S := {s1, . . . , sn}. By Proposition 31, we
can write

xi =

n∑

j=1

〈
xi, sj

〉
sj ∀i ∈ {1, . . . , n} .

Thus,

X =
[
x1 · · · xn

]
=
[
s1 · · · sn

]
︸ ︷︷ ︸

:=Q




〈
x1, s1

〉
· · · ⟨xn, s1⟩

...
. . .

...〈
x1, sn

〉
· · · ⟨xn, sn⟩




︸ ︷︷ ︸
:=R

.

By construction, for any j ≥ 2, the vector sj is orthogonal to x1, . . . ,xj−1 so that

R =




〈
x1, s1

〉 〈
x2, s1

〉
· · · · · · ⟨xn, s1⟩

0
〈
x2, s2

〉
· · · · · · ⟨xn, s2⟩

... 0
. . . . . .

...
...

...
. . . . . .

...
0 0 · · · 0 ⟨xn, sn⟩



.

That is, R is an upper triangular matrix. ■

Since X ∈ Rn×n is invertible if and only if it has linearly independent columns, it follows that
every invertible matrix has a QR-decomposition.

3.2 System of linear equations

A system of a linear equations take the form:

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a11x1 + a12x2 + · · ·+ a1nxn = b2,

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm,

where aij , bj ∈ R for all i, j ∈ {1, . . . , n} × {1, . . . ,m} and the unknowns are x1, . . . , xn ∈ R. The
system of linear equations can be written succinctly as

Ax = b,

where A = [aij ]m×n, b = (b1, . . . , bm) and x = (x1, . . . , xn) (remember the convention that unspe-
cified vectors are row vectors). The following proposition characterised the existence as well as the
unique of the solutions to a system of linear equations.

Proposition 55. Suppose A ∈ Rm×n and b = Rm×1. Then, the system of equation Ax = b has a
solution if and only if

rank ([A|b]) = rank (A) , (3.1)
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where [A|b] := [a1, . . . ,an,b] ∈ Rm×n+1 is the augmentation of matrix A by b (called the augmented
matrix).

If the system has a solution, then (i) the solution is unique if and only if A is full rank; (ii) the
system has infinitely many solutions if and only if rank(A) < n.

Recall that Ax is a linear combination of columns of X. The condition (3.1) means that b is a
linear combination of the columns of A; i.e., the existence of a solution is equivalent to b belonging
in the column space of A. Recalling Proposition 7, uniqueness of a solution (when one exists)
depends on the dimension of the null space of A. In fact, one can think of nullity(A) as the number
of free parameters in the system of equations.

Proposition 56 (General solution of a linear equation). Given A ∈ Rm×n and b ∈ Rm×1, suppose
x∗ ∈ Rn×1 satisfies Ax∗ = b. Then, the set of all solutions satisfying the Ax = b is given by

{x∗ + xh : xh ∈ null (A)} .

A system of linear equations Ax = b is homogenous if b = 0 and non-homogenous if b ̸= 0. A
vector x∗ satisfying Ax∗ = b is a particular solution of the linear equation Ax = b. The result above
tells us that the general solution of a non-homogenous system of linear equations, {x : Ax = b}. is
the sum of any particular solution (x∗) and the general solution of the related homogenous system
(xh such that Axh = 0).

When solving linear equations by hand, you can use the Gauss-Jordan elimination, which we
will not cover here. In the special case in which A is an invertible square matrix, the (unique)
solution is given by x∗ := A−1b and we have the following theorem to characterise the solution.

Theorem 9 (Cramer’s Rule). Suppose A ∈ Rn×n is invertible and b ∈ Rn×1. The ith entry of the
vector x∗ := A−1b ∈ Rn×1 is given by

x∗
i =

det (Ai)

det (A)
∀i ∈ {1, . . . , n} ,

where Ai ∈ Rn×n is the matrix obtained by replacing the ith column of A by b.

3.3 Least square solution as orthogonal projections

Consider a linear system of equations Xb = y, where X ∈ Rm×n, b ∈ Rn×1 and y ∈ Rm×1.
Suppose that this system of equation has no solution. That is, by our discussion about Proposition
55, y /∈ im(X). We might find ourselves in such situation if Xb = y represents a theoretical
relationship that is only observed in real data with some noise. One way to solve such an inconsistent
system of equation is to look for b that comes “as close as possible” to being a solution in the sense
that it minimises the the Euclidean distance between Xb ∈ im(X) and y. Thinking of eb := Xb−y

as errors, we wish to minimise ∥eb∥ =
√
(eb1)

2 + · · ·+ (ebn)
2 with respect to b. The solution to such

a problem is called the least squares solution of Xb = y since it minimises the squares errors.
Define W to be the column space of X; i.e., W := im(X). For any b ∈ Rn×1 then Xb is a

linear combination of column vectors of X; i.e., Xb ∈W for any b ∈ Rn×1. By the Approximation
Theorem (Theorem 6), the best approximation to y in W is the orthogonal projection of y on W ,
ŷ := projWy. We now wish to find b̂ ∈ Rn×1 such that

Xb̂ = projWy.

We will do so without computing projWy explicitly. Observe that

y −Xb̂ = y − projWy = projW⊤y ∈W⊥.
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That is, y −Xb̂ is orthogonal to W , which is the column space of X. Then, by Proposition 53,

y −Xb̂ ∈ null
(
X⊤)⇔ X⊤

(
y −Xb̂

)
= 0 ⇔ X⊤y = X⊤Xb̂.

The last expression is called the normal system associated with Xb = y. Recall that we are
concerned with a linear system of equations Xb = y with no solutions. The point of all of this is
the following result.

Proposition 57. A solution to a normal system associated with Xb = y always exists.

We first prove the following lemma.

Lemma 3. For any matrix X ∈ Rm×n,

null
(
X⊤X

)
= null (X) , im

(
X⊤X

)
= im

(
X⊤) .

Proof. For any b ∈ null(X), then Xb = 0 so that X⊤Xb = X⊤0 = 0 and b ∈ null(X⊤X). Thus,
null(X) ⊆ null(X⊤X). Conversely, take any b ∈ null(X⊤X), then

X⊤Xb = 0 ⇒ b⊤X⊤Xb = b⊤0 = 0 ⇒ (Xb)
⊤
(Xb) = ⟨Xb, Xb⟩ = ∥Xb∥2 = 0.

By positivity, it follows thatXb = 0. Hence, null(X⊤X) ⊆ null(X). Together, we have null(X⊤X) =

null(X). Since X⊤X is symmetric,

im
(
X⊤X

)
= im

((
X⊤X

)⊤)
=
(
null

((
X⊤X

)⊤))⊥
=
(
null

(
X⊤X

))⊥
.

where the penultimate equality uses Proposition 53. Since null(X⊤X) = null(X),

im
(
X⊤X

)
= (null (X))

⊥
= im

(
X⊤) ,

where the last equality uses Proposition 53 again. ■

Proof of Proposition 57. By Proposition 55, we know that a solution to the normal system exists
if X⊤y ∈ im(X⊤X). Since X⊤y is a linear combination of columns of X⊤, X⊤y ∈ im(X⊤).
The lemma above tells us that X⊤y ∈ im(X⊤X). Hence, the solution to the normal system must
exist. ■

Although we know that a solution to normal system exists, we do not know whether the solution
is unique. But, by Proposition 55 again, if X⊤X ∈ Rn×n is invertible, we know that the solution
must be unique. In this case, we have

b̂ =
(
X⊤X

)−1
X⊤y

and it also follows that
projWy = X

(
X⊤X

)−1
X⊤y.

You may recall that b̂ is the OLS estimator. We see here that OLS gives us the vector in the
column space of X that minimises the distance (under the metric induced by the Euclidean norm)
between it and vector y.
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3.4 Eigenvalues and eigenvectors

Recall that C is the set of complex numbers. Let Cm×n be the set of all m × n matrices whose
entries are complex numbers. Given any X ∈ Cn×n, a scalar λ ∈ C is an eigenvalue of X if

∃z ∈ Cn\{0}, Xz = λz.

A vector z ∈ Cn\{0} is an eigenvector of X if

∃λ ∈ C, Xz = λz.

Proposition 58. λ ∈ C is an eigenvalue of X ∈ Cn×n if and only if

det (λIn −X) = 0.

Proof. By definition, λ ∈ C is an eigenvalue of X if Xz = λz ⇔ (X − λIn)z = 0 has a nonzero
solution z. Since (X−λIn)z is a linear combination of the columns ofX−λIn, that there is a nonzero
solution means that the columns of the matrix λIn −X are linearly dependent by Proposition 19.
By Proposition 43, this means that rank(X) < n, which implies that λIn − X is not invertible
(Proposition 47). This, in turn, is equivalent to det(λIn −X) = 0 by Proposition 51. ■

Since

λIn −X =




λ− x11 −x12 · · · −x1n
−x21 λ− x22 · · · −x2n

...
...

. . .
...

−xn1 −xn2 · · · λ− xnn


 ,

the determinant of λIn −X is a polynomial in λ of degree n; i.e., ∃(ci)ni=0 ∈ Cn+1 with cn ̸= 0,

det (λIn −X) =

n∑

i=0

ci · (λ)i .

We refer to PX (λ) := det (λIn −X) as the characteristic polynomial of X. The Fundamental
Theorem of Algebra tells us that we can find all eigenvalues of X by setting the characteristic
polynomial of X to 0 and solving for all its roots.

Theorem 10 (Fundamental Theorem of Algebra). Let P : C → C be a polynomial of degree n; i.e.,
P (λ) =

∑n
i=0 ci · (λ)i for (ci)

n
i=0 ∈ Cn+1 with cn ̸= 0. Then, P has exactly n roots in C (counted

with multiplicity); i.e.,

∃ (λi)ni=1 ∈ Cn, P (λ) = cn

n∏

i=1

(λ− λi)

Proposition 59. Suppose matrix X ∈ Cn×n has eigenvalues (λi)
n
i=1 ∈ Cn. Then,

PX (λ) =

n∏

i=1

(λ− λi) ,

det (X) =

n∏

i=1

λi,

tr (X) =

n∑

i=1

λi.

It follows from above that a matrix is singular (not invertible) if at least one eigenvalue is 0.
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3.4.1 Geometric interpretation

Recall that X ∈ R2×2 can be thought of as mapping points to new points (except for the origin).
However, it may be that some straight lines remains fixed before and after the transformation.
That is, suppose what happens if Xz = λz for some λ ∈ R so that every point (z1, z2) on a given
line is mapped to another point on the same straight line through the origin. The equation or the
direction of the straight line, z, is the eigenvector, and the corresponding value of the constant λ
(the scaling in the direction of the associated eigenvector) is the eigenvalue.

For example, consider the following variant of the matrix that reflects about the y axis:

X =

[ −2 0

0 1

]
.

This matrix has eigenvalues of −2 and 1 and corresponding eigenvectors of (1, 0) and (0, 1) respect-
ively. This means that X scales by a factor of 2 in the direction of the x-axis but leaves the scale
in the y-axis unchanged. Indeed, observe that

(0, 1) 7→ (0, 1) , (1, 0) 7→ (−2, 0) , (1, 1) 7→ (−2, 1) .

Thus, this linear mapping doubles the area and indeed |det(X)| = 2.
Note that eigenvalue of zero means that all points on the line associated with the eigenvector is

mapped to the origin.

3.5 Diagonalisation

A matrix X ∈ Rn×n is diagonalisable (in R) if there exists an invertible matrix P ∈ Rn×n and a
diagonal matrix Λ ∈ Rn×n such that

Λ = P−1XP.

The diagonal entries of Λ = diag(λ1, . . . , λn) are the n eigenvalues of X since

det (λIn −X) = det
(
P−1

)
det (λIn −X) det (P )

= det
(
P−1 (λIn −X)P

)

= det
(
P−1λInP − P−1XP

)

= det (λIn − Λ)

=

n∏

i=1

(λ− λi) ,

where, in first line, we used the fact that det(P−1) = 1/ det(P ). Moreover, a diagonalisable matrix
X can be decomposed as follows:

X =
(
PP−1

)
X
(
PP−1

)
= P

(
P−1XP

)
P−1 = PΛP−1.

Proposition 60. A matrix X ∈ Cn×n is diagonalisable in C if and only if X has n linearly
independent eigenvectors.

Proposition 61. Suppose matrix X ∈ Cn×n has n distinct eigenvalues (λi)
n
i=1 ∈ Cn. Then, the

corresponding eigenvectors are linearly independent.

Proposition 62. A matrix X ∈ Cn×n has n distinct eigenvalues in C, then X is diagonalisable
in C so that X = PΛP−1, where P is a matrix of eigenvectors and Λ is a diagonal matrix of
eigenvalues.
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Proof. Let pi denote eigenvectors corresponding to eigenvalue λi; i.e.,

Xpi = λip
i ∀i ∈ {1, . . . , n} .

Define P := ( p1 . . . pn ) and Λ := diag(λ1, . . . , λn), we can succinctly write the above set of
equation as

XP = PΛ.

By the previous proposition, eigenvectors of X are linearly independent, which implies that P is
invertible. Thus, post-multiplying both sides by P−1 yields X = PΛP−1 as desired. ■

An matrix X ∈ Rn×n is orthogonal if X⊤X = In, which, in turn, implies that X−1 = X⊤.

Proposition 63. A symmetric matrix X ∈ Rn×n has all real eigenvalues, and there exists an
orthogonal matrix P ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n such that Λ = P−1XP = P⊤XP .

Remark 5. The characterisation of when a matrix can be diagonalised is an example of spectral
theorem. More generally, a spectral theorem characterises when a linear transformation can be
diagonalised. Note that a spectrum of a linear transformation is a generalisation of the set of
eigenvalues of a matrix.

Proposition 64. A matrix X is idempotent if and only if its eigenvalues are either 0 or 1, and
the number of eigenvalues equal to 1 is tr(X).

Proof. Since X is idempotent it has to be symmetric. Suppose that X is idempotent, λ is an
eigenvalue and z ̸= 0 the corresponding eigenvector, i.e., λz = Xz, then

λz = Xz = XXz = X (λz) = λXz = λ2z.

Since z ̸= 0, above implies λ = λ2 and hence either λ = 0 or λ = 1.
Conversely, by Proposition 63, we may write X = P⊤ΛP , where Λ is a matrix of eigenvalues

and P is the matrix of corresponding eigenvectors. Then,

X2 = P⊤ΛPP⊤ΛP = P⊤ΛPP−1ΛP = P⊤Λ2P,

where we used the fact that P is orthogonal. Sine each diagonal entry on Λ is either 0 or 1, it
follows that Λ2 = Λ. That is,

X2 = P⊤ΛP = X.

Finally,
tr (X) = tr

(
P⊤ΛP

)
= tr

(
ΛPP⊤) = tr (Λ) .

Since all diagonal entries in Λ are 0 or 1, the number of eigenvalues equal to 1 is trace(X). ■

Linear dynamic system Suppose we have a linear dynamic system; i.e.,

zt = Xzt−1

for some zt ∈ Rn and X ∈ Rn×n. Repeated substitution yields that

zt = X (Xzt−2) = · · · = Xtz0.

Computing Xt can be difficult generally. However, if X was diagonal, the computation is easy
because

(diag (x1, . . . , xn))
t
= diag

(
xt1, . . . , x

t
n

)
.
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Even if X was not diagonal, diagonalisation helps computation. To see this, suppose that matrix
X is diagonalisable and that there exists a matrix of eigenvectors P ∈ Rn×n and a corresponding
diagonal matrix of distinct eigenvalues Λ = diag(λt1, . . . , λ

t
n) ∈ Rn×n such that X = PΛP−1. Then,

Xt =
(
PΛP−1

)
× · · · ×

(
PΛP−1

)
= PΛtP−1.

Hence,
zt = PΛtP−1z0

so that zt is a linear combination of the initial values z0 with the weights given by the eigenvalues
and eigenvectors.

Defining ẑt := P−1zt, we can also write

ẑt = Λtẑ0 ⇔ ẑti = λtiẑ0i ∀i ∈ {1, . . . , n} .

That is, each component of ẑt, ẑti, is described by independent equations so that it depends only
on ẑ0,i (and λi).

We are also often interested in the long-run behaviour of a linear dynamic system; i.e., given
zt = Xzt−1, we wish to know

lim
t→∞

zt = lim
t→∞

Xtz0 = lim
t→∞

PΛtP−1z0 = P
(
lim
t→∞

Λt
)
P−1z0.

Since Λ is a diagonal matrix whose diagonal entries are the eigenvalues of X, it follows that the
long-run behaviour of the dynamic system depends on the eigenvalues of X, (λi)ni=1. Since Λt =

diag(λt1, . . . , λ
t
n), for the long-run limit to exist, we must have that |λi| < 1 for any z0i ̸= 0, where

z0 = (z0i)
n
i=1.

Example 21. Suppose we have a system of simultaneous first-order difference equations:

xt+1 = 4xt + 2yt,

yt+1 = −xt + yt,

with initial values x0 and y0. We can write this in matrix form, xt+1 = Axt:

[
xt+1

yt+1

]
=

[
4 2

−1 1

] [
xt
yt

]
.

The eigenvalues of A are given by k that solves |A− kI| = 0; i.e.
∣∣∣∣
4− k 2

−1 1− k

∣∣∣∣ = 0

⇒ (4− k) (1− k) + 2 = 0

⇒ 6− 5k + k2 = 0

⇒ (k − 2) (k − 3) = 0.

Thus, eigenvalues are λ1 = 2 and λ2 = 3. The eigenvector corresponding to λ1 is
[

4− 2 2

−1 1− 2

] [
xt
yt

]
= 0

[
2xt + 2yt
−xt − yt

]
= 0
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so that the corresponding eigenvector is (1,−1). For λ2,

[
4− 3 2

−1 1− 3

] [
xt
yt

]
=

[
xt + 2yt
−xt − 2yt

]
= 0

so that the corresponding eigenvector is (2,−1). Hence

P =

[
1 2

−1 −1

]
,

Λ =

[
2 0

0 3

]
,

P−1 =
1

1

[ −1 2

1 1

]
.

To verify

PΛP−1 =

[
1 2

−1 −1

] [
2 0

0 3

] [ −1 2

1 1

]
=

[
2 6

−2 −3

] [ −1 2

1 1

]
=

[
4 2

−1 1

]
= A.

Notice that
xt = Atx0 = P−1ΛtPx0.

Define zt = Pxt, then

zt =

[
z1,t
z2,t

]
=

[
2t 0

0 3t

] [
z1,0
z2,0

]
= Λtz0

That is,
z1,t = λt1z1,0, z2,t = λt2z2,0.

3.6 Definiteness

A function Q : Rn → R has a quadratic form if it can be represented by

Q (z) = z⊤Xz

=

n∑

i=1

n∑

j=1

xijzizj

=

(
n∑

i=1

xiix
2
i

)
+ ((x12 + x21) z1z2 + · · ·+ (xn−1,n + xn,n−1) zn−1zn)

for some X ∈ Rn×n. There are many ways to represent a quadratic form using a matrix; e.g., if
X presents a quadratic form Q, then X + Y also represents Q for any antisymmetric matrix Y

(i.e., yij = −yji). However, each quadratic form can be represented by a unique symmetric matrix
because such representation is equivalent to sharing the coefficient on zizj with i ̸= j equally
between xij and xji.

A symmetric matrix X ∈ Rn×n is

• positive definite if z⊤Xz > 0 ∀z ∈ Rn\{0};

• negative definite if z⊤Xz < 0 ∀z ∈ Rn\{0};

• positive semidefinite if z⊤Xz ≥ 0 ∀z ∈ Rn;
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• negative semidefinite if z⊤Xz ≤ 0 ∀z ∈ Rn;

• indefinite if they are none of the above (i.e., if ∃z, z′ ∈ Rn, z⊤Xz > 0 and z′⊤Xz′ < 0).

There are many ways to characterise the definiteness of a matrix but the following relies on eigen-
values.

Proposition 65. A symmetric matrix X ∈ Rn×n is

(i) positive definite if and only if all its eigenvalues are strictly positive;

(ii) negative definite if and only if all its eigenvalues are strictly negative;

(iii) positive semidefinite if and only if all its eigenvalues are nonnegative;

(iv) negative definite if and only if all its eigenvalues are nonpositive;

(v) indefinite if and only if it has both positive and negative eigenvalues.

Another useful characterisation is the follows.

Proposition 66 (LDL decomposition). A symmetric matrix X ∈ Rn×n is positive definite if and
only if there exists a diagonal matrix D ∈ Rn×n with strictly positive entries on its diagonal and a
lower triangle matrix L ∈ Rn×n with all 1’s on its diagonal such that X = LDL⊤.

In the theorem above, if we define P := L
√
D (where

√
D := diag

(√
d1, . . . ,

√
dn
)
), then we

have
X = L

√
D
√
DL⊤ = PP⊤.

This is called the Cholesky decomposition.

Theorem 11 (Cholesky decomposition). A symmetric matrix X ∈ Rn×n is positive definite if and
only if there exists a lower triangle matrix P with strictly positive entries on its diagonal such that
X = PP⊤.

Remark 6. Denote the set of symmetric n× n matrices Sn ⊆ Rn×n. Define ≥psd such that

X ≥psd Y ⇔ X − Y ≥psd 0 ⇔ X − Y is positive semifinite.

Then, (Sn,≥psd) is a partially order set.
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4 Analysis

4.1 Sequences

Remark 7. We will go over the materials in this section in more depth in ECON 6701. We only
briefly introduce the relevant notions here necessary to make sense of what is to follow.

A sequence in some nonempty set X is a function x : N → X. Instead of using the standard
notation x(n) for functions we use xn. Some (equivalent) notations for a sequence x are:

(x1, x2, . . .) ≡ (xn)
∞
n=1 ≡ (xn)n∈N ≡ (xn)n ≡ (xn).

Let X∞ denote the set of all sequences in X. For brevity, we will generally adopt the notation (xn)n
if no confusion arise. The set of sequences. A subsequence of (xn) is a sequence obtained by (only)
deleting elements of (xn). More formally, a subsequence of (xn) is any sequence (xnk

)∞k=1 ≡ (xnk
)

where (nk) is a strictly increasing sequence of non-negative integers.

Remark 8. You might see sequences denoted as {xn}∞n=1. Braces are exclusively for sets, which are
unordered: {2, 3} is the same set as {3, 2}, which are both the same as {2, 3, 2, 2, 2, 3} (with some
abuse of notation), etc.

Example 22. Consider the sequence of Real numbers (1,−1, 1,−1, . . .) = ((−1)n)∞n=1. (Make
sure you understand the notation on the right hand side of the equality.) Its set of values is
{(−1)n : n ∈ N} = {1,−1}. Seen as a function, {1,−1} is the range and N is the domain (like
it is for all sequences). Examples of subsequence of ((−1)n)∞n=1 is (1, 1, . . .), (−1,−1, . . .), and
(1,−1, 1, 1,−1,−1, . . .).

4.2 Limits

Let (X, ρ) be a metric space. A sequence (xn) converges to x ∈ X if, for every ϵ > 0, there exists
Nϵ ∈ N such that n > N implies ρ(xn, x) < ϵ. The point x is called the limit of (xn), and we write

lim
n→∞

xn = x or xn → x.

Observe that the limit must be in X and we call a sequence (xn) that converges to a limit a
convergent sequence. A sequence that is not convergent is a divergent sequence. Taking limits
preserves order, addition and multiplications etc.

A sequence (xn) is Cauchy if, for every ϵ > 0, there exists N ∈ N such that ρ(xm − xn) < ϵ for
all m,n ∈ N and m,n > N . Thus, elements of Cauchy becomes arbitrarily close.

A subset S ⊆ X is sequentially compact if every sequence in S has a convergent subsequence.
When (X, ρ) is a metric space, compactness is equivalent to sequential compactness.

Recall that if (X, ρX) and (Y, ρY ) are metric spaces, then (X×Y, ρ) is a metric space where ρ is
product metric given by (2.3). More generally, if (Xi, ρi) is a metric space for each i ∈ {1, . . . , d},
then (X, ρ) is a metric space, where X := ×d

i=1Xi and

ρ (x, y) = ρ ((x1, . . . , xd) , (y1, . . . , yd)) =
(∑

(ρi (xi, yi))
p
)1/p

for any p ≥ 1. Call such (X, ρ) space an product metric space.

Proposition 67. Let (X := ×d
i=1Xi, ρ) be a product metric space. A sequence (xn) in X converges

to a limit x if and only if xn,i → xi for all i ∈ {1, . . . , d}.

Note that limits do not always exist; e.g., the sequence ((−1)n)n does not converge. Nevertheless,
we can define alternative notions of limits that always exist. The limit superior of a sequence (xn),
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denoted lim supn→∞ xn, is defined as

lim sup
n→∞

xn := lim
m→∞

sup {xn : n ≥ m} .

Similarly, the limit inferior of (xn) is defined

lim inf
n→∞

xn := lim
m→∞

inf {xn : n ≥ m} .

When a sequence (xn) has a limit, then

lim
n→∞

xn = lim sup
n→∞

xn = lim inf
n→∞

xn.

We will study these more in ECON 6701.

4.3 Continuity

We now introduce some equivalent notions of continuous functions.

Proposition 68. Suppose f : X → Y , where (X, ρX) and (Y, ρY ) are two metric spaces. The
following are equivalent.

(i) f is continuous at x ∈ X.

(ii) (sequential characterisation) limn→∞ f(xn) = f(x) ∀xn ∈ X∞ : xn → x.

(iii) (ϵ-δ criterion) ∀ϵ > 0, ∃δϵ,x > 0, ρY (f(x), f(s)) < ϵ ∀s ∈ X\{x} : ρX(x, s) < δϵ,x.20

(iv) (topological characterisation) For all open sets V ⊆ Y such that f(x) ∈ Y , there is an open
set U ⊆ X such that x ∈ U and f(z) ∈ Y for all z ∈ U (i.e., f(U) ⊆ Y ).

Say f : S → Y is continuous on S ⊆ X if f is continuous at all x ∈ S. If S = X, then we
simply say that f is continuous. If f is not continuous at x ∈ S, f is discontinuous at x.

The sequential characterisation tells us that continuous functions preserves limits. The topolo-
gical characterisation gives that a function is continuous if and only if the preimage of every open
set is open; i.e., f−1(V ) is open for any open subset V in Y .

We say that a function f : X → Y is bounded if f(X) is bounded.
We will prove this in ECON 6701 but you should be aware of it and be familiar with it!

Theorem 12 (Intermediate Value Theorem). Suppose f : [a, b] → R is continuous and f(a) < 0 <

f(b). Then, there exists c ∈ (a, b) such that f(c) = 0.

20Sometimes, this is written ρ(x, s) < δϵ,x ⇒ ρ(y, f(s)) < ϵ.
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5 Differentiation

5.1 Univariate functions

Suppose X is a linear space. A function f : X → R is univariate if dimX = 1 and multivariate if
dimX > 1. A function f : X ⊆ R → R is differentiable at x0 ∈ int(X) if the following limit exists:

lim
x→x0

f (x)− f (x0)

x− x0
.

When the limit exists, it is called the derivative of f at x0, and we denote it by f ′(x0) or Df(x0).
Moreover, the function f is differentiable on int(S) ⊆ X if it is differentiable at all x ∈ int(S), and
f is differentiable if it is differentiable on int(X).

Proposition 69. Let f : X ⊆ R → R and suppose that f is differentiable at x ∈ int(X). Then, f
is continuous at x. The converse does not hold.

Proof. It suffices to show that limn→∞ f(xn)− f(x) = 0 for any xn → x. To that end, let (xn) be
any sequence that converges to x. Since f is differentiable

lim
n→∞

f (xn)− f (x) = lim
n→∞

f (xn)− f (x)

xn − x
(xn − x)

= lim
n→∞

f (xn)− f (x)

xn − x
lim
n→∞

(xn − x)

= f ′ (x) · 0 = 0.

To see that the converse does not hold, take any continuous function with a “kink” point; e.g.,

f (x) =

{
−x if x < 0

2x if x ≥ 0
.

Observe that f is continuous but has a kink at x = 0. Then, the left- and right-limits of f at xwill
not coincide; i.e., f is not differentiable x = 0. ■

5.1.1 Rules of derivatives

Recognising that derivatives are just limits allows us to obtain the following,

Proposition 70. Suppose f, g : X → R are differentiable. Then,

(i) (f + g)′ = f ′ + g′;

(ii) (λ · f)′ = λ · f ∀λ ∈ R;

(iii) (product rule) (f · g)′ = f ′ · g + f · g′;

(iv) (quotient rule) (f/g)′ = (f ′ · g − f · g′)/g2.

Proposition 71 (Chain rule). Suppose f : X ⊆ R → R is differentiable at x ∈ int(X). Suppose
g : S → R, where f(I) ⊆ S and g is differentiable at f(x). Then, g ◦ f is differentiable at x and its
derivative is given by

(g ◦ f)′ = (g′ ◦ f) f ′.

Theorem 13 (L’Hôpital’s rule). Let −∞ ≤ a < b ≤ +∞ and f : (a, b) → R and g : (a, b) → R\{0}
are differentiable on (a, b). If limx→a f(x) and limx→a g(x) are both 0 or ±∞, and limx→a f

′(x)/g′(x)
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has a finite value or is ±∞, then

lim
x→a

f (x)

g (x)
= lim

x→a

f ′ (x)
g′ (x)

.

The statement holds for x→ b.

L’Hôpital’s rule can be applied many times over when functions are continuously differentiable.

Example 23. Consider the constant relative risk aversion (CRRA) utility function, u : R → R,

u (x, γ) :=
x1−γ − 1

1− γ
.

Consider limit of u(x, γ) as γ → 1. Note that u(x, 1) = ”0/0” and so we can immediately apply
LHôpital’s rule to obtain

lim
γ→1

x1−γ − 1

1− γ
= lim

e(1−γ) ln x − 1

1− γ

= lim
− ln (x) e(1−γ) ln x

−1
= lnx.

That is, CRRA utility is a generalisation of log utility.

Proposition 72 (Derivative of inverse). Suppose f : (a, b) ⊂ R → R and f is strictly increasing
and differentiable on (a, b). Then,

(
f−1

)′
(f (x)) =

1

f ′ (x)
∀x ∈ (a, b) .

A heuristic “proof” is to differentiate the following identity while using chain rule:

f−1 (f (x)) ≡ x

⇒
(
f−1

)′
(f (x)) f ′ (x) = 1

⇒
(
f−1

)′
(f (x)) =

1

f ′ (x)
.

Theorem 14 (Mean Value Theorem). Suppose f : [a, b] ⊆ R → R is continuous and differentiable
on (a, b). Then, there exists x ∈ (a, b) such that

f (b)− f (a) = f ′ (x) (b− a) .

Let b = a+ h then Mean Value Theorem tells us that

∃x ∈ (a, a+ h), f (a+ h) = f (a) + f ′ (x)h.

Thus, it gives us a way of approximating f around a via an affine function f(a) + f ′(x)h.

Proposition 73. Suppose that f : I → R is differentiable on int(I), where I is a closed and bounded
interval in R. Suppose also that f ′ is bounded. Then, f is Lipschitz continuous; i.e., there exists
M > 0 such that

|f (x)− f (y)| ≤M |x− y| ∀x, y ∈ int (I) .

Proof. Let M ≥ 0 be a bound on f ′ so that |f ′(x)| < M for all x ∈ int(I). Since f is differentiable
on int(I), f is continuous on int(I) by Proposition 69. Then, by the Mean Value Theorem (Theorem
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14), for any a, b ∈ int(I) with b > a, there exists c ∈ (a, b)

f (a)− f (b) = f ′ (c) (b− a)

⇒ |f (a)− f (b)| = |f ′ (c)| |b− a| ≤M |b− a| .

Since above holds for any a, b ∈ int(I), f is Lipschitz continuous on int(I). ■

5.1.2 Taylor expansion

Suppose f has a derivative f ′ on an interval and that f ′ is itself differentiable. Then, the derivative
of f ′ is denoted f ′′, f (2) or D2f . Suppose f is a real-valued, continuous function defined on interval
(a, b) ⊆ R). f is continuously differentiable if its derivative is a continuous function on (a, b). A
function f is twice continuously differentiable if f ′ is continuously differentiable. More generally,
for any k ∈ N, a function f is k-times continuously differentiable if (i) f has up to and including kth
derivative; and (ii) f and all its derivatives up to and including the kth derivative are all continuous
on (a, b).

Theorem 15 (Taylor’s Theorem in R). Suppose f is n-times continuously differentible. Let α and
β be distinct point in [a, b] and define

Pn−1 (t) := f (α) + f ′ (α) (t− α) +
1

2
f ′′ (α) (t− α)

2
+ · · ·+ f (n−1) (α)

(n− 1)!
(t− α)

n−1
.

Then, there exists x ∈ (α, β) such that

f (β) = Pn−1 (β) +
f (n) (x)

n!
(β − α)

n
. (5.1)

If n = 1, then this says that P0(t) = f(α) and so f(β) = f(α)+f ′(x)(β−α) for some x ∈ (α, β),
which is just the Mean Value Theorem. Thus, we can think of Taylor’s Theorem as an nth-order
generalisation of the Mean Value Theorem. Recalling that the Mean Value Theorem can be thought
of an affine approximation of f , (5.1) can be thought of an n− 1-degree polynomial approximation
of f(β) (note that Pn−1(t) is a polynomial of degree n− 1), where the term fn(x)(β − α)n/n! can
be thought of the error term.

Example 24. [Maclaurin series]An infinite Taylor expansion of functions around 0 are called
Maclaurin series. Here are some useful ones to know:

ex = 1 + x+
x2

2!
+ · · · =

∞∑

n=0

xn

n!
, (5.2)

ln (1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · =

∞∑

n=1

(−1)
n−1

xn

n
∀x ∈ (−1, 1]

ln (1− x) = −x− x2

2
− x3

3
− · · · =

∞∑

n=1

−x
n

n
∀x ∈ (−1, 1] .

5.2 Multivariate function

Let us now generalise what we found above to multivariate functions f : Rn → R. We say that a
function f : X ⊆ Rn → R is differentiable at x ∈ int(X) if there exists an 1× n vector ∇f(x) such
that

lim
h∈Rn:h→0

|f (x+ h)− (f (x) +∇f (x)h)|
∥h∥Rn

= 0.
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Given f : X ⊆ Rn → R, we define the ith partial derivative of f at x ∈ int(X) as

∂f

∂xi
(x) := lim

h→0

f (x+ hei)− f (x)

h
∀i ∈ {1, . . . , n} ,

where ei ∈ Rn is the ith canonical basis of Rn. (It should be clear from this definition that
∂f(x)/∂xi is not a fraction!) Observe that ith partial derivative of f considers how the value
of f changes when x moves in the direction of the ith coordinate. (∂f/∂xi)(x) is equivalent to
computing the derivative of the univariate function, f̃i(h) := f(x + hei), and evaluating this at
h = 0; i.e.,

∂f

∂xi
(x) =

d

dh
f̃i (0) .

If f : Rn → R is differentiable at x ∈ int(X), then

∇f (x) =
[

∂f
∂x1

(x) · · · ∂f
∂xn

(x)
]
1×n

.

The row vector of partial derivatives on the right-hand side is called Jacobian matrix at x. Hence,
another way to state the result is that when f is differentiable, then its total derivative is given by
the Jacobian matrix.

We can define higher-order derivatives in the similar way to the univariate case. The second
derivative at x ∈ int(X) of a real-valued function f : X ⊆ Rn → R is called the Hessian matrix of
f at x:

Hf (x) :=




(
∇ ∂f

∂x1

)
(x)

...(
∇ ∂f

∂xn

)
(x)


 =




∂
(

∂f
∂x1

)

∂x1
(x) · · · ∂

(
∂f
∂x1

)

∂xn
(x)

...
. . .

...
∂( ∂f

∂xn
)

∂x1
(x) · · · ∂( ∂f

∂xn
)

∂xn
(x)




n×n

,

where (∇ ∂f
∂xi

)(x) is the gradient of the function ∂f
∂xi

at x and
∂(

∂f
∂xi

)

∂xj
(x) is the jth partial derivative

of the function ∂f
∂xi

at x. We refer to the latter as a cross partial at x and write

∂2f

∂xj∂xi
(x) :=

∂
(

∂f
∂xi

)

∂xj
(x) .

The following relates ∂2f
∂xj∂xi

with ∂2f
∂xi∂xj

when f is twice differentiable, which tells us that when f
is twice-differentiable at x, then the Hessian matrix at x is symmetric.

Theorem 16 (Young’s Theorem). Suppose f : X ⊆ Rn → R is twice continuously differentiable at
x ∈ int(X), then whenever the cross partials exist,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

5.3 Implicit function theorem

Suppose x ∈ Rn and (x∗, y∗) is a solution to F (x, y) = 0, where F is continuously differentiable
in an open ball around (x∗, y∗) with ∂F

∂y (x
∗, y∗) ̸= 0. Then, the implicit function theorem tells us

that there is a continuously differentiable function g defined on an open ball around x∗ such that
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g(x∗) = y∗, F (x, g(x)) = 0, and
∂y

∂xi
(x, y) = −

∂F
∂xi

(x, y)
∂F
∂y (x, y)

.

Example 25. Suppose F (x, y) := 3x2−2y and we implicit define y as a function of x via F (x, y) = 0.
Then

∂y (x)

∂x
= − 6x

(−2)
= 3x.

Example 26. Suppose u : R2 → R is a utility function that is “well behaved.”. The slope of the
indifference curve u(x, y) = c for some constant c is given by implicitly differentiating the equation:

∂y

∂x
= −

∂u(x,y)
∂x

∂u(x,y)
∂y

.

5.4 Inverse function theorem

Note that an inverse function of f : X ⊆ R → Y ⊆ R, f−1, satisfies following equation:

y − f
(
f−1 (y)

)
≡ 0.

Thus, we can think of x = f−1(0) as being implicitly defined via the expression above. Inverse
function theorem tells us that, if f is continuously differentiable with nonzero derivative at an
interior point x0, then the derivative of the inverse function at y = f(x0) is the reciprocal of the
derivative of f at x0; i.e.,

(
f−1

)′
(y) =

1

f ′ (x0)
=

1

f ′ (f−1 (y))
.

5.5 Concavity and convexity

If a function is twice continuously differentiable (so that the Hessian f is symmetric), then concavity
and convexity of functions can be characterised via the Hessian matrix (i.e., the second derivative).

Proposition 74. Let f : X ⊆ Rn → R be twice continuously differentiable on int(X) and suppose
int(X) is a convex set.

(i) f is concave on int(X) if and only if Hf (x) is negative semidefinite for all x ∈ int(X).

(ii) f is convex on int(X) if and only if Hf (x) is positive semidefinite for all x ∈ int(X).

(iii) If Hf (x) is negative definite for all x ∈ int(X), then f is strictly concave on int(X).

(iv) If Hf (x) is positive definite for all x ∈ int(X), then f is strictly convex on int(X).

When d = 1, Hf is effectively a number and so the proposition says that f : X ⊆ R → R is
concave (resp. convex) if and only if f ′′ is negative (resp. positive) for all x ∈ int(X).

Exercise 18. Consider f : R → R defined via f(x) = −x4. Show that f is strictly concave and
compute f ′′(0). What does this tell you about condition (iii)?
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6 Riemann integration

The idea behind the Riemann integral is to approximate an area “below” the graph of a function
by “chopping up” the domain and compute the sum of the rectangular areas.

6.1 Construction

6.1.1 Upper and lower Riemann integrals

For any n ∈ N, define the dissection of [a, b] (with a < b) by

[a0, . . . , an] := {[a0, a1] , [a1, a2] , . . . , [am−1, am]} ,

where a = a0 < · · · < am = b. Let D[a, b] denote the class of all dissections of [a, b]. Define
D[a, b] := {{a}} if a = b.

For any a := [a0, . . . , an] and b := [b0, . . . , bm] in D[a, b], we write a ⋓ b for the dissection
[c0, . . . , cℓ] ∈ D[a, b], where

{c0, . . . , cℓ} = {a0, . . . , an} ∪ {b0, . . . , bm} .

We say that b is finer than a if {a0, . . . , am} ⊆ {b0, . . . , bm}. Note that a ⋓ b = b if and only if b
is finer than a.

Let f : [a, b] → R be any bounded function. For any a := [a0, . . . , an] ∈ D[a, b], define, for each
i ∈ {1, . . . , n},

Kf,a (i) := sup {f (x) : ai−1 ≤ x ≤ ai} ,
kf,a (i) := inf {f (x) : ai−1 ≤ x ≤ ai} .

By the a-upper Riemann sum of f , we mean the number

Ra (f) :=

n∑

i=1

Kf,a (i) (ai − ai−1)

and by the a-lower Riemann sum of f , we mean the number

ra (f) :=

n∑

i=1

kf,a (i) (ai − ai−1) .

We define the upper Riemann integral of f by

R (f) := inf {Ra (f) : a ∈ D [a, b]}

and the lower Riemann integral of f by

r (f) := sup {ra (f) : a ∈ D [a, b]} .

Proposition 75. Ra(f) decreases and ra(f) increases as a becomes finer.

The following tells us that all lower sums are less than all upper sums, not just the lower and
upper sums associated with the same partition.

Proposition 76. R(f) ≥ r(f).
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6.1.2 Riemann integrability and Riemann integral

A bounded function f : [a, b] → R is Riemann integrable if R(f) = r(f) and the number

∫ b

a

f ≡
∫ b

a

f (x) dx := R (f)

is called the Riemann integral of f .21 In this case, we also define
∫ a

b

f ≡
∫ a

b

f (x) dx := −R (f) .

If g : [a,∞) → R is a bounded function, we define the improper Riemann integral of g as
∫ ∞

a

g ≡
∫ ∞

a

g (x) dx := lim
b→∞

R
(
g|[a,b]

)

provided that g|[a,b] is Riemann integrable for each b > a and the limit exists (in R). Analogously,
if g : (−∞, b] → R is a bounded function, we define

∫ b

−∞
g ≡

∫ b

−∞
g (x) dx := lim

a→−∞
R
(
g|[a,b]

)

provided that g|[a,b] is Riemann integrable for each a < b and the limit exists (in R).

Remark 9 (Riemann integrals over hyperrectangles). A hyperrectangle is Cartesian product of in-
tervals. One can also define what it means to integrate functions such as f : [0, 1]2 → R over
the hyperrectangle [0, 1]2. For any hyperrectangle C := [a1, b1] × · · · × [an, bn] ⊆ Rn, define the
d-dimensional volume of R by

V (C) :=

d∏

i=1

(
bi − ai

)
.

Define the set of all dissections of hyperrectangle R by

D
([
ai, bi

])d
i=1

:= ×n
i=1D

[
ai, bi

]
.

Then, A = {A1, . . . , AN} ∈ D([ai, bi])di=1, where the ordering is arbitrary. To simply, consider the
case in which d = 2. Let ai = [ai0, . . . , a

i
ni
] ∈ D[ai, bi] for each i ∈ {1, 2}. If n1 = 2 and n2 = 2, we

have

ai =
{[
ai0, a

i
1

]
,
[
ai1, a

i
2

]}
=
{[
ai, ai1

]
,
[
ai1, b

i
]}

⇒ A = a1 × a2

= {C1, C2, C3, C4}
=
{[
a1, a11

]
×
[
a2, a21

]
,
[
a1, a11

]
×
[
a21, b

2
]
,
[
a11, b

1
]
×
[
a21, b

2
]
,
[
a11, b

1
]
×
[
a21, b

2
]}
.

As before, we define

RA (f) :=

N∑

i=1

Kf,A (i)V (Ai) , RA (f) :=

N∑

i=1

kf,A (i)V (Ai) ,

where
Kf,A (i) := sup {f (x) : x ∈ Ai} , kf,A (i) := inf {f (x) : x ∈ Ai}

21A function f : X → Y is bounded if f(X) is bounded.
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and

R (f) := inf
{
RA (f) : A ∈ D

([
ai, bi

])d
i=1

}
,

r (f) := sup
{
rA (f) : A ∈ D

([
ai, bi

])d
i=1

}
.

Then a bounded function f : ×d
i=1[a

i, bi] → R is Riemann integrable if R(f) = r(f) and
∫

×d
i=1[a

i,bi]

f ≡
∫

z∈×d
i=1[a

i,bi]

f (z) dz := R (f) .

Recalling the definition of R and r, observe that if f is unbounded above, then R(f) = ∞ and
if f is unbounded below, then r(f) = −∞. Hence, unbounded functions are not integrable. The
following is simply the contrapositive of these observations.

6.1.3 Riemann integrable functions

Example 27 (Constant function). Define f : [0, 1] → R by f(x) := 1. Let us show that

∫ 1

0

1dx = 1.

Since f is a constant function,

Kf,a (i) = 1 = kf,a (i) ∀a ∈ D[0, 1].

Therefore,
Ra (f) = 1 = ra (f) ∀a ∈ D[0, 1],

which, in turn, implies that R(f) = r(f) = 1. Similar argument gives us that for any f : [a, b] → R
defined as f(x) := c, we have ∫ b

a

cdx = c (b− a) .

Example 28 (Integrable discontinuous function). Define f : [0, 1] → R by f(x) := 1− 1{x=0}. We
will show that ∫ 1

0

(
1− 1{x=0}

)
= 0.

For any a = [0, a1, . . . , an−1, 1] ∈ D[a, b], the first partition contains the end of zero, and so

Kf,a (1) = 1, kf,a (1) = 0,

Kf,a (i) = 0, kf,a (i) = 0 ∀i ∈ {2, . . . , n} .

Thus,
Ra (f) = a1, ra (f) = 0 ∀a ∈ D [a, b] .

and, in turn,

R (f) ≡ inf {Ra (f) : a ∈ D [a, b]} = 0 = sup {ra (f) : a ∈ D [a, b]} ≡ r (f) .

Hence, f(x) is Riemann integrable, and its Riemann integral is zero. Similar argument tells us that
the Riemann integrable of a function that is zero except at finitely many points in [a, b] is Riemann
integrable with Riemann integrable of zero.

Let us give an example of a bounded function that is not Riemann integrable.
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Example 29 (Dirichlet’s function). Let f : [0, 1] → [0, 1] be defined as

f (x) := 1{x∈Q} =

{
1 if x ∈ Q
0 if x /∈ Q

.

This is a function that is discontinuous everywhere (recall Proposition 2). Let a ∈ D[0, 1]. Note
that Q is dense in R; i.e. between any two real numbers, there exists a rational number, which
implies that in any interval, there exists some rational q ∈ Q. Hence,

ra (f) = 0 ̸= 1 = Ra (f) .

Thus, f is not Riemann integrable.

Changing the values of a function at finitely many points does not change its integrability of
the value of its integral. Consequently, the value of the function at the end points does not affect
the integral and, as such, integration on (a, b), [a, b], [a, b), (a, b] all result in the same value of the
integral.

Proposition 77. Suppose that f, g : [a, b] → R are bounded and f(x) = g(x) except at finitely
many points x ∈ [a, b]. Then, f is Riemann integrable if and only if g is integrable, and

∫ b

a

f =

∫ b

a

g.

If f and g differ at countably infinite number of points, it is not the case that f is Riemann
integrable if and only if g is Riemann integrable.

Example 30. Consider f : [0, 1] → R defined as

f (x) :=

{
n if x = 1

n for some n ∈ N
0 otherwise

.

Then, f is equal to the zero function except on countably infinite set {1/n : n ∈ N}. However, f is
unbounded and therefore not Riemann integrable. Another example is the Dirichlet function, which
differs from the zero function at countably infinite set of rationals but is not Riemann integrable.

The example above notwithstanding, even if f and g differ at countably infinitely many points
but are both Riemann integrable, then the value of their integrals are equal.

Proposition 78. Any bounded continuous function on [a, b] is Riemann integrable.

6.2 Properties of Riemann integration

Let us collect the properties of Riemann integration below.

Proposition 79. Let α ∈ R and f, g : [a, b] → R be bounded functions that are Riemann integrable.

(i) (Linearity) αf + g is Riemann integrable and

∫ b

a

(αf + g) = α

∫ b

a

f +

∫ b

a

g.

(ii) (Multiplication) f · g is Riemann integrable.

(iii) (Division) if g ̸= 0 and 1/g is bounded, then f/g is Riemann integrable.
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(iv) (Monotonicity) if f ≥ g, then ∫ b

a

f ≥
∫ b

a

g.

(v) (Additivity) if a < c < b, then ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

(vi) (Equivalence) If f = g in all but countably many points, then

∫ b

a

f =

∫ b

a

g.

(vii) (Converse of equivalence) If f ≥ 0, then

∫ b

a

f = 0 ⇒ f = 0.

(viii) (Absolute value) ∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

Remark 10. Notice how linearity, monotonicity and additivity are analogous to the corresponding
properties of sums:

n∑

i=1

(αxi + yi) = α

n∑

i=1

xi +

n∑

i=1

yi,

xi ≥ yi ∀i ∈ {1, . . . , n} ⇒
n∑

i=1

xi ≥
n∑

i=1

yi,

n∑

i=1

xi =

m∑

i=1

xi +

n∑

i=m+1

xi.

The following is a result that you will use quite a lot in Empirical Analysis I—it allows you to
split integral of f into positive and negative regions.

Proposition 80. Let f : [a, b] → R be a bounded function and define f+, f− : [a, b] → R by

f+ (x) := max {f (x) , 0} , f− (t) := max {−f (x) , 0} .

Then,
f = f+ − f− and |f | = f+ + f−.

Proof. Fix any x ∈ [a, b]. There are three cases:

(i) f(x) > 0. Then, f+(x) = f(x) and f−(x) = 0. Thus, (f+−f−)(x) = f(x) and (f++f−)(x) =
f(x) = |f |(x).

(ii) f(x) = 0. Then, f+(x) = f(x) = f−(x) = 0. Thus, (f+ − f−)(x) = 0 = f(x) and
(f+ + f−)(x) = 0 = |f |(x).

(iii) f(x) < 0. Then, f+(x) = 0 and f−(x) = −f(x) > 0. Thus, (f+ − f−)(x) = f(x) and
(f+ + f−)(x) = −f(x) = |f |(x).

- 84 -



Math Review 2024

It follows then that f = f+ − f− and |f | = f+ + f− and the difference and the sums are well
defined since f is bounded. ■

Lemma 4. Suppose f, g : [a, b] → R are Riemann integrable. Then, max{f(x), g(x)} is Riemann
integrable.

Proof. Define h(x) := max{f(x), g(x)}. Take any a = [a0, . . . , an] ∈ D[a, b]. Observe that

Kh,a (i) = max {Kf,a (i) ,Kg,a (i)} , kh,a (i) = max {kf,a (i) , kg,a (i)} .

Hence,

Kh,a (i)− kh,a (i) = max {Kf,a (i) ,Kg,a (i)} −max {kf,a (i) , kg,a (i)}
≤ max {Kf,a (i)− kf,a (i) ,Kg,a (i)− kg,a (i)}
≤ Kf,a (i)− kf,a (i) +Kg,a (i)− kg,a (i) .

It follows then that

Ra (h)− ra (h) ≤ Ra (f)− ra (f) +Ra (g)− ra (g) .

Since f and g are both Riemann integrable, by the Cauchy criterion for Riemann integrability, for
any ϵ/2 > 0, there exists a,b ∈ D[a, b] such that

Ra (f)− ra (f) <
ϵ

2
and ab (g)− rb (g) <

ϵ

2
.

Therefore, by Proposition 75,

Ra⋓b (h)− ra⋓b (h) ≤ Ra⋓b (f)− ra⋓b (f) +Ra⋓b (g)− ra⋓b (g) < ϵ.

Thus, h satisfies the Cauchy criterion for Riemann integrability; i.e., h is Riemann integrable. ■

Proposition 81. Suppose f : [a, b] → R is Riemann integrable, then so are f+, f− and |f |.

Proof. If f is Riemann integrable, then −f is Riemann integrable. Since the zero function is
Riemann integrable, the Riemann integrability of f+ and f− follows from the previous lemma.
Finally, to prove that |f | is Riemann integrable, set g := −f in the previous lemma. ■

The following tells us gives us a bound on the Riemann integral of a Riemann integrable function.

Proposition 82. If f : [a, b] → R is Riemann integrable, then
∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤ (b− a) sup {|f (t)| : a ≤ t ≤ b} .

Proof. Since f is bounded, sup |f(t) : a ≤ t ≤ b| is finite. By definition of R(f) and the fact that
{[a, b]} ∈ D[a, b],

∫ b

a

f = R (f) = inf {Ra (f) : a ∈ D [a, b]}

≤ R{[a,b]} (f) = Kf,{[a,b]} (b− a) = sup {f (t) : a ≤ t ≤ b}
≤ sup {|f (t)| : a ≤ t ≤ b} .
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Similarly,

∫ b

a

f = R (f) = r (f) = sup {ra (f) : a ∈ D [a, b]}

≥ r{[a,b]} (f) = kf,{[a,b]} (b− a) = inf {f (t) : a ≤ t ≤ b} (b− a)

⇒ −
∫ b

a

f ≤ − inf {f (t) : a ≤ t ≤ b} (b− a)

= sup {−f (t) : a ≤ t ≤ b} (b− a)

≤ sup {|f (t)| : a ≤ t ≤ b} (b− a) . ■

6.3 Approximation by step functions

Suppose f : [a, b] → R is Riemann integrable. We will show that f can be approximate by a
collection of step functions. Formally, a function φ : [a, b] → R is a step function if there exists
a = [a0, . . . , an] ∈ D[a, b] of [a, b] and values {ci}n+1

i=1 ⊆ R such that

φ (x) =

n∑

i=1

ci1{x∈(xi−1,xi)},

where we ignore the equality at the boundaries of the intervals.

Proposition 83. Step functions are Riemann integrable.

Proof. Let φ : [a, b] → R be a step function and denote
Given a step function φ(x), observe that

Kφ,a (i) = ci sup
{
1{x∈(xi−1,xi]} : ai−1 ≤ a ≤ ai

}
= ci,

kφ,a (i) = ci inf
{
1{x∈(xi−1,xi]} : ai−1 ≤ a ≤ ai

}
= ci.

Therefore,

rφ,a =

n∑

i=0

ci (xi − xi−1) = Rφ,a.

Since this holds for any φ and corresponding a, it follows that φ is Riemann integrable, and its
Riemann integral is given by ∫ b

a

φ =

n∑

k=1

ck (xk − xk−1) .

■

Proposition 84. Let f : [a, b] → R be a Riemann integrable function. Then, there exists a sequence
of step functions (φn) such that

lim
n→∞

∫ b

a

φn =

∫ b

a

f.

Thus, this gives us a way of construction the Riemann integral. As we will see later, we will
construct Lebesgue integral through similar approximations.

6.4 Fundamental theorem of calculus

The fundamental theorem of calculus connects derivative of a function with its integral (or antide-
rivative). In particular, it allows us to think about integration as the reverse operation of taking a
derivative and gives us a practical way of computing integral of functions.
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Theorem 17 (Fundamental theorem of (Riemann integral) calculus). ‌

(i) If F [a, b] → R is continuous on [a, b] and differentiable in (a, b) with F ′ = f , where f : [a, b] →
R is Riemann integrable, then

∫ b

a

f (x) dx ≡
∫ b

a

F ′ (x) dx = F (b)− F (a) .

(ii) If f : [a, b] → R is Riemann integrable and F : [a, b] → R is defined by

F (x) :=

∫ x

a

f (t) dt,

then F is continuous on [a, b]. Moreover, if f is continuous at c ∈ [a, b], then F is differentiable
at c and

d

dx

∫ x

a

f (t) dt

∣∣∣∣
x=c

≡ F ′ (c) = f (c) .

.

Remark 11 (Discrete analogs). (i) is a continuous analog of the telescoping sum:

An −A0 =

n∑

i=1

(Ai −Ai−1) .

(ii) is a continuous analog of the differences of sums:

an =

n∑

i=1

ai −
n−1∑

i=1

ai.

Here is another formulation with slightly stronger assumptions.

Corollary 9. For any f ∈ C[a, b] and F : [a, b] → R,

F (x) = F (a) +

∫ x

a

f (t) dt ∀x ∈ R : a ≤ x ≤ b

if and only if F ∈ C1[a, b] and F ′ = f .

6.4.1 Existence of antiderivative

One consequence of the fundamental theorem of calculus is that if f : [a, b] → R is continuous,
then f has an antiderivative, even if it cannot be expressed explicitly (i.e., without integrals). One
example is the cumulative distribution function of the normal distribution (we will see more on this
later). Here, we introduce another example called the gamma function which was discovered by
Euler as an answer to the question: is there a “smooth” function on (0,∞) that maps each n ∈ N
to the value n!. The gamma function is defined by

Γ (x) :=

∫ ∞

0

e−ttx−1dt, x > 0.

Try showing that Γ is well defined, Γ(1) = 1 and that Γ(x+1) = xΓ(x) (hint: integration by parts).
The last expression is called the functional equation for the gamma function. Indeed, this tell us
that

Γ (n) = (n− 1)!.
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The gamma function is difficult to evaluate if x /∈ N. For x = 1/2, you can use the Poisson integral
formula, ∫ ∞

0

e−t2dt =
1

2

√
π

to obtain that Γ(1/2) =
√
π.

6.4.2 Integration by parts

This is one of the most commonly used result. Be sure that you’re familiar with this.

Theorem 18 (Integration by parts). Suppose that f, g : [a, b] → R are continuous on [a, b], differ-
entiable on (a, b) and f ′, g′ are Riemann integrable on [a, b]. Then,

∫ b

a

fg′ = f (b) g (b)− f (a) g (a)−
∫ b

a

f ′g.

Proof. That fg is continuous on [a, b] follows from continuity of f and g. Since f and g are
differentiable, by the product rule (Proposition 70), (fg)′ = f ′g + fg′. Since f , g, f ′ and g′ are
Riemann integrable, Proposition 79 implies that fg′ , f ′g and (fg)′ are Riemann integrable. Define
h := fg. Then, by the fundamental theorem of calculus (Theorem 17 part (i)), we obtain

h (b) = h (a) +

∫ b

a

h′

⇔ f (b) g (b)− f (b) g (b) =

∫ b

a

(f ′g + g′f) =
∫ b

a

f ′g +
∫ b

a

fg′

⇔
∫ b

a

fg′ = f (b) g (b)− f (b) g (b)−
∫ b

a

f ′g. ■

Remark 12. I was taught this using u and v instead of f and g. I always thought I get confused
which way around but it turns out it doesn’t matter. Anyway, a good way to heuristically derive
integration by parts equation to remember uv = (uv)′ = u′v + v′u. Taking integral then gives
uv =

∫
u′v +

∫
v′u.

6.4.3 Change of variable

Theorem 19 (Change of variable). Suppose that g : (a, b) → R is differentiable on (a, b) and g′

is Riemann integrable on (a, b). Define J := g((a, b)). If f : J → R is continuous, then, for any
x, y ∈ (a, b),

∫ b

a

f (g (x)) g′ (x) dx =

∫ g(b)

g(a)

f (t) dt.

Proof. Define

F (x) :=

∫ x

a

f (t) dt.

Since f is continuous, the fundamental theorem of calculus (Theorem 17 part (ii)) tells us that F
is differentiable on J with F ′ = f . Chain rule gives us that F ◦ g : (a, b) → R is differentiable on
(a, b) with

(F ◦ g)′ (x) = f (g (x)) g′ (x) .

The derivative is Riemann integrable on [a, b] since f ◦ g ∈ C[a, b] (Proposition 78) so that it is
Riemann integrable and g′ is Riemann integrable by assumption. By the fundamental theorem of
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calculus (Theorem 17 part (i)),

∫ b

a

f (g (x)) g′ (x) dx =

∫ b

a

(F ◦ g)′ (x) dx

= (F ◦ g) (b)− (F ◦ g) (a)
= F (g (b))− F (g (a))

=

∫ g(b)

g(a)

F ′ (t) dt =
∫ g(b)

g(a)

f (t) dt. ■

6.5 Riemann integral and limits

6.5.1 Convergence of sequences of functions

Suppose we have a converging sequence of functions, fn → f . We want to know whether this
implies

∫
fn →

∫
f . We will introduce two notions of convergence of functions: pointwise and

uniform convergence.
A sequence (fn) in RX converges pointwise to f ∈ RX if fn(x) → f(x) for every x ∈ X.

Equivalently, for every x ∈ X, for any ϵ > 0, there exists Nx,ϵ ∈ N such that |fn(x)− f(x)| < ϵ for
all n > Nx,ϵ.

A sequence (fn) in RX converges uniformly to f ∈ RX if, for any ϵ > 0, there exists Nϵ ∈ N
such that

|fn (x)− f (x)| < ϵ ∀x ∈ X ∀n > Nϵ

⇔ ∥fn − f∥∞ ≡ sup {|fn (x)− f (x)| : x ∈ X} < ϵ ∀n > Nϵ.

As can be seen from the dependence of N on x and ϵ, uniform convergence implies pointwise
convergence, but not conversely. For example, consider the sequence (fn) in RR defined by fn(x) :=
x2/n for each n ∈ N. Fixing x,

lim
n→∞

fn (x) = 0 =: f (x) .

Hence, (fn) converges pointwise to the zero function. However, (fn) is not uniformly convergent.
To see this, note first that

fn (x)− f (x) = fn (x) =
x2

n
.

For uniform convergence, we must have that, for any ϵ > 0, |fn(x)| < ϵ for all x ∈ R for all n > N

for some N . However, since |fn (x)| → ∞ as x→ −∞,+∞, we cannot find such an N . Therefore,
(fn) is not uniformly convergent.

Note that pointwise limit of continuous functions may not be continuous. For example, consider

fn (x) =





0 x ≤ 0

nx 0 < x < 1
n

1 x ≥ 1
n

,

which is shown in the figure below.
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Figure 6.1: Pointwise limit of a continuous function.
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First, note that this function is continuous. And, as can be seen from the figure:

• if we fix any x ≤ 0, then fn(x) = 0 for all n ∈ N and so fn(x ≤ 0) → 0;

• if we fix any x > 0, then fn(x) = 1 for all n ∈ N and so fn(x > 0) → 1.

Hence, the pointwise limit of fn (x) is not continuous at x = 0. However, the following shows that
uniform limit of continuous function is continuous.

Proposition 85. Let (fn) be a sequence of functions in RX that are continuous and suppose that
fn → f ∈ RX uniformly. Then, f is continuous.

Proof. Fix some x ∈ X and ϵ > 0. We wish to show that there exists δ > 0 such that

|f (x)− f (y)| < ϵ ∀y ∈ X : |x− y| < δ.

Since fn → f uniformly, there exists N ∈ N such that

|fn (x)− f (x)| < ϵ

3
∀x ∈ X ∀n > N.

Since fn are continuous, we can find a δ > 0 such that

|fN+1 (x)− fN+1 (y)| <
ϵ

3
∀ |x− y| < δ.

Then, by the Triangle inequality, for any y ∈ X such that |x− y| < δ,

|f (x)− f (y)| = |f (x) + fN+1 (x)− fN+1 (x)− f (y) + fN+1 (y)− fN+1 (y)|
≤ |fN+1 (x)− f (x)|+ |fN+1 (x)− fN+1 (y)|+ |fN+1 (y)− f (y)|
<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

Hence, f is continuous. ■

Proposition 86. Let (fn) be a sequence of functions in RX that are bounded and suppose that
fn → f ∈ RX uniformly. Then, f is bounded.

Proof. Since fn → f uniformly, setting ϵ = 1, there exists N ∈ N such that |fn(x) − f(x)| < 1

for all n > N . Choose some n > N . Then, since fn is bounded, there exists M ≥ 0 such that
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|fn(x)| ≤M for all x ∈ X. It follows that

|f (x)| = |f (x) + fn (x)− fn (x)| ≤ |f (x)− fn (x)|+ |fn (x)| < 1 +M ∀x ∈ X.

Hence, f is bounded. ■

A sequence (fn) in RX is uniformly bounded if there exists M ∈ R such that |fn(x)| ≤ M for
all x ∈ X and all n ∈ N.

Proposition 87. Let (fn) be a sequence of functions in RX that are bounded and suppose that
fn → f ∈ RX uniformly. Then, f is uniformly bounded.

Proof. Suppose fn → f . We wish to show that f is bounded; i.e., there exists M ∈ R such that
|f(x)| ≤ M for all x ∈ X. For each n ∈ N, since fn is bounded, there exists Mn ∈ R such that
|fn(x)| ≤Mn for all x ∈ X. Since fn → f uniformly, setting ϵ = 1, there exists N ∈ N such that

|fn (x)− f (x)| < 1 ∀x ∈ X ∀n > N.

Then, for n > N and any x ∈ X,

|fn (x)| = |fn (x)− f (x)− f (x) + fN+1 (x)− fN+1 (x)|
≤ |fn (x)− f (x)|+ |fN+1 (x)− f (x)|+ |fN+1 (x)|
≤ 2 +MN+1.

Define M := max{M1, . . . ,MN , 2 +MN+1}. Then, for any x ∈ X,

|fn (x)| ≤M ∀n ∈ N.

Hence, (fn) is uniformly bounded. ■

6.5.2 A convergence theorem

Proposition 88. Suppose that fn : [a, b] → R is Riemann integrable for each n ∈ N and fn → f

uniformly on [a, b]. Then, f : [a, b] → R is Riemann integrable on [a, b] and

∫ b

a

f ≡
∫ b

a

lim
n→∞

f = lim
n→∞

∫ b

a

fn.

Proof. By Proposition 86, uniform limit of bounded function is bounded so f is bounded. Fix ϵ > 0.
Since fn → f uniformly, there exists N ∈ N such that, for any n > N ,

|fn (x)− f (x)| < ϵ

b− a
∀a ≤ x ≤ b (6.1)

⇔ − ϵ

b− a
< fn (x)− f (x) <

ϵ

b− a

⇒ fn (x)−
ϵ

b− a
< f (x) < fn (x) +

ϵ

b− a
.

This implies that

r

(
fn − ϵ

b− a

)
≤ r (f) , R (f) ≤ R

(
fn +

ϵ

b− a

)
.
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Since fn is integrable and R(f) ≥ r(f) by Proposition 76, above implies that
(∫ b

a

fn

)
− ϵ =

∫ b

a

(
fn − ϵ

b− a

)
≤ r (f)

≤ R (f) ≤
∫ b

a

(
fn +

ϵ

b− a

)
≤
(∫ b

a

fn

)
+ ϵ.

This, in turn, implies that

0 ≤ R (f)− r (f) ≤
(∫ b

a

fn

)
+ ϵ−

((∫ b

a

fn

)
− ϵ

)
= 2ϵ.

Since ϵ > 0 was chosen arbitrary, above implies that R(f) = r(f) (why?). Thus, f is integrable.
Moreover, since fn for any n > N , we also have

∣∣∣∣∣

∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ ≤ ϵ ∀ϵ > 0.

Therefore,
∫ b

a
fn →

∫ b

a
f . ■

Pointwise convergence of functions is not sufficient to imply convergence of their integrals. For
example, consider fn[0, 1] → R defined by

fn (x) := n1{x∈(0, 1
n )} =

{
n x ∈

(
0, 1

n

)

0 otherwise
.

Then, fn → f ≡ 0 pointwise on [0, 1] so that
∫ 1

0
f = 0; however,

∫ 1

0
fn = 1 for every n ∈ N. Observe

that fn does not converge to f uniformly since, for each n ∈ N,

∥fn − f∥∞ = sup
{∣∣∣n1{x∈(0, 1

n )}
∣∣∣ : x ∈ [0, 1]

}
= n.

Observe that fact that fn’s have a bounded domain is important. Consider the following

fn (x) :=
1

n
1{x∈(0,n)} =

{
1
n x ∈ (0, n)

0 otherwise
.

We again have that fn → f ≡ 0 pointwise on [0, 1] but
∫ 1

0
fn = 1 ̸= 0 =

∫ 1

0
f . However,

∥fn − f∥∞ = sup

{∣∣∣∣
1

n
1{x∈(0,n)}

∣∣∣∣ : x ∈ [0, 1]

}
=

1

n

so that the convergence is, in fact, uniform. The problem here is that fn’s effectively have an
unbounded domain of R so that we cannot infer (6.1) from the fact that fn converges uniformly to
f .

A more problematic feature of the Riemann integral is that the pointwise limit of integrable
functions need not be integrable (even if bounded). For example, let {qk : k ∈ N} be an enumeration
of the rationals in [0, 1] and define gn[0, 1] → R as

fn (x) :=

{
1 if x = qk for k ≤ n

0 otherwise
.
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Then, each fn is Riemann integrable since it differs from zero function at finitely many points.
However, fn converges pointwise on [0, 1] to the Dirichlet function, which is not Riemann integrable.
As we will see later, Lebesgue integral has better properties than Riemann integrable.

We have just showed that uniformly convergent sequence of functions that are Riemann integ-
rable is a Riemann integrable at the limit. Is the limiting function also differentiable? In general,
the answer is no. Here, we provided a sufficient condition for fn → f to imply f ′n → f . We do so
by using the results about the convergence of integrals (together with the fundamental theorem of
calculus) rather than about convergence of derivatives directly.

Proposition 89. Let fn : (a, b) → R be a sequence of differentiable functions whose derivatives
f ′n : (a, b) → R are Riemann integrable on (a, b). Suppose that fn → f pointwise and f ′n → g

uniformly on (a, b), where g : (a, b) → R is continuous. Then, f : (a, b) → R is continuously
differentiable on (a, b) and f ′ = g; i.e.,

f (x) =

∫
f ′

Proof. Fix c ∈ (a, b). Since f ′n is Riemann integrable, by the fundamental theorem of calculus
(Theorem 17),

fn (x) = fn (c) +

∫ x

c

f ′n ∀x ∈ (a, b) .

Since fn → f pointwise, and f ′n → g uniformly on [a, x], by Proposition 88, we have

f (x) = f (c) +

∫ x

c

g.

Since g is continuous, by the fundamental theorem of calculus (Theorem 17) again, we have that f
is differentiable in (a, b) and f ′ = g. ■

6.5.3 Differentiating under the integral and the Leibniz’ rule

Suppose that f : [a, b]× [c, d] → R and that f(x, t) is integrable with respect to t for each x ∈ [a, b].
Define F : [a, b] → R as

F (x) :=

∫ b

a

f (x, t) dt.

We would expect the the derivative of F to be

dF

dx
(x) =

∫ b

a

∂f

∂x
(x, t) dt,

which, by definition of a derivative, is equivalent to

dF

dx
(x) ≡ lim

h→0

F (x+ h)− F (x)

h

= lim
h→0

∫ b

a

f (x+ h, t)− f (x, t)

h
dt =

∫ b

a

lim
h→0

f (x+ h, t)− f (x)

h
dt ≡

∫ b

a

∂f

∂x
(x, t) dt.

Thus, the question we are asking is is equivalent to whether we can move the limit inside the
integral. By Proposition 88, we can move the limit inside integral as above if we know that gn → ∂f

∂x

uniformly, where

gn (x, t) :=
f (x+ hn, t)− f (x, t)

hn
,

for any sequence (hn) (in [a, b] such that x+ hn ∈ [a, b]) that converges to 0.
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Moreover, provided that the fundamental theorem of calculus (Theorem 17) holds, since

∫ b

a

f (x, t) dt = Fx (b)− Fx (a) ,

where Fx(t) :=
∫ t

a
f(x, t)dt, we have

d

db

∫ b

a

f (x, t) dt =
d

db
(Fx (b)− Fx (a)) = F ′

x (b) = f (x, b) .

Similarly,
d

da

∫ b

a

f (x, t) dt = −f (x, a) .

Thus, if the limits a and b are, in fact, functions of x; say u, v : [a, b] → R, by the chain rule,

d

dx
F (x) ≡ d

dx

(∫ v(x)

u(x)

f (x, t) dt

)

=
∂

∂b

(∫ b

a

f (x, t) dt

)
dv

dx
(x) +

∂

∂a

(∫ b

a

f (x, t) dt

)
du

dx
(x) +

d

dx

(∫ b

a

f (x, t) dt

)∣∣∣∣∣
a=u(x),b=v(x)

= f (x, b) v′ (x)− f (x, a)u′ (x) +
∫ b

a

∂f

∂x
(x, t) dt.

Above is called the Leibniz integral rule, which we make explicit below.

Theorem 20 (Leibniz integral rule). Let f(x, t) and Dxf(x, t) be continuous on [a, b]× [c, d] ⊆ R2.
Suppose that u, v ∈ C1[a, b] and u([a, b]), v([a, b]) ⊆ [c, d]. Define

F (x) :=

∫ v(x)

u(x)

f (x, t) dt.

Then,

d

dx
F (x) = f (x, v (x))

dv

dx
(x)− f (x, u (x))

du

dx
(x) +

∫ v(x)

u(x)

∂f (x, t)

∂x
dt.

6.5.4 Exchanging Riemann integrals

Suppose that f : [0, 1]2 → R. What are the relationships between the following expressions (assum-
ing they are well defined)?

∫

(x,y)∈[0,1]2
f (x, y) d (x, y) ,

∫ 1

0

(∫ 1

0

f (x, y) dx

)
dy, and

∫ 1

0

(∫ 1

0

f (x, y) dy

)
dx. (6.2)

You might be tempted to assume that they are all equal. Consider the following example. Define
f : [0, 1]2 → R by

f (x, y) := 1{x=1, y∈Q}.

Fix any y ∈ [0, 1], then f(x, y) is a function that is zero except at a single point x = 1. As per
Example 28 above, such a function is Riemann integrable and its Riemann integral is 0. Thus,
it follows that

∫ 1

0

∫ 1

0
f(x, y)dxdy = 0. However, for any fixed x ∈ [0, 1], f(x, y) is a Dirichlet’s

function, which we know is not Riemann integrable (Example 29). Hence,
∫ 1

0

∫ 1

0
f(x, y)dydx does
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not exist. (It can be shown that
∫
z∈[0,1]2

f(z)dz is Riemann integrable and its Riemann integral is
zero.)

The following gives us a sufficient condition to ensure that all the expressions in (6.2) are equal.
The result is useful for at least two reasons. First, it tells us that we can write Riemann integrals over
hyperrectangles as composition of Riemann integrals over each of the associated intervals. Thus,
it allows us to apply the fundamental theorem of calculus (Theorem 17) to Riemann integrals over
hyperrectangles. Second, the result tells us when we can exchange the order of integration.

Theorem 21 (Fubini’s Theorem for Riemann integral). Let f : [a, b]× [c, d] → R and f be Riemann
integrable. If

∫ d

c
f(x, y)dy and

∫ b

a

∫ d

c
f(x, y)dydx exist, then

∫

(x,y)∈[a,b]×[c,d]

f (x, y) d (x, y) =

∫ b

a

∫ d

c

f (x, y) dydx.

If
∫ b

a
f(x, y)dx and

∫ d

c

∫ b

a
f(x, y)dxdy exist, then

∫

(x,y)∈[a,b]×[c,d]

f (x, y) d (x, y) =

∫ d

c

∫ b

a

f (x, y) dxdy.

Proof. Take any C := (Cij) ∈ D([a, b], [c, d]), where C = a × c = [a0, . . . , an] × [c0, . . . , cm] for
a ∈ D[a, b] and c ∈ D[c, d], and Cij = [ai−1, ai]× [cj−1, cj ]. Since, for any (x, y) ∈ Cij ,

inf
Cij

f ≤ f (x, y) ≤ sup
Cij

f,

Integrating with respect to y over [cj−1, cj ] yields

(
inf
Cij

f

)
(cj − cj−1) ≤

∫ cj

cj−1

f (x, y) dy ≤
(
sup
Cij

f

)
(cj − cj−1) ,

where we used the fact that f(x, y) is integrable over y and Proposition 79. Summing across j, and
by Proposition 79 again, we obtain

m∑

j=1

(
inf
Cij

f

)
(cj − cj−1) ≤

m∑

j=1

∫ cj

cj−1

f (x, y) dy =

∫ d

c

f (x, y) dy ≤
m∑

j=1

(
sup
Cij

f

)
(cj − cj−1) .

Since this holds for each x ∈ [ai−1, ai], integrating with respect to x over [ai−1, ai] yields (which we
can do since

∫ d

c
f (x, y) dy exists and thus f(x, y) is integrable over x),

m∑

j=1

(
inf
Cij

f

)
(cj − cj−1) (ai − ai−1) ≤

∫ ai

ai−1

∫ d

c

f (x, y) dydx ≤
m∑

j=1

(
sup
Cij

f

)
(cj − cj−1) (ai − ai−1) .

Summing over i gives

n∑

i=1

m∑

j=1

(
inf
Cij

f

)
(cj − cj−1) (ai − ai−1) ≤

∫ b

a

∫ d

c

f (x, y) dydx ≤
n∑

i=1

m∑

j=1

(
sup
Cij

f

)
(cj − cj−1) (ai − ai−1) .

That is,

rC (f) ≤
∫ b

a

∫ d

c

f (x, y) dydx ≤ RC (f) .
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Since this holds for any C ∈ D([a, b], [c, d]), it follows that

r (f) ≤
∫ b

a

∫ d

c

f (x, y) dydx ≤ R (f) .

By assumption that f is Riemann integrable and thus

∫ b

a

∫ d

c

f (x, y) dydx = R (f) =

∫ b

a

∫ d

c

f (x, y) dydx. ■

Remark 13. To extend the previous result to the case when the domain of f is a d-dimensional
hyperrectangle with d > 2, we need f to be continuous.

When the limit depends on the variable of integration, we have to be careful when exchanging
the order of integration. Consider exchanging the order of integral of the following double integral:

∫ 1

0

∫ y

0

f (x, y) dxdy,

where the region of integration for x depends on y. The inner integration is with respect to x from
zero to y; i.e., 0 ≤ x ≤ y. The outer integration is with respect to y from 0 to 1 and so 0 ≤ y ≤ 1.
Together, we therefore have

0 ≤ x ≤ y ≤ 1.

We can plot this region in (x, y) space as below.

Figure 6.2: Region of integration.
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In the figure, for each y ∈ [0, 1], the inner integration takes the horizontal distance up to from
x = 0 to x = y, and the outer integration sums the horizontal distances for all different values of
y ∈ [0, 1]. We wish now to integrate with respect to y first, and then x. In other words, we wish to
integrate vertically for each x, and then sum the vertical distances for all different values of x Since
the region of integration lies to the left of y = x; then it must be that y ≥ x. Of course, upper
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bound for y is one. On the other hand, we would integrate over the whole domain of x. So,

∫ 1

0

∫ y

0

f (x, y) dxdy =

∫ 1

0

∫ 1

x

f (x, y) dydx.

Observe that, on the right-hand side, we are (still) integrating over 0 ≤ x ≤ y ≤ 1.
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Part II

Optimisation

7 Static optimisation

Our goal is to be able to solve the following type of problem, which we will call the primal problem.

sup
x∈Rn

f (x)

s.t. hk (x) = 0 ∀k ∈ {1, . . . ,K}
gj (x) ≥ 0 ∀j ∈ {1, . . . , J} ,

where f, hk, gj : Rn → R for all k ∈ {1, . . . ,K} and j ∈ {1, . . . J}. By “solve”, we want to obtain
the set of maximisers, i.e., x that satisfy the constraints and maximises the objective function.
This, in turn, allows us to compute the maximised objective function. We will also think about
comparative statistics; i.e., how the maximisers and thus the objective function change as we “vary”
the optimisation problem.

Since sup−f = − inf f , once we know how to solve maximisation problems, we also know how
to solve minimisation problems. It is pedagogical fact that in economics, we focus on maximisation
problems, whereas in mathematics/computer science, the focus is on minimisation problems.

Let us note some help properties of optimisation problems. First, relaxing constraints cannot
lead to lower value of maximised objective function. Second, if we transform the objective function
with a strictly increasing function, then the set of maximisers do not change. For example, you will
often use this to take maximise ln f instead of f .

7.1 Maxima and minima

Given a function f : X ⊆ Rn → R, an element x ∈ X is a global maximum of f if

f (x) ≥ f (y) ∀y ∈ X\ {x} .

The element x ∈ X is a strict global maximum if the inequality above holds strictly (and if it exists,
it must be unique). An element x ∈ X is a local maximum of f if, for some ϵ > 0,

f (x) ≥ f (y) ∀y ∈ Bϵ (x) \ {x} .

The element x ∈ X is a strict local maximum if the inequality above holds strictly. Local minima
are defined analogously with the inequalities reversed.

Proposition 90. Let X ⊆ Rd be convex, If f : X → R is strictly quasi-concave, any local maximum
f is a global maximum of f on X and the set of maximisers contains at most one element.

Proof. Now suppose f is strictly quasiconcave and the x ∈ X is a local maximum of f on X. Thus,
there exists ϵ > 0 such that f(x) ≥ f(y) for all y ∈ Bϵ(x). Toward a contradiction, suppose that
x is not a global maximum; i.e., there exists z ∈ X such that f(z) > f(x) . But then since X is
convex, for any α ∈ [0, 1], αx+ (1− α)z ∈ X and by the quasiconcavity of f , we have

f (αx+ (1− α) z) > min {f (x) , f (z)} = f (x) ∀α ∈ (0, 1) .

In particular, for sufficiently large α > 0, αx + (1 − α)z ∈ Br(x) and hence we must have f(x) ≥
f(αx+ (1− α)z); a contradiction.
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Suppose that there are two global maximisers, x,y ∈ X. Pick any α ∈ (0, 1) and define
z := αx+ (1− α)y ∈ X. By strict quasiconcavity,

f (z) > min {f (x) , f (y)} = f (x) = f (y) .

But this contradicts the fact that x and y were global maximisers. ■

7.2 First-order approach

Let us assume that objective function and the constraints are differentiable.

7.2.1 Unconstrained optima

Consider the problem of maximising a function without any constraints.

Proposition 91. Suppose f : X ⊆ Rn → R has a local maximum or a local minimum at x∗ ∈
int(X) and that f is differentiable at x∗. Then, x∗ satisfies the first-order condition; i.e.,

∇f(x∗) = 0 ⇔ ∂f

∂xi
(x∗) = 0 ∀i ∈ {1, . . . , n} .

Any x ∈ int(X) that satisfies the first-order condition is called a critical point of f . Although
first-order condition is necessary for a point to be a local maximum or a local minimum (assuming
differentiability), it is not sufficient (e.g., f(x) = x3). This leads us to the idea of second-order
conditions that helps us distinguish between local maxima and minima.

Proposition 92. Suppose f is twice continuously differentiable on int(X) ⊆ Rn and x ∈ int(X).

(i) If f has a local maximum at x, then Hf (x) is negative semidefinite.

(ii) If f has a local minimum at x, then Hf (x) is positive semidefinite.

These results has nothing to say about the case in which x ∈ int(X) is such that x satisfies
the first-order condition (i.e., ∇f(x) = 0)) and Hf (x) is negative (resp. positive) semidefinite but
not negative (resp. positive) definite. Such a point can be a local maximum, a local minimum or
neither. In other words, first- and second-order conditions are all that useful in knowing whether a
point is a local maximum (or minimum). We need to impose stronger conditions such as concavity
or quasiconcavity of f .

7.3 Constrainted optimisation: Theorem of Karush-Kuhn-Tucker

The theorem of KKT gives us a set of necessary conditions for constrained optimisation prob-
lems. Throughout we assume that both the objective and the constraint functions are continuously
differentiable.

7.3.1 A “cook-book” approach

Let us focus on the following problem with inequality and nonnegativity constraints.

max
x∈Rn

f (x) s.t. hk (x) = 0 ∀k ∈ {1, . . . ,K} ,

gj (x) ≥ 0 ∀j ∈ {1, . . . , J}

The following cookbook approach “usually” works.

- 99 -



Math Review 2024

Step 1 Define the Lagrangian L : Rn × RK × RJ → R as

L (x,µ,λ) := f (x) +

K∑

k=1

µkhk (x) +

J∑

j=1

λjgj (x)

Step 2 Find all solutions (x∗,λ∗) to the following set of equations and inequalities

(i) First-order conditions:

∂L
∂xi

(x∗,µ∗,λ∗) ≡ ∂f

∂xi
(x∗) +

K∑

j=1

µk
∂hk
∂xi

(x) +

J∑

j=1

λ∗j
∂gj
∂xi

(x∗) = 0 ∀i ∈ {1, . . . , n} .

(ii) Nonnegativity:
λ∗j ≥ 0 ∀j ∈ {1, . . . J} .

(iii) Complementary slackness (for inequality constraints):

λ∗j
∂L
∂λj

(x∗,λ∗,µ∗) = λ∗jgj (x
∗) = 0 ∀j ∈ {1, . . . J} .

(iv) Constraints:

hk (x
∗) = 0 ∀k ∈ {1, . . . ,K} ,

gj (x
∗) ≥ 0 ∀j ∈ {1, . . . , J} .

Step 3 Compute the value of f at each solution found in the previous step, and choose the one
that maximises f as the solution to the problem.

Example 31. Consider the following problem:

max
x,y∈R

x− y2 s.t. x2 + y2 = 4,

x, y ≥ 0.

The Lagrangian is

L (x, y, µ, λ1, λ2) = x− y2 + µ
(
x2 + y2 − 4

)
+ λ1x+ λ2y.

First-order conditions

∂L
∂x

= 1 + 2µ∗x∗ + λ∗1 = 0,

∂L
∂y

= −2y∗ + 2µ∗y∗ + λ∗2 = 0.

Nonnegativity conditions:
λ∗1 ≥ 0, λ∗2 ≥ 0.

Complementary slackness conditions:

λ∗1x
∗
1 = λ∗2y

∗ = 0.

Constraints:
(x∗)2 + (y∗)2 = 4, x∗ ≥ 0, y∗ ≥ 0.
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Rearranging the first-order condition with respect to x gives

1 + λ∗1 = −2µ∗x∗.

If x∗ = 0, then λ∗1 < 0 to satisfy the equation above but λ∗1 ≥ 0 by nonnegativity. Thus, we must
have x∗ ̸= 0. Since x∗ ≥ 0, we realise that x∗ > 0. Furthermore, since 1 + λ∗1 > 0, the equation
above also implies that µ∗ < 0. Complementary slackness means that λ∗1 = 0 because x∗ = 0.
Rearranging the first-order condition with respect to y gives

2y∗ (1− µ∗) = λ∗2.

Since 1 − µ∗ > 0, either (i) y∗ = λ∗2 = 0 or (ii) y∗, λ∗2 > 0. But the latter would contradict
complementary slackness condition λ∗2y

∗ = 0. Hence, we must have y∗ = λ∗2 = 0. The equality
constraint and the nonnegativity constraint gives that x∗ = 2. Finally, the first-order condition
with respect to x gives µ∗ = − 1

4 . That is, the solution is

(x∗, y∗, µ∗, λ∗1, λ
∗
2) =

(
2, 0,−1

4
, 0, 0

)
.

Remark 14. If we were solving a minimisation problem, then define

L (x,λ) := f (x)−
J∑

j=1

λjgj (x)

in step 1 and, among the solutions find in step 2, choose the solution that minimises f as the
solution to the problem.
Remark 15. It is often easy to forget which sign we should have the constraint part in L. One way
to is to remember that the Lagrange multiplier are always positive and think of the Lagrangian
multipliers as the punishment to the objective function. So suppose we are maximising f and we
have a constraint that takes the form gj(x) ≥ 0. Then, we must punish times in which gj(x) < 0

and so it must be the case that we add λjgj(x) to f in writing the Lagrangian so that negative gj(x)
would lower (and thus punish) the value of the objective. Similarly, if gj(x) ≤ 0, then we must
punish the objective whenever gj(x) > 0 and so we add −λjgj(x) to f in forming the Lagrangian.
Remark 16. Since

hk (x) = 0 ⇔ (hk (x) ≤ 0) ∧ (hk (x) ≥ 0)

⇔ (−hk (x) ≥ 0) ∧ (hk (x) ≥ 0) ,

any equality constraints can be expressed as two inequality constraints. Thus, the optimisation
problem can be expressed as a problem consisting only of inequality constraints.

7.3.2 When does it work?

So when does this approach work? First, there must be a solution to a problem. As we will cover
in ECON 6701, Weirstrass Theorem usually gives us this. The other condition is that a condition
called constraint qualification must be satisfied at solution x∗. This is a requirement that Jacobian
matrix of the equality constraints and the binding constraints at x∗ has full rank. We will go over
this latter condition in more detail also in ECON 6701. In the meantime, you should just make
sure that the following condition holds instead.

(i) The objective f as well as the constraints g1, g2 . . . , gJ are all concave, continuously differen-
tiable functions.
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(ii) Slater’s condition
∃x ∈ int (X) , gi (x) > 0 ∀i ∈ {1, . . . , J}

holds.

We will see in ECON 6701 that it is possible to relax the requirement of concavity of the objective
and constraints to quasiconcavity; however, this comes at the cost of a more difficult condition to
verify than the Slater’s condition above.

7.3.3 Nonnegativity constraints

Suppose the problem involves only inequality constraints but there are nonnegativity constraints:

max
x∈Rn

f (x) s.t. gj (x) ≥ 0 ∀j ∈ {1, . . . , J} ,

xi ≥ 0 ∀i ∈ {1, . . . , n} .

An alternative way to approach this problem is to consider the Lagrangian that ignores the non-
negativity constraints (called Kuhn-Tucker Lagrangian):

L̃ (x,λ) = f (x) +

J∑

j=1

λjgj (x) .

Then, compute (x∗,λ∗) that satisfies the following conditions: λ∗j ≥ 0 for all j ∈ {1, . . . , J} and

∂L̃
∂xi

≤ 0 ∀i ∈ {1, . . . , n} , ∂L̃
∂λj

≤ 0 ∀j ∈ {1, . . . , J} ,

x∗i
∂L̃
∂xi

= 0 ∀i ∈ {1, . . . , n} ,λ∗j
∂L̃
∂λj

= 0 ∀j ∈ {1, . . . , J} .

Example 32. Consider again the following problem:

max
x,y∈R

x− y2 s.t. x2 + y2 = 4,

x, y ≥ 0.

Treating the equality constraints as two inequality constraints, we have

L̃ (x, y, λ1, λ2) = x− y2 + λ1
(
x2 + y2 − 4

)
− λ2

(
x2 + y2 − 4

)

= x− y2 + (λ1 − λ2)
(
x2 + y2 − 4

)
.

The conditions are that λ∗1, λ∗2 ≥ 0,

1 + 2 (λ∗1 − λ∗2)x
∗ ≤ 0,

−2y∗ + 2 (λ∗1 − λ∗2) y
∗ ≤ 0,

(x∗)2 + (y∗)2 − 4 = 0,

x∗ (1 + 2 (λ∗1 − λ∗2)x
∗) = 0,

y∗ (−2y∗ + 2 (λ∗1 − λ∗2) y
∗) = 0.

Note that λ∗1 ̸= λ∗2 and x∗ > 0; otherwise the first line would imply 1 ≤ 0. But the first inequality
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implies that λ∗1 − λ∗2 < 0. Letting λ∗ := λ∗2 − λ∗1The penultimate equation also implies

1 + 2λ∗x∗ = 0 ⇔ x∗ = − 1

2λ∗
> 0.

The equality constraint then gives that

(y∗)2 = 4− 1

4

1

(λ∗)2
.

Suppose y∗ = 0. Since λ∗ < 0 and

4− 1

4

1

λ2
= 0 ⇔ λ2 =

1

16
⇔ λ =

1

4
or − 1

4
,

we must have λ∗ = − 1
4 and x∗ = 2 and so we have x∗ = 2 and y∗ = 0 as we had before!

7.4 Comparative statics on optimisation problems

Consider the following problem:
f∗ (θ) := max

x∈Γ(θ)
f (x, θ) ,

where we think of x as the choice variables (e.g., consumption), θ as the parameter of the problem
(e.g., prices), and Γ(θ) as the constraint set that can also depend on the parameters. Let Γ∗(θ)
denote the set of maximisers; i.e., x∗ ∈ Γ∗(θ) if and only if f∗(θ) = f(x∗, θ) and x∗ ∈ Γ(θ). The goal
of a comparative static exercise is to see how exactly f∗(θ) or Γ∗(θ) changes with the parameter θ.
Our goal here is to provide such comparative statistic results.

7.4.1 Implicit function theorem

We are often interested in how the maximisers vary with parameters. We can use implicit function
theorem to obtain results for this type of comparative static.

To illustrate how it can be used, suppose that f : X ⊆ R → R and we know that the first-order
condition is necessary and sufficient to characterise a unique maximiser for a given parameter value
θ,

∂

∂x
f (x∗, θ) = 0.

By the implicit function theorem, we can think of x∗ as being a function of θ around θ so that we
may write

∂

∂x
f (x∗ (θ) , θ) = 0.

Since this holds in the neighbourhood of θ, we may differentiate both sides with respect to θ, and
using chain rule yields that

∂2

∂x∂x
f (x∗ (θ) , θ)

dx∗

dθ
(θ) +

∂2

∂x∂θ
f (x∗ (θ) , θ) = 0.

Rearranging gives that
dx∗

dθ
(θ) = −

∂2

∂x∂θf (x
∗ (θ) , θ)

∂2

∂x∂xf (x
∗ (θ) , θ)

.

Observe that for x∗ to be a maximum, the denominator must be negative. Hence, the sign of
the derivative depends on the sign of the cross derivative in the numerator. Of course, if we can
compute functional forms of the second derivatives, then we can compute the dx∗/dθ exactly.
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7.4.2 Envelope theorem

Envelope Theorems helps us study how the maximised objective changes with parameters (note
there are many versions!).

Suppose that f : X ⊆ R → R and we know that the first-order condition is necessary and
sufficient to characterise a unique maximiser, x∗, for a given parameter value θ,

∂

∂x
f (x∗, θ) = 0.

By the implicit function theorem, we can think of x∗ as being a function of θ around θ so that we
may write the maximised objective function as

f∗ (θ) = f (x∗ (θ) , θ) .

Since this holds in the neighbourhood of θ, we may differentiate both sides with respect to θ, and
using chain rule yields that

df∗

dθ
(θ) =

∂f

∂x
(x∗ (θ) , θ)

dx∗

dθ
(θ) +

∂f

∂θ
(x∗ (θ) , θ) .

The second term captures the direct effect of a change in θ on the objective function while the first
term captures the indirect effect of a change in θ through its effect on the maximiser. However, due
to to the first-order condition, the indirect effect is, in fact, zero; i.e.,

df∗

dθ
(θ) =

∂f

∂θ
(x∗ (θ) , θ) .

Therefore, the effect of change in θ on the value of the maximised objective function comes solely
from the direct effect that θ has on f . All envelope theorems have this flavour (with differing
assumptions).

When we study constrained optimisation problems, we can think of taking the derivative of the
Lagrangian, rather than (just) the objective function.
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8 Dynamic optimisation

A dynamic problem is one which actions today have consequences for future periods. We will study
both discrete time (i.e., t ∈ {0} ∪N} and continuous time (i.e., t ∈ [0,∞)). The goal is to obtain a
path of relevant variables that maximises a discounted sum of payoffs over time. In this section, we
show the conditions under which Euler Equations and Transversality Conditions are necessary and
sufficient for a path to be optimal. We then introduce the Maximum Principle and its relation to
the classical variational approach used to derive the Euler Equations in continuous time. Finally,
we will show how to obtain the continuous time version of the neoclassical growth model from its
discrete time version counterpart.22 We will restrict ourselves to studying deterministic (as opposed
to stochastic) problems.

8.1 Discrete time

A state formulation of a dynamic problem is a tuple (X,Γ, F, β), where

• X is the set of states. We typically use x to denote the current state and y to denote the
next-period state.

• Γ : X → X is the correspondence describing the feasibility constraints. That is, for each
x ∈ X, Γ(x) gives the set of feasible values for the state variable next period if the current
state is x.

• F : gr(Γ) → R is the period-return function, where gr(Γ) = {(x, y) : X ×X : y ∈ Γ(x)} is the
graph of Γ.

• β ∈ (0, 1) is the discount factor.

The sequence problem is then defined as follows:

V ∗ (x0) := max
(xt+1)∞t=0

∞∑

t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ (xt) , ∀t ≥ 0,

x0 given.

The sequence (xt+1)
∞
t=0 is called a path and our goal is to find a path that maximises the objective

function F subject to the path satisfying constraints expressed by Γ. Note that we have already
embedded the assumption that xt+1 depends directly only on xt and not on, e.g., xt−1, xt−2, ....

A related notation, called control-state formulation, distinguishes between controls, ut, and
states, xt. In this notation, the sequence problem is described by a tuple (X,U, h, g, β), where

• U is the set of feasible controls

• h is the period-return function,

• g is the law of motion of the state.
22The material in the remainder of this part on dynamic optimisation is almost entirely from Professor Fernando

Alvarez’s class, Theory of Income I.
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The sequence problem is then defined as

V ∗ (x0) := max
(ut)∞t=0

∞∑

t=0

βth (xt, ut)

s.t. xt+1 = g (xt, ut) ,

ut ∈ U,

x0 given.

In this set up, rather than choosing the state directly, the agent chooses the control variable ut,
which, together with the current state (xt), determines the next period’s state (xt+1).

Exercise 19. Show that the control-state and state formulations are equivalent.

8.1.1 Euler equations and Transversality condition

Assume that X ∈ Rm, F is continuously differentiable and β ∈ (0, 1). Say that a path (xt+1)
∞
t=0

satisfies

• the Euler equations (EE ) if

Fy (xt, xt+1) + βFx (xt+1, xt+2) = 0, ∀t ≥ 0,

where Fx and Fy are the partial derivative of F with respect to x and y respectively. When
x is a vector (i.e., m > 1), then the Euler equations must hold for each dimension of x.

• the Transversality Condition (TC ) if

lim
t→∞

βtFx (xt, xt+1) · xt = 0.

where · is the inner product.

Remark 17. To remember where the Euler equations comes from, note that the first-order condition
of the sequence problem with respect to xt+1 is

βtFy (xt, xt+1) + βt+1Fx (xt+1, xt+2) = 0.

Dividing through by βt gives the Euler equation.

8.1.2 Optimal path

We now show that EE and TC are sufficient for optimality if the problem is convex.

Proposition 93. Assume that F is concave in (x, y), Fx(x
∗
t , x

∗
t+1) ≥ 0 and X = Rm

+ . Then, if
(x∗t+1)

∞
t=0 satisfies EE and TC, the path (x∗t+1)

∞
t=0 is optimal.

Proof. We use the fact that, if f is concave the tangency line at any given point always lies above
f ; i.e.

f (z) ≤ f
(
z0
)
+ f ′

(
z0
) (
z − z0

)
, ∀z. (8.1)

See also the figure below.
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Now, take an arbitrary path that has the same initial condition as the optimal path: i.e. take
(xt+1)

∞
t=0 with x0 = x∗0. By the assumption that X = Rm

+ , xt+1 ≥ 0 for all t. We wish to show that
F (x∗t , x

∗
t+1) is greater than F (xt, xt+1) across all periods; i.e. we want to show that:

lim
T→∞

T∑

t=0

βt
[
F (xt, xt+1)− F

(
x∗t , x

∗
t+1

)]
≤ 0.

Note that we can rearrange (8.1),

f (z)− f
(
z0
)
≤ f ′

(
z0
) (
z − z0

)
.

Then, letting z0 = x∗,

F (xt, xt+1)− F
(
x∗t , x

∗
t+1

)
≤ Fx

(
x∗t , x

∗
t+1

)
(xt − x∗t ) + Fy

(
x∗t , x

∗
t+1

) (
xt+1 − x∗t+1

)
.

That is,

lim
T→∞

T∑

t=0

βt
[
F (xt, xt+1)− F

(
x∗t , x

∗
t+1

)]

≤ lim
T→∞

T∑

t=0

βt
[
Fx

(
x∗t , x

∗
t+1

)
(xt − x∗t ) + Fy

(
x∗t , x

∗
t+1

) (
xt+1 − x∗t+1

)]
.

Expanding the summation, we have that

T∑

t=0

βt
[
Fx

(
x∗t , x

∗
t+1

)
(xt − x∗t ) + Fy

(
x∗t , x

∗
t+1

) (
xt+1 − x∗t+1

)]

= Fx (x
∗
0, x

∗
1) (x0 − x∗0) + Fy (x

∗
0, x

∗
1) (x1 − x∗1)

+ β (Fx (x
∗
1, x

∗
2) (x1 − x∗1) + Fy (x

∗
1, x

∗
2) (x2 − x∗2))

+ β2 (Fx (x
∗
2, x

∗
3) (x2 − x∗2) + Fy (x

∗
2, x

∗
3) (x3 − x∗3))

+ · · ·
+ βt

(
Fx

(
x∗t , x

∗
t+1

)
(xt − x∗t ) + Fy

(
x∗t , x

∗
t+1

) (
xt+1 − x∗t+1

))

+ βt+1
(
Fx

(
x∗t+1, x

∗
t+2

) (
xt+1 − x∗t+1

)
+ Fy

(
x∗t+1, x

∗
t+2

) (
xt+2 − x∗t+2

))

+ · · ·
+ βT

(
Fx

(
x∗T , x

∗
T+1

)
(xT − x∗T ) + Fy

(
x∗T , x

∗
T+1

) (
xT+1 − x∗T+1

))
.
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By assumption, x0 = x∗0 so that the first term is zero. Rewriting the expression gives

T∑

t=0

βt
[
Fx

(
x∗t , x

∗
t+1

)
(xt − x∗t ) + Fy

(
x∗t , x

∗
t+1

) (
xt+1 − x∗t+1

)]

= [Fy (x
∗
0, x

∗
1) (x1 − x∗1) + β (Fx (x

∗
1, x

∗
2) (x1 − x∗1))]

+ β [Fy (x
∗
1, x

∗
2) (x2 − x∗2) + βFx (x

∗
2, x

∗
3) (x2 − x∗2)]

+ · · ·
+ βt

[
Fy

(
x∗t , x

∗
t+1

) (
xt+1 − x∗t+1

)
+ βFx

(
x∗t+1, x

∗
t+2

) (
xt+1 − x∗t+1

)]

+ · · ·
+ βTFy

(
x∗T , x

∗
T+1

) (
xT+1 − x∗T+1

)
,

where we realise that the terms inside the square brackets are all zero by the EE. Thus, the
expression above simplifies to

T∑

t=0

βt
[
Fx

(
x∗t , x

∗
t+1

)
(xt − x∗t ) + Fy

(
x∗t , x

∗
t+1

) (
xt+1 − x∗t+1

)]

= βTFy

(
x∗T , x

∗
T+1

) (
xT+1 − x∗T+1

)
.

From EE, we know that Fy (xt, xt+1) = −βFx (xt+1, xt+2), hence we can write

βTFy

(
x∗T , x

∗
T+1

) (
xT+1 − x∗T+1

)

= −βT+1Fx

(
x∗T+1, x

∗
T+2

) (
xT+1 − x∗T+1

)
.

By assumption, we know that xT+1 ≥ 0 and Fx

(
x∗T+1, x

∗
T+2

)
≥ 0 so that

βTFy

(
x∗T , x

∗
T+1

) (
xT+1 − x∗T+1

)

=− βT+1Fx

(
x∗T+1, x

∗
T+2

) (
xT+1 − x∗T+1

)

=−βT+1Fx

(
x∗T+1, x

∗
T+2

)
xT+1︸ ︷︷ ︸

≤0

+ βT+1Fx

(
x∗T+1, x

∗
T+2

)
x∗T+1

≤βT+1Fx

(
x∗T+1, x

∗
T+2

)
x∗T+1.

By assumption, TC holds so that

lim
T→∞

T∑

t=0

βt
[
F (xt, xt+1)− F

(
x∗t , x

∗
t+1

)]

≤ lim
T→∞

βT+1Fx

(
x∗T+1, x

∗
T+2

)
x∗T+1 = 0. ■

We now prove that EE and TC are necessary conditions for the path to be optimal

Proposition 94. Assume that F is continuously differentiable and (x∗t+1)
∞
t=0 is optimal. Then,

(x∗t+1)
∞
t=0 satisfies EE and TC.

Proof. We will consider adding perturbations to the optimal path (x∗t )
∞
t=1, denoted by ε. Let

xt (α, ε) = x∗t + αεt, ∀t ≥ 0

for α ∈ R and ε = (εt)
∞
t=0 with εt ∈ Rm and ε0 = 0 (again, we must start from the same point).
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Since (x∗t+1)
∞
t=0 is optimal, it must be that

V ∗ (x0) = v (0) := lim
T→∞

T∑

t=0

βtF (xt (0, ε) , xt+1 (0, ε))

≥ v (α) := lim
T→∞

T∑

t=0

βtF (xt (α, ε) , xt+1 (α, ε))

for any α, ε such that xt+1(α, ε) ∈ Γ(xt(α, ε)), ∀t ≥ 0 (i.e. perturbed path must still be feasible).
Since α = 0 maximises v, if v is differentiable, it must be that

∂v (0)

∂α
= 0.

Assuming that the limits involved in the derivative (with respect to α) and in the summation (with
respect to T ) can be exchanged, we obtain that (since ∂xt(α, ε)/∂α = εt),

∂v (0)

∂α
= lim

T→∞

T∑

t=0

βt
[
Fx

(
x∗t , x

∗
t+1

)
εt + Fy

(
x∗t , x

∗
t+1

)
εt+1

]
.

Consider the summation separately,

T∑

t=0

βt
[
Fx

(
x∗t , x

∗
t+1

)
εt + Fy

(
x∗t , x

∗
t+1

)
εt+1

]

= Fx (x
∗
0, x

∗
1) ε0 + Fy (x

∗
0, x

∗
1) ε1

+ β [Fx (x
∗
1, x

∗
2) ε1 + Fy (x

∗
1, x

∗
2) ε2]

+ β2 [Fx (x
∗
2, x

∗
3) ε2 + Fy (x

∗
2, x

∗
3) ε3]

+ · · ·
+ βt

[
Fx

(
x∗t , x

∗
t+1

)
εt + Fy

(
x∗t , x

∗
t+1

)
εt+1

]

+ βt+1
[
Fx

(
x∗t+1, x

∗
t+2

)
εt+1 + Fy

(
x∗t+1, x

∗
t+2

)
εt+2

]

+ · · ·
+ βT−1

[
Fx

(
x∗T−1, x

∗
T

)
εT−1 + Fy

(
x∗T−1, x

∗
T

)
εT
]

+ βT
[
Fx

(
x∗T , x

∗
T+1

)
εT + Fy

(
x∗T , x

∗
T+1

)
εT+1

]
.

By the assumption that ε0 = 0, the first term is zero. Then, we can write

∂v (0)

∂α
= lim

T→∞

T∑

t=0

βt
[
Fx

(
x∗t , x

∗
t+1

)
εt + Fy

(
x∗t , x

∗
t+1

)
εt+1

]

= lim
T→∞

T−1∑

t=0

βt
(
Fy

(
x∗t , x

∗
t+1

)
+ βFx

(
x∗t+1, x

∗
t+2

))
εt+1 + lim

T→∞
βTFy

(
x∗T , x

∗
T+1

)
εT+1.

Consider the case where εs = 0 for all s except at time t+1. In this case, xt+1(α, ε) will be feasible
if (x∗t+1, x

∗
t ) ∈ int(Gr(Γ)) (if it was on the boundary, then perturbing would lead to xt+1(α, ε) that

is not feasible). Also, assume that v is differentiable and the limits can be interchanged. Then, it
must be that

∂v (0)

∂α
=
[
Fy

(
x∗t , x

∗
t+1

)
+ βFx

(
x∗t+1, x

∗
t+2

)]
εt+1 = 0.

Since this must hold for any εt+1 in the neighbourhood of 0 such that xt+1 (α, ε) is feasible, it must
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be that the term inside the square brackets sum to zero; i.e.

Fy

(
x∗t , x

∗
t+1

)
+ βFx

(
x∗t+1, x

∗
t+2

)
= 0.

Since this must be true for any t+ 1, we obtain the EE and that

0 =
∂v (0)

∂α
= lim

T→∞
βTFy

(
x∗T , x

∗
T+1

)
εT+1.

Using the EE that we’ve already established, we know Fy

(
x∗T , x

∗
T+1

)
= −βFx

(
x∗T+1, x

∗
T+2

)
so that

0 =
∂v (0)

∂α
= − lim

T→∞
βT+1Fx

(
x∗T+1, x

∗
T+2

)
εT+1.

Finally, if εT+1 = −x∗T+1 is feasible then

0 =
∂v (0)

∂α
= lim

T→∞
βTFx

(
x∗T , x

∗
T+1

)
x∗T .

That is, TC must hold. ■

8.1.3 Steady state

We say that x̄ ∈ X is a steady state if it is a solution to

Fy (x̄, x̄) + βFx (x̄, x̄) = 0.

Concavity of F does not imply that steady states are unique. Concavity ensures unique solution
for any given initial condition. However, there may be many steady states depending on where you
start.

Exercise 20. For what kind of problems is xt+1 = x̄ for t ≥ 0 optimal if x0 = x̄?

8.1.4 EE as a second-order difference equation

EE is, in fact, a second-order difference equation; define xt+2 = ψ(xt+1, xt) so that EE can be
written as

Fy (xt, xt+1) + βFx (xt+1, ψ (xt+1, xt)) = 0.

To be able to solve for ψ, we need Fx to change with ψ (so that the problem is dynamic). For
example, if f(x, y) = h(x) + g(x), then the initial condition on y does not affect x so that the
problem is not dynamic.

Exercise 21. Assume that F is C2. What condition will suffice to uniquely define ψ?

Remark 18. [Shooting algorithm]Given initial condition x0 ∈ X, select x1 arbitrary. Generate a
sequence (xt)t using xt+1 = ψ(xt+1, xt) for all t ≥ 2. Compute if the limit of this sequence satisfies
TC for the arbitrary choice of x1. If not, try a different one. If the dynamic system has a unique
solution and the system is convergent, this method will give us the optimal path (since starting
from any initial condition, we will eventually converge to the steady state if we are on the saddle
path.)

8.2 Continuous Time

The problem now is to choose the derivative of the state with respect to time, ẋ(t), for each period.
The elements of a dynamic programming problem is described by a tuple (X,Γ, F, β), where
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• X is the set of states;

• Γ : X → X is the correspondence describing the feasibility constraints, which gives the set of
feasible values for the state variable next period if the current state is x.

• F (x, y) : gr(Γ) → R is the period-return function;

• ρ ∈ (0, 1) is the discount rate.

The sequence problem can then be defined as follows:

V ∗ (x0) := max
ẋ(t)

lim
T→∞

∫ T

0

e−ρtF (x (t) , ẋ (t)) dt

s.t. ẋ (t) ∈ Γ (x (t)) ,∀t ≥ 0,

x (0) given.

8.2.1 Euler equations and Transversality condition

A path (ẋ(t))∞t=0 satisfies

• the Euler equations (EE) if

Fx (x (t) , ẋ (t)) + ρFy (x (t) , ẋ (t)) (8.2)

= Fyx (x (t) , ẋ (t)) ẋ (t) + Fyy (x (t) , ẋ (t)) ẍ (t) , ∀t ≥ 0.

Loosely speaking, the continuous time counterparts to xt, xt+1, xt+1 are x(t), ẋ(t) and ẍ(t).

• the Transversality Condition (TC) if

lim
T→∞

e−ρTFy (x (T ) , ẋ (T )) · x (T ) = 0.

8.2.2 Optimal path

Proposition 95. Assume that F (x, ẋ) is concave in (x, ẋ), Fẋ ≤ 0, Gr(Γ) is convex,23 that the
optimal path x∗(t) is interior, and X = Rm

+ . Then, if (ẋ∗(t))∞t=0 satisfies EE and TC, the path
(ẋ∗(t))∞t=0 is optimal.

Proof. As in the discrete case, we wish to show that

lim
T→∞

∫ T

0

e−ρt (F (x (t) , ẋ (t))− F (x∗ (t) , ẋ∗ (t))) dt ≤ 0.

As before, we may write

F (x (t) , ẋ (t))− F (x∗ (t) , ẋ∗ (t)) ≤ Fx (x
∗ (t) , ẋ∗ (t)) (x (t)− x∗ (t))

+ Fy (x
∗ (t) , ẋ∗ (t)) (ẋ (t)− ẋ∗ (t)) .

23Convexity is required to ensure existence of a solution.

- 111 -



Math Review 2024

Hence,

lim
T→∞

∫ T

0

e−ρt (F (x (t) , ẋ (t))− F (x∗ (t) , ẋ∗ (t))) dt

≤ lim
T→∞

∫ T

0

e−ρtFx (x
∗ (t) , ẋ∗ (t)) (x (t)− x∗ (t)) dt

+ lim
T→∞

∫ T

0

e−ρtFy (x
∗ (t) , ẋ∗ (t)) (ẋ (t)− ẋ∗ (t)) dt.

Using integration by parts on the second integral:

∫ T

0

e−ρtFy (x
∗ (t) , ẋ∗ (t)) (ẋ (t)− ẋ∗ (t))

=
[
e−ρtFy (x

∗ (t) , ẋ∗ (t)) (x (t)− x∗ (t))
]T
0
−
∫ T

0

X (x (t)− x∗ (t)) dt,

= e−ρTFy (x
∗ (T ) , ẋ∗ (T )) (x (T )− x∗ (T ))−

∫ T

0

X (x (t)− x∗ (t)) dt,

where we use the fact that x (0) = x∗ (0) and

X =
d

dt

[
e−ρtFy (x

∗ (t) , ẋ∗ (t))
]

= −ρe−ρtFy (x
∗ (t) , ẋ∗ (t))

+ e−ρtFyx (x
∗ (t) , ẋ∗ (t)) ẋ∗ (t) + e−ρtFyy (x

∗ (t) , ẋ∗ (t)) ẍ∗ (t)

= e−ρt [−ρFy (x
∗ (t) , ẋ∗ (t)) + Fyx (x

∗ (t) , ẋ∗ (t)) ẋ∗ (t) + Fyy (x
∗ (t) , ẋ∗ (t)) ẍ∗ (t)]

Suppressing some arguments,

lim
T→∞

∫ T

0

e−ρt
(
F ∗
x (x− x∗) + F ∗

y (ẋ− ẋ∗)
)
dt

≤
∫ ∞

0

e−ρtF ∗
x (x− x∗) dt−

∫ ∞

0

e−ρt
[
−ρF ∗

y + Fyxẋ
∗ + Fyyẍ

∗] (x− x∗) dt

+ lim
T→∞

e−ρTFy (x
∗ (T ) , ẋ∗ (T )) (x (T )− x∗ (T ))

=

∫ ∞

0

e−ρt


F ∗

x + ρF ∗
y − Fyxẋ

∗ − Fyyẍ
∗

︸ ︷︷ ︸
=0∵EE


 (x− x∗) dt+ lim

T→∞
e−ρTFy (x

∗ (T ) , ẋ∗ (T )) (x (T )− x∗ (T ))

= lim
T→∞

e−ρTFy (x
∗ (T ) , ẋ∗ (T )) (x (T )− x∗ (T ))

= lim
T→∞

e−ρTFy (x
∗ (T ) , ẋ∗ (T ))x (T )− lim

T→∞
e−ρTFy (x

∗ (T ) , ẋ∗ (T ))x∗ (T ) .

Since Fy ≤ 0 and x (t) ≥ 0, then

lim
T→∞

∫ T

0

e−ρt
(
F ∗
x (x− x∗) + F ∗

y (ẋ− ẋ∗)
)
dt

≤ lim
T→∞

e−ρTFy (x
∗ (T ) , ẋ∗ (T ))x (T )− lim

T→∞
e−ρTFy (x

∗ (T ) , ẋ∗ (T ))x∗ (T )

≤ − lim
T→∞

e−ρTFy (x
∗ (T ) , ẋ∗ (T ))x∗ (T ) = 0,
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where the last equality follows from the Transversality Condition. Thus,

lim
T→∞

∫ T

0

e−ρt (F (x (t) , ẋ (t))− F (x∗ (t) , ẋ∗ (t))) dt ≤ 0. ■

As in the discrete time case, EE and TC are necessary conditions for optimality.

Proposition 96. Assume that F is continuously differentiable and that the optimal path is interior;
i.e.

(x (t) , ẋ (t)) ∈ int (gr (Γ)) ,∀t ≥ 0.

Then, the optimal path (ẋ(t))∞t=0 satisfies EE and TC.

Proof. Consider the variation path

x (α, ε) (t) = x (t) + αε (t) ,

where α ∈ R and ε(t) is a differentiable function from R+ to Rm with ε(0) = 0. Define the value of
the variational path as:

v (α) := lim
T→∞

∫ T

0

e−ρtF (x (α, ε) (t) , ẋ (α, ε) (t)) dt

= lim
T→∞

∫ T

0

e−ρtF (x (t) + αε (t) , ẋ (t) + αε̇ (t)) dt.

If the variation path is feasible—i.e. ẋ (α, ε) (t) ∈ Γ (x (α, ε) (t)) for all t ≥ 0, since (x (t) , ẋ (t)) is
the optimal path, it must be that

v (0) ≥ v (α) .

Assuming that v is differentiable and that we can interchange derivative of the integral as the
integral of the derivative:

∂v (0)

∂α
= lim

T→∞

∫ T

0

e−ρtFx (x (t) , ẋ (t)) ε (t) dt

+ lim
T→∞

∫ T

0

e−ρtFy (x (t) , ẋ (t)) ε̇ (t) dt.

To find the impact of the variational path ε for each t, we use integration by parts on the second
term:

∫ T

0

e−ρtFy (x (t) , ẋ (t)) ε̇ (t) dt

=
[
e−ρtFy (x (t) , ẋ (t)) ε (t)

]T
0
−
∫ T

0

X ε (t) dt

=e−ρTFy (x (T ) , ẋ (T )) ε (T )−
∫ T

0

X ε (t) dt

where we use the fact that ε (0) = 0 and (assuming x (t) is C2),

X = −ρe−ρtFy (x (t) , ẋ (t))

+ e−ρtFyx (x (t) , ẋ (t)) ẋ (t) + e−ρtFyy (x (t) , ẋ (t)) ẍ (t) .
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Omitting some arguments, we therefore have that

0 =
∂v (0)

∂α
=

∫ ∞

0

e−ρtFxεdt−
∫ T

0

e−ρt [−ρFy + Fyxẋ+ Fyyẍ] εdt

+ lim
T→∞

e−ρTFy (x (T ) , ẋ (T )) ε (T ) .

As in the discrete time case, take ε such that ε(t) ̸= 0 and zero otherwise. Then, the expression
above becomes

0 = e−ρt [Fx + ρFy − Fyxẋ− Fyyẍ] ε.

Since this has to hold for any feasible values of ε(t), it must be that the term inside the brackets is
zero. Rearranging and writing the arguments in full, we obtain the EE:

Fx (x (t) , ẋ (t)) + ρFy (x (t) , ẋ (t)) = Fyx (x (t) , ẋ (t)) ẋ (t)− Fyy (x (t) , ẋ (t)) ẍ (t) .

Note that the proof is heuristic since we assumed that ε is differentiable but, for the Euler equations,
we use a function ε that was discontinuous. A rigorous proof needs to approximate this discontinuous
case using a smooth function.

Take a sequence x that satisfies EE then,

0 =
∂v (0)

∂α
= lim

T→∞
e−ρTFy (x (T ) , ẋ (T )) ε (T ) .

If ε(T ) = −x(T ) is feasible, we obtain the TC:

0 = lim
T→∞

e−ρTFy (x (T ) , ẋ (T ))x (T ) . ■

8.2.3 Steady state

In the steady state ẋ(t) = ẍ(t) = 0. Substituting this into the EE characterises the steady state x̄:

Fx (x̄, 0) + ρFy (x̄, 0) = Fyx (x̄, 0) 0 + Fyy (x̄, 0) 0

⇒ Fx (x̄, 0) = −ρFy (x̄, 0) .

8.2.4 The Maximum Principle: Hamiltonian

We use the control-state formulation. For this, we have the instantaneous return function h that
depends on the state vector x ∈ X ⊆ Rm and a control vector u ∈ U ⊆ Rn (m need not equal n).
The problem is

V ∗ (x0) := max
u(t)

lim
T→∞

∫ T

0

e−ρth (x (t) , u (t)) dt

s.t. ẋ (t) = g (x (t) , u (t)) , ∀t ≥ 0

u (t) ∈ U, ∀t ≥ 0,

x (0) given.

We will study a procedure to obtain necessary and sufficient conditions for an optimum. This
requires some regularity conditions.

Let λ be a vector on Rm of co-state variable and H be the current-value Hamiltonian function
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defined as
H (x, u, λ) := h (x, u) + λg (x, u) .

The following conditions are necessary (under regularity assumptions) and sufficient (under regu-
larity and convexity assumptions) for a path of x and u to be optimal:

Hu (x (t) , u (t) , λ (t)) = 0, (8.3)

ρλ (t)−Hx (x (t) , u (t) , λ (t)) = λ̇ (t) , (8.4)

g (x (t) , u (t)) = ẋ (t) , (8.5)

for all t ≥ 0.
The state variable(s), x, has an initial value of x0 and the co-state variable(s), λ(t), have a

boundary condition—the Transversality Condition—given by

lim
T→∞

e−ρTλ (T )x (T ) = 0.

The initial value of the co-state variable, λ(0), is not predetermined and it has to be solved as part
of the system.

The interpretation of co-state is that e−ρtλ(t) is the marginal value at time zero of an infinites-
imal increase in the state x at time t.

The first condition (8.3) says that the derivative of the Hamiltonian with respect to the control
is zero—this gives the optimal choice of u (one for each control variable). To interpret the second
condition (8.4), recall that

rP = D + Ṗ ,

can be interpreted as saying that P is the present value of D with interest rate r (D is the dividends,
Ṗ is capital gain). Here, we see that λ(t) is the present value of Hx given discount factor ρ. The
condition gives the (shadow) marginal value of a unit of x. Finally, the last condition (8.5) is the
feasibility condition.

Heuristic proof Let us form the Lagrangian, using e−ρtλ(t) for the multiplier of ẋ(t) = g(x(t), u(t)):

L (x, u, λ) = lim
T→∞

(∫ T

0

e−ρth (x (t) , u (t)) dt+

∫ T

0

e−ρtλ (t) [g (x (t) , u (t))− ẋ (t)] dt

)
.

Consider the problem of maximising L with respect to x and u, and minimise with respect to λ.24

First, consider the following term, and use integration by parts to obtain:

∫ T

0

e−ρtλ (t) ẋ (t) dt =
[
e−ρtλ (t)x (t)

]T
0
−
∫ T

0

[
−ρe−ρtλ (t) + e−ρtλ̇ (t)

]
x (t) dt.

We therefore have

L (x, u, λ) = lim
T→∞

∫ T

0

e−ρth (x (t) , u (t)) dt

+ lim
T→∞

∫ T

0

e−ρt
[
λ (t) g (x (t) , u (t))− ρλ (t)x (t) + λ̇ (t)x (t)

]
dt

− lim
T→∞

[
e−ρtλ (t)x (t)

]T
0
.

24In ECON6701, we will see that the Lagrangian method is a max-min problem.
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Since L(x, u, λ) has to be maximised by x, the first-order conditions with respect to x(t) gives

dL (x, u, λ)

dx (t)
= e−ρt

[
hx (x (t) , u (t)) + λ (t) gx (x (t) , u (t))− ρλ (t) + λ̇ (t)

]
= 0.

Since e−ρt > 0, it follows that

λ̇ (t) = ρλ (t)− hx (x (t) , u (t))− λ (t) gx (x (t) , u (t)) .

Note that

dH (x, u, λ)

dx (t)
= Hx (x (t) , u (t) , λ (t))

= hx (x (t) , u (t)) + λ (t) gx (x (t) , u (t))

so that we can rewrite λ̇(t) as

λ̇ (t) = ρλ (t)−Hx (x (t) , u (t) , λ (t)) . (8.6)

The first-order condition with respect to u (t) is

dL (x, u, λ)

du (t)
= e−ρt [hu (x (t) , u (t)) + λ (t) gu (x (t) , u (t))] = 0.

Since

dH (x, u, λ)

du (t)
= Hu (x (t) , u (t) , λ (t))

= hu (x (t) , u (t)) + λ (t) gu (x (t) , u (t)) ,

we therefore have that
Hu (x (t) , u (t) , λ (t)) = 0. (8.7)

Relation to the EE analysis To see the relation with the classical EE analysis, consider the
special case:

u = ẋ,

F (x, u) = h (x, u) ,

g (x, u) = u.

In this case,
H (x, u, λ) = F (x, ẋ) + λẋ

so that (8.7) becomes

Hu (x, u, λ) = 0 ⇒ Fy (x (t) , ẋ (t)) + λ (t) = 0

⇒ λ (t) = −Fy (x (t) , ẋ (t)) (8.8)

and
Hx (x, u, λ) = Fx (x (t) , ẋ (t)) .

Therefore, (8.6) becomes
λ̇ (t) = ρλ (t)− Fx (x (t) , ẋ (t)) .
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Combining the two we get that

λ̇ (t) = −ρFy (x (t) , ẋ (t))− Fx (x (t) , ẋ (t)) .

Thus, −λ̇ (t) is the right-hand side of the EE in (8.2). To confirm, differentiating (8.8) with respect
to t gives

λ̇ (t) = − d

dt
Fy (x (t) , ẋ (t)) = −Fyx (x (t) , ẋ (t)) ẋ (t)− Fyy (x (t) , ẋ (t)) ẍ (t) .

Thus, we have the EE as in (8.2):

Fx (x (t) , ẋ (t)) + ρFy (x (t) , ẋ (t))

= Fyx (x (t) , ẋ (t)) ẋ (t) + Fyy (x (t) , ẋ (t)) ẍ (t) .

8.3 Neoclassical growl model

8.3.1 Discrete time

In the discrete-time neoclassical growth model, output can be used for consumption, Ct, and in-
vestment, It:

Ct + It = G (kt, 1) ,

where G(·, 1) is a production function that is strictly increasing, strictly concave and satisfies we
assume that limk→0G

′(k, 1) = ∞ and that limk→∞G′(k, 1) = 0. The next-period capital is given
by

kt+1 = kt (1− δ) + It,

where δ is the depreciation rate. Combining the two gives the law of motion:

Ct = G (kt, 1) + kt (1− δ)− kt+1

= f (kt)− kt+1,

where we defined f(k) := G(k, 1) + (1 − δ)k. The consumer then chooses an infinite sequence of
kt+1 to maximise utility (in any given period t, kt is given). Thus, the neoclassical growth model
takes the following form:

V ∗ (k0) := max
(kt+1)∞t=0

∞∑

t=0

βtU (f (kt)− kt+1)

s.t. 0 ≤ kt+1 ≤ f (kt) ,

k0 given.

We assume that U is strictly increasing and strictly concave. Moreover, we assume that limc→0 U
′(c) =

∞ and that limc→∞ U ′(c) = 0. In setting the lower bound for kt+1 to be zero, we are implicitly
assuming that capital can be dismantled at no cost and consumed. If capital is irreversible, then
the lower bound for kt+1 should be set to kt.

We can fit the problem above into our general notation:

F (x, y) = U (f (x)− y) , Γ (x) = [0, f (x)] .

EE and TC Since
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Fx (x, y) = U ′ (f (x)− y) f ′ (x) ,

Fy (x, y) = −U ′ (f (x)− y) ,

the Euler Equations for the neoclassical growth model is given by:

−U ′ (f (kt)− kt+1) + βU ′ (f (kt+1)− kt+2) f
′ (kt+1) = 0 ∀t ≥ 0.

The Transversality Condition is given by

lim
T→∞

βTU ′ (f (kT )− kT+1) f
′ (kT ) kT = 0.

Steady state The steady state solves

βU ′ (f
(
k̄
)
− k̄
)
f ′
(
k̄
)
= U ′ (f

(
k̄
)
− k̄
)

⇔ f ′
(
k̄
)
=

1

β
.

8.3.2 Continuous time

In the continuous-time neoclassical growth model, law of motion for capital is given by

k̇ (t) = f (k (t))− c (t)− δk (t) ,

where we implicitly assume unit inelastic supply of labour as in the discrete time case. Unlike in
the discrete-time case, above f is the production function gross of depreciation. The consumer then
chooses an infinite path of k̇(t) to maximise his utility. Thus, the neoclassical growth model now
takes the following form:

V ∗ (k (0)) := max
k̇(t)

∫ ∞

0

e−ρtU
(
f (k)− δk (t)− k̇ (t)

)

s.t. k̇ (t) ∈ R ∀t ≥ 0,

k (0) given.

We can fit the problem above into our general notation:

F
(
k, k̇
)
= U

(
f (k)− δk − k̇

)
, Γ (k) = R.

EE and TC Since

Fx = (f ′ (k)− δ)U ′
(
f (k)− δk − k̇

)
,

Fy = −U ′
(
f (k)− δk − k̇

)
,

Fyx = − (f ′ (k)− δ)U ′′
(
f (k)− δk − k̇

)
,

Fyy = U ′′
(
f (k)− δk − k̇

)
,
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the EE are

(f ′ (k)− δ)U ′ − ρU ′ = − (f ′ (k)− δ)U ′′k̇ + U ′′k̈

⇔ (f ′ (k)− δ − ρ)U ′ = −
(
(f ′ (k)− δ) k̇ − k̈

)
U ′′. (8.9)

The TC is given by

lim
T→∞

−e−ρTU ′
(
f (k (T ))− δk (T )− k̇ (T )

)
k (T ) = 0.

Steady state The steady state is given by

(f ′ (k)− δ − ρ)U ′ = 0 ⇒ f ′ (k) = ρ+ δ.

8.3.3 Hamiltonian

We can also analyse the neoclassical model using the Hamiltonian. The period-return function is
U(c) and the law of motion is given by k̇ = f(k)− δk − c (note that k(0) is given). That is,

h (k, c) = U (c) ,

g (k, c) = f (k)− δk − c,

⇒ H (k, c, λ) = U (c) + λ (f (k)− δk − c) .

Then,

Hu = 0 ⇒ U ′ (c) = λ,

λ̇ = ρλ−Hx ⇒ λ̇ = λ (ρ− (f ′ (k)− δ)) ,

ẋ = g ⇒ k̇ = f (k)− δk − c.

We therefore have the following dynamic equations:

λ̇ = λ (ρ− (f ′ (k)− δ)) ,

k̇ = f (k)− δk − c.

Phase diagram in (k, λ) space To draw the phase diagram in (k, λ) space, note that

• λ̇ = 0: f ′(k̄)− δ = ρ. In (k, λ) space, this is a vertical line. Dynamics: From λ̇ = 0 if k > k̄,
then f ′(k) is lower and −f ′(k) is higher so that λ̇ > 0. And if k < k̄ then λ̇ < 0.

• k̇ = 0: c = f(k) − δk. Since λ = U ′(c), we have that λ = U ′(f(k) − δk). Note that U ′ > 0

and U ′′ < 0 so that U ′ is a strictly decreasing transformation. Thus, when f(k)− δk achieves
its maximum (at k̂ such that f ′(k̂) = δ), U ′(f(k)− δ) is at its minimum. As k → 0, f(k) → 0

and U ′(f(k) − δ) → ∞. As k > k̂, f(k̂) falls so that λ increases. These observations imply
that k̇ = 0 locus is U-shaped in (k, λ) space. Dynamics: If c > c̄, then k̇ < 0 and if c < c̄,
then k̇ > 0. Note that c > c̄ represents points below the k̇ = 0 locus.

This gives the following phase diagram.
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We see that low value of k corresponds to a higher value of λ. Does it make sense? Recall that
λ is the marginal value of a unit of k and, at the optimal, marginal benefit from c is equated to
λ, the marginal value of capital. In a similar way that higher c implies lower marginal benefit, a
higher k implies lower marginal value of capital; i.e. it represents diminishing returns. Note also
that a higher k implies higher production, and since c is a normal good (this is due to the fact that
we have separable utility function), higher output implies higher income and c increases in every
period.

Phase diagram in (k, c) space Since there is a one-to-one mapping between c and λ, we can
also draw the phase diagram in (k, c) space. To do so, we can differentiate Hu = 0 condition with
respect to time to obtain λ̇ in terms of c:

U ′′ (c) ċ = λ̇.

Then we can rewrite the second first-order condition as

U ′′ (c) ċ = U ′ (c) (ρ− (f ′ (k)− δ))

⇒ ċ

c
=

1

−U ′′(c)c
U ′(c)

(f ′ (k)− δ − ρ) ,

where −U ′′(c)
U ′(c) c is the elasticity of intertemporal substitution, and ċ

c is the percentage change in
c (i.e. elasticity). Thus, we see that given f ′(k) and ρ, consumption level c is determined by
preferences. Notice also that, if f ′(k) − δ = ρ, then c is constant, and if f ′(k) ̸= ρ, then as u
becomes linear (i.e. U ′′ → 0), ċ is larger so that you converge more quickly to the steady state.
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ċ = 0

- 1 -

Mathematical Methods in Economics Takuma Habu

c

c̄
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8.3.4 Deriving the continuous time EE from the discrete time version

Let ∆ denote the length of time between periods when the state is determined. Decisions are taken
whenever the state is determined at times 0, ∆, 2∆, .... The sequence of state is then

(
x∆(s+1)

)∞
s=0

= {x0, x∆, x2∆, . . .} ,

where x0, as usual, is given. We define the discount factor β for an interval ∆ using (the instant-
aneous) discount rate ρ as

β =
1

1 +∆ρ
.

We let U denote the instantaneous utility from consuming ct amount of consumption. So, during
an interval of length ∆ in which consumption is given by cs∆, the total utility is given by

∆U (cs∆) .

Market clearing condition must hold at all times (including during the interval ∆). Instantaneous
market clearing condition is thus

cs + is = f (ks) ,

where is denotes investment. Market clearing condition for the interval of length ∆ from period t∆
is thus

∆cs∆ +∆is∆ = ∆f (ks∆) .

Law of motion for capital is

ks∆+∆ = k(s+1)∆ = ∆is∆ + ks∆ (1−∆δ) ,

where δ is the instantaneous depreciation rate. Thus, we can write the neoclassical growth model:
as

max
(ct,it)

∞
t=0

∞∑

s=0

(
1

1 + ∆ρ

)s

∆U (cs∆) ,

s.t. ∆ct +∆it = ∆f (kt) , ∀t ≥ 0,

kt+∆ = ∆it + kt (1−∆δ) , ∀t ≥ 0,

k0 given,

where t = s∆ for some integer s. In other words, we may write the problem in an equivalent manner
as

max
(ci∆,ii∆)∞i=0

∞∑

s=0

(
1

1 + ∆ρ

)s

∆U (cs∆) ,

s.t. ∆cs∆ +∆is∆ = ∆f (ks∆) , ∀s ≥ 0,

k(s+1)∆ = ∆is∆ + ks∆ (1−∆δ) , ∀s ≥ 0,

k0 given,

Letting ∆ = 1, the problem reduces to the standard one.
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Continuous-time version of the law of motion for capital Fix ∆. First, we eliminate ∆it
from the constraint to obtain the law of motion for capital:

kt+∆ = ∆f (kt) + kt (1−∆δ)−∆ct. (8.10)

Rearranging above and dividing through by ∆:

kt+∆ − kt
∆

= f (kt)− δkt − ct. (8.11)

Taking limits as ∆ ↓ 0:

lim
∆↓0

kt+∆ − kt
∆

:= k̇ (t) = f (k (t))− δk (t)− c (t) ,

where we change notation following the convention (capital at time t is written kt in discrete time
and k (t) in continuous time). This gives the continuous time version of the law of motion for
capital.

Continuous-time version of EE Define

k̇t :=
kt+∆ − kt

∆
⇒ kt+∆ = k̇t∆+ kt.

We can then rewrite (8.11), while noting that t = s∆, as

ct = cs∆ = f (kt)− δkt −
kt+∆ − kt

∆

= f (kt)− δkt − k̇t

Using (8.10), we can then write the problem as

max
{k̇t}∞

t=0

∞∑

t=0

(
1

1 + ∆ρ

)t

∆U
(
f (kt)− δkt − k̇t

)
.

Writing the sequence as

· · ·+
(

1

1 + ∆ρ

)t

∆U
(
f (kt)− δkt − k̇t

)
+

(
1

1 + ∆ρ

)t+1

∆U
(
f (kt+∆)− δkt+∆ − k̇t+∆

)
· · ·

= · · ·+
(

1

1 + ∆ρ

)t

∆U
(
f (kt)− δkt − k̇t

)
+

(
1

1 + ∆ρ

)t+1

∆U

(
f
(
k̇t∆+ kt

)
− δ

(
k̇t∆+ kt

)
− kt+2∆ − kt+∆

∆

)
· · ·

= · · ·+
(

1

1 + ∆ρ

)t

∆U
(
f (kt)− δkt − k̇t

)
+

(
1

1 + ∆ρ

)t+1

∆U


f

(
k̇t∆+ kt

)
− δ

(
k̇t∆+ kt

)
−
kt+2∆ −

(
k̇t∆+ kt

)

∆


 · · ·

= · · ·+
(

1

1 + ∆ρ

)t

∆U
(
f (kt)− δkt − k̇t

)
+

(
1

1 + ∆ρ

)t+1

∆U

(
f
(
k̇t∆+ kt

)
− δ

(
k̇t∆+ kt

)
− kt+2∆ − kt

∆
+ k̇t

)
· · ·

The first-order condition with respect to k̇t is

−
(

1

1 + ∆ρ

)t

∆U ′ (ct) +

(
1

1 + ∆ρ

)t+1

∆U ′ (ct+∆) (∆f
′ (kt+∆)−∆δ + 1) = 0.
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Rearranging this gives the EE:

U ′ (ct) =

(
1

1 + ∆ρ

)
U ′ (ct+∆) (∆f

′ (kt+∆) + (1−∆δ)) .

Taylor expansion of U ′ (ct+∆) around ct gives

U ′ (ct+∆) = U ′ (ct) + U ′′ (ct) (ct+∆ − ct) +R (ct+∆ − ct) , (8.12)

where R (ct+∆ − ct) = o (∆) as ∆ → 0; i.e.

lim
∆↓0

R (ct+∆ − ct)

∆
= 0.

Substituting (8.12) into the EE:

(1 + ∆ρ)U ′ (ct) = (U ′ (ct) + U ′′ (ct) (ct+∆ − ct) +R (ct+∆ − ct)) (∆f
′ (kt+∆) + (1−∆δ)) .

Collecting U ′ (ct) together

[(1 + ∆ρ)−∆f ′ (kt+∆)− (1−∆δ)]U ′ (ct)

= [U ′′ (ct) (ct+∆ − ct) +R (ct+∆ − ct)] [∆f
′ (kt+∆) + (1−∆δ)] .

Dividing through by ∆:

[ρ− f ′ (kt+∆) + δ]U ′ (ct)

=

(
U ′′ (ct)

(ct+∆ − ct)

∆
+
R (ct+∆ − ct)

∆

)
(∆f ′ (kt+∆) + (1−∆δ)) .

Taking limits as ∆ ↓ 0 of each side

lim
∆↓0

[ρ− f ′ (kt+∆) + δ]U ′ (ct) = [ρ− f ′ (k (t)) + δ]U ′ (c (t)) ,

and

lim
∆↓0

(
U ′′ (ct)

(ct+∆ − ct)

∆
+
R (ct+∆ − ct)

∆

)
(∆f ′ (kt+∆) + (1−∆δ)) = U ′′ (c (t)) ċ (t) ,

where
ċ (t) := lim

∆↓0
(ct+∆ − ct)

∆
.

Combining the two and rearranging, we obtain

(f ′ (k (t))− δ − ρ)U ′ (c (t)) = −U ′′ (c (t)) ċt,

where

c (t) = f (k (t))− δk (t)− k̇ (t)

⇒ ċ (t) = (f ′ (k (t))− δ) k̇ (t)− k̈ (t) .

Therefore, we have

(f ′ (k (t))− δ − ρ)U ′ (c (t)) = −U ′′ (c (t))
[
(f ′ (k (t))− δ) k̇ (t)− k̈ (t)

]
.
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as we had in (8.9).
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8.4 Summary

8.4.1 Discrete time

State formation

max
(xt+1)

∞
t=0

∞∑

t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ (xt) , ∀t ≥ 0,

x0 given.

Necessary and sufficient conditions25

Euler equation:

Fy (xt, xt+1) + βFx (xt, xt+1) = 0, ∀t ≥ 0.

Transversality condition:

lim
T→∞

βTFx (xT , xT+1)xT = 0.

Control-state formation

max
(ut)

∞
t=0

∞∑

t=0

βth (xt, ut)

s.t. xt+1 = g (xt, ut) , ∀t ≥ 0,

ut ∈ U

x0 given.

We can return to the state formation by letting

F (x, y) = max {h (x, u) : u ∈ U, y = g (x, u)} ,
Γ (x) = {y : ∃u ∈ U, y = g (x, u)} .

8.4.2 Continuous time

State formation

max
{ẋ(t)}∞

t=0

∫ ∞

0

e−ρtF (x (t) , ẋ (t)) dt

s.t. ẋ (t) ∈ Γ (x (t)) , ∀t ≥ 0,

x0 given.

Necessary and sufficient conditions
Euler equation:

Fx + ρFẋ = Fẋxẋ+ Fẋẋẍ, ∀t ≥ 0

Transversality condition:

lim
T→∞

e−ρTFẋ (x (T ) , ẋ (T ))x (T ) = 0.

Control-state formation

max
{u(t)}∞

t=0

∫ ∞

0

e−ρth (x (t) , u (t))

s.t. ẋ (t) = g (x (t) , u (t)) , ∀t ≥ 0,

u (t) ∈ U

x0 given.

Necessary and sufficient conditions
First-order conditions:

H (x, u, λ) = h (x, u) + λg (x, u) ,

Hu (x, u, λ) = 0,

λ̇ = ρλ−Hx (x, u, λ) ,

ẋ = g (x, u) .

Transversality condition:

lim
T→∞

e−ρTλ (T )x (T ) = 0.

25F concave and C1.
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9 Local stability of optimal paths and speed of convergence

Given an initial state x0, the solution to a dynamic programming problem completely determines
the evolution of the state through time. The purpose of this section is to study the local dynamics
and stability of the optimal decision rules in discrete and continuous time models.

9.1 Stability of discrete-time linear dynamic systems of one dimension

9.1.1 Linearisation around the steady state

Let xt+1 = g(xt) be the optimal decision rule (i.e., the equation that describes the saddle path).
Using first-order Taylor approximation around xt = x (x denotes the steady-state value),

xt+1 = g (x) ≃ g (x) + g′ (x) (xt − x) .

Since g(x) = x,
xt+1 − x ≃ g′ (x) (xt − x) ,

9.1.2 Condition for convergence

Suppose that x0 < x̄.

• If |g′(x)| > 1, then xt+1 − x > xt − x; i.e. xt diverges.

• If |g′(x)| < 1, then xt+1 − x < xt − x; i.e. xt converges.

Hence, for local stability, we require |g′(x)| < 1. See also the figure below.

Remark 19. If −1 < g′(x) < 0, then we still converge to the steady state while oscillating above
and below x. This cannot happen in continuous time case since the movements are infinitesimally
small.
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9.1.3 Obtaining g′(x)

Recall the Euler equation (which must hold for any interior solutions):

0 = Fy (x, g (x)) + βFx (g (x) , g (g (x))) .

We want to find out g′(x), where x is the steady state; i.e. x solves

Fy (x, x) + βFx (x, x) = 0.

This would allow us to analyse the dynamics of xt close to a steady state.
We follow the following steps to obtain g′(x) close to a steady state.

(i) Differentiate the Euler equation with respect to x. This yields a quadratic equation in g′(x).

(ii) Evaluate the resulting quadratic equation at the steady state, x.

Differentiating the Euler equation with respect to x yields

0 = Fyx (x, g (x)) + Fyy (x, g (x)) g
′ (x)

+ β [Fxx (g (x) , g (g (x))) g
′ (x) + Fxy (g (x) , g (g (x))) g

′ (g (x)) g′ (x)] .

Evaluating this derivative at the steady state x and using the fact that g(x) = x,

0 = Fyx (x, x) + Fyy (x, x) g
′ (x)

+ β
[
Fxx (x, x) g

′ (x) + Fxy (x, x) (g
′ (x))

2
]

= βFxy (x, x) (g
′ (x))

2
+ (Fyy (x, x) + βFxx (x, x)) g

′ (x) + Fyx (x, x) (9.1)

Thus, we obtain a quadratic equation in g′(x) so that there may potentially be two candidate values
for g′(x).

Let λ = g′(x), we can define the quadratic equation:

Q̃ (λ) := βFxyλ
2 + (Fyy + βFxx)λ+ Fyx. (9.2)

The following proposition shows that the roots of Q̃(λ) come in almost reciprocal pairs.

Proposition 97. If λ1 solves Q̃(λ1) = 0, then so does λ2 = 1/λ1β.

Proof. Suppose Q̃(λ1) = 0; i.e.

Q̃ (λ1) = βFxyλ
2
1 + (Fyy + βFxx)λ1 + Fyx = 0.

Consider Q̃(1/λ1β):

Q̃

(
1

λ1β

)
= βFxy

(
1

λ1β

)2

+ (Fyy + βFxx)

(
1

λ1β

)
+ Fyx

= Fxy
1

λ21β
+ (Fyy + βFxx)

(
1

λ1β

)
+ Fyx

=
1

λ21β

[
Fxy + (Fyy + βFxx)λ1 + βFyxλ

2
1

]

[Fxy = Fyx] =
1

λ21β

[
βFxyλ

2
1 + (Fyy + βFxx)λ1 + Fyx

]

=
1

λ21β
Q̃ (λ1) = 0. ■
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Therefore, if one root is |λ1| < 1, then the other root, λ2, must be larger than one in absolute
value. i.e.

|λ2| =
∣∣∣∣

1

βλ1

∣∣∣∣ =
1

β |λ1|
> 1.

As an aside, note that λ1λ2 = 1/β.
Let x0 be close to the steady state x so that a linear approximation of g is appropriate. Assume

we found that the smaller root has absolute value less than one. Now, consider the following
sequence of (xt+1)t:

xt+1 = x+ g′ (x) (xt − x) ∀t ≥ 0. (9.3)

The sequence, by construction, satisfies the Euler Equations. Since |g′(x)| < 1, it converges to
the steady state x and hence it also satisfies the transversality condition. Thus, if the problem is
convex, we have found a solution. If, on the other hand, both roots are bigger than one in absolute
value, then we do not know which one describes g′(x), but we do know that the steady state is not
locally stable (local since we are approximating).26

We now analyse under what circumstances local stability (i.e. |g′(x)| < 1) can be obtained in a
one-dimensional discrete-time setting. Recall from (9.2) that

Q̃ (λ) := βFxyλ
2 + (Fyy + βFxx)λ+ Fyx,

= Fxy


βλ

2 +

(
Fyy + βFxx

Fxy

)

︸ ︷︷ ︸
:=b

λ+ 1


 ,

where we used that Fxy = Fyx. Assuming Fxy > 0, then Q̃(λ) = 0 ⇔ Q(λ) := Q̃(λ)/Fxy = 0. We
solve for the latter:

Q (0) = 1 > 0,

Q (1) = 1 + b+ β,

Q

(
1

β

)
=

1

β
+ b

1

β
+ 1,

∂Q (λ)

∂λ
= 2βλ+ b,

∂2Q (λ)

∂λ2
= 2β > 0.

Observe also that: (i) if F is concave, then b < 0; (ii) Q(λ) is strictly convex.
The roots of the latter are given by

λ =
−b±

√
b2 − 4β

2β
.

There are two cases

• 1 + b+ β < 0

0 < λ1 < 1 < λ2,

26The argument is heuristic since the Euler Equations are satisfied only approximately for the sequence (9.3).
Nevertheless, this approximate solution, by the virtue of the implicit function theorem, can be used to construct an
exact solution of the Euler Equations that converges to the steady state in a neighbourhood of x.

- 128 -



Math Review 2024

0 < λ1 < 1 < λ2,

λ1 =
−b−

√
b2 − 4β

2β
.

• 1 + b+ β > 0:
1 < λ1 < λ2.

See also the figure below.

We can also see how the λ1 changes with the coefficient b. Taking the first case, note that

dλ1
db

=
−1− b√

b2−4β

2β
=

−1− b√
b2−4β

2β

√
b2 − 4β√
b2 − 4β

=
−b−

√
b2 − 4β

2β

1√
b2 − 4β

=
λ1√
b2 − 4β

> 0.

9.1.4 Speed of convergence

The magnitude of |g′(x)| describes the speed of convergence. To see this, let λ1 = g′(x) such that
|λ1| < 1.We can write (9.3) as

xt = x+ λ1 (xt−1 − x) .

Backwards substituting yields

xt = x+ λ1 ((x+ λ1 (xt−2 − x))− x)

= x+ λ21 (xt−2 − x)

=
...

= x+ λt1 (x0 − x)

⇒ xt − x = λt1 (x0 − x) .

Notice that:

• limt→∞ xt − x = 0 since limt→∞ λt1 = 0 given |λ1| < 1;

• as |λ1| → 1, convergence is slower. The permanent income hypothesis case is one in which
g′(k∗) = 1. In this case, the convergence speed is so slow that you, in fact, do not move.
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• as |λ1| → 0, convergence is faster. If the cross derivatives, Fxy and Fyx, are zero (so that the
roots are zero), then we would move to the steady state in the next period.

Hence, we realise that the speed of convergence is decreasing in |λ1|, or equivalency, it is decreasing
in |g′(x)|.

9.1.5 Neoclassical growth model

In the neoclassical model, we have

F (x, y) = U (f (x)− y)

so that

Fx = f ′ (x)U ′ (f (x)− y)

Fy = −U ′ (f (x)− y)

Fxx = f ′′ (x)u′ (f (x)− y) + [f ′ (x)]
2
U ′′ (f (x)− y)

Fyy = U ′′ (f (x)− y)

Fxy = −f ′ (x)U ′′ (f (x)− y) .

Recall that the steady-state capital solves 1 = βf ′(k∗) . Evaluating these at the steady-state values
and substituting into (9.1) gives

0 = Fyx + Fyyg
′ + β

(
Fxxg

′ + Fxy (g
′)
2
)

= −f ′U ′′ + U ′′g′ + β
((
f ′U ′ + (f ′)

2
U ′′
)
g′ − f ′U ′′ (g′)

2
)

= −f ′U ′′ +
(
U ′′ + βf ′′Y ′ + β (f ′)

2
U ′′
)
g′ − βf ′U ′′ (g′)

2

= −U ′′
[
f ′ −

(
1 + βf ′′

U ′

U ′′ + β (f ′)
2
)
g′ + βf ′ (g′)

2
]

= −U ′′
[
1

β
−
(
1 +

1

β
+ βf ′′

U ′

U ′′

)
g′ + (g′)

2
]
∵ f ′ = 1/β

= −U ′′
[
1

β
−
(
1 +

1

β
+
f ′′

f ′
U ′

U ′′

)
g′ + (g′)

2
]
∵ β = 1/f ′

= −U ′′
[
1

β
−
(
1 +

1

β
+

(
f ′′

f ′
/
U ′′

U ′

))
g′ + (g′)

2
]
.

In this discrete-time case, we notice that the expression depends on the elasticity of productivity
and elasticity of intertemporal substitution.

The quadratic equation is given by

Q (λ) = λ2 −
(
1 +

1

β
+

(
f ′′

f ′
/
U ′′

U ′

))
λ+

1

β
.
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Notice that

Q (0) =
1

β
> 0,

Q (1) = −f
′′

f ′
/
U ′′

U ′ < 0

Q

(
1

β

)
= −

(
f ′′

f ′
/
U ′′

U ′

)
1

β
< 0

and Q (λ) attains a minimum at Q′ (λ∗) = 0, where

λ∗ =
1

2

(
1 +

1

β
+

(
f ′′

f ′
/
U ′′

U ′

))
> 1.

See figure below.
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Therefore, we have that

0 < λ1 < 1 <
1

β
< λ2.

The solution is given by

λ =
1

2



(
1 +

1

β
+

(
f ′′

f ′
/
U ′′

U ′

))
±
√(

1 +
1

β
+

(
f ′′

f ′
/
U ′′

U ′

))2

− 4

β


 .

Thus, the root with absolute value less than one is given by

λ1 =
1

2



(
1 +

1

β
+

(
f ′′

f ′
/
U ′′

U ′

))
−
√(

1 +
1

β
+

(
f ′′

f ′
/
U ′′

U ′

))2

− 4

β


 .

Suppose we change the production function and the utility function such that the steady states
do not change. That is, we change f ′′/f ′ and U ′′/U ′ but without changing the slope at the steady
state. Then, the more curvature there is in U , the more agents prefer to smooth consumption. On
the other hand, if u is linear, then agents do not mind consuming today or tomorrow (except for
the β discount).
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Suppose k0 < k∗, then notice that benefit to the consumer from moving from k0 to k∗ is
represented by the shaded area in the figure below (note that, to increase capital stock, agents
must abstain from consumption). We therefore see that a higher f ′′ implies a larger gain so that
speed of convergence is faster. In case f ′ is linear, then it has to coincide with 1/β and the benefit
to consumer is zero. If the production is linear but there is curvature in U , it will take forever to
converge. Thus, we see that the speed of convergence depends on the “fight” between the curvature
of f and u.
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9.2 Stability of discrete-time linear dynamic systems of higher dimen-
sions

Let x ∈ Rn and the function m : Rn → Rn define a dynamic system:

xt+1 = m (xt) ,∀t ≥ 0.

Let x be a steady state; i.e.
x = m (x) .

Consider a first-order approximation of m around x:

xt+1 = m (x) +m′ (x) (xt − x) .

Notice that this analysis is valid globally (i.e. for all Rn) if the system is indeed linear. Alternatively,
it is valid in the neighbourhood of the steady state.
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Since x = m(x), we can write

xt+1 − x = m′ (x) (xt − x)

⇒ yt+1 = Ayt,

where yt = xt − x and A is the matrix equal to the Jacobian m′ (x) . In this notation, the steady
state is y∗ = 0.

Diagonalising the matrix A, we obtain

A = PΛP−1,

where Λ is a diagonal matrix with the eigenvalues of A, denoted by λi (possibly complex), on its
diagonal. As the notation already uses P is invertible and it contains the eigenvectors of A. We
can now write the linear system as

P−1yt+1 = ΛP−1yt, ∀t ≥ 0.

Define zt := P−1yt, which is a linear combination of the deviations from the steady state using the
eigenvectors P . Since P is invertible, there is a one-to-one mapping so that each z corresponds to
a unique x, and vice versa. We can then write the system as

zt+1 = Λzt, ∀t ≥ 0

⇒ zi,t+1 = λizit, ∀i = 1, 2, . . . , n, ∀t ≥ 0.

We can solve this element by element to obtain that

zi,t = λtizi,0, ∀i = 1, 2, . . . , n, ∀t ≥ 0.

Let us consider the case where all the eigenvalues are real. The following proposition says that,
if the sequence generated by the dynamic system is to converge to the steady state, then it must
be that the initial conditions x0 belong to a particular linear subspace. The dimension of this
subspace is equal to the number of eigenvalues that are larger than one in absolute value (n−m in
the notation used above).

Proposition 98. Let λi be such that, for i = 1, 2, . . . ,m, we have |λi| < 1 and for i = m+ 1,m+

2, . . . , n, we have |λi| ≥ 1. Thus, the eigenvalues of A are ordered so that the first m are smaller
than one. Consider the sequence

xt+1 = x+A (xt − x) ∀t ≥ 0

for some initial condition x0. Then,
lim
t→∞

xt = x,

if and only if the initial condition x0 satisfies

x0 = P ẑ0 + x,

where ẑ0 is a vector with its n−m last coordinates equal to zero; i.e.

ẑi,0 = 0 ∀i = m+ 1,m+ 2, . . . , n

and where the remaining elements of ẑ0 are arbitrary.
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Proof. Recall that
zi,t = λtizi,0, ∀i = 1, 2, . . . , n, ∀t ≥ 0.

For any |λi| > 1 with positive initial value, notice that the sequence is exploding. Hence, in order
for the system to converge, it must be that for all i with |λi| > 1, zi,0 = 0. Recall that

zt = P−1yt = P−1 (xt − x) ⇒ Pzt = xt − x

⇒ xt = Pzt + x

⇒ x0 = Pz0 + x.

Therefore, it must be the case that x0 = P ẑ0 + x for the system to converge. ■

Remark 20. If λi can be complex, then we would only consider the real part of the complex root
and the conditions are the same with respect to the real part.

9.2.1 Log-linearisation

Suppose that the system of equations is given by

G (xt,xt+1) = 0, (9.4)

where xt = (xj,t)
m
j=1 ∈ Rm×1 are m variables consisting of both state and control variables and

G : Rm × Rm → Rm are m explicit/implicit equations for the m variables. If the system has a
stationary point, denoted x, it satisfies

G (x,x) = 0.

Note that
xj,t = elog xj,t = elog xj,t−log x∗

j,t+log x∗
j,t =

(
elog xj,t−log x∗

j,t

)
x∗j,t.

Define x̂j,t := log xj,t − log x∗j,t as the log-deviation from the steady state; i.e., percentage deviation
of xj,t from x∗j . For each j ∈ {1, 2, . . . ,m}, write

0 = Gj (xt,xt+1) ≡ Gj

(
ex̂tx, ex̂t+1x

)
,

where
ex̂tx :=

[
ex̂1,tx∗1,t ex̂2,tx∗2,t · · · ex̂m,tx∗m,t

]⊤
.

To log-linearise, we use first-order Taylor expansion around the stationary point:

xt = xt+1 = x ⇔ x̂t = x̂t+1 = 0.

For each j ∈ {1, 2, . . . ,m}, Taylor expansion gives

0 ≃ Gj (x,x)︸ ︷︷ ︸
=0

+

m∑

i=1


 ∂Gj

(
ex̂tx, ex̂t+1x

)

∂xi,t
ex̂tx∗i

∣∣∣∣∣
x̂t=x̂t+1=0


 (x̂i,t − 0)

+

m∑

i=1


 ∂Gj

(
ex̂tx, ex̂t+1x

)

∂xi,t+1
ex̂t+1x∗i

∣∣∣∣∣
x̂t=x̂t+1=0


 (x̂i,t+1 − 0)

=

m∑

i=1

∂Gj (x,x)

∂xi,t
x∗i x̂i,t +

m∑

i=1

∂Gj (x,x)

∂xi,t+1
x∗i x̂i,t+1.
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For each t ∈ N, define an m×m matrix G∗
t as

G∗
1 :=

[
∂Gi (x,x)

∂xj,t
x∗j

]

ij

, G∗
2 :=

[
∂Gi (x,x)

∂xj,t+1
x∗j

]

ij

Using this matrix notation, we can rewrite the log-linearised system of equations succinctly as

G∗
t x̂t +G∗

t+1x̂t+1 ≃ 0.

We “approximate”; i.e. we assume that the equation above holds with equality.
If G∗

2 is invertible, then we can write

x̂t+1 = − (G∗
2)

−1
G∗

1x̂t =M x̂t,

where M := −(G∗
2)

−1G∗
1 does not depend on t since the partial derivatives are evaluated at the

stationary point.
Backwards substitution yields

x̂t =M x̂t−1 =M2x̂t−2 = · · · =M tx̂0. (9.5)

To solve the this difference equation we diagonalise the matrix M . Let λ ∈ Rm denote the m
distinct and real eigenvalues of M , and denote the corresponding m×m matrix of eigenvectors as
E = [e1, e2, . . . , em]. By definition, ei is an eigenvector of M if

Mei = λiei,

which means that we can write
ME = EΛ,

where Λ := diag[λ1, λ2, . . . , λm]. Furthermore, if E is invertible, then,

M = EΛE−1,

x̂t+1 = EΛE−1x̂t

= EΛE−1EΛ = EΛ2E−1x̂t−1

=
...

= EΛt+1E−1x̂0

⇒ E−1x̂t+1 = Λt+1E−1x̂0.

Define zt := E−1x̂t+1 so we can express above as

zt+1 = Λt+1z0.

But because Λ is a diagonal matrix, each of the m equations are independent; i.e. (rolling back one
period)

zi,t = λti,tzi,0, i = 1, 2, . . . ,m.
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Note that

x̂t = Ezt = EΛtz0

=




e11 e22 · · · em1

e12 e22 · · · em2

...
...

. . .
...

e1m e2m · · · emm







λt1 0 · · · 0

0 λt2 · · · 0
...

...
. . .

...
0 0 · · · λtm


E

−1x̂0

=
[
e1λ

t
1 e2λ

t
2 · · · emλ

t
m

]
E−1x̂0

Taking the transpose of both sides gives

⇒ x̂⊤
t = x̂⊤

0

(
E−1

)⊤
︸ ︷︷ ︸

=µ1×m




λt1e
′
1

λt2e
′
2

...
λtme′m




m×m

=
[
µ1 µ2 · · · µm

]




λt1e11 λt1e12 · · · λt1e1m
λt2e21 λt2e22 · · · λt2e2m

...
...

. . .
...

λtmem1 λtmem2 · · · λtmemm




=
[ ∑m

j=1 µjλ
t
jej1

∑m
j=1 µjλ

t
jej2 · · · ∑m

j=1 µjλ
t
jejm

]

⇒




x̂1,t
x̂2,t
...

x̂m,t


 =




∑m
j=1 µjλ

t
jej1∑m

j=1 µjλ
t
jej2

...∑m
j=1 µjλ

t
jejm



=

m∑

j=1




µjλ
t
j

µjλ
t
j

...
µjλ

t
j


 ej =

m∑

i=1

µiλ
t
iei

That is, we have

x̂i,t =

m∑

j=1

µjλ
t
jeji ∀i ∈ {1, . . . ,m} .

Stacking over the is gives

x̂t =




∑m
j=1 µjλ

t
jej1∑m

j=1 µjλ
t
jej2

...∑m
j=1 µjλ

t
jejm



=

m∑

j=1




µjλ
t
j

µjλ
t
j

...
µjλ

t
j


 ej =

m∑

i=1

µiλ
t
iei.

Thus, we can express x̂t as a linear combination of the initial values of x̂0 with weights given by
the eigenvalues and the eigenvectors.

Since we assumed that the eigenvalues are distinct, we can pin down µi using the initial condition
x̂0 by solving

x̂0 =

m∑

i=1

µiei.

Given that the system converges, it must be the case that, if |λi| ≥ 1, then µi = 0. We say that
the system is saddle path stable if not all eigenvalues are in the unit circle.
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9.2.2 Log-linearisation versus linearisation

There is no rule that says how one should choose between log-linearisation or linearisation. Of
course, log-linearisation will not be appropriate if we expect the variables to be negative (e.g. the
real interest rate, the inflation rate). However, in general, the approximation tends to be more
accurate with log-linearisation if variables are positive. Another advantage of log-linearisation is
that we need not worry about the units of the variable as we can interpret in terms of percentage
changes with log-linearisation.

If we were to linearise (9.4) around the stationary point x, then we obtain

0 ≃
m∑

i=1

∂Gj (x,x)

∂xi,t
(xi,t − x∗i ) +

m∑

i=1

∂Gj (x,x)

∂xi,t+1
(xi,t+1 − x∗i ) .

For each t ∈ N, define an m×m matrix G̃∗
t as

G̃∗
1 :=

[
∂Gj (x,x)

∂xi,t

]

ij

, G̃∗
2 :=

[
∂Gj (x,x)

∂xi,t+1

]

ij

,

Then
G̃∗

1 (xt − x) + G̃∗
2 (xt+1 − x) ≃ 0.

So, if G̃∗
2 is invertible,

xt+1 − x =
(
G̃∗

2

)−1

G̃∗
1 (xt − x)

= M̃ (xt − x) .

9.3 Stability of continuous-time linear dynamic systems of one dimension

This section complements the derivation of the optimal decision rules for a one-dimensional continuous-
time dynamic problem. We wish to characterise the optimal decision rule k̇ = g(k) to determine
the rate of change of the state as a function of the level of the state. In the counterpart to the
difference equation we obtained in the discrete-time case, we obtain a differential equation for the
function g in the continuous-time case.

In the continuous-time case, we consider the state representation—i.e. a differential equation
with respect to the state k—as opposed to the standard representation of the Euler Equation as a
(second-order) differential equation on the state at its derivatives with respect to time.

We then use g to study the local dynamics of k—i.e. dynamics of the state variable k close
to the steady state value k̄, which we summarise by g′(k̄). We will find an algebraic (quadratic)
equation for g′(k̄) and study sufficient conditions for local stability; i.e. for g′(k̄) < 0. We will use
the neoclassical growth model as an illustration of the general principle.

Notation: We mainly use k instead of x in the subsection.
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9.3.1 General continuous-time framework

We work with the continuous-time model as defined before where we choose the derivative of the
state with respect to time, ẋ(t), in each time period to maximise:

V ∗ (x0) := max
ẋ(t)

lim
T→∞

∫ T

0

e−ρtF (x (t) , ẋ (t)) dt

s.t. ẋ (t) ∈ Γ (x (t)) ∀t ≥ 0,

x0 given.

Recall that EE in the continuous time case is given by

Fx (x (t) , ẋ (t)) + ρFẋ (x (t) , ẋ (t))

= Fẋx (x (t) , ẋ (t)) ẋ (t) + Fẋẋ (x (t) , ẋ (t)) ẍ (t) , ∀t ≥ 0. (9.6)

To simplify notation, we write EE as

H (ẍ (t) , ẋ (t) , x (t)) = 0, ∀t ≥ 0,

where the function is defined in the obvious way.
The TC is given by

0 = lim
T→∞

e−ρTFẋ (x (T ) , ẋ (T ))x (T ) .

Time domain We first review the analysis of the problem with respect to time. We are looking
for a path of k (t)—i.e. capital as a function of time—that:

(i) starts at the initial condition
k (0) = k0;

(ii) satisfies the Euler Equations

H
(
k̈ (t) , k̇ (t) , k (t)

)
= 0, ∀t > 0; (9.7)

(iii) converges to the unique steady state (and hence satisfies transversality)

k (t) → k̄ as t→ ∞.

State domain Now we consider the analysis of the problem with respect to the state variable.
From this perspective, we are looking for a function k̇ = g(k)—i.e. the rate of change of capital as
a function of the level of capital—that:

(i) solves the Euler Equations (note this is not a function of time here any more):

H (g′ (k) g (k) , g (k) , k) = 0, ∀k; (9.8)
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(ii) converges to the steady state (and hence satisfies transversality):27

g (k) > 0, if k < k̄,

g (k) < 0, if k > k̄.

To see the equivalence between (9.7) and (9.8), differentiate k̇ with respect to t, which gives

k̈ =
dk̇

dt
=

dg (k)

dt
= g′ (k)

dk

dt
= g′ (k) k̇ = g′ (k) g (k) .

9.3.2 Linearisation around the steady state

Using Taylor expansion on the (non-linear) law of motion for capital k̇(t) = g(k(t)) around k = k̄:

k̇ (t) = g (k) ≃ g
(
k̄
)
+ g′ (k)

(
k − k̄

)
.

Since g(k̄) = 0, we obtain the following differential equation:

k̇ = g′
(
k̄
) (
k − k̄

)
.

9.3.3 Condition for convergence

Let us focus on values of k close to the steady state k̄. The condition for convergence are

g (k) > 0, if k < k̄,

g (k) < 0, if k > k̄,

which only need to hold in a neighbourhood of k̄. The conditions above simply say that capital
must be increasing when below the steady state, and decreasing if above the steady state. Given
this interpretation, it follows that we can write the equivalent condition for convergence as

g′
(
k̄
)
≡ ∂g

(
k̄
)

∂k
< 0. (9.9)

See also the figure below
27This condition can be extended to the m dimensional case:

∥g (k)∥ is decreasing in
∥∥k − k̄

∥∥ .
More generally, the condition requires that there exists a function L : Rm → R+ with L (k) = 0 if and only if k = 0
and

L (g (k)) g′ (k) < 0, ∀k.
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9.3.4 Obtaining g′(k)

As in the discrete time case, we use the Euler equation (in state formation) to approximate g′(k)
around a steady state k̄. Recall

H (g′ (k) g (k) , g (k) , k) = 0, ∀k. (9.10)

The steps are the same as before.

(i) Differentiate the Euler equation with respect to x. This yields a quadratic equation in g′ (x).

(ii) Evaluate the resulting quadratic equation at the steady state, x.

Differentiating (9.10) with respect to k gives
(
g′′ (k) g (k) + (g′ (k))

2
)
Hk̈ + g′ (k)Hk̇ +Hk = 0.

Evaluating this expression at the steady state k = k̄, where g(k̄) = k̇ = 0 so that g′(k̄)g(k̄) = k̈ = 0,
the expression above simplifies to

Hk̈

(
0, 0, k̄

) (
g′
(
k̄
))2

+Hk̇

(
0, 0, k̄

)
g′
(
k̄
)
+Hk

(
0, 0, k̄

)
= 0. (9.11)

Notice that this is a quadratic equation in g′(k̄).
We now derive the expressions for the coefficients of the quadratic equation. Recall that

H
(
k̈, k̇, k

)
= Fk

(
k, k̇
)
+ ρFk̇

(
k, k̇
)
− Fk̇k

(
k, k̇
)
k̇ − Fk̇k̇

(
k, k̇
)
k̈ = 0.

Differentiating this with respect to the three arguments gives

Hk̈ = −Fk̇k̇

(
k, k̇
)
,

Hk̇ = Fkk̇

(
k, k̇
)
+ ρFk̇k̇

(
k, k̇
)
− Fk̇kk̇

(
k, k̇
)
k̇ − Fk̇k

(
k, k̇
)
− Fk̇k̇k̇

(
k, k̇
)
k̈,

Hk = Fkk

(
k, k̇
)
+ ρFk̇k

(
k, k̇
)
− Fk̇kk

(
k, k̇
)
k̇ − Fk̇k̇k

(
k, k̇
)
k̈.
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Evaluating the derivatives at the steady state k = k̄ where k̇ = k̈ = 0, they simplify to

Hk̇k̇ = −Fk̇k̇

(
k̄, 0
)
,

Hk̇ = Fkk̇

(
k̄, 0
)
+ ρF k̇k̇

(
k̄, 0
)
− Fk̇k

(
k̄, 0
)
= ρF k̇k̇

(
k̄, 0
)
,

Hk = Fkk

(
k̄, 0
)
+ ρFk̇k

(
k̄, 0
)
.

Hence, we can now write (9.11) as

−Fk̇k̇

(
k̄, 0
) (
g′
(
k̄
))2

+ ρF k̇k̇

(
k̄, 0
)
g′
(
k̄
)
+
(
Fkk

(
k̄, 0
)
+ ρFk̇k

(
k̄, 0
))

= 0.

Since the expression is quadratic, there may potentially be two candidate values for g′(k).
Let λ = g′(x), we can define the quadratic equation:

Q (λ) :=
(
−Fk̇k̇

)
λ2 +

(
ρF k̇k̇

)
λ+

(
Fkk + ρFk̇k

)
. (9.12)

As in the discrete time case, the roots to Q (λ) come in almost reciprocal pairs.28

Proposition 99. If λ1 solves Q(λ1) = 0, then so does λ2 = −λ1 + ρ.

Proof. Suppose that λ1 solves Q(λ1) = 0; i.e.

Q (λ1) =
(
−Fk̇k̇

)
λ21 +

(
ρF k̇k̇

)
λ1 +

(
Fkk + ρFk̇k

)
= 0.

Consider Q(−λ1 + ρ):

Q (−λ1 + ρ) =
(
−Fk̇k̇

)
(−λ1 + ρ)

2
+
(
ρF k̇k̇

)
(−λ1 + ρ) +

(
Fkk + ρFk̇k

)

=
(
−Fk̇k̇

)
λ21 +

(
−Fk̇k̇

)
ρ2 −

(
−Fk̇k̇

)
2λ1ρ−

(
ρF k̇k̇

)
λ1 + ρ2F k̇k̇ +

(
Fkk + ρFk̇k

)

=
(
−Fk̇k̇

)
λ21 + 2ρFk̇k̇λ1 − ρF k̇k̇λ1 +

(
Fkk + ρFk̇k

)

=
(
−Fk̇k̇

)
λ21 +

(
ρFk̇k̇

)
λ1 +

(
Fkk + ρFk̇k

)

= Q (λ1) = 0. ■

The theorem means that, if λ1 < 0, then λ2 > 0. Hence, if we find a solution

Q
(
g′
(
k̄
))

= 0 with g′
(
k̄
)
< 0,

then this is the solution since the other root would give that g′(k̄) > 0 which we know is not stable
(recall (9.9)).

The solution satisfies the EE and TC since it converges to the steady state. The fact that it
converges to the steady state also justifies the use of the approximation (i.e. linearisation) of the
law of motion for capital since k stays in the neighbourhood of k̄. It also means that there is at most
one stable solution, which is reassuring since a convex problem should have at least one solution.

However, if λ1 > 0 and λ2 > 0, then the system is not locally stable. In this case, local
arguments alone do not suffice to identify which one of the roots of Q is the solution for g′(k̄), but
we know that one of them gives the value of g′(k̄).

We now analyse under what circumstances local stability (i.e. g′(k̄) < 0) can be obtained in a
one-dimensional continuous-time setting. Recall from (9.12) that

Q (λ) :=
(
−Fk̇k̇

)
λ2 +

(
ρF k̇k̇

)
λ+

(
Fkk + ρFk̇k

)
.

28Reciprocal here means that one root is positive and the other is negative (ignoring the ρ term).
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which can be written as
Q (λ) =

(
−Fk̇k̇

) [
λ2 − ρλ− Fkk + ρFk̇k

Fk̇k̇

]

so that

Q (0) = Fkk + ρFk̇k,

Q (ρ) = Q (0) ,

∂Q (λ)

∂λ
=
(
−Fk̇k̇

)
(2λ− ρ) ,

∂2Q (λ)

∂λ2
= −2Fk̇k̇ > 0,

where we assume that F is strictly concave so that Fk̇k̇ < 0. These imply that Q (λ) is strictly
convex, U -shaped that has a negative slope as it crosses the y-axis. Since Q(ρ) = Q(0), it attains
its minimum between [0, ρ].

The solutions are:

λ = g′ (k) =
ρ±

√
ρ2 + 4

−(Fkk+ρFk̇k)
(−Fk̇k̇)

2
. (9.13)

From (9.13), we have the following cases:

• −(Fkk + ρFk̇k)/(−Fk̇k̇) > 0:
λ1 < 0 < ρ < λ2

so that g′
(
k̄
)
= λ1 is the locally stable steady state.

• −(Fkk + ρFk̇k)/(−Fk̇k̇) < 0:
0 < λ1 < λ2 < ρ,

which means that steady states are not locally stable.

Remark 21. The previous proposition also holds for higher dimensions. If the state is of dimension
m, then there will be 2m roots satisfying

λm+i = −λi + ρ, ∀i = 1, 2, . . . ,m.

In the m dimensional case, the roots are not simply ∂gi/∂ki. The roots are eigenvalues of the
matrix of the derivatives of g. In the m dimensional case, we have

k̇i = gi (k) , ∀i = 1, 2, . . . ,m,

or, in vector notation,

k̇ =
(
k̇1, k̇2, . . . , k̇m

)
= g (k) = g (k1, k2, . . . , km)

and
g (k1, k2, . . . , km) = (g1 (k) , g2 (k) , . . . , gm (k)) .

Then, G′(k) is the matrix

G′ (k) =




∂g1
∂k1

∂g1
∂k2

· · · ∂g1
∂km

∂g2
∂k1

∂g2
∂k2

· · · ∂g2
∂km

...
...

. . .
...

∂gm
∂k1

∂gm
∂k2

· · · ∂gm
∂km



.
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The eigenvalues of the matrix above control the (local) behaviour of k around k̄.

9.3.5 Speed of convergence

The magnitude of |g′(k̄)| describes the speed of convergence. To see this, recall the linearised law
of motion:

k̇ = g′
(
k̄
) (
k − k̄

)
.

Rewriting this as
dk

dt
= −g′

(
k̄
)
k̄ + g′

(
k̄
)
k,

which is differential equation in k.

Solving the differential equation To solve this, guess that the solution is of the form

k (t) = exp
[
g′
(
k̄
)
t
]
c (t) .

Then,

dk (t)

dt
= g′

(
k̄
)
exp

[
g′
(
k̄
)
t
]
c (t) + c′ (t) exp

[
g′
(
k̄
)
t
]

= g′
(
k̄
)
k (t) + c′ (t) exp

[
g′
(
k̄
)
t
]
.

Substituting this into the expression for dk/dt,

−g′
(
k̄
)
k̄ + g′

(
k̄
)
k (t) = g′

(
k̄
)
k (t) + c′ (t) exp

[
g′
(
k̄
)
t
]

⇔ c′ (t) = −g′
(
k̄
)
k̄ exp

[
−g′

(
k̄
)
t
]
.

Integrating both sides with respect to t
∫
c′ (t) dt =

∫
−g′

(
k̄
)
k̄ exp

[
−g′

(
k̄
)
t
]
dt

⇒ c (t) = k̄ exp
[
−g′

(
k̄
)
t
]
+ C.

Hence,

k (t) = exp
[
g′
(
k̄
)
t
] (
k̄ exp

[
−g′

(
k̄
)
t
]
+ C

)

= k̄ + exp
[
g′
(
k̄
)
t
]
C.

To pin down C, we need a boundary condition, which is that k (0) = k0.

k0 = k̄ + C ⇔ C = k̄ − k0.

Thus, we obtain that
k (t) = k̄ +

(
k̄ − k0

)
exp

[
g′
(
k̄
)
t
]
.
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Using integrating factor We can solve this first-order differential equation using an integrating
factor.29 The integrating factor is then given by

I (t) = exp

[∫ t

−g′
(
k̄
)
dt

]
= exp

[
−g′

(
k̄
)
t
]
.

The solution is then given by

exp
[
−g′

(
k̄
)
t
]
k (t) =

∫ t

−g′
(
k̄
)
k̄ exp

[
−g′

(
k̄
)
t
]
dt+ c

= k̄ exp
[
−g′

(
k̄
)
t
]
+ c.

Initial condition is that k (0) = k0. Notice that if t = 0, then above expression simplifies to

k0 = k̄ + c⇒ c = k0 − k̄.

This gives us a linearised version of the law of motion for capital:30

exp
[
−g′

(
k̄
)
t
]
k (t) = k̄ exp

[
−g′

(
k̄
)
t
]
+
(
k0 − k̄

)

⇒ k (t) = k̄ +
(
k0 − k̄

)
exp

[
g′
(
k̄
)
t
]
.

Thus, the if g′
(
k̄
)
< 0, then k (t) → k̄. Moreover, the more negative g′

(
k̄
)
, the faster is the

convergence.
We can also solve the first-order differential equation,

k̇ = g′
(
k̄
) (
k − k̄

)
= g′

(
k̄
)
k − g′

(
k̄
)
k̄

by the usual “guess and verify” method. Guess that the solution is given by

k (t) = exp
[
g′
(
k̄
)
t
]
c (t) ,

where c (t) is the constant of variation. We also need the boundary condition, which in this case is
the initial capital level: k (0) = k0. Then,

k̇ = g′
(
k̄
)
exp

[
g′
(
k̄
)
t
]
c (t) + ċ (t) exp

[
g′
(
k̄
)
t
]

= g′
(
k̄
)
k (t) + ċ (t) exp

[
g′
(
k̄
)
t
]
.

29Recall that if we have a differential equation of the form

dy

dt
+ P (t) y = Q (t) ,

then we can define the integrating factor to be I (t) such that I′ (t) = P (t) I (t). Multiplying both sides by I (t) gives

I (t)
dy

dt
+ P (t) I (t) y = Q (t) I (t) ⇒

dI (t) y

dt
= Q (t) I (t)

⇒ I (t) y =

∫ t

Q (t) I (t) dt+ c,

where c depends on the initial condition. To find I (t):

I′ (t)

I (t)
= P (t) ⇒

d ln (I (t))

dt
= P (t) ⇒ ln (I (t)) =

∫ t

P (t) dt⇒ I (t) = exp

[∫ t

P (t) dt

]
.

30To verify this, differentiating the expression with respect to t yields

k̇ (t) = g′
(
k̄
) [
k (0)− k̄

]
exp

[
g′

(
k̄
)
t
]
= g′

(
k̄
) (
k (t)− k̄

)
.
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Thus, we need

ċ (t) exp
[
g′
(
k̄
)
t
]
= −g′

(
k̄
)
k̄

⇒ ċ (t) = − exp
[
−g′

(
k̄
)
t
]
g′
(
k̄
)
k̄

⇒ c (t) =

∫
ċ (t) dt =

∫
− exp

[
−g′

(
k̄
)
t
]
g′
(
k̄
)
k̄dt

= −g′
(
k̄
)
k̄

∫
exp

[
−g′

(
k̄
)
t
]
dt

= −g′
(
k̄
)
k̄

(
− 1

g′
(
k̄
) exp

[
−g′

(
k̄
)
t
]
+ C

)

= k̄ exp
[
−g′

(
k̄
)
t
]
− g′

(
k̄
)
k̄C.

We therefore have that

k (t) = exp
[
g′
(
k̄
)
t
] (
k̄ exp

[
−g′

(
k̄
)
t
]
− g′

(
k̄
)
k̄C
)

= k̄ − exp
[
g′
(
k̄
)
t
]
g′
(
k̄
)
k̄C.

We solve for C using the boundary condition.

k0 = k̄ − exp
[
g′
(
k̄
)
· 0
]
g′
(
k̄
)
k̄C

= k̄ − g′
(
k̄
)
k̄C

⇒ C =
k̄ − k0

g′
(
k̄
)
k̄
.

Hence,

k (t) = k̄ − exp
[
g′
(
k̄
)
t
]
g′
(
k̄
)
k̄
k̄ − k0

g′
(
k̄
)
k̄

= k̄ +
(
k0 − k̄

)
exp

[
g′
(
k̄
)
t
]

as we had before.

Remark 22. (Half life) Let us define τ as the time τ that it takes so that the system reaches close
to the “half” of the difference between the initial point and the steady state.

k (τ)− k̄ =
1

2

(
k0 − k̄

)
.

Substituting for k (τ) the linearised law of motion for capital yields

k̄ +
(
k0 − k̄

)
exp

[
g′
(
k̄
)
τ
]
− k̄ =

1

2

(
k0 − k̄

)

⇒ exp
[
g′
(
k̄
)
τ
]
=

1

2

⇒ τ = − ln 2

g′
(
k̄
) .

9.3.6 Neoclassical growth model

Recall that
F
(
k, k̇
)
= U

(
f (k)− δk − k̇

)
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so that

Fk

(
k, k̇
)
= (f ′ (k)− δ)U ′,

Fk̇

(
k, k̇
)
= −U ′,

Fk̇k

(
k, k̇
)
= − (f ′ (k)− δ)U ′′,

Fk̇k̇

(
k, k̇
)
= U ′′,

where we add one extra derivative

Fkk = f ′′ (k)U ′ + (f ′ (k)− δ)
2
U ′′.

Evaluating them at the steady state k = k̄ using the fact that ρ = f ′
(
k̄
)
− δ gives

Fk

(
k̄, 0
)
=
(
f ′
(
k̄
)
− δ
)
U ′ = ρU ′,

Fk̇

(
k̄, 0
)
= −U ′,

Fk̇k

(
k̄, 0
)
= −ρU ′′,

Fk̇k̇

(
k̄, 0
)
= U ′′,

Fkk

(
k̄, 0
)
= f ′′

(
k̄
)
U ′ + ρ2U ′′.

The quadratic equation, Q(λ), is given by

Q (λ) = (−U ′′)λ2 + (ρU ′′)λ+
(
f ′′U ′ + ρ2U ′′ − ρ2U ′′)

= (−U ′′)λ2 + (ρU ′′)λ+ (f ′′U ′)

= (−U ′′)

[
λ2 − ρλ− U ′

U ′′ f
′′
]

= (−U ′′)

[
λ2 − ρλ− U ′

U ′′ f
′′
(
f ′

f ′
c

c

k

k

)]

= (−U ′′)

[
λ2 − ρλ−

(
cf ′

k

)(
−U

′′

U ′ c

)−1(
−f

′′

f ′
k

)]
.

Notice that −U ′′

U ′ c is the elasticity of marginal utility (or, the reciprocal of the elasticity of inter-
temporal substitution) and − f ′′

f ′ k is the elasticity of marginal productivity.
Now we check that one root is negative, say λ2, and the other is then positive and larger than

ρ. To do this, note that,

Q (0) = (−U ′′)

[
−
(
cf ′

k

)(
−U

′′

U ′ c

)−1(
−f

′′

f ′
k

)]
< 0 ∵ U ′′ < 0,

Q (ρ) = Q (0) ,

∂Q (λ)

∂λ
= −U ′′ (2λ− ρ) ,

∂2Q (λ)

∂λ2
= −2U ′′ > 0.

Figure below plots Q (λ), which visually shows that one root is negative and the other is positive
and larger than ρ.
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We can, in fact, solve for the roots using the quadratic formula:

λ = g′ (k) =
ρ±

√
ρ2 − 4

(
cf ′

k

) (
−U ′′

U ′ c
)−1

(
− f ′′

f ′ k
)

2
,

and the negative is root is given by when ± is −.

Example 33. Let us impose some functional forms for the production function and the period
utility:

f (k) = Akα,

u (c) =
c1−γ − 1

1− γ
.

The steady steady equations are:

f ′
(
k̄
)
= ρ+ δ ⇒ αAk̄α−1 = ρ+ δ.

⇒ Ak̄α =
ρ+ δ

α
k̄

We can obtain steady-state consumption from the law of motion for capital (k̇t = G (kt, 1)−δkt−ct):

c̄ = Ak̄α − δk̄.

Combining the two expressions, we can write

c̄ =
(ρ+ δ)

α
k̄ − δk̄

=

(
ρ+ (1− α) δ

α

)
k̄.

The elasticities are

−f
′′

f ′
k = − (α− 1)αAk̄α−2

αAk̄α−1
k = (1− α) ,

−u
′′

u′
c = −−γc−γ−1

c−γ
c = γ.
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Therefore, (
cf ′

k

)(
−U

′′

U ′ c

)−1(
−f

′′

f ′
k

)
=

(
ρ+ (1− α) δ

α

)
(ρ+ δ)

1− α

γ
≥ 0.

Hence, indeed,

Q (0) = Q (ρ) = (−U ′′)

[
−
(
ρ+ (1− α) δ

α

)
(ρ+ δ)

1− α

γ

]
< 0

so that one root is negative.

9.4 Stability of continuous-time linear dynamic systems of higher dimen-
sions

In continuous time and with higher dimensions, we would have

ẋ (t) = m (x (t)) , ∀t ≥ 0.

At the steady state,
0 = m (x) .

Linear approximation of ẋ(t) yields

ẋ (t) = m (x (t)) ≃ m (x) +m′ (x) (x (t)− x)

≃ m′ (x) (x (t)− x) .

Define A := m′(x) and y(t) := x(t)− x so that we may write

ẏ (t) = Ay (t) .

As before, we can diagonalise A as A = PΛP−1 and define z(t) := P−1y (t) to obtain

ż (t) = Λz (t) , ∀t ≥ 0,

which can be written as
żi (t) = λizi (t) , ∀i = 1, 2 . . . , n, ∀t ≥ 0, .

This has the solution:31

zi (t) = eλitzi (0) , ∀i = 1, 2 . . . , n, ∀t ≥ 0.

31To see this, rearrange

λi =
żi (t)

zi (t)
=

d

dt
[ln zi (t)]

⇒
∫
λidt = λit = ln zi (t) + C

⇒ zi (t) = eλite−C .

Given the initial condition zi (0), e−C = zi (0) .
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Proposition 100. Let λi be such that for i = 1, 2, . . . ,m, we have λi < 0 and for
i = m + 1,m + 2, . . . , n, we have λi ≥ 0. Thus, the eigenvalues of A are ordered so that
the first m are negative. Consider the sequence

ẋ = A (x (t)− x) , ∀t ≥ 0

for some initial condition x(0). Then

lim
t→∞

x (t) = x

if and only if the initial condition x(0) satisfies

x (0) = P ẑ (0) + x,

where ẑ(0) is a vector with its n−m last coordinates equal to zero; i.e.

ẑi (0) = 0, ∀i = m+ 1,m+ 2, . . . , n

and where the remaining elements of ẑ(0) are arbitrary.

Proof. Recall that
zi (t) = eλitzi (0) , ∀i = 1, 2 . . . , n, ∀t ≥ 0.

For any λi > 0 with positive initial value, the sequence is exploding. Hence, in order for the system
to converge, it must be that, for all i with λi > 0, zi (0) = 0. Recall that

z (t) = P−1y (t) = P−1 (x (t)− x) ⇒ Pz (t) = (x (t)− x)

⇒ x (t) = Pz (t) + x

⇒ x (0) = Pz (0) + x.

Therefore, it must be the case that x (0) = P ẑ (0) + x for the system to converge. ■

Remark. Once again, if λi can be complex, we only consider the real part of the complex root and
the conditions are the same with respect to the real part.

9.5 Saddle path for linearised dynamics

Consider a continuous-time problem with state x, controls u, objective function h, law of motion g
and discount factor ρ as done in the notes before. The Hamiltonian is

H (x, u, λ) = h (x, u) + λg (x, u) ,

where λ is the co-state variable. Let x, u, λ ∈ R. The first-order conditions for the Hamiltonian are:

0 = Hu (x, u, λ) ,

λ̇ = ρλ−Hx (x, u, λ) ,

ẋ = g (x, u) .

Using Hu = 0 to solve for u = µ (x, λ) as a function of x and λ, we get

Hu (x, µ (x, λ) , λ) = 0.
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We then obtain the two dimensional dynamic system:

λ̇ = ρλ−Hx (x, µ (x, λ) , λ) ,

ẋ = g (x, µ (x, λ)) .

Linearising this system, we obtain
[

dλ̂
dt
dx̂
dt

]
=

[
a11 a12
a21 a22

] [
λ̂ (t)

x̂ (t)

]
,

where λ̂(t) = λ(t)− λ∗ and x̂(t) = x(t)− x.
The matrix A = [aij ] as the derivatives of the two-dimensional system displayed above evaluated

at the steady-state values. Using the previous result, we can write
[
λ̂ (t)

x̂ (t)

]
= P

[
z1 (t)

z2 (t)

]
= P

[
z1 (0) e

θ1t

z2 (0) e
θ2t

]
,

where
A = PΘP−1

and Θ is a diagonal matrix with the eigenvalues of A, denoted by θi in its diagonal.
Let us assume that θ1 < 0 < θ2. For the system to converge to the steady state, we must have

z2(0) = z2(t) = 0 for all t, where z is given by

[
z1 (t)

z2 (t)

]
= P−1

[
λ̂ (t)

x̂ (t)

]
.

Then, [
z1 (0) e

θ1t

0

]
=

[
x11 x12
x21 x22

][
λ̂ (t)

x̂ (t)

]
∀t ≥ 0

or
x21λ̂ (t) + x22x̂ (t) = 0.

This defines the saddle path as

λ̂ (t) = −x22
x21

x̂ (t) ,

⇒ λ (t) = λ∗ − x22
x21

(x (t)− x) .

9.6 Slope of the saddle path and of the optimal decision rule (continuous-
time, one-dimensional case)

Let the function ϕ satisfying λ = ϕ(x) be the saddle path. We want to compute

dλ

dx
= ϕ′ (x) ,

where x is the steady state. Notice that

ϕ′ =
dλ

dx
=

dλ/dt

dx/dt
≡ λ̇ (λ, x)

ẋ (λ, x)
=
ρλ−Hx (x, µ (x, λ) , λ)

g (x, µ (x, λ))
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At the steady state, λ̇ = ẋ = 0 which implies that ϕ′ = ”0/0”. Thus, we use L’Hôpital’s rule to
find this ratio.

lim
x→x

ϕ′ (x) ≡ dλ

dx

∣∣∣∣
x=x

=
λ̇ (λ, x)

ẋ (λ, x)

∣∣∣∣∣
x=x

=
d
dx λ̇ (λ, x)
d
dx ẋ (λ, x)

∣∣∣∣∣
x=x

=
dλ̇
dλ

dλ
dx + dλ̇

dx
dẋ
dλ

dλ
dx + dẋ

dx

∣∣∣∣∣
x=x

=
dλ̇
dλϕ

′ + dλ̇
dx

dẋ
dλϕ

′ + dẋ
dx

∣∣∣∣∣
x=x

where

dλ̇

dλ
= ρ−Hxuµλ −Hxλ,

dλ̇

dx
= −Hxx −Hxuµx,

dẋ

dλ
= guµλ,

dẋ

dx
= gx + guµx,

0 = Hux +Huuµx,

0 = Huλ +Huuµλ.

Note that the above comes from differentiating the first-order conditions:

λ̇ = ρλ−Hx (x, µ (x, λ) , λ) ,

ẋ = g (x, µ (x, λ)) ,

0 = Hu (x, µ (x, λ) , λ) .

We therefore have the following quadratic form for ϕ′:

ϕ′
(
dẋ

dλ
ϕ′ +

dẋ

dx

)
=

dλ̇

dλ
ϕ′ +

dλ̇

dx

⇒ (ϕ′)
2 dẋ

dλ
+ ϕ

(
dẋ

dx
− dλ̇

dλ

)
− dλ̇

dx
= 0.

One of the two roots of this quadratic equation is the slope of the saddle path. Unlike when we
were analysing convergence, there is no “rule” as to which root will represent the stable steady state.
Thus, when using this method, we would usually plot the phase diagram to know the slope of the
saddle path from the diagram, and pick the appropriate root using the equation above accordingly.

We can also find the slope of the optimal control rule setting the control as a function of the
state. Let

u∗ (x) = µ (x, ϕ (x)) .

Then
du∗ (x)
dx

∣∣∣∣
x=x

= µx + µλϕ
′.

Finally, we can find the rate of change of the state as a function of the state (i.e. the speed of
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convergence, g′(x)):

dẋ

dx

∣∣∣∣
x=x

= gx + gu
du∗ (x)
dx

∣∣∣∣
x=x

= gx + gu (µx + µλϕ
′) .

Example 34. (Neoclassical growth model) Recall that

λ̇ = λ (ρ− (f ′ (k)− δ))

k̇ = f (k)− δk − c (k) .

Since U ′ (c) = λ, we can write
k̇ = f (k)− δk − (U ′)

−1
(λ) .

Then

ϕ′ (k) ≡ dλ

dk
=

dλ̇
dλϕ

′ + dλ̇
dk

dk̇
dλϕ

′ + dk̇
dk

,

where

dλ̇

dλ
= ρ− (f ′ (k)− δ)

dλ̇

dk
=

dλ

dk
(ρ− f ′ (k) + δ)− λf ′′ (k) = ϕ′ (k) (ρ− f ′ (k) + δ)− λf ′′ (k)

dk̇

dλ
= −d (U ′)−1

dλ
= −d (U ′)−1

(λ)

dλ

dk̇

dk
= f ′′ (k)− δ − d (U ′)−1

(λ)

dλ

dλ

dk
= f ′′ (k)− δ − d (U ′)−1

(λ)

dλ
ϕ′ (k) .

Hence,

ϕ′
(
k̄
)
=

(
ρ− f ′

(
k̄
)
− δ
)
ϕ′
(
k̄
)
+ ϕ′

(
k̄
) (
ρ− f ′

(
k̄
)
+ δ
)
− λf ′′

(
k̄
)

−d(U ′)−1(λ)
dλ ϕ′

(
k̄
)
+ f ′′

(
k̄
)
− δ − d(U ′)−1(λ)

dλ ϕ′
(
k̄
) .

In the steady state, ρ = f ′(k̄)− δ, so we can simplify above to

ϕ′
(
k̄
)
=

δϕ′
(
k̄
)
+ λf ′′

(
k̄
)

2d(U ′)−1(λ)
dλ ϕ′

(
k̄
)
− f ′′

(
k̄
)
+ δ

and so

2
d (U ′)−1

(λ)

dλ

(
ϕ′
(
k̄
))2 −

(
f ′′
(
k̄
)
+ δ
)
ϕ′
(
k̄
)
+
(
δ − λf ′′

(
k̄
))

= 0

This is a quadratic equation in ϕ′ (k) which we can solves to obtain the slope of the saddle path in
(k, λ) space.

ϕ′
(
k̄
)
=
f ′′
(
k̄
)
+ δ ±

√(
f ′′
(
k̄
)
+ δ
)2 − 8d(U ′)−1(λ)

dλ

(
δ − λf ′′

(
k̄
))

4d(U ′)−1(λ)
dλ

.

Recall from section 8.3.3 when we drew the phase diagram that the slope of the saddle path is
negative in (k, λ) space. Since U ′′ < 0, it follows that d(U ′)−1(λ)/dλ < 0 and so the negative root
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is given by when ± is +.32 That is,

ϕ′
(
k̄
)
=
f ′′
(
k̄
)
+ δ +

√(
f ′′
(
k̄
)
+ δ
)2

+ 8d(U ′)−1(λ)
dλ λf ′′

(
k̄
)

4d(U ′)−1(λ)
dλ

.

We can also obtain the slope of the saddle path in (k, c) space. Recall that

ċ

c
=

1

−U ′′(c)c
U ′(c)

(f ′ (k)− δ − ρ) ,

k̇ = f (k)− δk − c.

So the slope of the saddle path is

ϕ̃′
(
k̄
)
=

dc

dk

∣∣∣∣
k=k̄

=
ċ

k̇

∣∣∣∣
k=k̄

=

1

−u′′
u′

(f ′ (k)− δ − ρ)

f (k)− δk − ϕ (k)
.

Using L’Hôpital’s rule and evaluating at the steady state

ϕ̃′
(
k̄
)
=

1

−u′′
u′

(
f ′′
(
k̄
))

+

=0︷ ︸︸ ︷(
f ′
(
k̄
)
− δ − ρ

)
d
dk

(
1

−u′′
u′

)

f ′ (k)− δ︸ ︷︷ ︸
=ρ

− ϕ′
(
k̄
) .

Hence,
(
ρ− ϕ̃′

(
k̄
))
ϕ̃′
(
k̄
)
=
f ′′
(
k̄
)

−u′′

u′

−
(
f ′
(
k̄
)
− δ
)

−
(
f ′
(
k̄
)
− δ
) = −

−f ′′

f ′−δ

−u′′

u′

ρ ≡ −b

where we used the fact that f ′ = ρ in the steady state and b > 0. The quadratic equation is then

ϕ̃′
(
k̄
)2 − ρϕ̃

(
k̄
)
− b = 0.

Letting γ := ϕ̃′(k̄),
Q (γ) := γ2 − ργ − b.

Observe that

Q (0) = −b < 0,

Q (ρ) = −b < 0

dQ

dγ

∣∣∣∣
γ=0

= −ρ < 0,

d2Q

dγ2
= 2 > 0.

Hence, Q(γ) has a minimum between γ ∈ (0, ρ), is strictly convex and is downward sloping when
γ = 0. So, the figure looks like the one we drew in section 9.3.6. We realise that one root is positive
while the other is negative. Recall from section 8.3.3 that the slope of the saddle path is positive

32For example, let U (c) = ln c. Then U ′ (c) = 1/c so that

1/c = λ⇔ λ =
1

c
;

i.e. (U ′)−1 (λ) = 1/λ. Then, d (U ′)−1 (λ) /dλ = −1/λ2 < 0.
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in (k, c) space. So,

ϕ̃′
(
k̄
)
=
ρ+

√
ρ2 + 4b

2

Since U ′ (c (k)) = λ (k), we can write

c∗ (k) = (U ′)
−1

(λ (k))

so that

ϕ̃′
(
k̄
)
=

dc∗ (k)
dk

∣∣∣∣
k=k̄

=
d (U ′)−1

(λ (k))

dk

dλ

dk

∣∣∣∣∣
k=k̄

d (U ′)−1 (
λ
(
k̄
))

dk
ϕ′
(
k̄
)
.
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10 Principle of Optimality and Dynamic Programming

Bellman’s Principle of Optimality provides conditions under which a programming problem ex-
pressed in sequence form is equivalent (as defined below) to a two-period recursive programming
problem (called the Bellman equation). The first part of the note discusses this relation and intro-
duces some concepts and techniques used to solve dynamic programming problems in discrete time.
The last part of the note focuses on continuous-time dynamic programming problems and shows
how they relate to the Maximum Principle.

10.1 Principle of Optimality

10.1.1 Recursive problem

Recall that the sequence problem is given by:

V ∗ (x0) := max
(xt+1)∞t=0

∞∑

t=0

βtF (xt, xt+1)

s.t. xt+1 ∈ Γ (xt) ∀t ≥ 0,

x0 given.

Equivalently, we can write the problem as

V ∗ (x0) = max
x∞∈Π∞(x0)

u ((xt+1)) , (10.1)

where

xt := (x0, x1, . . . , xt) ,

Πt (x0) :=
{
xt : xs+1 ∈ Γ (xs) , s = 0, 1, . . . , t− 1

}
,

u ((xt+1)) = lim
T→∞

T∑

t=0

βtF (xt, xt+1) .

We think of xt as the set of states from period 0 to t, Πt(x0) as the set of all possible states from
period 0 to period t (thus, Πt(x0) is an increasing set as t increases), and u((xt+1)) is the discounted
(infinite) sum of the utility.

10.1.2 Bellman equation

The Bellman equation, which is a recursive problem, is to find a function V : X → R such that

V (x) = max
y∈Γ(x)

[F (x, y) + βV (y)] ∀x ∈ X. (10.2)

This is a functional equation in which the solution is a function V that must satisfy the equation
above for all x ∈ X. Let g(x) denote the maximiser of the right-hand side of (10.2). Then, g(x)
satisfies

V (x) = F (x, g (x)) + βV (g (x)) .

If the function V were known (or if we know properties of it), then (10.2) is a two-period problem.
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10.1.3 Principle of Optimality

The Principle of Optimality states that

V ∗ (x) = V (x) ∀x ∈ X.

That is, the solution to the two-period problem in (10.2) is equivalent to the infinite-dimension
problem in (10.1). Once we have V and g, then we have the solution of (10.1) for any initial
condition x0 ∈ X.

Theorem 22. Suppose Γ(x) is nonempty for all x ∈ X and that, for all x0 ∈ X and all x∞ ∈
Π∞(x0), limT→∞

∑T
t=0 β

tF (xt, xt+1) exists in R. Then, V ∗ satisfies (10.2). Moreover, if V is a
solution to (10.2) and

lim
T→∞

βT v (xT ) = 0 ∀x∞ ∈ Π∞ (x0) ∀x0 ∈ X,

then V ∗ = V .

Here, we sketch the basic reasoning behind the Principle of Optimality (this is not a rigorous
proof!). Take the case where F is bounded so |F (x, y)| ≤ B <∞ for all (y, x) ∈ gr(Γ). Notice that,
for any x∞ ∈ Π∞(x0), since β ∈ (0, 1),

lim
T→∞

T∑

t=0

βt |F (xt, xt+1)| ≤ lim
T→∞

T∑

t=0

βtB =
B

1− β
.

That is,

|u ((xt+1))| ≤
B

1− β
.

Splitting the infinite sum into the first T − 1 periods and the remaining periods:

u ((xt+1)) =

T−1∑

t=0

βtF (xt, xt+1) + βT

[ ∞∑

t=T

βt−TF (xt, xt+1)

]
.

Then, we can write
∣∣∣∣∣u ((xt+1))−

T−1∑

t=0

βtF (xt, xt+1)

∣∣∣∣∣ = βT

∣∣∣∣∣
∞∑

t=T

βt−TF (xt, xt+1)

∣∣∣∣∣ ≤ βT B

1− β
.

Since βT can be made arbitrarily small by choosing T sufficiently large, we can approximate
u((xt+1))—i.e. the value of a plan—by

∑T−1
t=0 βtF (xt, xt+1) for sufficiently large T .

By definition, (10.2) means that V (x0) is the maximum value such that

V (x0) ≥ F (x0, x1) + βV (x1) , ∀ (x0, x1) ∈ Π1 (x0) (10.3)

and for some (x0, x
∗
1) ∈ Π1(x0), the above holds with equality; i.e.

V (x0) = F (x0, x
∗
1) + βV (x∗1) .

Since (10.2) holds for all x ∈ X, it must also be the case that

V (x∗1) ≥ F (x∗1, x2) + βV (x2) , ∀ (x0, x∗1, x2) ∈ Π2 (x0) .
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Substituting into (10.3),

V (x0) ≥ F (x0, x
∗
1) + βV (x∗1)

≥ F (x0, x
∗
1) + β [F (x∗1, x2) + βV (x2)]

= F (x0, x
∗
1) + βF (x∗1, x2) + β2V (x2) , ∀ (x0, x∗1, x2) ∈ Π2 (x0) .

Again, there exists some (x0, x
∗
1, x

∗
2) ∈ Π2(x0) such that

V (x0) = F (x0, x
∗
1) + βF (x∗1, x

∗
2) + β2V (x∗2) .

Continuing in a similar fashion, we get

V (x0) ≥
T−1∑

t=0

βtF (xt, xt+1) + βTV (xT ) ∀xT ∈ ΠT (x0)

and, for some xT ∈ ΠT (x0),

V (x0) =

T−1∑

t=0

βtF (xt, xt+1) + βTV (xT ) . (10.4)

Since |F | ≤ B, |V | ≤ B
1−β and so

lim
T→∞

βTV (xT ) = 0.

Thus, we can approximate the value of V (x0) arbitrarily well by choosing T sufficiently large; i.e.
we conclude that

V (x0) = V ∗ (x0) .

10.2 Bounded Dynamic Programming

We now study the Bellman equation for the case where F is bounded.
Let (S, ρ) be a metric space and let T : S → S be a self-map. The self-map T is a contraction

with modulus β ∈ (0, 1) if
ρ (Tx, Ty) ≤ βρ (x, y) ∀x, y ∈ S.

Thus, T is a contraction if it “shrinks” the distance between any two points by more than the
fraction β.

Remark 23. Let S = [0, 1] so that x and y are scalars between zero and one. Let ρ(x, y) = |x− y|
and T be a function. Then, for T to be a contraction with modulus β, it must be that

|T (x)− T (y)| ≤ β |x− y|

⇒ |T (y)− T (x)|
|y − x| ≤ β.

Hence, this says that the slope of the function T is less than β (and β is the Lipschitz constant).
The key here is the following fix-point theorem.

Theorem 23. (Contraction Mapping Theorem/Banach) If T is a contraction in a metric space
(S, ρ) with modulus β, then:
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(i) there is a unique fixed point s∗ ∈ S,

s∗ = T (s∗) ;

(ii) iterations of T converge to the fixed point

ρ (Tns0, s
∗) ≤ βnρ (s0, s

∗) , ∀s0 ∈ S,

where Tn+1s = T (Tns).

In our main application, S will be the set of continuous and bounded functions from X to R:

S :=

{
f : X → R, f is continuous, and ∥f∥ ≡ sup

x∈X
|f (x)| <∞

}

and the metric is the sup norm:

ρ (f, g) ≡ ∥f − g∥ := sup
x∈X

|f (x)− g (x)| .

The following proposition allows us to determine if something is a contraction.

Proposition 101. (Blackwell Sufficient Conditions) Let S be the space of bounded functions of X
and ∥·∥ the sup norm. Let T : S → S. Then, T is a contraction if

(i) T is monotone; i.e. Tf (x) ≤ Tg (x) for any x ∈ X and g, f such that f (x) ≤ g (x) for all
x ∈ X;

(ii) T discounts; i.e. there exists β ∈ (0, 1) such that, for any a ∈ R+,

T (f + a) (x) ≤ Tf (x) + aβ, ∀x ∈ X, f ∈ S.

Proof. First, we can always write
f − g = f − g.

By the definition of sup norm (∥f (x)∥ = sup |f (x)|):

f − g ≤ ∥f − g∥
⇒ f ≤ g + ∥f − g∥ .

Since T is monotone, then
Tf ≤ T (g + ∥f − g∥) .

Since T discounts, setting a = ∥f − g∥, we can write

Tf ≤ T (g + ∥f − g∥)
≤ Tg + β ∥f − g∥

⇒ Tf − Tg ≤ β ∥f − g∥ .

Of course, we can reverse the roles of f and g to obtain that

Tg ≤ Tf + β ∥g − f∥
= Tf + β ∥f − g∥

⇒ Tg − Tf ≤ β ∥f − g∥ .
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Combining both inequalities,
∥Tf − Tg∥ ≤ β ∥f − g∥ ;

i.e. T is a contraction. ■

We define the Bellman operator T as

(Tv) (x) = max
y∈Γ(x)

[F (x, y) + βv (y)] . (10.5)

Theorem 24. Assume that F is bounded and continuous and that Γ is continuous and has range
that is compact. Let T be the Bellman operator as defined in (10.5). Then, T maps the set of
continuous and bounded functions S onto itself. Moreover, T is a contraction.

Proof. That T maps the set of continuous and bounded follow from the Theorem of the Maximum
which we will study in ECON 6701. That T is a contraction follows since T satisfies the Blackwell
conditions:

(i) Monotonicity. For f ≥ v,

(Tv) (x) = max
y∈Γ(x)

[F (x, y) + βv (y)]

= F (x, g (x)) + βv (g (x))

≤ F (x, g (x)) + βf (g (x)) ∵ f ≥ v

≤ max
y∈Γ(x)

[F (x, y) + βf (y)] = (Tf) (x) ,

where the last inequality comes from the fact that Tf (x) is the maximum.

(ii) Discounts. For a > 0,

(T (v + a)) (x) = max
y∈Γ(x)

[F (x, y) + β (v (y) + a)]

= max
y∈Γ(x)

[F (x, y) + βv (y)] + βa

= (Tv) (x) + βa. ■

We mentioned previously that (S, ρ) is a metric space. Moreover, this space is also complete;
i.e., every Cauchy sequence is convergent.

Corollary 10. Let S be a complete metric space and S′ ⊂ S be closed. Let T be a contraction on
S and s∗ = Ts∗. If TS′ ⊂ S′ (i.e. if s′ ∈ S′, then T (s′) ∈ S′), then s∗ ∈ S′. Moreover, if S′′ ⊂ S′

and TS′ ⊂ S′′ (i.e. if s′ ∈ S′, then T (s′) ∈ S′′), then s∗ ∈ S′′.

The first statement of Corollary 10 means that, if applying the operator T to any point in a
closed set S′ means that the “output” stays within the set, then the fixed point must also be in that
set. The second means that, if applying the operator T to any point in S′ means that the output
is in the set S′′, then the fixed point must also be in S′′. Note that S′′ need not be closed, whereas
S′ must be closed. Corollary 10 is useful in establishing the properties of the value function V and
the optimal policy g.

In what follows, we maintain the following set of assumptions.

Assumption 1. X is a convex subset of Rn, Γ(x) is nonempty, compact for all x ∈ X, Γ is
continuous, and F is bounded and continuous, and β ∈ (0, 1).
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Theorem 25 (Monotonicity). In addition to Assumption 1, assume that F (·, y) is increasing and
that Γ is increasing (i.e. Γ(x) ⊆ Γ(x′) for x ≤ x′). Then, the fixed point v∗ satisfying v∗ = Tv∗ is
increasing. If F (·, y) is strictly increasing, so is v∗.

Proof. By Corollary 10, it suffices to show that Tf is increasing if f is increasing. Let x ≤ x′:

(Tf) (x) = max
y∈Γ(x)

[F (x, y) + βf (y)]

= F (x, g (x)) + βf (g (x))

≤ F (x′, g (x)) + βf (g (x))

since F (·, y) is increasing (the inequality will hold strictly if F (·, y) is strictly increasing). But by
definition,

(Tf) (x) ≤ F (x′, g (x)) + βf (g (x))

≤ F (x′, g (x′)) + βf (g (x′))

= max
y∈Γ(x′)

[F (x′, y) + βf (y)]

= (Tf) (x′) . ■

Theorem 26 (Concavity). In addition to Assumption 1, assume and Γ is convex,33 and that F is
concave in (x, y). Then, the fixed point v∗ satisfying v∗ = Tv∗ is concave in x. Moreover, if F is
strictly concave, so is v∗ and the optimal policy correspondence is a single-valued.

Proof. By Corollary 10, it suffices to show that Tf is concave if f is concave. That is, we wish to
show that

(Tf)
(
xθ
)
≥ (1− θ) (Tf) (x′) + θ (Tf) (x) ,∀θ ∈ (0, 1) .

Since F and f are concave then, for any x, x′ ∈ X,

F
(
xθ, yθ

)
≥ (1− θ)F (x′, y′) + θF (x, y) ,

f
(
yθ
)
≥ (1− θ) f (y′) + θf (y) ,

for all y ∈ Γ (x) and y′ ∈ Γ (x′). Summing the two while multiplying the second by β:

F
(
xθ, yθ

)
+ βf

(
yθ
)
≥ (1− θ)F (x′, y′) + θF (x, y) + β [(1− θ) f (y′) + θf (y)]

= (1− θ) [F (x′, y′) + βf (y′)] + θ [F (x, y) + βf (y)]

for all θ ∈ (0, 1). Above holds when y = g (x) and y′ = g (x′); i.e.

F
(
xθ, yθ

)
+ βf

(
yθ
)
≥ (1− θ) [F (x′, g (x′)) + βf (g (x′))] + θ [F (x, g (x)) + βf (g (x))]

= (1− θ) (Tf) (x′) + θ (Tf) (x) .

33That is, for any y ∈ Γ(x) and y′ ∈ Γ(x′), we have

θy′ + (1− θ) y ∈ Γ
(
θx′ + (1− θ)x

)
∀x, x′ ∈ X ∀θ ∈ (0, 1) .
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By definition,

(Tf)
(
xθ
)
= max

y∈Γ(xθ)

[
F
(
xθ, y

)
+ βf (y)

]

= F
(
xθ, g

(
xθ
))

+ βf
(
g
(
xθ
))

≥ F
(
xθ, yθ

)
+ βf

(
yθ
)
∀yθ ∈ Γ

(
xθ
)
.

Hence,
(Tf)

(
xθ
)
≥ (1− θ) (Tf) (x′) + θ (Tf) (x) ∀θ ∈ (0, 1) . ■

Theorem 27 (Differentiability). In addition to Assumption 1, assume that F (x, y) is strictly con-
cave in (x, y), Γ is convex, and F is continuously differentiable on int(gr(Γ)). If x0 ∈ int(X)

and g(x0) ∈ int(Γ(x0)). Then, the fixed point v∗ satisfying v∗ = Tv∗ is differentiable at x0 with
derivatives given by

vi (x0) =
∂F

∂xi
(x0, g (x0)) ∀i ∈ {1, 2, . . . , n}

where X ⊆ Rn.

10.2.1 Envelope: Differentiability of the value function

Let us work out a heuristic argument to find an expression for the derivative of the value function.
We will assume that V is differentiable and that the policy function g is also differentiable with
respect to x. Assume that (y, x) ∈ int(gr(Γ)).

First, the first-order condition of the problem

max
y

F (x, y) + βV (y)

evaluated at the optimum, y = g(x), is

Fy (x, g (x)) + βV ′ (g (x)) = 0.

Now, differentiating both sides of

V (x) = F (x, g (x)) + βV (g (x))

with respect to x gives

V ′ (x) = Fx (x, g (x)) + Fy (x, g (x)) g
′ (x) + βV ′ (g (x)) g′ (x)

= Fx (x, g (x)) + (Fy (x, g (x)) + βV ′ (g (x)))︸ ︷︷ ︸
=0∵FOC

g′ (x) . (10.6)

Hence,
V ′ (x) = Fx (x, g (x)) .

This is called the envelope condition.

Remark 24. The formal proof (Benveniste and Scheinkman Theorem) requires that V is concave,
F (·, y) ∈ C1 and that (g(x), x) ∈ int(gr(Γ)). Strictly speaking, the theorem does not require g to
be differentiable.
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10.2.2 First-order and the envelope conditions

The first-order and the envelope conditions are respectively given by

0 = Fy (x, g (x)) + βV ′ (g (x)) ,

V ′ (x) = Fx (x, g (x))

for all x such that (g(x), x) ∈ int(gr(Γ)). Notice that combining the two gives the familiar Euler
Equation:

0 = Fy (x, g (x)) + βFx (g (x) , g (g (x))) .

10.2.3 Neoclassical growth model

The Bellman equation for the Neoclassical problem is given by

V (k) = max
k′∈[0,f(k)]

[U (f (k)− k′) + βV (k′)] .

Thus, the first-order condition evaluated at the optimal k′ = g (k) is

U ′ (f (k)− g (k)) = βV ′ (g (k)) .

The envelop condition, evaluated at the optimal, is given by

V ′ ((k)) = U ′ (f (k)− g (k)) f ′ (k) .

Exercise 22. Show that the neoclassical growth model satisfy the assumptions of Theorem 25.

Exercise 23. Show that the neoclassical growth model satisfy the assumptions of Theorem 26.

10.3 Continuous-time Bellman equation

Consider the following discrete-time Bellman equation,

V (xt) = max
ut∈U

[
∆h (xt, ut) +

1

1 +∆ρ
V (xt+∆)

]

subject to
xt+∆ = xt +∆g (xt, ut) .

We will analyse the continuous-time Bellman equation as a limit of the discrete one.
Notice that, if we simply take the limit as ∆ goes to zero, we are simply left with V (xt) = V (xt),

which is not very useful. Using Taylor expansion (around xt), we can write

V (xt+∆) = V (xt +∆g (xt, ut))

= V (xt) + V ′ (xt)∆g (xt, ut) + o (∆g (xt, ut)) ,

where d(z) = o(z) means that limz→0 d(z)/z = 0. Then the Bellman equation is

V (xt) = max
ut∈U

[
∆h (xt, ut) +

1

1 +∆ρ
(V (xt) + V ′ (xt)∆g (xt, ut) + o (∆g (xt, ut)))

]

Multiplying both sides by the positive constant 1 + ∆ρ yields

(1 + ∆ρ)V (xt) = max
ut∈U

[(1 + ∆ρ)∆h (xt, ut) + V (xt) + V ′ (xt)∆g (xt, ut) + o (∆g (xt, ut))] .
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We can move V (xt) inside the max to the left-hand side since it does not depend on ut,

∆ρV (xt) = max
ut∈U

[(1 + ∆ρ)∆h (xt, ut) + V ′ (xt)∆g (xt, ut) + o (∆g (xt, ut))] .

Dividing both sides by ∆,

ρV (xt) = max
ut∈U

[
(1 + ∆ρ)h (xt, ut) + V ′ (xt) g (xt, ut) +

o (∆g (xt, ut))

∆

]
.

Taking the limit as ∆ goes to zero,

ρV (xt) = max
ut∈U

[h (xt, ut) + V ′ (xt) g (xt, ut)] ,

where we implicitly assume that the limit as ∆ → 0 of the max with respect to ut is the same
as the max with respect to ut of the limit as ∆ → 0. Removing the time indices, we obtain the
continuous-time version of the Bellman equation,

ρV (x) = max
u∈U

[h (x, u) + V ′ (x) g (x, u)] . (10.7)

Under the regularity conditions, the max of the RHS can be characterised using the following
first-order condition for u:

0 = hu (x, u
∗ (x)) + V ′ (x) gu (x, u

∗ (x)) ,

which defines the optimal decision rule u∗(x). Thus, the following two equations summarise the
dynamic programming problem:

ρV (x) = h (x, u∗ (x)) + V ′ (x) g (x, u∗ (x)) , (10.8)

0 = hu (x, u
∗ (x)) + V ′ (x) gu (x, u

∗ (x))

for all x ∈ X. Notice that these are two functional equations (i.e. solutions are functions). The
functions V and u∗ are both functions of x.

10.4 Bellman equation and the Maximum Principle

We now show the sense in which the Bellman equation and the first-order conditions above imply
the equations for the Maximum Principle (i.e. Hamiltonian) derived previously.

Recall that in the optimal-control approach, u∗(t) maximises

H (x, u, λ) = h (x, u) + λg (x, u) .

From (10.7), in the dynamic programming approach, u∗(t) maximises

h (x, u) + V ′ (x) g (x, u) . (10.9)

Hence, the two approaches are consistent only if

λ ≡ V ′ (x) ;

i.e. the co-state in the calculus of variations approach is the derivative of the value function. This
is consistent with the interpretation for the discounted value of the co-state variables offered before:
the marginal value of an extra unit of the state variable.
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Second, using that λ ≡ V ′(x), we can see that the first-order condition from optimal-control
approach

Hu (x, u, λ) = 0

is equivalent to
hu (x, u) + λgu (x, u) = 0,

which is the derivative of (10.9) with respect to u set to zero.
Third, differentiating (10.8) with respect to time yields

ρV ′ẋ = hxẋ+ huu
∗′ẋ+ (V ′′g + V ′gx + V ′guu

∗′) ẋ

= hxẋ+ (V ′′g + V ′gx) ẋ+


hu + V ′gu︸ ︷︷ ︸

=0∵FOC


u∗′ẋ

= hxẋ+ (V ′′g + V ′gx) ẋ.

Outside of the steady state, ẋ ̸= 0, so we can divide through to obtain

ρV ′ = hx + V ′′g + V ′gx. (10.10)

Differentiating λ ≡ V ′ (x) with respect to time yields and using that ẋ = g (x, u),

λ̇ = V ′′ẋ = V ′′g.

Substituting above and λ ≡ V ′(x) into (10.10) yields

λ̇ = ρλ− (hx + V ′gx) ,

which is equivalent to
λ̇ = ρλ−Hx (x, u, λ) ,

which is the law of motion of the co-state variable obtained using the Maximum Principle.

10.5 9-step method

We will focus on stationary problems; i.e. return function and law of motions are time invariant.

- 164 -



Math Review 2024

9-step method for dynamic programming

(i) Write the sequence problem (SP)

• Choose state variables x and state space X

• Describe the feasibility set Γ(x), return function F , and discounting β

(ii) Check basic conditions: feasible set always non-empty + discounting

(iii) Formulate the Bellman equation (BE)

(iv) Check that the Contraction Mapping Theorem (CMT) applies—check conditions
for X, Γ, F

(v) Check properties of v (value function) and G (optimal policy correspondence).

• Monotonicity of v

• Concavity of v (if strict, G is single valued, in which case write g)

• Differentiability of v and g

(vi) Euler equation.

(vii) Characterise steady states. Linearise Euler equation to study local stability

(viii) Global stability

(ix) Comparative statics

Consider the following problem:

• Discount factor β ∈ (0, 1), where β = 1/(1 + ρ) and ρ reflects time preference (not interest
rate).

• Demand curve given by p(q) that is stationary and satisfies law of demand (i.e. downward
sloping). Utility S(q) is given by the area under the demand curve:

S (q) =

∫ q

0

p (z) dz.

• State variable is x—the stock of “fish” at the beginning of the period.

• Timing: (i) Beginning-of-period stock is x; (ii) q is harvested.

• Law of motion xt+1 = ψ(xt− qt) gives the next period’s stock, where ψ is continuous, strictly
increasing, weakly concave and differentiable with ψ(0) = 0.

10.5.1 Step 1: Write SP

The sequence problem is given by

v̄ (x) := max
{qt}∞

t=0

∞∑

t=0

βtS (qt)

s.t. xt+1 = ψ (xt − qt) ,∀t
qt ∈ [0, xt] ,

where [0, xt] is the feasibility set, and we have discounting according to β.
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In each period, the agent can consume all stock of fish or consume none. So, the feasibility
set that describes the next-period stock is given by Γ(x) = [ψ(0), ψ(x)] = [0, ψ(x)]. Since ψ is
continuous and strictly increasing φ := ψ−1 is well defined. We can therefore write

φ (xt+1) = xt − qt ⇔ qt = xt − φ (xt+1) .

We can interpret φ as the amount we leave for reproduction tomorrow. Define the period-return
function as

F (xt, xt+1) = S (xt − φ (xt+1)) .

10.5.2 Step 2: Check basic conditions

For each x ∈ X, the feasible set is Γ(x) is nonempty. This is sufficient if F is bounded. However,
if F is unbounded, some additional conditions are needed to ensure that growth is not “too fast”
(relative to β).

10.5.3 Step 3: Formulate BE

v (x) := max
y∈Γ(x)

{S (x− φ (y)) + βv (y)} ,

where βv(y) is the discounted continuation value.

10.5.4 Step 4: Check that CMT applies

Let C(X) be the space of bounded, continuous function, ṽ(x) ∈ C(X) for all x ∈ X. Define the
Bellman operator as

(T ṽ) (x) := max
y∈Γ(x)

{S (x− φ (y)) + βṽ (y)} .

Suppose ṽ is bounded. For CMT to apply, we need that (i) T ṽ is bounded and continuous; (ii) T
is a contraction.

• T ṽ is bounded:

• Either, period return S is bounded—limq→∞ S(q) ≤ S̄ (S is bounded below by zero by
definition);

• Or, state space X is bounded—e.g. there exists some x̄ > 0 such that

ψ (x) < x,∀x > x̄.

We can think of this condition as saying that ψ(x) crosses the 45 degree line at some
finite point.34

34Think of x as δk and ψ (x) as f (k) in the neoclassical growth model.
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Define X = [0, x̄] as the state space.

• T ṽ is continuous

• F varies continuously with x and y—follows from the definition of S as an integral (which
guarantees that S is continuous), and φ being continuous.

• Γ (x) varies continuously with state (i.e. Γ is continuous as a correspondence)—follows
from the fact that ψ is continuous.

• T is a contraction: Check Blackwell’s sufficient condition (T monotone and discounts).

We therefore established that CMT applies, which means that

• Principle of optimality holds; i.e. v = v̄.

• T has a unique fixed point v such that Tv = v.

10.5.5 Step 5: Check properties of v and G

Monotonicity:

• Requirement 1. Γ(x) monotone (i.e. x′ ≥ x ⇒ Γ(x) ⊆ Γ(x′))—holds, since Γ(x) = [0, ψ(x)]

and ψ is strictly increasing,

• Requirement 2. F (x, y) weakly increasing in x—let Ĉ(X) ⊂ C(X) be the set of weakly
increasing functions (so the set is closed). Want to show that ṽ ∈ Ĉ(X) ⇒ T ṽ ∈ Ĉ(X)—i.e.
T : Ĉ(X) → Ĉ(X). Holds since the law of demand holds for p(q) so that S is weakly increasing
in x.35

• If F (x, y) is strictly increasing in x, then T ṽ is strictly increasing (i.e. the fixed point v lies
in the interior of Ĉ(x)).

Concavity:

• Let C̃(x) ⊂ C(x) be the set of functions that are weakly concave (so the set is closed). We
want to show that ṽ ∈ C̃ ⇒ T ṽ ∈ C̃—i.e. T : C̃(X) → C̃(X).

• Requirement 1. F (x, y) weakly concave in (x, y)—holds since ψ is weakly concave (which
implies that φ is weakly convex and −φ is weakly concave).

35S is strictly increasing until the demand curve “hits” the x-axis.
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• Requirement 2. Γ(x) is convex.Takuma Habu
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• If F is strictly concave in x, then T ṽ is strictly concave (i.e. the fixed point v lies in the
interior of C̃(x)). Then, there exists a unique maximiser which is continuous in x (i.e. the
optimal policy correspondence G is, in fact, a single-valued function).

Differentiability at x̂

• Requirement 1. v is strictly concave.

• Requirement 2. x̂ ∈ int(X).

• Requirement 3. g(x̂) ∈ int(Γ(x̂)).

• Requirement 4. F is differentiable in x.

• We cannot use the method we used before since the set of differentiable function is not closed
(with respect to the sup norm). The idea is to construct a strictly concave, differentiable W
that lies everywhere below v and w(x̂) = v(x̂). Then W has the same supporting hyperplane
as v so that v is differentiable at x̂.36 Fixing ŷ = g(x̂) and if ŷ is feasible in the neighbourhood
of x̂ (i.e. ŷ ∈ int(Γ(x̂))), we can use w(x) = F (x, ŷ) + βv(ŷ). Since ŷ maximises at x̂,37

w (x) ≤ w (x̂) = v (x̂) , ∀x ̸= x̂.

Notice that ŷ may not be feasible in the neighbourhood of x̂ if v has a kink at x̂. In such a
case, the inequality above may not hold.

36At x = x̂, the slope of w and v coincide:

dw (x)

dx

∣∣∣∣
x=x̂

= Fx (x̂, ŷ) + βv′ (ŷ) = v′ (x) .

37By construction, w(x̂) = v(x̂). Finally,

v (x̂) = max
y∈Γ(x̂)

F (x̂, y) + βv (y) = F (x̂, ŷ) + βv (ŷ)

≥ F (x, ŷ) + βv (ŷ) = w (x)

for all x in the neighbourhood of x̂ such that ŷ is feasible.
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v (x)

w (x)

1

v (x)

w (x)

1

• Differentiability of v does not give differentiability of g. That would require twice differenti-
ability of v. The proof is a “jungle” but it does require at least twice differentiability of F in
x.

10.5.6 Step 6: Euler equation

Write the first-order conditions and the envelope condition.

First-order condition The first-order condition with respect to y is given by

−S′ (x− φ (y∗))φ′ (y∗) + βv′ (y∗) ⪋ 0,

where: (i) ≤ if y∗ = 0 = ψ(0) (i.e. q = x); (ii) = if y∗ ∈ (0, ψ(x)); and (iii) ≥ if y∗ = ψ(x)

(i.e. q = 0). Notice that the first-order condition equates the marginal value of consumption today
−S′(·)φ′(·) against the marginal value of stock in the future βv′(y∗).

Envelope condition Substituting in y∗ = g(x) into the BE:

v (x) = S (x− φ (g (x))) + βv (g (x)) .

Differentiating above with respect to x, while noting that the Envelope Theorem implies that we
need not consider derivatives with respect to g(x):

v′ (x) = S′ (x− φ (g (x))) .

Euler equation Euler equation is given by combining the first-order and the envelope conditions.
From the envelope condition:

v′ (g (x)) = S′ (g (x)− φ (g (g (x)))) .

Substituting this into the first-order condition gives the Euler equation:

S′ (x− φ (g (x)))φ′ (g (x)) = βS′ (g (x)− φ (g (g (x)))) .

Corner solutions We can think about what conditions would rule out corner solutions.
Consider first the case y∗ = g(x) = 0. This is optimal if

S′ (x)φ′ (0) ≥ βS′ (g (x)− φ (g (g (x)))) = βS′ (−φ (g (0))) .
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where we also used the fact that φ(0) = 0 and g(x) = 0. If the inequality does not hold, then we
can rule out this corner solution.

Now consider the case y∗ = g(x) = ψ(x). This is optimal if

S′ (x− φ (ψ (x)))φ′ (ψ (x)) ≤ βS′ (ψ (x)− φ (g (ψ (x))))

⇔ S′ (0)φ′ (ψ (x)) ≤ βS′ (ψ (x)− φ (g (ψ (x))))

where we used the fact that φ = ψ−1. Again, if the inequality does not hold, then we can rule out
this corner solution. For example, if we have an Inada condition so that S′(0) = +∞, then we can
rule out this corner solution.

10.5.7 Step 7: Characterise steady states

Steady state: Interior In the steady state, x = g(x) = x̄, then the Euler equation becomes

S′ (x̄− φ (x̄))φ′ (x̄) = βS′ (x̄− φ (x̄)) ,

which simplifies to
φ′ (x̄) = β.

Above pins down the steady-state value of stock. This can be seen as a rate of return condition—the
steady stock is such that the reproduction rate offsets discounting.

Steady state: Corner solutions Steady states at corner solution are possible. If

S′ (x)φ′ (0) > βs′ (0) ,

then
x̄ = 0.

Similarly, if
S′ (0)φ′ (ψ (x)) < βS′ (ψ (x)− φ (ψ (x)))

then x̄ = ψ(x̄).

10.5.8 Step 8: Global stability

N/A.

10.5.9 Step 9: Comparative statics

Recall that we are not guaranteed that v is twice differentiable or that g(x) is differentiable. So we
need to conduct comparative statics without taking derivatives.

Notice that, from the first-order condition, y∗ = g(x) is given by the intersection of βv′(y) and
S′(x− φ(y))φ′(y), and

• βv′(·) is strictly decreasing in y since v is strictly concave;

• S′(·)φ′(·) is increasing in y since: (i) −φ is strictly decreasing in y, and we assume that S is
strictly concave; (ii) S′ > 0 since S is (assumed to be) strictly increasing; and (iii) φ is strictly
increasing and strictly convex so that φ′ > 0 and φ′ is increasing in y.

We can plot the two curves.
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How would g change if stock today was higher; i.e. x′ > x. Since S is strictly concave, a higher
x implies S′ is lower; i.e. the locus S′(·)φ′(·) moves down/right. βv′(·) is unaffected by x. As can
be seen from the figure, this implies that g(x) is increasing in x.
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Note that if g(x) is a corner solution, g(x) may not be strictly increasing with x.
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1

• g(x) is at the lower bound zero (figure on the left). The initial value of state is x.
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• Suppose x increases to x′. The figure shows the case in which the two curves do not
cross at x′ so that g(x) = g(x′) and g is not strictly increasing. However, observe that
S′(x′ − φ(y))φ(y) < S′(x − φ(y))φ(y) since y remains unchanged. Since S is strictly
concave, S′ is decreasing so that

q′ = x′ − φ (y) > x− φ (y) = q,

where we used the fact that x − φ(y) equals consumption, q. Hence, we realise that
consumption is increasing in x.

• Suppose x increases to x′′ such that the two curves now intersect. Then, as we can see
from the figure, g(x′′) > g(x).

• g(x) is at the upper bound ψ(x) (figure on the right). The initial value of state is x. In this
case, an increase in state from x to x′ increases the upper bound from ψ(x) to ψ(x′) so that
g(x′) > g(x).

Remark. In general, the lower bound could also move but we may not have monotonicity of Γ(x)
in such a case.
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Part III

Probability and statistics

11 Foundation

11.1 Probability space

We use probability to describe uncertainty, variability, and randomness. By uncertainty, we mean
that some outcome, ω, is unknown. We refer to the set of all possible outcomes as the sample space,
Ω, and any subset of outcomes, E ⊆ Ω, as an event.

Example 35. Consider a single coin flip. The set of all possible outcomes of a coin flip consists of
Heads (H) and Tails (T ); i.e., Ω = {H,T}. For example, {H} is an event, as is {T}.

Example 36. Consider flipping a coin twice. The set of all possible outcomes is now Ω =

{HH,HT, TH, TT}. For example, {HH} and {TH,HH, TT} are both events.

Example 37. Consider surveying the wage of a worker selected randomly from Ithaca. The
sample space is Ω = [wmin,∞), where wmin is the minimum hourly wage. An example of an event
is {w ∈ R : w ≥ 2wmin}.

We formalise the set of events as follows. A σ-algebra (or a σ-field) on a set X is a collection of
subsets of X, denoted F , that satisfies the following conditions.38

(i) The set itself belongs in F ; i.e., X ∈ F .

(ii) F is closed under complementation; i.e., Ec ∈ F ∀E ∈ F .

(iii) F is closed under countable unions; i.e.,
⋃∞

k=1Ek ∈ F ∀{Ek}∞k=1 ⊆ F .

Observe that above implies that ∅ ∈ F and that F is closed (why?) under countable intersections
(why?). The pair (X,F) is called a measurable space.

Remark 25 (Comparison with topology on X). Recall that a collection of subsets of X, T , is a
topology for X if (i) ∅, X ∈ T ; (ii) T is closed under finite intersections; (iii) T is closed under
arbitrary unions.

Example 38. Given a nonempty set of outcomes Ω, we can have many different σ-algebras. For
example, the smallest σ-algebra is F = {∅,Ω}, and the largest σ-algebra is F = 2Ω (the set of all
subsets of F). In case Ω consists of outcomes of two coin tosses, the set

{∅, {HH} , {TT} ,Ω}

is not a σ-algebra (why?); however, the set

{∅, {HH} , {TH,HT, TT} ,Ω}

is a σ-algebra.

By giving a topology T on the sample space Ω, we can define the Borel algebra on Ω, denoted
B(Ω, T ), as the smallest σ-algebra that contains T .

38Incidentally, an algebra on X is a collection of subsets that contains the whole set and is closed under comple-
mentation and finite unions.
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Example 39. When Ω is countable and T = 2Ω, then B(Ω, T ) = 2Ω. If Ω = R, then B(Ω, T ) is the
collection of all open and closed intervals, their countable unions, intersections, and complements.

We say that an event E occurs if the outcome ω is in E; i.e., if ω ∈ E. Probabilities describe
how likely it is for an event to occur. Formally, given a sample space Ω and a σ-algebra, F , a
function P : F → [0, 1], is a probability function if

(i) P ({E}) ≥ 0 for all E ∈ F ;

(ii) P (Ω) = 1;

(iii) For any countable collection of disjoint events {E1, E2, . . . , } ⊆ F , P (
⋃∞

i=1Ei) =
∑∞

i=1 P (Ei).

The function P is sometimes also called a probability measure. We refer to the tuple (Ω,F , P ) as a
probability space. These conditions of probability function imply that, for any event E and E′:

P (Ec) = 1− P (E) ,

P (∅) = 0,

P (E) ≤ 1,

E ⊆ E′ ⇒ P (E) ≤ P (E′) .

Exercise 24. Show that

P (E ∪ E′) = P (E) + P (E′)− P (E ∩ E′) ,

P (E ∪ E′) ≤ P (E) + P (E′) ,

P (E ∩ E′) ≥ P (E) + P (E′)− 1.

Given an event F with P (F ) > 0, the conditional probability of E given F , denoted P (E|F ), is
defined

P (E|F ) := P (E ∩ F )
P (F )

.

Two events E and F are (statistically) independent, denoted E ⊥⊥ F , if

P (E ∩ F ) = P (E)P (F ) .

Two events are dependent if they are not independent. For any two independent events E and F

with P (E), P (F ) > 0,
P (E|F ) = P (E) and P (F |E) = P (F ) .

Moreover, when events E and F are independent, the following pairs are also independent: E ⊥⊥ F c,
Ec ⊥⊥ F and Ec ⊥⊥ F c.

Theorem 28 (Law of Total probability). Let {E1, E2, . . . , En} be a partition of event space Ω and
P (Bi) > 0 for all i ∈ {1, 2, . . . , n}. Then, for any event F ,

P (F ) =

n∑

i=1

P (Ei)P (F |Ei) .

Proof. Given a partition {E1, E2, . . . , En} of Ω, for any event F , F =
⋃n

i=1(A ∩ Ei). Thus,

P (F ) =

n∑

i=1

P (A ∩ Ei) =

n∑

i=1

P (Ei)P (F |Ei) ,
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where the first equality follows from the fact that A ∩ Ei and A ∩ Ei′ are disjoint for any distinct
i, i′ ∈ {1, 2, . . . , n}, and the second equality follows from the definition of conditional probability. ■

Theorem 29 (Bayes Rule). Given events E and F such that P (E), P (F ) > 0,

P (E|F ) = P (F |E)P (E)

P (F |E)P (E) + P (F |Ec)P (Ec)
.

Proof. Follows from the definition of conditional probability and the law of total probability. ■

11.2 Random variables

A random variable is a real-valued outcome and is a function from the sample space Ω to the real
line R. You will often see that a random variable written using the upper case and the realisation
of a random variable using the lower case.

Example 40. In case of a coin flip, Ω = {H,T} and we may define a random variable asX : Ω → R,
ω 7→ 1{ω=H}.

Let Ω be a sample space with a probability function P . A random variable X induces a new
sample space in R and we can define a probability function PX : B(Ω) → [0, 1] as

PX (X ∈ B) := P ({ω ∈ Ω : X (ω) ∈ B})

for any set B in the Borel algebra of R.

Example 41. Consider three coin flips and let Ω = {H,T}3. We can define a random variable X
as the total number of heads. The sample space X is X = {0, 1, 2, 3}. Then, B = 2X and

PX (X = 2) = P ({ω ∈ Ω : X (ω) = 2})
= P ({HHT,HTH, THH}) .

A random variable X always has a cumulative distribution function (CDF ), denoted FX , given by

FX (x) = PX ({X ≤ x}) ∀x ∈ R.

The CDF FX has the following properties:

(i) FX(·) is nondecreasing;

(ii) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1;

(iii) FX(·) is right continuous; i.e., limx↘x0
FX(x) = F (x0) for all x0 ∈ R.

Moreover, we have

P (a < X ≤ b) = FX (b)− FX (a) and P (X > b) = 1− FX (b) .

From now on, we simply write P instead of PX as the probability function of X, and write F (x)
instead of FX(x) as the CDF of X. We write X ∼ F to mean that the random variable X is
distributed according to CDF F .

We say that a random variable X is continuous if F is continuous and that X is discrete if F
is a step function. Note that a random variable can be neither continuous nor discrete. Given the
properties of CDF, the CDF of discrete random variables have jumps. A discrete random variable
can only take finite or countably infinite number of values.
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Suppose X is a discrete random variable. Its probability mass function (pmf ), denoted f , is
given by

f (x) := P (X = x) .

To compute the probability of an event, we can sum over all points in that event; e.g.

P (X ≤ x) =
∑

x̃∈{x′∈X:x′≤x}
f (x̃) ,

WhenX is a continuous random variable, P (X = x) = 0. We therefore work instead with probability
density function (pdf ) of X, also denoted f , which is given by

f (x) :=
d

dx
F (x) .

Note that pdf is well-defined only when F is differentiable. Both pmf and have the following
properties:

(i) f ≥ 0;

(ii)
∑

x f(x) = 1 (for pmf) and
∫∞
−∞ f(x)dx = 1 (for pdf).

Moreover, by the fundamental theorem of calculus,

F (x) =

∫ x

−∞
f (t) dt ∀x ∈ R,

and we have

P (a ≤ X ≤ b) = P (a < X ≤ b) = P (a ≤ X < b) = P (a < X < b) =

∫ b

a

f (t) dt.

Given a random variable X with pmf or pdf, f , the support of X, denoted supp(X), is given by

supp (X) := {x ∈ R : f (x) > 0} ;

i.e., supp(X) is set of realisations that can occur with positive probability.

Example 42 (Logistic distribution). Let F (x) := 1
1+e−x for all x ∈ R. Then,

f (x) =
d

dx
F (x) =

e−x

(1 + e−x)
2 = F (x) (1− F (x)) .

and

P (a < X < b) = F (b)− F (a) =

∫ b

−∞
f (x) dx−

∫ a

−∞
f (x) dx =

∫ b

a

f (x) dx.

11.2.1 Transformation of random variables

Given random variable X and a function g : R → R, Y = g(X) is also a random variable; Y is a
transformation of X via g. Observe that given any subset B ∈ B,

P (Y ∈ B) = P (g (X) ∈ B)

and so the distribution of Y depends on F and g. Let sample spaces for X and Y as

X := supp (X) Y := g (X ) .
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The function g then defines a mapping g : X → Y. The distribution of Y can then be found as

P (Y ∈ E) = P (g (X) ∈ E)

= P ({x ∈ X : g (x) ∈ E})
= P

(
X ∈ g−1 (E)

)
,

where g−1 is the inverse mapping of g. Note that if X is a discrete random variable, X and Y are
both countable; i.e., Y is also a discrete random variable. Its pmf is given by

fY (y) =

{
PY (Y = y) =

∑
x∈g−1(y) PX (X = x) =

∑
x∈g−1(y) fX (x) if y ∈ Y

0 if y /∈ Y
.

That is, to obtain the pmf of Y we can proceed as follows: for each y ∈ Y, identify elements in the
set g−1(y) and sum appropriate probabilities.

Exercise 25. Consider a discrete random variable X that has a binomial distribution:

f (x) = P (X = x) =

(
n

x

)
px (1− p)

n−x ∀x ∈ {0, 1, . . . , n} ,

where n is a positive integer and p ∈ [0, 1]. Find the pmf of Y = n−X.

We can use the fact that

FY (y) = P (Y ≤ y) = P (g (X) ≤ y) = P ({x ∈ X} : g (x) ≤ y)

=

∫

{x∈X :g(x)≤y}
fX (x) dx.

to compute the CDF (or pdf) of Y . A particularly simple case is when g is strictly monotone.

Theorem 30. Let X be a continuous random variable with pdf fX , Y := g(X), where g : R → R
is a strictly monotone function such that g−1 has a continuous derivative on Y. Then, the pdf of
Y is given by

fY (y) =




fX
(
g−1 (y)

) ∣∣∣ d
dy g

−1 (y)
∣∣∣ y ∈ Y

0 y /∈ Y
.

Proof. Let us suppose that g is strictly decreasing (the proof for the case when g is strictly decreasing
is analogous). Since g is strictly increasing, g−1 : Y → X is a well-defined, strictly decreasing
function and so

FY (y) = P (g (X) ≤ y)

= P
(
X ≥ g−1 (y)

)

= 1− FX

(
g−1 (y)

)
,

where the last equality uses the fact that X is a continuous random variable. By the chain rule,

fY (y) =
d

dy
FY (y) = −fX

(
g−1 (y)

) d

dy
g−1 (y) > 0. ■

Exercise 26. Suppose a random variable X is uniformly distributed on (0, 1). What is its cdf and
pdf? Find the pdf of Y = − lnX.

Theorem 31. Let X have a continuous and strictly increasing CDF, FX . Define Y := FX(X).
Then, Y is uniformly distributed on (0, 1); i.e., P (Y ≤ y) = y for all y ∈ (0, 1).
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Proof. For each y ∈ (0, 1),

P (Y ≤ y) = P (FX (X) ≤ y) = P
(
X ≤ F−1

X (y)
)
= FX

(
F−1
X (y)

)
= y.

At the end points,

P (Y ≤ y) = 1 ∀y ≥ 1,

P (Y ≤ y) = 0 ∀y ≤ 0. ■

Even if g is not monotonic, it may be possible to compute the distribution of Y = g(X) by
direct manipulation.

Exercise 27. Let Y = X2, where X is a continuous random variable with support X = R and pdf
fX . Compute FY and fy.

11.2.2 Expectations

The expectation of a random variable X, denoted E[X], is given by all its possible realisations
averaged according to the probability of each realisation occurring. We think of it as the typical
(or expected) value of an observation from the random variable. Provided that it exists, E[X] is
defined as

E [X] :=

∫ ∞

−∞
xdF (x) =

{∑
x∈X g (x) fX (x) if X is discrete

∫∞
−∞ g (x) fX (x) dx if X is continuous

.

If E[|X|] <∞, we say that E[X] exists (or well defined). If E[|X|] = ∞, then

E [X] =





∞ if I+ = ∞, I− > −∞
−∞ if I+ <∞, I− = −∞
undefined if I+ = ∞, I− = −∞

,

where
I+ :=

∫

x>0

g (x) dF (x) , I− :=

∫

x<0

g (x) dF (x) .

Since integration is a linear operation, expectation is a linear operator; i.e., for any a, b ∈ R,

E [aX + b] = aE [X] + b.

You will use the following inequality many times in your first year.

Theorem 32 (Jensen’s inequality). Suppose g : R → R is convex, then for any random variable
X,

g (E [X]) ≤ E [g (X)] .

Clearly, above implies that if g is concave, then the inequality reverses (right?).

Exercise 28. Use Jensen’s inequality to prove that, for any random variable X, and any 0 < r ≤ p,

|E [X]| ≤ E [|X|] ,

and that
(E [|X|r])

1
r ≤ (E [|X|p])

1
p .

Note that if E[|X|p] <∞, then E[|X|r] <∞ for 0 < r ≤ p.
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11.2.3 Moments

Given any m ∈ N and a random variable X, the mth moment of X, denoted µ′
m, is defined

µ′
m := E [Xm] ,

and the mth central moment of X, denoted µm, is given by

µm := E [(X − E [X])
m
] .

The second central moment is simply called the variance, denoted Var[X] or σ2
X . The standard

deviation of X is the positive square root of the variance; i.e., std(X) (or σX) is given by
√

Var[X].

Exercise 29. Prove that Var[X] = E[X2] − (E[X])2 and that Var(aX + b) = a2Var[X] for any
a, b ∈ R.

The first result, in particular, implies

Var[X] ≤ E[X2].

Thus, existence of variance is guaranteed if E[X2] <∞.

11.2.4 Quantiles

Expectation is not the only way to measure the “centre” of distributions. Let X have CDF FX .
Given any α ∈ [0, 1], the α-quantile of FX , denoted Q(α) , solves

FX (Q (α)) = α⇔ P (X ≤ Q (α)) = α.

In particular, we let
Q (α) := min {x ∈ R : FX (x) ≥ α} .

(why inf?). The 0.5-quantile for a random variable is called the median, and upper and lower
quantiles refer to the 0.75- and 0.25-quantiles, respectively.

11.2.5 Moment generating and characteristic functions

The moment generating function (gmf ) of a random variable X, denoted MX , is defined as

MX (t) := E [exp (tX)]

provided that the expectation exists (oi.e., is finite) for t in a neighbourhood of 0. For the mgf to
exist, the density of X must have thin tails. The following shows that the curvature of MX at t = 0

encodes all moments of the distribution of X.

Theorem 33. Let MX be the mgf of a random variable X, then M(0) = 1, and for any m ∈ N,

dm

(dt)
mMX (t)

∣∣∣∣
t=0

= E [Xm] .
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Proof. Using M(0) = E[exp(0)] = 1. Note that

d

dt
MX (t) =

d

dt

[∫ ∞

−∞
exp (tx) dF (x)

]

=

∫ ∞

−∞

(
d

dt
exp (tx)

)
dF (x)

=

∫ ∞

−∞
(exp (tx)x) dF (x)

and evaluating this at t = 0 yields E[X]. Other moments can be derived analogously. ■

Because the moment generating function is not necessarily finite, characteristic functions are
sometimes used for in some proofs. The characteristic function (cf ) of a random variable X,
denoted CX , is defined as

CX (t) := E [exp (itX)] ,

where i :=
√
−1. Since exp(iu) = sin(u)+i cos(u) for any u ∈ R, CX exists for any random variable.

Moreover,

|exp (iu)| = |sin (u) + i cos (u)| =
√
(sin (u))

2
+ (cos (u))

2
= 1,

and
dm

(dt)
mCX (t)

∣∣∣∣
t=0

= imE [Xm] .

11.3 Bivariate random vector

We first study the bivariate ran case in which n = 2. In this case, a random vector is a pair (X,Y )

that represents mapping from a sample space to a pair of numbers (x, y) ∈ R2.

Example 43. Consider the “experiment” of flipping two coins. The sample space is

Ω := {HH,HT, TH, TT} .

We can define a bivariate random vector (X,Y ) via

X = 1{H on the first coin}, Y = 1{H on the second coin}.

Hence, each sample pint in Ω is associated with a pair of numbers; e.g., HH is associated with
(1, 1).

11.3.1 Joint distributions

The joint distribution function of a random vector (X,Y ) is

FX,Y (x, y) = P (X ≤ x, Y ≤ y) = P ({X ≤ x} ∩ {Y ≤ y}) .

It has properties that are analogous to the univariate case:

(i) F (x, y) is non-decreasing in each argument;

(ii) limx→−∞ F (x, y) = limy→−∞ F (x, y) = 0 and limx→∞, y→∞ F (x, y) = 1;

(iii) 0 ≤ F ≤ 1;

(iv) P (a < X ≤ b, c < Y ≤ d) = F (b, d)− F (b, c)− F (a, d) + F (a, c).

- 180 -



Math Review 2024

As before, a random vector (X,Y ) is continuous if its joint distribution function is continuous, and
is discrete if it is a step function.

When (X,Y ) is a discrete bivariate random vector, its joint probability mass function (joint
pmf ) is given by

fX,Y (x, y) = P (X = x, Y = y) .

Given a subset E ⊆ R2,
P ((X,Y ) ∈ E) =

∑

(x,y)∈E

fX,Y (x, y) .

When (X,Y ) is a continuous bivariate random vector, its joint probability density function (joint
pdf ) is given by

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)

and it satisfies f ≥ 0 and
∫∞
−∞

∫∞
−∞ f(u, v)dudv = 1. By the Fundamental Theorem of Calculus,

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y) dxdy

and
F (x, y) = P (X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v) dudv.

Given a subset E ⊆ R2,

P ((X,Y ) ∈ E) =

∫

(x,y)∈E

fX,Y (x, y) dxdy.

11.3.2 Marginal distributions

Sometimes, we are only interested in one dimension of the bivariate random variable. Given a
bivariate random variable (X,Y ), the marginal distribution of X is

FX (x) = P (X ≤ x) = P
({

(u, v) ∈ R2 : u ≤ x
})

= P
({

(u, v) ∈ R2 : u ≤ x, v ≤ ∞
})

= P (X ≤ x, Y ≤ ∞)

= lim
y→∞

FX,Y (x, y) .

In the discrete case, the magical probability mass function of X

fX (x) = P ((X,Y ) ∈ {(x, y) : y ≤ ∞})
=
∑

y∈R
fX,Y (x, y) .
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In the continuous case, the marginal probability density function of X is

fX (x) =
d

dx
FX (x) =

d

dx
P (X ≤ x, Y ≤ ∞)

=
d

dx

∫ ∞

−∞

∫ x

−∞
fX,Y (u, y) dudy

=

∫ ∞

−∞

d

dx

(∫ x

−∞
fX,Y (u, y) du

)
dy

=

∫ ∞

−∞
fX,Y (x, y) dy,

where the last line uses the Leibniz rule for differentiating integrals.
Given a g that maps (X,Y ) to R, the expectation of g(X,Y ) is

E [g (X,Y )] =

{∑
(x,y)∈R2 g (x, y) fX,Y (x, y) if (X,Y ) is discrete

∫∞
−∞

∫∞
−∞ g (x, y) fX,Y (x, y) dxdy if (X,Y ) is continuous

.

Exercise 30. Compute E[g(X)] when (X,Y ) has joint distribution pdf (or pmf) fX,Y .

11.3.3 Conditional distributions

When observing a random vector (X,Y ), the values of X and Y might be related (e.g., X is years
of education and Y is wage). In such case, knowledge of the value of X might gives us information
about Y (or not). Conditional distribution is a way to formalise what we can learn about one
dimension when we know something about the other dimension.

Let (X,Y ) be a bivariate random vector. Let us consider the conditional distribution of Y given
X = x, denoted FY |X(·|x). When X has a discrete distribution,

FY |X (y|x) = P (Y ≤ y|X = x) =
P (Y ≤ y, X = x)

P (X = x)

for any x such that P (X = x) > 0 (check that FY |X is a valid cumulative distribution function).
When Y is also discrete, the conditional probability mass function of Y given X = x, denoted
fY |X(y|x), is

fY |X (y|x) = P (Y = y|X = x) =
P (Y = y, X = x)

P (X = x)
=
fX,Y (x, y)

fX (x)

provided that fX(x) > 0 (check that fY |X is a valid pmf ). When instead FY |X is differentiable
with respect to y and P (X = x) > 0, the conditional probability density function of Y given X = x

is
fY |X (y|x) = ∂

∂y
FY |X (y|x) .

If (X,Y ) is a continuous bivariate random vector with joint probability density function fX,Y and
marginal probability density functions fX and fY , then

fY |X (y|x) = fX,Y (x, y)

fX (x)

provided that fX(x) > 0 (check that fY |X is a valid pdf ). In this case, fY |X should be understood
as

fY |X (y|x) = ∂

∂y
FY |X (y|x) ,
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where
FY |X (y|x) = lim

ϵ↘0
P (Y ≤ y|x− ϵ ≤ X ≤ x+ ϵ) .

Since fY |X as a function of y is a pdf (or a pmf), we can use it in the same way as we did previously
to derive conditional expectations of Y |X or some function g of Y |X. Similarly, one can derive
conditional moments (e.g., variance) as before. Importantly, whoever, conditional moments such as
E[Y |X = x] and Var[Y |X = x] are both functions of x and hence E[Y |X] and Var[Y |X] are both
random variables, the values of which depend on the realisation of X.

Proposition 102. Let X and Y be two random variables. For any r ≥ 1 such that E[|Y |r] <∞,

E [|E [Y |X]|r] ≤ E [|Y |r] .

Proof. Note g(u) := |u|r is convex for r ≥ 1. Hence, Jensen’s inequality says

|E [Y |X]|r ≤ E [|Y |r |X] .

Taking expectation of both sides with respect to X yields the result. ■

11.3.4 Independence

We say that two random variables X and Y are (statistically) independent, denoted X1Y , if

FX,Y = FX (x)FY (y) ∀x, y ∈ R2.

Suppose that X and Y are independent.

• fX,Y (x, y) = fX (x) fY (y) ∀x, y ∈ R2 and hence

fY |X (y|x) = fX (x) fY (y)

fX (x)
= fY (y) ;

i.e., knowledge that X = x gives no information about Y .

• For any functions g, h : R → R, g(X) and h(Y ) are independent.

• For any functions g, h : R → R such that E[|g(X)|],E[|h(X)|] <∞,

E [g (X)h (Y )] = E [g (X)]E [h (Y )] .

• Letting MX and MY denote the moment generation functions of X and Y , respectively, the
MGF of a random variable Z := X + Y is

MZ (·) =MX (·)MY (·) .

Theorem 34 (Law of Iterated Expectations). Suppose E[|Y |] <∞. Then,

EY,X [Y ] = EX

[
EY |X [Y |X]

]
.
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Proof. Let fX,Y be the joint probability density of a bivariate random vector (X,Y ). Then,

E [Y ] =

∫ ∞

−∞

∫ ∞

−∞
yfX,Y (x, y) dydx

=

∫ ∞

−∞

∫ ∞

−∞
yfX (x) fY |X (y|x) dydx

=

∫ ∞

−∞
fX (x)

∫ ∞

−∞
yfY |X (y|x) dy

︸ ︷︷ ︸
=E[Y |X=x]

dx

= E [E [Y |X]] . ■

Proposition 103 (Variance decomposition). Suppose E[|Y |2] <∞. Then,

Var [Y ] = E [Var [Y |X]] + Var [E [Y |X]] .

Proof. We use the definition of variance, linearity of expectation operator, and law of iterated
expectations to obtain

E [Var [Y |X]] = E
[(
E
[
Y 2|X = x

])
− (E [Y |X = x])

2
]

= E
[
E
[
Y 2|X = x

]]
− E

[
(E [Y |X = x])

2
]

= E
[
Y 2
]
− E

[
(E [Y |X = x])

2
]

= E
[
Y 2
]
− (E [Y ])

2
+ (E [Y ])

2 − E
[
(E [Y |X = x])

2
]

= Var [Y ]−
(
(E [E [Y |X = x]])

2 − E
[
(E [Y |X = x])

2
])

= Var [Y ]−Var [E [Y |X = x]] . ■

11.3.5 Covariance and correlation

Given two random variables X and Y such that E[|X|2],E[|Y |2] < ∞, the covariance between X

and Y , denoted Cov(X,Y ), is given by

Cov [X,Y ] := E [(X − E [X]) (Y − E [Y ])]

= E [XY ]− E [X]E [Y ] .

(make sure you can derive the second line from the first!) The correlation between X and Y ,
denoted Corr(X,Y ), is given by

Corr [X,Y ] :=
Cov [X,Y ]√
Var [X] Var [Y ]

If Cor[X,Y ] = 0 ⇔ Cov[X,Y ] = 0, we say that X and Y are uncorrelated. Otherwise, they are
correlated. Covariance and correlation measure a particular kind of linear relationship between X

and Y .

Theorem 35. Let X and Y be two random variables X and Y such that E[|X|2],E[|Y |2] <∞.

(i) −1 ≤ Corr[X,Y ] ≤ 1;

(ii) |Corr[X,Y ]| = 1 if and only if there exists a nonzero a ∈ R and b ∈ R such that aX + b = Y

holds with probability 1. Moreover, if Corr[X,Y ] = 1 (resp = −1), then a > 0 (resp. a < 0).
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Theorem 36. Let X and Y be two random variables X and Y such that E[|X|2],E[|Y |2] < ∞.
For any a, b ∈ R,

Var [aX + bY ] = a2Var [X] + b2Var [Y ] + 2abCov [X,Y ] .

If X and Y are uncorrelated, then

Var [aX + bY ] = a2Var [X] + b2Var [Y ] .

11.4 n-dimensional random vectors

An n-dimensional random vector is a function from a sample space to Rn for some n ∈ N.
Let X be an n-dimensional random vector. The joint distribution function, denoted FX , of X

is given by
F (x) := P (X ≤ x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) .

When X is discrete, the joint pmf is f(x) = P (X = x). When X is continuous and differentiable,
the joint pdf is given by

f (x) =
∂n

∂x1∂x2 · · · ∂xn
F (x) .

The joint pdf satisfies The expectation of an ndimensional random vector X is the (column) vector
of expectation of its elements; i.e.,

E [X] =




E [X1]

E [X2]
...

E [Xn]


 .

The variance-covariance matrix of X, denoted ΣX, is given by

ΣX := Var [X] = E
[
(X− E [X]) (X− E [X])

⊤
]

=




Var [X1] Cov [X1, X2] · · · Cov [X1, Xn]

Cov [X2, X1] Var [X2] · · · Cov [X2, Xn]
...

...
. . .

...
Cov [Xn, X1] Cov [Xn, X2] · · · Var [Xn]


 .

Theorem 37. ΣX is symmetric and positive semi-definite

Proof. Symmetry of ΣX follows from symmetry of Cov(·, ·) (check). For positive semi-definiteness,
note that for any column vector z ∈ Rn,

z⊤ΣXz = z′E
[
(X− E [X]) (X− E [X])

⊤
]
z

= E
[
z′ (X− E [X]) (X− E [X])

⊤
z
]
≥ 0. ■

Theorem 38. Suppose an n-dimensional random vector X has expectation µ and variance-covariance
matrix ΣX. For any A ∈ Rq×m, the random vector AX is a random vector with mean Aµ and
variance-covariance matrix AΣXA⊤.

Exercise 31. Prove the result above.

The marginal pdf (resp. pmf) of any subset of coordinates of X = (X1, X2, . . . , Xn)
⊤ can be
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computed by integrating out (resp. summing) the joint pdf (resp. pmf) over all possible values of
other coordinates.

The conditional pdf (resp. pmf) of any subset of coordinates of X = (X1, X2, . . . , Xn)
⊤ is

obtained by dividing the joint pdf (resp. pmf) by the marginal pdf (resp. pmf) of the remaining
coordinates.

Proposition 104 (Holder’s Inequality). Let p > 1 and q > 1 such that 1
p + 1

q = 1, then for any
random vectors X and Y

E
∣∣X⊤Y

∣∣ ≤ (E [∥X∥p])
1
p (E [∥Y∥q])

1
q .

Setting p = q = 2 gives the Cauchy-Schwarz inequality.

Proposition 105 (Minkowski’s Inequality). For any random vectors X and Y and p > 0,

(E [∥X+Y∥p])
1
p ≤ (E [∥X∥p])

1
p + (E [∥Y∥p])

1
p .

In general, for any random vector X and a constant vector a and p > 0,

E [∥X+ a∥p] ≤ C · (E [∥X∥p] + ∥a∥p) ,

where C is a constant that depends on p. For example, if a = −E[X], then

E [∥X− E [X]∥p] ≤ C (E [∥X∥p] + ∥E [X]∥p)
≤ 2CE [∥X∥p] .

We can also about
E [∥X + Y ∥p] ≤ C (E [∥X∥p] + E [∥Y ∥p]) ,

where C depends on p.

11.5 Normal distribution

If Z is normally distributed, denoted

Z ∼ N
(
µ, σ2

)
,

then, Z has density and cumulative distribution functions given, respectively, by

f (z) = ϕ (z) :=
1√
2πσ2

exp

[
−1

2

(z − µ)
2

σ2

]
,

F (z) = Φ (z) :=

∫ ∞

−∞
ϕ (z) dz.

Note that, there is no analytical expression for Φ(z); however, its existence is guaranteed by the
fundamental theorem of calculus.

11.5.1 Bivariate normal

If Z and Y are two random variables that are jointly normally distributed, we say that Z and Y

are bivariate normal. We denote this case as
[
Z

Y

]
∼ N (µ,Σ) ,
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where

µ =

[
µZ

µY

]
, Σ =

[
σ2
Z σZσY ρ

σZσY ρ σ2
Y

]
.

A nice property of bivariate normal random variables is that their linear combinations are also
normally distributed.

Proposition 106. For any a, b ∈ R, aZ + bY ∼ N(aµZ + bµY , a
2σ2

Z + b2σ2
Y + 2abρσZσY ).

You can prove the following by “brute force”, i.e., by writing out the density functions, but let
us prove it using a property of OLS as the best linear predicator (BLP).

Recall that zero covariance does not imply independence between two random variables; however,
if we know that the random variables are jointly normally distributed, then zero covariance does
indeed imply independence.

Proposition 107. If Cov[Z, Y ] = σZσY ρ = 0, then Z and Y are independent.

Recall that the OLS estimator is given by

(
X⊤X

)−1
X⊤y

where X ∈ Rm×n, b̂ ∈ Rn×1 and y ∈ Rm×1. The estimator solves the a linear system of equations
given by Xb = y (which may not have a solution) as “best” as possible. Now, suppose we treat
X and y as random—in particular, we think of the system as consisting of m realisations from a
random variable vector X ∈ R1×n and a random variable y ∈ R. Recall that

Var [X] = E
[
(X − E [X])

⊤
(X − E [X])

]
∈ Rn×n

Cov [X, y] = E
[
(X − E [X])

⊤
(y − E [y])

]
∈ Rn×1.

Then, the expectation of the OLS estimator of X̂b⊤ = ŷ, where X̂ = X − E[X] and ŷ = y − E[y],
is given by

E
[(
X̂⊤X̂

)−1

X̂⊤ŷ

]
= (Var [X])

−1
Cov [X, y] .

Proposition 108. Z|Y ∼ N(µZ + β(Y − µY ), σ
2
Z(1− ρ2)), where β := σZρ/σY .

Proof using BLP. We exploit the property of the Best Linear Predictor (BLP) and joint normality.
In particular, BLP tells us that the residual is orthogonal (i.e., uncorrelated) with the independent
variable. Joint normality then tell us that, in fact, the independent variable and the residuals are
independent.

Let β be the best linear predictor of a regression of Z on Y ; i.e.,

Z − µZ = β (Y − µY ) + U,

where
β :=

Cov [Z − µZ , Y − µY ]

Var [Y − µY ]
=
σZσY ρ

σ2
Y

=
σZ
σY

ρ.

Then, U is orthogonal to Y :

Cov [Y − µY , U ] = Cov [Y − µY , Z − µZ − β (Y − µY )] = Cov [Y, Z]− βVar [Y ]

= σZσY ρ−
σZ
σY

ρσ2
Y = 0.
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Since U is a linear function of Z and Y which are jointly normal, U is also normally distributed
(and jointly normally distributed with Y ). That Y and U are jointly normal together with the fact
that Cov[Y, U ] = 0 implies that Y and U are, in fact, independent. Therefore, the distribution of
U is the same as the distribution of U |Y . The distribution of U is given by U ∼ N(0, σ2

Z(1− ρ2))

since

E [U ] = E [Z − µZ − β (Y − µY )] = 0,

Var [U ] = Var [Z − µZ − β (Y − µY )] = Var [Z] + β2 Var [Y ]− 2β Cov [Z, Y ]

= σ2
Z +

σ2
Z

σ2
Y

ρ2σ2
Y − 2

σZ
σY

ρσZσY ρ = σ2
Z

(
1− ρ2

)
.

Finally, given that
Z = µZ + β (Y − µY ) + U,

it follows that Z|Y ∼ N(µZ + β(Y − µY ), σ
2
Z(1− ρ2)). ■

11.5.2 Multivariate normal

We now extend the result above to the multivariate case. Suppose

Z =

[
Z1

Z2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ

Σ⊤
12 Σ22

])
,

where Z1 and Z2 are k1 × 1 and k2 × 1 random vectors with k1 + k2 = k. Our goal is to find the
distribution of Z1 conditional on Z2.

Consider running the (population) regression:

Z1 = βZ2 +U.

The BLP, β, is given by

β = Cov [Z1,Z2] Var [Z2]
−1

= Σ12Σ
−1
22 .

We can therefore define the residual as

U = Z1 − Σ12Σ
−1
22 Z2.

We can show that U is uncorrelated with Z2:

Cov [U,Z2] = Cov
[
Z1 − Σ12Σ

−1
22 Z2,Z2

]

= Cov [Z1,Z2]− Σ12Σ
−1
22 Var [Z2]

= Σ12 − Σ12Σ
−1
22 Σ22 = 0.

Moreover, since U is a linear combinations of the components of the normal vector Z, it is jointly
normally distributed with Z2. Hence, U is independent of of Z2.

The expected value of U is

E [U] = E [Z1]− Σ12Σ
−1
22 E [Z2]

= µ1 − Σ12Σ
−1
22 µ2.
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Define
ε := U− E [U] ,

then

ε = Z1 − Σ12Σ
−1
22 Z2 −

(
µ1 − Σ12Σ

−1
22 µ2

)

⇒ Z1 − µ1 = Σ12Σ
−1
22 (Z2 − µ2) + ε,

where ε is mean zero and (still) independent of Z2.
The variance of ε is given by

Var [ε] = Var [U− E [U]] = Var [W] = Var
[
Z1 − Σ12Σ

−1
22 Z2

]

= Var [Z1] + Σ12Σ
−1
22 Var [Z2]

(
Σ12Σ

−1
22

)′

− Σ12Σ
−1
22 Cov [Z1,Z2]− Cov [Z1,Z2]

(
Σ12Σ

−1
22

)′

= Σ11 +Σ12Σ
−1
22 Σ22Σ

−1
22 Σ

′
12 − 2Σ12Σ

−1
22 Σ12

= Σ11 − Σ12Σ
−1
22 Σ12.

Thus, we realise that

Z1|Z2 ∼ N
(
µ1Σ12Σ

−1
22 (Z2 − µ2) ,Σ11 − Σ12Σ

−1
22 Σ12

)

because the variation in Z1 fixing Z2 are all driven by variations in ε which is independent of Z2.
Moreover, the conditional expectation of Z1−µ1 given Z2−µ2 is linear and the coefficients are

the coefficient of a linear projection of Z1 − µ1 on Z2 − µ2:

E [Z1|Z2]− µ1 = Σ12Σ
−1
22 (Z2 − µ2) .

11.5.3 Log-normal distribution

A random variable Z is log-normally distributed if lnZ is normally distributed. The next result is
useful when you have a constant absolute risk aversion utility function, i.e., u(x) = −a exp(−ax)
and a normally distributed risk or a constant relative risk aversion utility function, i.e., u(x) =

x1−a/(1− a) with a > 0, and a log-normally distributed risk.

Proposition 109. Suppose Z is log-normally distributed; i.e., lnZ ∼ N(µ, σ2). Then,

E
[
Z−γ

]
= exp

[
−γµ+

1

2
γ2σ2

]
.
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Proof. Define z := lnZ.

E
[
Z−γ

]
= E

[
exp

(
ln
(
Z−γ

))]
= E [exp [−γz]]

=

∫ ∞

−∞
exp [−γz]ϕ (z) dz

=
1√
2πσ2

∫ ∞

−∞
exp [−γz] exp

[
− (z − µ)

2

2σ2

]
dz

=
1√
2πσ2

∫ ∞

−∞
exp

[
−2σ2γz + z2 + µ2 − 2zµ

2σ2

]
dz

=
1√
2πσ2

∫ ∞

−∞
exp

[
−z

2 + 2
(
−µ+ σ2γ

)
z + µ2

2σ2

]
dz

=
1√
2πσ2

∫ ∞

−∞
exp

[
−
(
z +

(
−µ+ σ2γ

))2 −
(
−µ+ σ2γ

)2
+ µ2

2σ2

]
dz

= exp

[
−−

(
µ− σ2γ

)2
+ µ2

2σ2

]
1√
2πσ2

∫ ∞

−∞
exp

[
−
(
z −

(
µ− σ2γ

))2

2σ2

]
dz

︸ ︷︷ ︸
=1

= exp

[
−−µ2 − σ4γ2 + 2µσ2γ + µ2

2σ2

]

= exp

[
−γµ+

1

2
γ2σ2

]
. ■

11.6 Other relatives of normal distributions

• Let (Xi)
n
i=1 be a collection of n random variables that are iid normally distributed. Then,∑n

i=1X
2
i has a chi-squared distribution with n degrees of freedom.

• Let X and Y be two independent random variables that has a chi-squared distribution with
degrees of freedoms nx and ny respectively. Then,

F :=
X
nx

Y
ny

has an F -distribution.

• If U ∼ N(0, 1) and V ∼ N(0, 1) and they are independent, then X := U
V is has Cauchy

distribution with pdf

f (x) =
1

π (1 + x2)
.

Cauchy distribution has no integer moments.
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12 Relationships between common distributions

12.1 Uniform distribution and other distributions

Let F be a CDF. Then, the quantile function of F is F−1 : R → R defined as

F−1 (α) := min {z ∈ R : F (z) ≥ α} .

Observe that F−1 is well-defined because F is nondecreasing and right-continuous, which imply
that the set of values with cumulative probability equal to or higher than α is closed.

The following tells us that we can build random variable with any CDF F from a uniformly
distributed random variable.

Proposition 110. Let U ∼ Uniform[0, 1] and F be a CDF. Then, Z = F−1(U) is a random
variable with CDF F .

Exercise 32. Consider a logistic random variable with CDF

F (x) =
1

1 + e−x
.

Show that X = ln( U
1−U ) is a logistic random variable when U is uniformly distributed on [0, 1].

12.1.1 Bernoulli, Binomial and Poisson distributions

A random variable Zi follows a Bernoulli distribution with parameter p, Z ∼ Bernoulli(p), if it
takes the value 1 with probability p and 0 with probability 1 − p. Its probability mass function is
given by

fZi (z) = pz (1− p)
1−z

= pz + (1− p) (1− z) ∀z ∈ {0, 1}

and the cumulative distribution function is given by

FZi
(z) =





0 if z < 0

1− p if 0 ≤ z < 1

1 if z ≥ 1

.

We think of Bernoulli distribution describing a single coin toss and p as the probability that we see
(say) head. More generally, we think of Bernoulli as describing the outcome of a single experiment
with binary outcomes. The first two moments are:

E [Z] = 1 · p+ 0 · (1− p) = p,

Var [Z] = E
[
Z2
]
− (E [Z])

2
= E [Z] (1− E [Z]) = p (1− p) ,

A random variable Z follows a Binomial distribution with parameters (n, p), denoted Z ∼
Binomial(n, p), if its probability mass function is given by

fZ (z) =

(
n

z

)
pz (1− p)

n−z

and the cumulative distribution function is given by

FZ (z) =

⌊z⌋∑

i=1

(
n

i

)
pi (1− p)

n−i
.
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We think of binomial distribution as describing the distribution of the number of heads when we
toss a coin n times independently. More generally, it describes the distribution of the number of
successes in n independently identically distributed experiments with binary outcomes. Note that

Binomial(1, p) d
= Bernoulli(p).

If (Zi)
n
i=1 is a collection of independently identically distributed random variables that each follows

Bernoulli(p), then
n∑

i=1

Zi
d
= Binomial (n, p) .

The first two moments are

E [Z] = E

[
n∑

i=1

Zi

]
=

n∑

i=1

E [Zi] = np,

Var [Z] = np (1− p) .

A random variable Y follows a Poisson distribution with parameter λ, denoted Y ∼ Poisson(λ),
if its probability mass function is given by

fY (y) =
λye−λ

y!
∀y ∈ {0} ∪ N.

and the cumulative distribution function is given by

FY (y) = e−λ

⌊y⌋∑

i=1

λi

i!
.

We think of Poisson distribution as describing the probability of a given number of occurrences of
an event in a fixed amount of time when the events occur at a constant rate independently of the
time of the last event. Its first two moments are

E [Y ] = λ = Var [Y ] .

To shows this, use the Mclaurin series for the exponential function from (5.2): ex =
∑∞

n=0 x
n/n!.

Then,
∞∑

y=0

f (y) =

∞∑

y=0

λye−λ

y!
= e−λ

∞∑

y=0

λy

y!
= e−λeλ = 1.

Therefore,

E [Y ] =

∞∑

y=0

yfY (y) =

∞∑

y=0

y
λye−λ

y!
=

∞∑

y=1

y
λye−λ

y!

= λe−λ
∞∑

y=1

λy−1

(y − 1)!
= λe−λ

∞∑

y=0

λy

y!

= λe−λeλ = λ.

Similar computations gives that Var[Y ] = λ (try it!).
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The probability mass function for Poisson distribution can also be written recursively as follows:

Pr (Y = y) =
λye−λ

y!
=
λ

y

λy−1e−λ

(y − 1)!
=
λ

y
Pr (Y = y − 1) , (12.1)

where Pr(Y = y) is the probability measure associated with the event Y = y. When n is large and
p is small, Poisson distribution approximates binomial distribution with parameters (n, p). To see
this, suppose Z ∼ Binomial(n, p). Then,

Pr (Z = z) =

(
n

z

)
pz (1− p)

n−z
=

n!

z! (n− z)!
pz (1− p)

n−z

=
p

1− p

n− z + 1

z

n!

(z − 1)! (n− (z − 1))!
pz−1 (1− p)

n−(z−1)

=
p

1− p

n− z + 1

y
Pr (Z = z − 1)

=
np− p (y − 1)

z − pz
Pr (Z = z − 1) .

Letting λ = np, for small p, we have

Pr (Z = z) =
λ− p (z − 1)

y − pz
Pr (Z = z − 1) ≈ λ

z
Pr (Z = z − 1) ,

which corresponds to the Poisson recursion in (12.1). It suffices therefore to establish that Pr(Z =

0) ≈ Pr(Y = 0). Since

Pr (Z = 0) = (1− p)
n
=
(
1− np

n

)n
=

(
1− λ

n

)n

and limn→∞(1− λ/n)n = exp[−λ], for sufficiently large n. we have

Pr (Z = 0) ≈ exp (−λ) = Pr (Y = 0) .

Thus, when n is large and p is small (i.e., when the number of experiment per period is large and
the probability of event occurring is small), then

lim
n→∞:np=λ

Z
d
= lim

n→∞:np=λ

n∑

i=1

Zi
d
= Poisson (λ) .

12.1.2 Poisson and exponential

A random variable Z follows an exponential distribution with parameter λ if its probability density
function is given by

fZ (z) = λe−λz

and and the cumulative distribution function is given by

FZ (z) = 1− e−λz.

Its first two moments are given by

E [Z] =
1

λ
, Var [Z] =

1

λ2
.
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Recall that Poisson distribution describes the probability of a given number of occurrences of an
event in a fixed amount of time. The exponential distribution describes the length of time between
the occurrences of these events (which is constant).

To see this, let ∆ be the “fixed amount of time” and suppose that the event occurs at rate λ at
any point in time. Then, on average, there will be λ∆ occurrences of events per ∆ units of time.
The Poisson distribution associated with this is given by

Pr (Y = y) =
(λ∆)

y
e−λ∆

y!

and Pr(Y = 0) = e−λ∆ is the probability of no occurrence during ∆ units of time. Now let Z
describe the time it takes for the first occurrence of the event. Then, the probability that the event
occurs after ∆ units of time is equivalent to the probability of no occurrence of the event during
∆ units of time; i.e., Pr(Z > ∆) = Pr(Y = 0). Thus, we can write the probability that the event
occurs by period ∆ is

Pr (Z ≤ ∆) = 1− Pr (Z > ∆) = 1− Pr (Y = 0) = 1− e−λ∆.

Hence, Z follows an exponential distribution with parameter λ. Note that since Poisson is memory-
less (i.e., the rate of arrival is constant), time between any two events follows an exponential
distribution with parameter λ.

Remark 26. Incidentally, suppose that Z1 and Z2 follows Poisson distribution with parameter λ1
and λ2 respectively and they are independent. We can interpret Z1 and Z2 as describing the time
until first occurrence of event of types 1 and 2 respectively. Let Z := Z1 + Z2, then

FZ (z) = Pr (Z1 + Z2 ≤ z) = Pr ({Z1 ≤ z} ∩ {Z2 ≤ z − Z1})

=

z∑

i=0

Pr ({Z1 = i} ∩ {Z2 = z − i}) =
z∑

i=0

Pr ({Z1 = i}) Pr ({Z2 = z − i})

=

z∑

i=0

λi1e
−λ1

i!

λz−i
2 e−λ2

(z − i)!
=

z∑

i=0

(
z!

i! (z − i)!
λi1λ

z−i
2

)
e−(λ1+λ2)

z!

=

(
z∑

i=0

(
z
i

)
λj1λ

z−j
2

)
e−(λ1+λ2)

z!
=

(λ1 + λ2)
z
e−(λ1+λ2)

z!
,

where, in second line, we use the fact that Z1 and Z2 are independent, and in the last line, we used
the fact that

(λ1 + λ2)
z
=

z∑

i=0

(
z
i

)
λj1λ

z−j
2 ∀z ∈ {0} ∪ N.

Thus, Z = Z1 + Z2 follows a Poisson distribution with parameter λ1 + λ2. It follows that the time
until the first event of either type 1 or 2 occurs is given by exponential distribution with parameter
λ1 + λ2.

By independence, the probability density for (Z1, Z2) is given by

f(Z1,Z2) (z1, z2) = fZ1
(z1) fZ2

(z2) = λ1e
−λ1z1λ2e

−λ2z2 = λ1λ2e
−(λ1z1+λ2z2).

Then the probability that event associated with Z1 occurs before the event associated with Z2 is
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given by

Pr (Z1 < Z2) =

∫

(z1,z2)∈[0,∞)×[z1,∞)

f(Z1,Z2) (z1, z2) d (z1, z2)

=

∫ ∞

0

∫ ∞

z1

λ1λ2e
−(λ1z1+λ2z2)dz2dz1 =

∫ ∞

0

λ1e
−λ1z1

(∫ ∞

z1

λ2e
−λ2z2dz2

)
dz1

=

∫ ∞

0

λ1e
−λ1z1

(
e−λ2z1

)
dz1 =

∫ ∞

0

λ1e
−(λ1+λ2)z1dz1

= − λ1
λ1 + λ2

e−(λ1+λ2)z1

∣∣∣∣
∞

0

=
λ1

λ1 + λ2
,

where we used Fubini’s theorem in the second line.

12.2 Gamma distribution

Recall the gamma function:

Γ (α) :=

∫ ∞

0

e−ttα−1dt, α > 0.

Observe that the integrand, e−ttx−1 is nonnegative, hence it follows that

f (t) :=
e−ttα−1

Γ (α)
∀t ∈ (0,∞)

is a probability density function. Now apply the change of variables via x := βt⇔ t = x/β so that
dt = β−1dx. Hence, ∫ ∞

0

e−ttα−1dt =
1

β

∫ ∞

0

e−
x
β

(
x

β

)α−1

dx

and so

f (x|α, β) =
e−

x
β

(
x
β

)α−1

β−1Γ (α)
=

1

Γ (α)βα
xα−1e−x/β

for all x ∈ (0,∞), α > 0 and β > 0. Above is the probability density associated with gamma
distribution with parameters (α, β). We refer to α as the shape parameter since it mostly influences
the peakedness of the distribution and β as the scale parameter since it mostly influences the spread
of the distribution.

The first two moments of a random variable Z that follows a gamma distribution with parameters
(α, β), denoted Z ∼ Gamma(α, β), are given by

E [Z] = αβ, Var [Z] = αβ2.

Gamma distribution relates to many commonly used distributions. Let Z ∼ Gamma(α, β).

• Suppose α is an integer and Y ∼ Poisson(x/β). Then, for any x ∈ (0,∞),

Pr (Z ≤ z) = Pr (Y ≥ α) .

• Suppose α = p/2 for some integer p and β = 2, then Z follows a χ2-distribution with p degrees
of freedom.

• Suppose α = 1, then Z follows an exponential distribution with parameter 1/β.
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12.3 Conjugate distribution property

Consider a problem of inferring a distribution for a parameter θ ∈ Θ given some data Z. The
posterior belief is given by f(θ|Z), which, by Bayes rule, can be written as

f (θ|Z = z) =
f (z|θ)π (θ)

∫
θ̃∈Θ

f
(
z|θ̃
)
π
(
θ̃
)
dθ̃
,

where π is the prior belief over Θ and f(Z|θ) is the conditional density of Z given θ. If the posterior
distribution, f(θ|Z = z), is in the same probability distribution family as the prior probability
distribution, π(θ), the prior and posterior are then called conjugate distributions and the prior is
called a conjugate prior. We will demonstrate below that normally distributed prior gives rise to
normally distributed posterior.

At each date t ∈ N, suppose that a Bayesian decision maker observes Zt = θ +Wt, where each
Wt are identically and independently distributed according to N

(
0, σ2

)
. Let the decision maker’s

time-t belief be that θ ∼ N(µt, γ
2
t ) after observing Z1, Z2, . . . , Zt, but before observing Zt+1.

The density conditional on θ and observed values of Zt’s is given by

ψ (Zt+1 = z|θ, Zt, Zt−1, . . . , Z1) = ψ (Zt+1 = z|θ) = 1√
2πσ2

exp

[
− (z − θ)

2

2σ2

]
,

where that Zt’s are iid implies the first equality. The prior density for θ is given by

πt (θ) =
1√
2πγ2t

exp

[
− (θ − µt)

2

2γ2t

]
.

By Bayes rule, posterior density is given by

πt+1 (θ|Zt+1 = z) =
ψ (Zt+1 = z|θ, Zt, Zt−1, . . . , Z1)πt (θ)∫

R ψ (Zt+1 = z|θ, Zt, Zt−1, . . . , Z1)πt (θ) dθ

=
ψ (Zt+1 = z|θ)πt (θ)∫

R ψ (Zt+1 = z|θ)πt (θ) dθ
,

where the second equality follows from the fact that Zt+1 is independent of past values conditional
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on θ. Consider the term

ψ (Zt+1 = z|θ)πt (θ)

=

(
1√
2πσ2

exp

[
− (z − θ)

2

2σ2

])(
1√
2πγ2t

exp

[
− (θ − µt)

2

2γ2t

])

=
1

2πσγt
exp

[
− 1

2γ2t σ
2

(
γ2t (z − θ)

2
+ σ2 (θ − µt)

2
)]

=
1

2πσγt
exp

[
− 1

2γ2t σ
2

(
γ2t
(
z2 − 2θz + θ2

)
+ σ2

(
θ2 − 2θµt + µ2

t

))]

=
1

2πσγt
exp

[
− 1

2γ2t σ
2

((
γ2t + σ2

)
θ2 − 2θ

(
γ2t z + σ2µt

)
+ γ2t z

2 + σ2µ2
t

)]

=
1

2πσγt
exp

[
− 1

2γ2t σ
2

((
γ2t + σ2

)(
θ2 − 2θ

γ2t z + σ2µt

γ2t + σ2

)
+ γ2t z

2 + σ2µ2
t

)]

=
1

2πσγt
exp

[
− 1

2γ2t σ
2

(
(
γ2t + σ2

)
(
θ2 − 2θ

γ2t z + σ2µt

γ2t + σ2
+

(
γ2t z + σ2µt

γ2t + σ2

)2

−
(
γ2t z + σ2µt

γ2t + σ2

)2
)

× γ2t z
2 + σ2µ2

t

)



=
1

2πσγt
exp

[
− 1

2γ2t σ
2

(
(
γ2t + σ2

)(
θ − γ2t z + σ2µt

γ2t + σ2

)2

−
(
γ2t + σ2

)(γ2t z + σ2µt

γ2t + σ2

)2

+ γ2t z
2 + σ2µ2

t

)]

=
1√

2π (γ2t + σ2)
exp


−

−
(
γ2t + σ2

) (γ2
t z+σ2µt

γ2
t +σ2

)2
+ γ2t z

2 + σ2µ2
t

2γ2t σ
2




× 1√
2π

γ2
t σ

2

γ2
t +σ2

exp


−1

2

(
θ − γ2

t z+σ2µt

γ2
t +σ2

)2

γ2
t σ

2

γ2
t +σ2




︸ ︷︷ ︸
∼N

(
γ2
t z+σ2µt

γ2
t +σ2 ,

γ2
t σ2

γ2
t +σ2

)

.

Then,
∫

Θ

ψ (Zt+1 = z|θ)πt (θ) dθ

=
1√

2π (γ2t + σ2)
exp


−

−
(
γ2t + σ2

) (γ2
t z+σ2µt

γ2
t +σ2

)2
+ γ2t z

2 + σ2µ2
t

2γ2t σ
2



∫

Θ

φ (θ) dθ

︸ ︷︷ ︸
=1

=
1√

2π (γ2t + σ2)
exp


−

−
(
γ2t + σ2

) (γ2
t z+σ2µt

γ2
t +σ2

)2
+ γ2t z

2 + σ2µ2
t

2γ2t σ
2


 .

Thus, the posterior is given by

πt+1 (dθ|Zt+1 = z) =
1√

2π
γ2
t σ

2

γ2
t +σ2

exp


−1

2

(
θ − γ2

t z+σ2µt

γ2
t +σ2

)2

γ2
t σ

2

γ2
t +σ2


 .
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We therefore realise that the posterior is normally distributed according to:

πt+1 (θ) ∼ N

(
µt+1,

γ2t σ
2

γ2t + σ2

)
.

Note when prior and posterior distributions are the same, they are called conjugate priors.

γ2t+1 =
γ2t σ

2

γ2t + σ2
, µt+1 =

γ2t z + σ2µt

γ2t + σ2
. (12.2)

We can define the expression in terms of precisions, defined as the inverse of the variance:

τγt :=
1

γ2t
, τσ :=

1

σ2
.

Then,

τγt+1 =
γ2t + σ2

γ2t σ
2

=
1

σ2
+

1

γ2t
= τσ + τγt .

Thus, the precision of the posterior is simply the sum of the precision of the prior and Zt+1|θ.

µt+1 =
1

1 + σ2

γ2
t

z +
1

(
σ2

γ2
t

)−1

+ 1
µt =

τσ

τσ + τγt
z +

(
1− τσ

τσ + τγt

)
µt.

Thus, we see that the posterior mean is a weighted average of the observed Zt+1 = z and the prior,
where the weights are given by the ratio of precision of between the prior and Zt+1|θ. If the prior
is relatively more (less) precise, then the weights placed on Zt+1 = z is smaller (larger).
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13 Stochastic dominance

Our goal is to give a partial ordering of a set F of CDFs. All of the ordering we introduce below are
partial orders on F (or equivalently, on the set of random variables distributed according to some
F ∈ F).

13.1 First-order stochastic dominance

Proposition 111. Let F and G be two CDFs with a common support [a, b]. The following are
equivalent.

(i) F first-order stochastically dominates (FOSD) G; i.e., F ≥FOSD G.39

(ii) F (t) ≤ G(t) ∀t ∈ [a, b].

(iii) E[u(Z)] ≥ E[u(Y )] for any increasing function u : [a, b] → R, where Z ∼ F and Y ∼ G.

Let Z ∼ F and Y ∼ G. To make sense of (ii), rewrite the condition as 1 − F (t) ≥ 1 − G(t)

and recall that 1−F (t) is the probability that random variables are greater than t. Hence, Z first-
order stochastically dominates Y means that, for each possible realisation of the random variables
t ∈ [a, b], the probability that Z has a realisation greater than t is larger than that of Y . (ii) also
implies that the F lies everywhere (weakly) below that of G on the support. For (iii), note that the
identity function is (weakly) increasing so that FOSD implies that the mean of X is greater than
that of Y . The third characterisation can be generalised to deal with random vectors.

13.2 Second-order stochastic dominance

We now introduce a partial order among random variables with a common support and a common
mean. We first define the idea of a mean-preserving spread. Let F and G be two CDFs with a
common support and suppose Z ∼ F and Y ∼ G.

Proposition 112. Let F and G be two CDFs with a common support [a, b] and a common mean.
The following are equivalent.

(i) G is a mean-preserving spread of F , denoted F ≥MPS G.

(ii) E[Z|Y ] = Y , where Z ∼ F and Y ∼ G.

(iii) Y is a garbling of Z; i.e., there exists a random variable W with E[W |Z] = 0 such that
Y

d
= Z +W .40

(iii) implies that if F ≥MPS G, then we can obtain Z ∼ F from Y ∼ G in the following way: (i)
draw z from Z; (ii) draw w from W with E[W ] = 0; and (iii) z := y + w. The figure below shows
an example of a mean-preserving spread of a random variable Z, which has equal probability mass
on three equidistant points. In this example, the distribution of W depends on the realisation of
Z. If the left-most point is realised, then w = 0 so that probability mass of Y = Z +W lies in the
same location as Z (purple). In contrast, if the middle point is realised, then W ’splits’ this point
into three equidistance points with equal masses (red). Finally, if the right-most point is realised,
W splits the mass into two with weight 1/4 on the left and weight 3/4 on the right. The distances
are such that the mean is preserved.

39Given Z ∼ F and Y ∼ G, we also often say that Z first-order stochastically dominates Y if F ≥FOSD G.
40 d
= means that the two sides have the same associated CDFs.
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Figure 13.1: Mean-preserving spread.
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Proposition 113. Let F and G be two CDFs with a common mean. The following are equivalent.

(i) F second-order stochastically dominates G; i.e., F ≥SOSD G.41

(ii)
∫ c

a
F (t) dt ≤

∫ c

a
G (t) dt ∀c ∈ [a, b] with equality at c = b.

(iii) G is a mean preserving spread of F , i.e., F ≥MPS G.

(iv) E[u(Z)] ≤ E[u(Y )] for any convex function u : [a, b] → R, where Z ∼ F and Y ∼ G.

To understand the connection between (iii) and (iv), consider the following figure in which
Z ∼ F has a degenerate distribution and Y ∼ G is a mean-preserving spread of Z, i.e. F ≥MPS G,
where G gives probability mass 1/2 to a low value and a mass 1/2 to a high value (the two points
are equidistance from Z so as to preserve the mean). Let us now consider integrating as per the
definition of SOSD. Under F , E[u(Z)] =

∫
u(z)F (dz) corresponds to the vertical height at z. Under

Y , E[u(Y )] =
∫
u(y)G(dy) corresponds to the average of the heights at y− and y+. We can see

from this figure that the latter is less than the former; i.e. F ≥SOSD G. Thinking of Z and Y as
lotteries, this also tells us that a risk-averse expected-utility agent prefers lottery Z over lottery Y .

Figure 13.2: F ≥MPS G with Z ∼ F and Y ∼ G.
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To understand how (ii), let us consider the case in which the random variable X has support
[0, 1] with mean 1/2. Consider first the following cases:

(i) X has a degenerate distribution (i.e. X is a constant equal to 1/2);

(ii) X̃ equals 1 and 0 with equal probabilities;

(iii) X ∼ Uniform[0, 1];
41Given Z ∼ F and Y ∼ G, we also often say that Z second-order stochastically dominates Y if F ≥FOSD G.
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(iv) X̂ equals 1/4 and 3/4 with equal probabilities;

We plot the CDF and and the integral of the CDF for each case below.

Figure 13.3: SOSD.
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From the figure, we can deduce that

FX ≥SOSD FX̂ ≥SOSD FX ≥SOSD FX̃ ,

where we may replace ≥SOSD with ≥MPS ; i.e., X̃ is a mean-preserving spread of X, which, in turn,
is a mean-preserving spread of X̂, which, in turn, is a mean-preserving spread of X.

13.2.1 Hazard rate

Let T be a random variable that represents the time until a particular event (e.g., T is the length
of unemployment period and the event is finding a job). Let F denote its associated cumulative
distribution function so that F (t) = Pr(T ≤ t) denotes the probability that the event has occurred
by time t. The survivor function is the probability of surviving past t and define

S (t) := 1− F (t) = Pr (T > t) .

The conditional probability of leaving the initial state within the time interval t until t+ h, given
survival up to time t is given by

Pr (t ≤ T < t+ h|T ≥ t) .

Dividing above by h gives the average probability of leaving per unit time period over the interval
t until t+ h. Taking the limit as h↘ 0 gives the hazard rate function, denoted λ(t); i.e.,

λ (t) := lim
h↘0

Pr (t ≤ T < t+ h|T ≥ t)

h
.

At each time t, the hazard rate function is the instantaneous rate of event occurring per unit of
time. Observe that

Pr (t ≤ T < t+ h|T ≥ t) =
Pr ({t ≤ T < t+ h} ∩ {t ≤ T})

Pr (t ≤ T )
=

Pr (t ≤ T < t+ h)

Pr (t ≤ T )
=
F (t+ h)− F (t)

1− F (t)
.
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Recalling that F is right-continuous,

λ (t) = lim
h↘0

Pr (t ≤ T < t+ h|T ≥ t)

h
= lim

h↘0

1

1− F (t)

F (t+ h)− F (t)

h
=
f (t)

S (t)
.

There exists a bijection between the hazard rate function and the CDF of T . To see this, observe
that

λ (t) =
f (t)

1− F (t)
= −d ln (1− F (t))

dt
.

Integrating both sides over [0, z] gives
∫ z

0

λ (t) dt = −
∫ z

0

d ln (1− F (t))

dt
dt = − ln (1− F (z)) + ln (1− F (0))

= − ln (1− F (z)) ,

where we used that F (0) = 0. Therefore, it follows that

F (z) = 1− exp

(
−
∫ z

0

λ (t) dt

)
. (13.1)

Observe that if we choose the hazard rate function to be constant so that λ(t) := λ, then

F (z) = 1− exp (−λz) ,

which is the CDF for exponential distribution.

13.3 Domination in terms of hazard rate and reverse hazard rates

Given two CDFs F and G, we say that F dominates G in terms of the hazard rate, denoted
F ≥HR G, if

λF (z) =
f (z)

1− F (z)
≤ g (z)

1−G (z)
= λG (z) ∀z ∈ R.

Similarly, we say that F dominates G in terms of the reverse hazard rate, denoted F ≥RHR G, if

σF (z) :=
f (z)

F (z)
≥ g (z)

G (z)
=: σG (z) ∀z ∈ R.

Note that (F,≥HR) and (F,≥RHR) are both partially ordered sets.
Domination in terms of hazard rate and reverse hazard rate both imply first-order stochastic

dominance.

Proposition 114. Suppose that F ≥HR G or F ≥RHR G for some CDFs F and G. Then,
F ≥FOSD G.

Proof. Recall 13.1. Then, by monotonicity of integral, it follows that if F ≥HR G, then

F (z) = 1− exp

(
−
∫ z

0

λF (t) dt

)
≤ 1− exp

(
−
∫ z

λG (t) dt

)
= G (z) ∀z ∈ R.

Hence, F ≥FOSD G.

Observe that

σF (z) =
d lnF (z)

dt
⇒
∫ ∞

z

σF (t) dt = − lnF (z) ⇔ F (z) = exp

[
−
∫ ∞

z

σF (t) dt

]
,
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where we used the fact that limz→∞ F (z) = 1. Hence, if F ≥RHR G, then

F (z) = exp

[
−
∫ ∞

z

σF (t) dt

]
≤ exp

[
−
∫ ∞

z

σG (t) dt

]
= G (z) ∀z ∈ R.

Hence, F ≥FOSD G. ■

13.4 Relation with domination in terms of the likelihood ratio

Given two CDFs F and G, we say that F dominates G in terms of the likelihood ratio, denoted
F ≥LR G if

f (z)

g (z)
≤ f (y)

g (y)
∀z, y ∈ R : z < y.

Equivalently, F ≥LR G is f/g is nondecreasing. If F ≥LR G, then the graph of densities f and g

can intersect at most once. Note that (F,≥LR) is a partially ordered set.
We will show that domination in terms of the the likelihood ratio implies domination in terms

of both hazard rate and reverse hazard rate. Combined with Proposition 114, it follows that
dominance in terms of the likelihood ratio implies first-order stochastic dominance.

Proposition 115. Suppose that F ≥LR G for some CDFs F and G. Then, F ≥HR G and
F ≥ RRHRG.

Proof. Suppose F ≥LR G. Then for all z < y,

f (z)

g (z)
≤ f (y)

g (y)
⇔ f (y)

f (z)
≥ g (y)

g (z)
.

Hence, by monotonicity of integration,

1

λF (z)
=

1− F (z)

f (z)
=

∫ ∞

z

f (y)

f (z)
dy ≥

∫ ∞

z

g (y)

g (z)
dy =

1−G (z)

g (z)
=

1

λG (z)
.

It follows that λF (z) ≤ λG(z) for all z ∈ R; i.e., F ≥HR G.
We also have that, for all z < y,

f (z)

g (z)
≤ f (y)

g (y)
⇔ f (z)

f (y)
≤ g (z)

g (y)
.

Hence, by monotonicity of integration,

1

σF (y)
=
F (y)

f (y)
=

∫ y

0

f (z)

f (y)
dz ≥

∫ y

0

g (z)

g (y)
dz =

G (y)

g (y)
=

1

σG (y)
.

It follows that σF (y) ≥ σG(y) for all y ∈ R; i.e., F ≥RHR G. ■

To recap, we have shown that

F ≥LR G⇒ F ≥HR G and F ≥RHR G,

F ≥HR G⇒ F ≥FOSD G,

F ≥RHR G⇒ F ≥FOSD G.

13.5 Order statistics

Let (Zi)
n
i=1 be a collection of n independent random variables with associated CDF and density

given by F and f , respectively. Let (Z(k))
n
k=1 be a rearrangement so that Z(1) ≥ Z(2) ≥ · · · ≥ Z(n).
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Each random variable Z(k) is referred to as the kth order statistics. Let F(k) denote the distribution
of Z(k) with corresponding density function f(k). Our task is to express f(k) as a function of f .

13.5.1 Highest-order statistic

We derive the expression for F(1) and f(1). The event Z(1) ≤ z is the same as the event that Zi ≤ z

for all i ∈ {1, . . . , n}. Since each Zi is an independent draw from F , we have

F(1) (z) = (F (z))
n ≡ Fn (z) .

Hence, using the chain rule, the associated density is

f(1) (z) = nFn−1 (z) f (z) .

The following is then immediate.

Proposition 116. If F ≥FOSD G, then F(1) ≥FOSD G(1).

13.5.2 Second-order statistic

We now derive the expression for F(2) and f(2). The event that Z(2) ≤ z is the union of the following
disjoint events: (i) Zi ≤ z for all i ∈ {1, . . . , n}; (ii) n − 1 of Zi’s are less than or equal to z and
exactly one is greater than y. There are n different ways in which (ii) can occur. Hence,

F(2) (z) = Fn (z) + nFn−1 (z) (1− F (z))

= nFn−1 (z)− (n− 1)Fn (z) .

The associated density function is

f(2) (z) = n (n− 1) (1− F (z))Fn−2 (z) f (z) .

Proposition 117. If F ≥FOSD G, then F(2) ≥FOSD G(2).

13.5.3 kth-order statistic

In general, we have the following for the density of the kth order statistic:

f(k) (z) =
n!

(k − 1)! (n− k)!

(
Fn−k (z)

)
(1− F (z))

k−1
f (z) ,

where the n!/(k−1)!(n−k!) is the number of different ways in which any draws of {Zi}ni=1 could have
been the kth order statistic. Fn−k(z) is the probability that n− k draws are below z, 1− F k−1(z)

is the probability that k − 1 draws are above z and f(z) is the density associated with drawing z.

Remark 27. The tradition in statistic is to worry about the smallest order statistics; i.e., Z(k) means
the kth smallest among (Zi)

n
i=1. The density of the kth order statistic is defined as

f (k) (z) :=
n!

(k − 1)! (n− k)!
(F (z))

k
(1− F (z))

n−k
f (z) .
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