
Module 2 answer key

By Zachary Taylor and Nadia Kotova

1. Prove Proposition 4: If (xn) is a Cauchy sequence and there is a subse-
quence (xnk

) that converges to x ∈ R, then (xn) converges to x as well.
Solution: Assume that there exists a subsequence (xnk

) of (xn) such that
(xnk

) → x. Take ε > 0 and choose N big enough so that |xnk
− x| < ε

and |xn − xm| < ε for nk, n,m > N . Now, take n > N and nk > n > N
and get |xn − x| ≤ |xn − xnk

|+ |xnk
− x| < 2ε, hence, (xn)→ x.

2. Verify that open intervals (a, b) are indeed open according to this defini-
tion. Do the same for (a,+∞).
Solution: Pick arbitrary x ∈ (a, b). Let ε = min{(x− a), (b− x)}. Then
for any y ∈ Bε(x), we have y > a and y < b. For (a,∞), pick ε = x− a.

3. The (arbitrary) union of open sets is open. The intersection of finitely
many open sets is open. Prove this. What about arbitrary intersections
of open sets?

Solution: (a) Consider a union S =
n⋃
i=1

si, where n may equal ∞. If

x ∈ S, then x ∈ si for at least some particular i. Then, there exists
an epsilon ball around x that is in the same si (because si is open) and
consequently also in S.

(b) Consider an intersection S =
m⋂
i=1

si, where m 6= ∞. Take x ∈ S. It’s

true that ∀i, x ∈ si. Since si is open, there exists εi such that Bεi(x)
is in si. Take ε = mini{ε1, ε2, ..., εm}, it exists because we looking the
interection of a finite number of open sets. Notice that Bε(x) ⊆ Bεi(x) ⊆
si for all i. Therefore, Bε(x) lies in the intersection S. Hence, S is open.
(c) This does not hold for the intersection of an infinite number of open

sets. Consider
∞⋂
i=1

(− 1
i , 1) = [0, 1).

4. Prove that the closed interval [a, b] is indeed closed. (Feel free to use
Exercise 2.)
Solution: We know that the complement, (−∞, a) ∪ (b,∞) is the union
of two open sets and therefore open.

5. The arbitrary intersection of closed sets is closed. The union of finitely
many closed sets is closed. Prove this.1 What about arbitrary unions of
closed sets?

Solution: By DeMorgan’s laws, this follows from exercise 4.
(a) Take the arbitrary intersection of closed sets si indexed by i. Denote s̄i
to be a complement of si. Because si is closed, s̄i is open. Take S =

⋂
i

si.

1Hint: Recall De Morgan’s laws.
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Its complement by De Morgan’s law is S̄ =
⋃
i

s̄i is open because it is the

union of open sets. Therefore, S is closed by definition of a closed set.

(b) Take the union of finitely many closed sets: S =
m⋃
i

si. Its complement:

S̄ =
m⋂
i

s̄i. The intersection of finitely many open sets is open. Hence, S is

closed.
(c) Consider

⋃
i

[
1
i ,+∞

)
= (0,+∞)

6. Give an example of open cover that does not admit a finite subcover for
(0, 1] ⊂ R (which is not closed) and for [0,+∞) (which is not bounded).

Solution: Consider the examples (0, 1] ⊆
∞⋃
i=1

( 1
i , 2) = (0, 2) and [0,+∞) ⊆

∞⋃
i=1

(−1, i) = (−1,∞).

7. Suppose S has an isolated point—for example, S = {1} ∪ [2, 3]. What
functions are continuous at 1?
Solution: Every function is continuous at 1. Consider any sequence that
converges to x0 = 1 in the domain S. Picking 0 < ε < 1, by definition
there exists N such that for all n > N |xn− 1| < ε < 1. Hence, xn = 1 for
all n > N , since xn has to belong to S and be no further away from x0 = 1
than ε < 1. Hence, for n > N f(xn) = f(1) and, therefore, converges to
1.

8. Prove Proposition ?? using ε-δ definition of continuity.
Solution: Since g is continuous at f(x0), then ∀ε > 0 there exists δ1 > 0
such that:

|f(x)− f(x0)| < δ1 ⇒ |g(f(x))− g(f(x0))| < ε

Since f is continuous at x0, then for δ1 > 0 there exists δ > 0 such that:

|x− x0| < δ ⇒ |f(x)− f(x0)| < δ1

Together the above two lines imply that ∀ε > 0 there exists δ > 0 such
that:

|x− x0| < δ ⇒ |f(x)− f(x0)| < δ1 ⇒ |g(f(x))− g(f(x0))| < ε

9. Let f and g be continuous at x0. Prove or disprove: max(f, g) is contin-
uous at x0.2

Solution: True; max{f(x), g(x)} = 1
2 (f(x) + g(x)) + 1

2 |f(x)− g(x)|.
Note that these are all continues functions, and the sum of continuous
functions is continuous.

2Hint: max(f, g) = 1
2
(f + g) + 1

2
|f − g|
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10. Prove or disprove: f : S → R is continuous at x0 if and only if for every
monotonic sequence (zn) in S converging to x0, limn f(zn) = f(x0).3

Solution:
(a) Take any sequence (zn) that converges to x0, then take any subse-
quence of (zn), let’s call it (znk

), then (znk
) has a monotone subsequence

(znkl
) such that f(znkl

) converges to f(x0). Consider f(zn) for any se-
quence zn converging to x0, for any subsequence f(znk

), it has a sub-
subsequence f(znkl

) that converges to f(x0). Now we can use the lemma
in the hint which gives us that f(zn) converges to f(x0).
(b) If f : S → R is continuous at x0, then for every monotonic se-
quence zn in S, lim f(zn) = f(x0). This holds trivially because in fact
lim f(zn) = f(x0) for every sequence zn in S, monotonic or not.

11. Prove or disprove: The extreme value theorem still holds if f is defined
on (a, b).
Solution: False. Take, for example, any function f such that limx→b− f(x) =
+∞

12. Prove or disprove: The extreme value theorem still holds if f is defined
on (a, b) and we add the assumption that f is bounded.
Solution: False. Take any continuous and strictly increasing function,
the maximum of it does not exist on (a,b).

3Hint: the following Lemma could be useful: (xn) converges to x if and only if for every
subsequence xnk there exists sub-subsequence xnkl

that converges to x. Proving this Lemma

is a good exercise in itself.
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