
Econ 6190 Problem Set 8

Fall 2024

1. [Hansen] A Bernoulli random variable X is

P (X = 0) = 1→ p

P (X = 1) = p

Given a random sample {Xi, i = 1 . . . n} from X,

(a) Find the MLE estimator p̂MLE for p.

(b) Find the asymptotic distribution of p̂MLE.

(c) Propose an estimator for the asymptotic variance V of p̂MLE.

(d) Show the variance estimator you proposed in (c) is consistent.

(e) Calculate the information for p by taking the variance of the e!cient score.

(f) Calculate the information for p by taking the expectation of (minus) the second derivative.

Did you obtain the same answer?

(g) Thus find the Cramér-Rao lower bound (CRLB) for p.

(h) Let var(p̂MLE) be the asymptotic variance of p̂MLE. Compare var(p̂MLE) with the CRLB.

(i) Propose a Method of Moment Estimator p̂MME for p.

2. Suppose X follows a uniform distribution [0, ω] with ω > 0. Given a random sample {Xi, i = 1 . . . n}
drawn from X, find the MLE estimator for ω.

3. Suppose X follows a normal distribution with unknown mean µ and variance ε2 > 0. The

density of X is

f(x|µ, ε2) =
1↑
2ϑε2

exp(→(x→ µ)2

2ε2
).

Given a random sample {Xi, i = 1 . . . n} drawn from X, find the MLE estimator for (µ, ε2).

4. Based on the notation in the slides on Estimation, let us prove the Information Matrix Equality

E
[
ϖ2 log f(X|ω0)

ϖωϖω→

]
= →E

[
ϖ log f(X|ω0)

ϖω

ϖ log f(X|ω0)
ϖω→

]
.

Let f = f(x|ω0), ↓j means derivative with respect to the j-th element ω(j), and ↓jk mean

2nd-order derivative with respect to ω(j) and ω(k). Suppose we can exchange the integral “
∫

”

and derivatives “↓j”.
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(a) By di!erentiating
∫
fdx = 1 with respect to ω(j), show that E[→j log f ] = 0.

(b) By di!erentiating E[→j log f ] = 0 with respect to ω(k), show that

E[→jk log f ] + E [(→j log f) (→k log f)] = 0,

which yields the Information Matrix Equality.

5. [Hansen 10.16] Let g(x) be a density function of a random variable with mean µ and variance

ε2
. Let X be a random variable with density function

f(x|ω) = g(x)(1 + ω(x↑ µ)).

Assume g(x), µ and ε2
are known. The unknown parameter is ω. Assume that X has bounded

support so that f(x|ω) ↓ 0 for all x.

(a) Verify that
∫→
↑→ f(x|ω)dx = 1.

(b) Calculate E[X].

(c) Find the information Fω for ω when true parameter is ω0. Write your expression as an

expectation of some function of X

(d) Find a simplified expression for Fω when ω0 = 0.

(e) Given a random sample {X1, ..., Xn}, write the log-likelihood function for ω.

(f) Find the first-order-condition for the MLE ω̂ for ω0.

(g) Using the known asymptotic distribution for maximum likelihood estimators, find the

asymptotic distribution for
↔
n(ω̂ ↑ ω0) as n ↗ ↘

(h) How does the asymptotic distribution simplify when ω0 = 0?

6. Complete the proof of Cramér-Rao Lower Bound on page 20 of the slides on Estimation by

showing

var

(
ϑ

ϑω
log f(X|ω0)

)
= nFω

7. Let F̂n(x) denote the empirical distribution function of a random sample. For each fixed x,

show that ↔
n(F̂n(x)↑ F (x))

d↗ N(0, F (x)(1↑ F (x))),

where F (x) = P{X ≃ x} is the cdf function evaluated at x.

8. [Hansen] Let X follows an exponential distribution with pdf f(x) = ωexp(↑ωx), x ↓ 0, ω > 0.

The expected value of X is given by EX = 1
ω

(a) Find the Cramér-Rao lower bound for ω.

(b) Find the Method of Moment Estimator ω̂MME for ω.

(c) Find the asymptotic distribution of ω̂MME by delta method.

2



Econ 6190 Problem Set 8
Suggested Solutions

Q1
(a) The probability mass function of X is f(x) = px(1 � p)1�x, x = 0, 1. Hence the likelihood

function is
Ln(p) = ⇧n

i=1p
Xi(1� p)1�Xi .

The log-likelihood is

`n(p) =
nX

i=1

log
�
pXi(1� p)1�Xi

�

= log (p)
nX

i=1

Xi + log (1� p)
nX

i=1

(1�Xi)

p̂MLE should satisfy the FOC:

@

@p
`n(p)|p=p̂MLE =

1

p̂MLE

nX

i=1

Xi �
1

1� p̂MLE

nX

i=1

(1�Xi) = 0,

which yields p̂MLE = 1
n

Pn
i=1 Xi. The SOC is

@2

@p2
`n(p)|p=p̂MLE = �

Pn
i=1 Xi

p̂2MLE

�
Pn

i=1 (1�Xi)

(1� p̂MLE)
2

= � n2

Pn
i=1 Xi

� n2

(n�
Pn

i=1 Xi)
< 0

since
Pn

i=1 Xi � 0 and n�
Pn

i=1 Xi � 0.
(b) Since p̂MLE = 1

n

Pn
i=1 Xi, EXi = p, EX2

i = p < 1, it follows by Lindeberg Levy CLT:

p
n(p̂MLE � p)

d! N(0, var(Xi)),

where var(Xi) = EX2
i � (EXi)

2 = p� p2 = p(1� p).
(c) V = p(1� p). A plug-in estimator of V is V̂ = p̂MLE(1� p̂MLE).
(d) Note p̂MLE = 1

n

Pn
i=1 Xi and EXi = p < 1, it follows by Khinchin’s WLLN p̂MLE

p! p.
Moreover, it is clear f(x) = x(1� x) is a continuous function of x. It follows by continuous mapping
theorem that

V̂ = f(p̂)
p! f(p) = V.

Q2

1

MM

or



where the first equality is by independence and the second equality is by property of efficient score.

Thus we have shown

T = E

@

@✓
log f(X|✓0)

@

@✓0
log f(X|✓0)

�

= nF✓

as required.

Q2

Note the probability mass function of X is f(x) = px(1� p)1�x, x = 0, 1.

(a) Since expectation of efficient score is 0,

F✓ = E
"✓

@

@p
log f(X|p)

◆2
#

E
"✓

@

@p
log

�
pX(1� p)1�X

�◆2
#

= E
"✓

X

p
� (1�X)

1� p

◆2
#

=
E [X2]

p2
+ 2E


X

p

(1�X)

1� p

�
+

E [(1�X)2]

(1� p)2

=
1

p
+

1

1� p
=

1

p(1� p)
.

where the last equality follows from: (1) X2 = X, (2) X(1�X) = 0 (3) (1�X)2 = (1�X).

(b) F✓ = �E
h⇣

@2

@p2 log f(X|p)
⌘i

. Since
@
@p log f(X|p) = X

p � (1�X)
1�p ,

@2

@p2
log f(X|p) = �X

p2
� (1�X)

(1� p)2
.

It follows

F✓ = E

X

p2
+

(1�X)

(1� p)2

�
=

E[X]

p2
+

1� EX
(1� p)2

=
1

p
+

1

(1� p)
=

1

p(1� p)
.

So yes we obtain the same answer.

(3) CRLB = (nF✓)�1 = p(1�p)
n .

(4) Recall p
n(p̂MLE � p)

d! N(0, p(1� p)),

that is, the asymptotic variance of
p
n(p̂MLE � p) is p(1� p). That is to say, the asymptotic variance

of p̂MLE when n is large is approximately
p(1�p)

n , which is equivalent to CRLB.

(5) Since EX = p, p̂MME = 1
n

Pn
i=1 Xi.

Q3

Note for each fixed point x on the real line, we have

F (x) = P {X  x} = E [1 {X  x}] ,

2

g

t

a
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Note the density of X is f(x|✓) = 1
✓ , 0  x  ✓. The log density is

log f(x|✓) =

8
<

:
� log ✓ 0  x  ✓

�1 otherwise

Thus the log-likelihood is

`n(✓) =
nX

i=1

log f(Xi|✓)

=

8
<

:
� log ✓ 0  Xi  ✓ for all i = 1 . . . n

�1 otherwise

That is, `n(✓) is not �1 if and only if 0  Xi  ✓ for all i = 1 . . . n, or equivalently, ✓ � maxin Xi.
And when ✓ � maxin Xi, `n(✓) = � log ✓ is a decreasing function of ✓. Thus the log-likelihood is
maximized at maxin Xi. This means ✓̂MLE = maxin Xi.

Note in this example, the likelihood is not differentiable at the maximum. Thus the MLE does
not satisfy a first order condition. Hence the MLE cannot be found by solving first order conditions.

Q3 [Sketch]
The log-likelihood is

`n(✓) = �n

2
log 2⇡ � n

2
log �2 � 1

2�2

nX

i=1

(Xi � µ)2

MLE estimator (µ̂, �̂2) should satisfy FOC

@`n(µ, �2)

@µ
|µ=µ̂,�2=�̂2 =

1

�̂2

nX

i=1

(Xi � û) = 0

@`n(µ, �2)

@�2
|µ=µ̂,�2=�̂2 = � n

2�̂2
+

1

2 (�̂2)2

nX

i=1

(Xi � û)2 = 0.

It follows µ̂ = 1
n

Pn
i=1 Xi, �̂2 = 1

n

Pn
i=1 (Xi � û)2.

Let ✓ = (µ, �2) and ✓̂ = (µ̂, �̂2). The SOC should be such that

@2`n(✓)

@✓@✓0
|✓=✓̂ is negative definite.

Note

@2`n(✓)

@✓@✓0
=

 
@2`n(µ,�2)

@µ2
@2`n(µ,�2)

@µ@�2

@2`n(µ,�2)
@�2@µ

@2`n(µ,�2)

@(�2)2

!

=

0

B@
� n

�2 � 1
�4

nP
i=1

(Xi � µ)

� 1
�4

nP
i=1

(Xi � µ) n
2�4 � 1

�6

nP
i=1

(Xi � µ)2

1

CA

2

2
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Thus
@2`n(✓)

@✓@✓0
|✓=✓̂ =

 
� n

�̂2 0

0 � n
2�̂2

!

which is negative definite.
Q4
(a) 8j, differentiating

R
fdz = 1 with respect to ✓(j), and exchanging “

R
” and derivatives “rj ”,

we get: Z
rjfdz = 0

Thus:

0 =

Z
rjfdz =

Z
(rjf)

1

f
fdz

=

Z
[rj log f ] fdz

= E [rj log f ]

(b) Take one more derivative with respect to ✓(k) yields

0 = rkE [rj log f ]

=

Z
rk [(rj log f) f ] dz(exchange integral and derivative)

=

Z
{(rjk log f) f + (rj log f)rkf} dz(chain rule)

=

Z
{(rjk log f) f} dz

| {z }
(1)

+

Z
{(rj log f)rkf} dz

| {z }
(2)

(1) = E (rjk log f)

(2) =

Z
(rj log f)

✓
rkf

1

f

◆
fdz

=

Z
(rj log f) (rk log f) fdz

= E [(rj log f) (rk log f)]

Q5
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(a)
Z 1

�1
f(x|✓)dx =

Z 1

�1
g(x)(1 + ✓(x� µ))dx

=

Z 1

�1
g(x)dx+

Z 1

�1
g(x)✓(x� µ)dx

= 1 + ✓

Z 1

�1
g(x)(x� µ)dx

= 1 + ✓

✓Z 1

�1
g(x)xdx� µ

◆
= 1

where the third equality is because
R1
�1 g(x)dx = 1 since g(x) is a density, and the fourth equality

uses
R1
�1 g(x)dx = 1 again. Final equality follows from

R1
�1 g(x)xdx = µ by assumption.

(b)

EX =

Z
xf(x|✓)dx

=

Z 1

�1
g(x)(1 + ✓(x� µ))xdx

=

Z 1

�1
g(x)xdx

| {z }
µ

+ ✓

Z 1

�1
g(x)x(x� µ)dx

= µ+ ✓

Z 1

�1
g(x)(x� µ)2dx

| {z }
�2

+ ✓µ

Z 1

�1
g(x)(x� µ)dx

| {z }
0

= µ+ ✓�2.

(c) The log likelihood for a single observation X is

log f(X|✓) = log [g(X)(1 + ✓(X � µ))]

= log [g(X)] + log [(1 + ✓(X � µ))] .

Efficient score is
@

@✓
log f(X|✓0) =

X � µ

1 + ✓0(X � µ)
.

So

F✓ = E
"✓

@

@✓
log f(X|✓0)

◆2
#

= E
"✓

X � µ

1 + ✓0(X � µ)

◆2
#

where the expectation is taken with respect to density f(x|✓0).
(d) when ✓0 = 0,

F✓ = E
⇥
(X � µ)2

⇤
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(e)

`n(✓) =
nX

i=1

log f(Xi|✓) =
nX

i=1

log [g(Xi)] +
nX

i=1

log [(1 + ✓(Xi � µ))]

(f) Note
@

@✓
`n(✓) =

nX

i=1

Xi � µ

1 + ✓(Xi � µ)

So the MLE estimator ✓̂ should satisfy FOC:

nX

i=1

Xi � µ

1 + ✓̂(Xi � µ)
= 0

(g) The asymptotic distribution of
p
n(✓̂ � ✓0) should be

p
n(✓̂ � ✓0)

d! N(0,F✓),

where F✓ = E
⇣

X�µ
1+✓0(X�µ)

⌘2�
.

(h) When ✓0 = 0, p
n(✓̂ � ✓0)

d! N(0,E
⇥
(X � µ)2

⇤
).

5

1



6



7

8

02

IN o.to




