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1 Basic topology of Rd

For any d ∈ N, let Rd denote the product set:

Rd := ×d
k=1Rk.

In what follows, it should be understood that d ∈ N, when I write Rd.

Definition 1. If a ∈ Rd, write a = (a1, . . . , ak). The Euclidean distance between a, b ∈ Rd is given
by

∥b− a∥ =

√√√√ d∑
i=1

(bi − ai)2

In R2, this is the familiar distance given by the Pythagorean theorem. In R, ∥b− a∥ = |b− a|.

Remark 1. There are many other “distances” or metrics in Rd. Indeed, a more natural way to study
topology (and analysis generally) is abstracting away from R or Rd and working directly in “metric
spaces”. In this class, we stick to Rd with the Euclidean distance metric.

Definition 2. For every x0 ∈ Rd and ϵ > 0, the open ball (sometimes neighbourhood) of radius ϵ

centred at x0 is the set
Bϵ (x0) :=

{
x ∈ Rd : ∥x− x0∥ < ϵ

}
.

Definition 3. A set S ⊆ Rd is open if for every x ∈ S there exists some ϵ > 0 such that Bϵ(x) ⊆ S.

Exercise 1. Verify that open intervals (a, b) ⊂ R are indeed open according to the definition above.
Do the same for the interval (a,+∞) ⊂ R.

Definition 4. A set S ⊆ Rd is closed if its complement Sc = Rd\S is open.

Remark 2. By a strict reading of the definition, we can see that the empty set ∅ and the entire
space Rd are open. Hence, they are also closed (and are the only sets in Rd that are both open and
closed, in fact).

∗Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes
are heavily based.

1

mailto:takumahabu@cornell.edu


ECON 6170 Fall 2024 2. Euclidean Topology

Remark 3. Many sets in Rd are neither open nor closed. For instance, in R, the set (0, 1] = {x ∈
R : 0 < x ≤ 1} is neither open nor closed (why?).

Proposition 1. The (arbitrary) union of open sets is open. The intersection of finitely many open
sets is open.

Exercise 2 (PS3). Prove this. What about arbitrary intersections of open sets?

Exercise 3 (PS3). Prove that the closed interval [a, b] is indeed closed. (Feel free to use Exercise
1.)

Proposition 2. The arbitrary intersection of closed sets is closed. The union of finitely many
closed sets is closed.

Exercise 4 (PS3). Prove this.1 What about arbitrary unions of closed sets?

Proposition 3. Any finite subset of Rd is closed.

Proof. It suffices to show that a singleton set is closed. (why?) Fix x ∈ Rd. Then, {x}c =

×n
i=1(−∞, xi) ∪ (xi,+∞). Since product of open sets are open, and unions of open sets are union,

{x}c must be open; i.e., {x} is closed. ■

Proposition 4. A set S ⊆ Rd is closed if and only if for every sequence (xn) in S, xn → x implies
x ∈ S.

Proof. Let S ⊆ Rd be closed and let (xn) be a sequence in S such that xn → x ∈ Rd. By way
of contraction, suppose that x /∈ S; i.e., x ∈ Sc. Since S is closed, Sc is open (why?), so there is
some ϵ > 0 such that Bϵ(x) ⊆ Sc (why?). Now since xn → x, there exist some N ∈ N such that
∥x − xn∥ < ϵ for all n > N . Therefore, for n > N , xn ∈ Bϵ(x) ⊆ Sc, which implies xn /∈ S; a
contradiction. Thus, x ∈ S.

Suppose now that every convergent sequence in S has limits in S. We want to show that S is
closed. Toward a contradiction, suppose S is not closed; i.e., Sc is not open. Then, there must exist
an x ∈ Sc such that, for every ϵ > 0, the open ball Bϵ(x) is not entirely contained in Sc meaning
that Bϵ(x) must intersect (Sc)c = S. Consider the sequence of open balls generated by choosing
ϵ = 1

n for every n ∈ N. Since all of these intersect S, we can select one xn ∈ S from every B 1
n
(x) .

Further, since xn ∈ B 1
n
(x) and 1

n → 0, xn → x. Thus, we have constructed a sequence (xn) in S

that converges. By hypothesis, it must be that its limit x is in S. But this contradicts x ∈ Sc. ■

Definition 5. A set S is compact if every open cover has a finite subcover. That is, if for any
collection U of open sets such that S ⊆

⋃
U∈U U , there is a finite subset {U1, U2, . . . Um} that still

covers S, i.e., S ⊆
⋃m

i=1 Ui.

Remark 4. Compactness captures the idea of finiteness. To see this, take any subset S ⊆ R and let
us ask if the set is is completely contained in an open ball, which is in fact equivalent to asking if S is
bounded (pause and make sure you understand this). When S is finite, ϵ := max{|x−x′| : x′ ∈ S}+1

is well-defined for any x ∈ S. Thus, we may pick any x ∈ S and observe that S ⊂ Bϵ(x); i.e., S
is bounded. However, if S is infinite, ϵ need not be well-defined. But suppose we know that S is
compact. First observation is that {Bn(x) : n ∈ N} is an open cover of S. Thus, by compactness,

1Hint: Recall De Morgan’s laws.
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there exists finitely many Bϵn1
(x), . . ., Bϵnm

(x) such that S ⊆
⋃

i=1,..., Bmi(x). Thus, we can
now set ϵ := max{ϵn1 , . . . , ϵnm} + 1 so that S ⊂ Bϵ(x). This should give you a sense in which
compactness provides a finite structure for infinite sets.

Theorem 1 (Heine-Borel). A set S ⊆ Rd is compact if and only if it is closed and bounded.

Exercise 5. Give an example of open cover that does not admit a finite subcover for (0, 1] ⊂ R
(which is not closed) and for [0,+∞) (which is not bounded).

Remark 5. In PS3, you’ll see a related notion of compactness called sequential compactness. The
two notions are equivalent in Euclidean spaces but need not be in more general spaces.

2 Continuous real functions

Definition 6 (Continuity using sequences). A real-valued function f : S ⊆ R → R is continuous
at x0 ∈ S if, for every sequence (xn)n in S converging to x0, we have f(xn) → f(x0). The function
is continuous on S if it is continuous at every x0 ∈ S.

Exercise 6 (PS4). A point x is an isolated point in S ⊆ R if x ∈ S and there exists ϵ > 0 such
that Bϵ(x) ∩ S = {x}. For example, {1} is an isolated point in S = {1} ∪ [2, 3]. What real-valued
functions f : S → R is continuous at 1?

Definition 7 (Continuity using neighbourhoods). A real-valued function f : S ⊆ R → R is
continuous at x0 ∈ S if, for all ϵ > 0, there exists δ > 0 such that

|f (x)− f (x0)| < ϵ ∀x ∈ S : |x− x0| < δ.

Remark 6. In PS4, you will see yet another equivalent definition of a continuous function that uses
its preimage.

Proposition 5. The two definitions of continuity are equivalent (in R). That is, a function f : S ⊆
R → R is continuous at x0 ∈ S according to Definition 6 if and only if it is continuous according
to Definition 7.

Proof. Suppose that f is continuous at x0 according to Definition 7. Let (xn)n be a sequence in S

such that xn → x0; we want to prove that f(xn) → f(x0). Let ϵ > 0. By definition, there exists
δ > 0 such that x ∈ S and |x − x0| < δ imply |f(x) − f(x0)| < ϵ. Since xn → x0, there exists
N ∈ N such that n > N implies |xn − x0| < δ. Therefore, for all n > N , |f(xn)− f(x0)| < ϵ; i.e.,
that is, f(xn) → f(x0).

Conversely, suppose that f is continuous at x0 according to Definition 6. By contradiction,
assume that it is not continuous at x0 according to Definition 7. Then there exists ϵ > 0 such that
for every δ > 0, there exists a x ∈ S with |x − x0| < δ and |f(x) − f(x0)| ≥ ϵ (note the effect of
negation on all the quantifiers). In particular, we can choose δ = 1

n , for each n ≥ 1, and then get a
sequence (xn)n in S such that |xn − x0| < 1

n and |f(xn)− f(x0)| ≥ ϵ. Thus, xn → x0 yet the limit
of f(xn) is not f(x0). Contradiction. ■

Proposition 6. Let f and g be real-valued functions that are continuous at x0, and let k ∈ R.
Then, the following functions are all continuous at x0: (i) |f |; (ii) k · f ; (iii) f + g; (iv) f · g; (v)
f/g, if g(x0) ̸= 0.
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Proof. If this kind of proof is new to you, you can try proving (i) and (iii) as an exercise. ■

Proposition 7. If f : S → R is continuous at x0, f(x0) ∈ T ⊆ R and g : T → R is continuous at
f(x0), then the composite function g ◦ f is continuous at x0.

Proof. Let (xn)n be a sequence in {x ∈ S : f(x) ∈ T} (why here?) converging to x0. Since f is
continuous at x0, f(xn) → f(x0). Using this, since g is continuous at f(x0), we have g(f(xn)) →
g(f(x0)) = (g ◦ f)(x0) (why is g(f(xn)) always well-defined?). ■

Exercise 7 (PS4). Prove Proposition 7 using ϵ-δ definition of continuity.

Exercise 8 (PS4). Let f and g be continuous at x0. Prove or disprove: max(f, g) is continuous at
x0.2

Exercise 9 (PS4). Prove or disprove: f : S → R is continuous at x0 if and only if, for every
monotonic sequence (xn)n in S converging to x0, f(xn) → f(x0). Hint: You can use Exercise 30
from “1. Real Sequences.pdf”.

2.1 Other kinds of of continuity

Definition 8. A function f : S ⊆ R → R is uniformly continuous on Z ⊆ S if, for any ϵ > 0, there
exists δ > 0 such that

|f (x)− f (z)| < ϵ ∀x, z ∈ Z : |x− z| < δ.

If f is uniformly continuous on S, then f is uniformly continuous.

Exercise 10. What is the difference between uniform continuity and continuity?

Proposition 8. Let S ⊆ R contain a closed and bounded interval [a, b] and f : S → R. Then, f is
continuous on [a, b] if and only if f is uniformly continuous on [a, b].

Proof. Given the previous exercise, it suffices to show that if f is continuous on [a, b], then f is
uniformly continuous on [a, b]. Toward a contradiction, suppose that f is continuous on [a, b] but
f is not uniformly continuous on [a, b]; i.e., for some ϵ > 0, for any δ > 0, there exists x, y ∈ [a, b]

such that |x−y| < δ and |f(x)−f(y)| ≥ ϵ. This implies that there exist sequences (xn)n and (yn)n

in [a, b] such that

|xn − yn| <
1

n
and |f (xn)− f (yn)| ≥ ϵ ∀n ∈ N. (1)

By the Bolzano-Weierstrass Theorem (because [a, b] is bounded), there exists a convergent sub-
sequence (xnk

)k of (xn)n. Let x := limk→∞ xnk
. Since a ≤ xnk

≤ b for all k ∈ N, the Sandwich
rule tells us that a ≤ x ≤ b (because [a, b] is closed). Thus, we have f(xnk

) → f(x) since f is
continuous on [a, b]. In particular, f is continuous at x. Then, since xn − yn → 0 by the first
part of (1), we must have that ynk

→ x. Therefore, limk→∞ f(xnk
) = f(x) = limk→∞ f(ynk

); i.e.,
|f(xm) − f(ym)| < ϵ for some m ∈ N sufficiently large. But this contradicts the second part of
(1). ■

2Hint: max{f, g} = 1
2
(f + g) + 1

2
|f − g|
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Example 1. The function f(x) = x2 is continuous but not uniformly continuous on (0,∞). To see
this, consider two sequences (xn)n and (yn)n defined as xn = n and yn = n+ 1

n for all n ∈ N. Note
that

lim
n→∞

|xn − yn| = lim
n→∞

∣∣∣∣ 1n
∣∣∣∣ = 0.

However,

|f (xn)− f (yn)| =
(
n+

1

n

)2

− n2 = 2 +
1

n2
≥ 2 ∀n ∈ N.

Nevertheless, by the proposition above, f is both continuous and uniformly continuous on any
closed and bounded interval [a, b] ⊂ R.

Definition 9. Let S ⊆ R contain the closed interval [a, b]. A function f : S ⊆ R → R is absolutely
continuous on [a, b] if, for any ϵ > 0, there exists δ > 0 such that, for every finite disjoint collection
{(ak, bk)}nk=1 of open intervals in (a, b),

n∑
k=1

(bk − ak) < δ ⇒
n∑

k=1

|f (bk)− f (ak)| < ϵ.

Remark 7. The criterion for absolute continuity in the case the finite collection of intervals consists
of the interval (a, b) itself is the criterion for uniform continuity on (a, b). Thus, while uniform
continuity says that a function cannot vary too much over one small interval, absolute continuity is
a stronger requirement that the function cannot vary too much over any union of intervals (whose
total length is less than δ). The difference between continuity and absolute continuity is that the δ

can be “divided”.

Example 2. An example of a uniformly continuous function that is not absolutely continuous is
the following:

f (x) =

x sin
(
1
x

)
if 0 < x ≤ 1

0 if x = 0
.

It is a bit of work to show that it is not absolutely continuous, but note that this is uniformly
continuous because it is continuous on a closed and bounded interval [0, 1].

Definition 10. A function f : S ⊆ R → R is Lipschitz continuous on Z ⊆ S if there exists a
Lipschitz constant M > 0 such that

|f (x)− f (y)| ≤ M |x− y| ∀x, y ∈ Z.

If f is Lipschitz continuous on S, then f is Lipschitz continuous.

Remark 8. If f has Lipschitz constant M , then we can set δ = ϵ
M in the criterion for abso-

lute/uniform continuity. Hence, we have Lipschitz continuity ⇒ Absolute continuity ⇒ Uniform
continuity ⇒ Continuity.

Definition 11 (Semi-continuity using neighbourhoods). A function f : S ⊆ R → R is upper semi-
continuous ( resp. lower semi-continuous) at x0 ∈ S if, for any ϵ > 0, there exists δ > 0 such
that

f (x) ≤ f (x0) + ϵ ∀x ∈ S : |x− x0| < δ.
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(resp. f(x) ≥ f(x0)− ϵ ∀x ∈ S : |x− x0| < δ.)

Exercise 11. Draw a function that is continuous on [0, 1]. Modify the function so that, at some
x ∈ [0, 1], the function is (i) upper semi-continuous but not lower semi-continuous at x; (ii) lower
semi-continuous but not upper semi-continuous at x; (iii) neither upper semi-continuous nor lower
semi-continuous at x.

Definition 12 (Semi-continuity using sequences). A function f : S ⊆ R → R is upper semi-
continuous ( resp. lower semi-continuous) at x0 ∈ S if, for any sequence xn that converges to x0,
lim supn→∞ f(xn) ≤ f(x0) (resp. lim infn→∞ f(xn) ≥ f(x0)).

Exercise 12. Prove that definitions of semi-continuity using neighbourhoods and using sequences
are equivalent.

Proposition 9. A function f : S ⊆ R → R is continuous if and only if it is upper semi-continuous
and lower semi-continuous.

Exercise 13. Prove Proposition above by appealing to the ϵ-δ definition of semi-continuity.

3 Extreme value theorem

Definition 13. A real-valued function f : S → R is bounded if f(S) ≡ {f(x) : x ∈ S} is bounded.

Theorem 2 (Boundedness theorem). Let f : S → R be a continuous function on a nonempty,
compact set S ⊆ R. Then, f is bounded.

Proof. We want to show that for any x ∈ S, there exists M ∈ R such that |f(x)| ≤ M . Fix any
x ∈ S. Since f is continuous, for ϵ = 1, there exists δx > 0 such that, for any x′ ∈ S such that
|x′ − x| < δ, we have |f(x) − f(x′)| < 1. Define Ix := (x − δx, x+ δx). Since |x′ − x| < δx for any
x′ ∈ Ix ∩ S, we have

1 > |f (x′)− f (x)| ≥ ||f (x′)| − |f (x)|| ≥ |f (x′)| − |f (x)| ,

where the second line uses the reverse triangle inequality. Thus, we have 1 + |f(x)| > |f(x′)| for
any x′ ∈ Ix ∩ S.

Since S is compact and {Ix}x∈S is an open cover of S, there exists a finite subcover; i.e., there
exists a finite number of points {x1, . . . , xn} ⊆ S such that {Ixi

}ni=1 is also a cover of S. Define

M := 1 + max {|f (xi)| : i ∈ {1, . . . , n}} .

Then, M is a bound on |f(x)| for any x ∈ S. To see this, for any x′ ∈ S, since S ⊆
⋃n

i=1 Ixi , there
is an index i ∈ {1, . . . , n} such that x′ ∈ Ixi ∩ S so that |f(x′)| < 1 + |f(x)| ≤ M . ■

Remark 9. In the proof above, we first find a local bound using continuity of f ; i.e., we find
Mx ≥ |f(x) for each x ∈ S. We then use compactness to find a bound that does not depend on x.
Thus, you can think of compactness as allowing us to take a local property and making it into a
global property.
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Theorem 3 (Extreme value theorem). Let f : S → R be a continuous function on a nonempty,
compact set S ⊆ R. Then, f attains its maximum and minimum on S; i.e., there exists u, ℓ ∈ S

such that f(u) = sup f(S) and f(ℓ) = inf f(S).

Proof. By the Boundedness theorem, we know that M := sup f(S) < ∞. By definition of su-
premum, there exists a sequence (xn)n in S such that f(xn) → M .3 By the Bolzano-Weierstrass
theorem, (xn)n has a subsequence (xnk

)k that converges to u ∈ S. Since f is continuous on S,
f(u) = limk→∞ f(xnk

). But limk→∞ f(xnk
) = limn f(xn) = M (why?), hence f(u) = M . Thus,

the supremum M is attained.
Finally, since −f is continuous, −f takes a maximum value on S; i.e., f takes a minimum value

on S. ■

Exercise 14. Prove or disprove: The extreme value theorem still holds if f is defined on (a, b).

Exercise 15. Prove or disprove: The extreme value theorem still holds if f is defined on (a, b) and
we add the assumption that f is bounded.

Remark 10. Neither continuity nor the compactness of the domain of the function is necessary
for existence of extreme values. For example, consider f : R++ → R defined as f(x) := 1{x∈Q}.
Observe that R++ is neither closed nor bounded so that the domain of f is not compact. Moreover,
f is everywhere discontinuous. However, f clearly attains a maximum (at every rational number)
and a minimum (at every irrational number).

Theorem 4 (A more general extreme value theorem). Let f : S → R be a function on a nonempty
compact set S ⊆ R. If f is upper semi-continuous, then there exists u ∈ S such that f(u) = sup f(S).
If f is lower semi-continuous, then there exists ℓ ∈ S such that f(ℓ) = inf f(S).

Proof. We consider the case for when f is upper semi-continuous. Suppose that f : S → R is
an upper semi-continuous function on a nonempty compact set S ⊆ R. By the Boundedness
theorem, f(S) is bounded. Thus, there exists a sequence (xn)n in S such that f(xn) → sup f(S).
Observe that, while the sequence (f(xn))n is convergent, the sequence (xn)n need not be convergent.
However, by sequential compactness (Problem Set 3),4 there exists a subsequence (xnk

)k that
converges to some u ∈ S. Since f is upper semi-continuous,

lim sup
k→∞

f (xnk
) ≤ f (u) ≤ sup f (S) .

Since ((f(xnk
))k is a subsequence of a convergent sequence (f(xn))n, the subsequence ((f(xnk

))k

converges to the same limit as (f(xn))n (why?). Hence,

lim sup
k→∞

f (xnk
) = lim

n→∞
f (xn) = sup f (S) .

It follows that f(u) = sup f(S). ■
3Since for each n ∈ N, M − 1

n
is not an upper bound for f(S) so that there exists yn ∈ f(S) such that

M − 1
n

< yn ≤ M . By the Sandwich rule, yn → M .
4Recall: A set S is sequentially compact if every sequence in S has a subsequence converging to an element in S.

In PS3, you prove(d) that sequential compactness and compactness are equivalent (in Rd).
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Remark 11. A simple takeaway is as follows: if you want to solve a maximisation (resp. minimisation
problem), you should check that (i) domain is compact; (ii) objective function is upper semi-
continuous (resp. lower semi-continuous).

4 Intermediate value theorem

Theorem 5. Let f : [a, b] → R be a continuous function. For every y between f(a) and f(b), there
exists an x0 ∈ [a, b] such that f(x0) = y.

Proof. Without loss of generality assume f(a) < y < f(b). Let S = {x ∈ [a, b] : f(x) < y}. S is
nonempty (why?) so by the Completeness axiom x0 = supS exists, and x0 ∈ [a, b] (why?).5

Since x0 is the supremum of S, there exists a sequence (xn)n in S such that xn → x0. By
continuity of f and the fact that f(xn) < y for all n ∈ N, f(x0) = limn→∞ f(xn) ≤ y.

Now consider the sequence tn = min{b, x0 +
1
n} (why do we need the min?). Clearly, tn → x0

(why?). Since tn ̸∈ S (why?), f(tn) ≥ y for every n. Using this and continuity, f(x0) = lim f(tn) ≥
y. Putting the two inequalities together we get f(x0) = y. ■

Proposition 10. Suppose f : [0, 1] → [0, 1] is continuous. Then, f has a fixed point; i.e., a point
x0 ∈ [0, 1] such that f(x0) = x0.

Proof. The function g(x) = f(x) − x is also continuous, and g(0) = f(0) − 0 = f(0) ≥ 0, and
g(1) = f(1) − 1 ≤ 1 − 1 = 0. By the Intermediate Value Theorem applied to [g(1), g(0)], there
exists x0 ∈ [0, 1] such that g(x0) = 0, that is, f(x0) = x0. ■

5There exists a sequence in [a, b] that converges to x0. Since [a, b] is closed, it must contain x0.
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