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1 More on Correspondences

Let us restrict attention to correspondences that are nonempty- and compact-valued. As before,
we assume tthat X ⊆ Rd and Y ⊆ Rq are Euclidean spaces (with d, q ∈ N).

1.1 Upper and lower hemi-continuity in terms of sequences

Definition 1. A correspondence Γ : X ⊆ Rd ⇒ Y ⊆ Rq is

� upper hemi-continuous at x ∈ X if, for any open subset O ⊆ Y such that Γ(x) ⊆ O, there
exists ϵ > 0 such that Γ(Bϵ(x)) ⊆ O.

� lower hemi-continuous at x ∈ X if, for any open subset O ⊆ Y such that Γ(x)∩O ̸= ∅, there
exists ϵ > 0 such that Γ(z) ∩O ̸= ∅ for all z ∈ Bϵ(x).

Proposition 1. Γ : X ⊆ Rd ⇒ Y ⊆ Rq is upper hemi-continuous (resp. lower hemi-continuous) if
and only if Γ−1(O) = {x ∈ X : Γ(x) ⊆ O} (resp. Γ−1(O) = {x ∈ X : Γ(x) ∩ S ̸= ∅}) is open for
every open O ⊆ Y .

Lemma 1. Suppose Γ : X ⊆ Rd ⇒ Y ⊆ Rq is a nonempty- and compact-valued upper hemi-
continuous correspondence. Then, Γ(S) is compact in Y for any compact subset S of X.

Proof. Let O be an open cover of Γ(S). We wish to find a finite subset of O that covers Γ(S).
Note that, for each x ∈ S, O is also an open cover of Γ(x). Since Γ(x) is compact, there exist a
finite subcover {O1(x), . . . , Onx

(x)} ⊆ O such that Γ(x) ⊆
⋃nx

i=1 Oi(x) =: O(x). By Proposition 1
in “4. Correspondences”, Γ−1(O(x)) is open in X for each x ∈ X. Moreover, Γ(S) ⊆

⋃
x∈S O(x)

so that S ⊆
⋃

x∈S Γ−1(O(x)); i.e., {Γ−1(O(x)) : x ∈ S} is an open cover of S. By compactness
of S, there exists {x1, . . . , xn} ⊆ S such that {Γ−1(O(xi)) : i ∈ {1, . . . , n}} is a finite subcover of
S. But then, by definition of Γ−1, {O(xn), . . . , O(xn)} must cover Γ(S). Therefore, {Oj(xi) : j ∈
{1, . . . , nxi

}, i ∈ {1, . . . , n}} is a finite subcover of Γ(S). ■
∗Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes

are heavily based.

1

mailto:takumahabu@cornell.edu


ECON 6170 Fall 2024 4* More on Correspondences

Proposition 2* Let F : X ⇒ Y be a nonempty- and compact-valued correspondence.

(i) F is upper hemi-continuous at x ∈ X if and only if, for any sequence (xn)n in X and any
sequence (yn)n in Y such that xn → x and yn ∈ Γ(xn) for all n ∈ N, there exists a subsequence
of (yn)n that converges to a point in F (x).

(ii) F is lower hemi-continuous at x ∈ X if and only if, for any sequence (xn)n in X with xn → x

and y ∈ F (x), there exists a sequence (yn)n in Y such that yn → y and yn ∈ Γ(xn) for all
n ∈ N.

Proof. (i) Fix x ∈ X. Suppose that, for any sequence (xn)n in X and any sequence (yn)n in Y

such that xn → x and yn ∈ F (xn) for all n ∈ N, there exists a subsequence of (yn)n that converges
to a point in Γ(x). By way of contradiction, suppose Γ is not upper hemi-continuous at x. Then,
there exists an open subset O ⊆ Y with Γ(x) ⊆ O and Γ(BX

n−1(x))\O ̸= ∅ for all n ∈ N. But then
there exist sequences (x′

n)n in x and (y′n)n in Y such that xn → x and yn ∈ Γ(xn)\O for all n ∈ N.
Since Γ(x) ⊆ O and each yn belongs to the closed set Y \O, no subsequence of (y′n) can converge
to a point in Γ(x) ⊆ O.

Conversely, suppose that Γ is upper hemi-continuous at x ∈ X. If (xn)n is a sequence in X with
xn → x, then S := {x, x1, x2, . . .} is sequentially compact in X. Then, by lemma 1 above, Γ(S)
is sequentially compact in Y . Thus, if yn ∈ Γ(xn) for all n ∈ N, then (yn)n—being a sequence in
Γ(S)—must possess a subsequence (ynk

)k that converges to some y ∈ Γ(S). To show that y ∈ Γ(x),
we can use the same argument as in the proof of part (ii) of Proposition 5 in “4. Correspondences”.

(ii) Suppose Γ is lower hemi-continuous at x ∈ X. Fix a sequence (xn)n in X with xn → x and
y ∈ Γ(x). By lower hemi-continuity, for every k ∈ N, there exists a δk > 0 such that Γ(z)∩BY

k−1(y) ̸=
∅ for all z ∈ BX

δk
(x). Since xn → x, there exists an n1 ∈ N such that ∥xn1 − x∥ < δ1, and for any

k = 2, 3, . . ., there exists an nk ∈ {nk−1 + 1, nk−1 + 2, . . .} such that ∥xnk
− x∥ < δk. This gives a

subsequence (xnk
)k such that Γ(xnk

)∩BY
k−1(y) ̸= ∅ for each k ∈ N. Now pick any (yn)n in Y such

that
yn ∈ Γ (xnk

) ∩BY
k−1 (y) ∀n ∈ {nk, . . . , nk+1 − 1} ∀k ∈ N.

Then, we have yn → y and yn ∈ Γ(xn) for each n ∈ N.
Conversely, suppose Γ is not lower hemi-continuous at x ∈ X. Then, there exists an open

subset O of Y such that Γ(x) ∩ O ̸= ∅ and, for every n ∈ N, there exists an xn ∈ BX
n−1(x) with

Γ(xn) ∩ O = ∅. Note that xn → x, and pick any y ∈ Γ(x) ∩ O. By hypothesis, there must exist
a sequence (yn)n in Y such that yn → y and yn ∈ Γ(xn) for all n ∈ N. But since y ∈ O and O is
open, yn ∈ O for n sufficiently large, contradicting that Γ(xn) ∩O = ∅ for all n ∈ N. ■

Remark 1. In the class notes, we gave a sequential definition for the case in which, for some x ∈ X,
F (x) could be empty and/or not compact.

Exercise 1. Define correspondences Γ1,Γ2,Γ3 : R ⇒ R as follows

Γ1 (θ) :=

[0, 1) if θ = 0

{0} if θ ̸= 0
, Γ2 (θ) :=

[0, 1] if θ = 0

{0} if θ ̸= 0
, Γ3 (θ) :=

{0} if θ = 0

[0, 1] if θ ̸= 0
. (1)

Which of them are upper hemi-continuous and which of them are lower hemi-continuous. Which of
them are compact-valued?
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Solution 1. Γ1: not compact-valued, not lower hemicontinuous, upper hemi-continuous. Γ2:
compact-valued, not lower hemi-continuous, upper hemi-continuous. Γ3: compact-valued, lower
hemi-continuous, not upper hemicontinuous.

Exercise 2. Let Γ : Θ := R+ → X := R+ be Γ(θ) := [0, θ]. Show that Γ is continuous.

Solution 2. Fix θ ∈ Θ. Observe that Γ is compact-valued. Take a sequence (θn)n in Θ and
a sequence (xn)n in X such that θn → θ and xn ∈ Γ(θn) = [0, θn] for all n ∈ N. Define ϵ :=

supn∈N ∥θn − θ∥ and let Bϵ(θ) (which contains all θn’s) denote the closure of the open ball centred
at θ with radius ϵ. Since the set [

0, max
θ′∈Bϵ(θ)

θ′

]
which contains all xn’s is compact, there exists a convergent subsequence (xnk

)k of (xn)n with limit
point x in the set above. By construction, we have 0 ≤ xn ≤ θn for all n ∈ N so that 0 ≤ x ≤ θ;
i.e., x ∈ Γ(θ). Hence, Γ is upper hemi-continuous at θ.

Fix θ ∈ Θ. Take a sequence (θn)n in Θ with θn → θ and x ∈ F (θ) (and such an x exists because
Γ(θ) is nonempty). Let γ := x

θ ≤ 1 and yn = γθn for all n ∈ N. Then, yn ∈ Γ(θn) for all n ∈ N and

lim
n→∞

yn = γ lim
n→∞

θn = γθ = x.

Hence, Γ is lower hemi-continuous at θ ∈ Θ.

Exercise 3. Let f : Rd
+ → R+ be a continuous function and define Γ : Rd

+ → R+ by Γ(θ) :=

[0, f(θ)]. Show that Γ is continuous. Hint: Modify the proof from the previous exercise by letting
f(θ) = θ.

Solution 3. Fix θ ∈ Θ. Observe that Γ is compact-valued. Take a sequence (θn)n in Θ and
a sequence (xn)n in X such that θn → θ and xn ∈ Γ(θn) = [0, f(θn)] for all n ∈ N. Define
ϵ := supn∈N ∥θn − θ∥ and let Bϵ(θ) (which contains all θn’s) denote the closure of the open ball
centred at θ with radius ϵ. Since the set[

0, max
θ′∈Bϵ(θ)

f (θ′)

]

which contains all xn’s is compact, there exists a convergent subsequence (xnk
)k of (xn)n with limit

point x in the set above. By construction, we have 0 ≤ xn ≤ f(θn) for all n ∈ N so that, by
continuity of f , 0 ≤ x ≤ f(θ); i.e., x ∈ Γ(θ). Hence, Γ is upper hemi-continuous at θ.

Fix θ ∈ Θ. Take a sequence (θn)n in Θ with θn → θ and x ∈ F (θ) (and such an x exists because
Γ(θ) is nonempty). Let γ := x

f(θ) ≤ 1 and yn = γf(θn) for all n ∈ N. Then, yn ∈ Γ(θn) for all
n ∈ N and

lim
n→∞

yn = γ lim
n→∞

f(θn) = γf(θ) = x,

where we used that f is continuous. Hence, Γ is lower hemi-continuous at θ ∈ Θ.

1.2 A simpler theorem of the maximum

Let us state a simpler theorem of the maximum that requires Γ to be continuous everywhere and
we omit the result that solution correspondence is closed at each point.

- 3 -



ECON 6170 Fall 2024 4* More on Correspondences

Theorem of the Maximum* Suppose Θ ⊆ Rd and X ⊆ Rq and let Γ : Θ ⇒ X be a nonempty-
valued, compact-valued and continuous correspondence, and f : X × Θ → R be a continuous
function. Then, the solution correspondence X∗ : Θ ⇒ X defined as X∗(θ) := argmaxx∈Γ(θ) f(x, θ)

is nonempty-valued, compact-valued and upper hemi-continuous.

Remark 2. To be precise, in class, we proved the version in which we only required Γ to be continuous
at some θ0 ∈ Θ and obtained that: (i) X∗ is nonempty-valued, compact-valued, upper hemi-
continuous at θ0, and closed at θ0; and (ii) f∗ is continuous at θ0.

Remark 3. Let X := Θ := R and f(x, θ) = x. Consider the problem of maximising f with
respect to x given each of the three constraint correspondences in 1. Let X∗

Γ denote the solution
correspondence given constraint correspondence Γ : Θ ⇒ X:

X∗
Γ1

(θ) =

∅ if θ = 0

{0} if θ ̸= 0
, X∗

Γ2
(θ) =

{1} if θ = 0

{0} if θ ̸= 0
, X∗

Γ3
(θ) =

{0} if θ = 0

{1} if θ ̸= 0
.

Observe that: X∗
Γ1
(0) is empty (i.e., compactness of Γ is necessary); X∗

Γ2
is not upper hemi-

continuous at 0 (i.e., lower hemi-continuity of Γ is necessary); X∗
Γ3

is not upper hemi-continuous at
0 (i.e., upper hemi-continuity of Γ is necessary).

Remark 4. The theorem does not tell us that X∗ is lower hemi-continuous—and it cannot. To see
this, suppose X := Θ := [0, 1], Γ(θ) := [0, 1] for all θ ∈ Θ, and f(x, θ) := xθ. Then,

X∗ (θ) =

[0, 1] if θ = 0

{1} if θ ̸= 0
,

which is not lower hemi-continuous (but it is, nonempty-valued, compact-valued and upper hemi-
continuous).

Proof of Theorem of Maximum. Fix θ ∈ Θ. Because the set Γ(θ) is nonempty and compact, and
f(x, θ) is continuous in x, extreme value theorem tells us that f(·, θ) attains a maximum at some
x∗ ∈ Γ(θ); i.e., X∗(θ) is nonempty. Moreover, since X∗(θ) ⊆ Γ(θ) and Γ(θ) is compact, X∗(θ) is
bounded. To show that X∗(θ) is closed, take any convergent sequence (x∗

n)n in X∗(θ). Because
Γ(θ) is closed, x∗

n converges to some x∗ ∈ Γ(θ). Because f∗(θ) = f(x∗
n, θ) for all n ∈ N and f is

continuous, we must have f(x∗, θ) = f∗(θ). Hence, x∗ ∈ X∗(θ); i.e., X∗(θ) is closed. Since we
chose θ arbitrarily, it follows that X∗ is nonempty-valued and compact-valued.

To show that X∗ is upper hemicontinuous, fix θ ∈ Θ and take any sequence (θn)n in Θ that
converges to θ. Choose some xn ∈ X∗(θn) for all n ∈ N. By upper hemi-continuity of Γ, there
exists a subsequence (xnk

)k of (xn)n such that xnk
→ x ∈ Γ(θ). Fix any z ∈ Γ(θ). Since Γ is lower

hemi-continuous, there exists a sequence (znk
)k such that znk

→ z and znk
∈ Γ(θnk

) for all k ∈ N.
Since f(xnk

, θnk
) ≥ f(znk

, θnk
) for all k ∈ N and f is continuous, we must have f(x, θ) ≥ f(z, θ).

Since this holds for any z ∈ Γ(θ), we must have x ∈ X∗(θ); i.e., X∗ is upper hemi-continuous. ■

Remark 5. In class, we proved the result by relying on the following lemmata:

Lemma 3 X∗ is closed at θ0.
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Lemma 4 Suppose Z ⊆ Rd and Y ⊆ Rq and let F1, F2 : Z ⇒ Y with F1(z) ∩ F2(z) ̸= ∅ for all
z ∈ Z. Define F : Z ⇒ Y by F := F1∩F2. If F1 is compact-valued and upper hemi-continuous
at z0 ∈ Z, and if F2 is closed at z0, then F is upper hemi-continuous at z0.

We used the fact that Γ is lower hemi-continuous (as well as the fact that f is continuous) to prove
lemma 3. We then obtained the result by letting F1 = Γ and F2 = X∗ in lemma 4. We did so to
highlight why we require f to be continuous (i.e., not just upper semi-continuous), as well as to
obtain the additional result that X∗ has a closed graph.

Remark 6. Recall that for existence of a maximum, we only need the objective function to be
upper semi-continuous. So what can we get if we only have that f is upper semi-continuous? Let
X := [0, 1], Θ := (0, 1], Γ(θ) := [0, θ] for all θ ∈ Θ and

f (x, θ) :=

1− 2x if x ∈ [0, 0.5)

3− 2x if x ∈ [0.5, 1]
.

Observe that f is upper semi-continuous (and in particular, not lower semi-continuous), and

X∗ (θ) =

{0} if θ ∈ (0, 0.5)

{0.5} if θ ∈ (0, 0.5)
,

which is not upper hemi-continuous at 0.5. However, observe that

f∗ (θ) := max
x∈Γ(θ)

f (x, θ) =

1 if θ ∈ (0, 0.5)

2 if θ ∈ (0, 0.5)

is upper semi-continuous.

Proposition 2. Suppose Θ ⊆ Rd and X ⊆ Rq and let Γ : Θ ⇒ X be a nonempty-valued, compact-
valued and upper hemi-continuous correspondence, and f : X×Θ → R be an upper semi-continuous
function. Prove that f∗(θ) := maxx∈Γ(θ) f(x, θ) is upper semi-continuous.

Proof. Take any sequence (θn)n in Θ with θn → θ for some θ ∈ Θ. Toward a contradiction, suppose
that f∗(θ) < lim supn→∞ f∗(θn). For each n ∈ N, take xn ∈ Γ(θn) be such that f(xn, θn) = f∗(θn)

which exists because φ is upper semi-continuous and Γ(θn) is compact (why?). Thus, there exists
a subsequence (f(xnk

, θnk
))k of (f(xn, θn))n such that f(xnk

, θnk
) → lim supn→∞ f∗(θn) (why?).

Hence, there exists an ϵ > 0 and K ∈ N such that

f (xnk
, θnk

)− f∗ (θ) ≥ ϵ ∀k ≥ K.

Then, by upper hemi-continuity of Γ, there exists a subsequence (xnkℓ
)ℓ of (xnk

)k that converges
to a point x ∈ Γ(θ). Then,

lim sup
ℓ→∞

f
(
xnkℓ

, θnkℓ

)
− f∗ (θ) ≥ ϵ ⇔ lim sup

ℓ→∞
f
(
xnkℓ

, θnkℓ

)
> f (x, θ) = f∗ (θ) ,

which contradicts the upper semicontinuity of φ (which requires the inequality above to hold with
≤). ■
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