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9. The consumer solves the problem

max
x

u(w − x) + E[v(x+ y)]

where y ∼ F (·). Denote the solution to this problem as x󰂏 and the solution to the problem where y is
degenerate with mean 0 as x0.

(a) Recall that in the degenerate problem, since u and v are concave, we have that v′(x0)−u′(w−x0) =
0. If E[v′(x0+y)] > v′(x0), we have that E[v′(x0+y)]−u′(w−x0) > 0, so x0 is not a maximizer of
the problem. It remains to show that the true maximizer is greater than x0. At x0, we have that
E[v′(x0 + y)] > u′(w − x0). At the true maximizer x󰂏, we have that E[v′(x󰂏 + y)] = u′(w − x󰂏).
Conclusion follows by noting that u and v are concave, so u′ and v′ are decreasing in the argument.
Thus, x󰂏 > x0.

(b) We have that for v1 and v2, −v′′′1 (x)/v′′1 (x) ≤ −v′′′2 (x)/v′′2 (x) for all x, and that E[v′1(x0 + y)] >
v′1(x0). Note that the coefficient of absolute risk aversion of v′i is equivalent to the coefficient
of absolute prudence of vi. Thus, from Proposition 6.C.2 in Mas-Colell, we have that since v′1
has a coefficient of absolute risk aversion that is not greater than v′2, v′2 has a greater certainty
equivalent than v′1, meaning that E[v′2(x0 + y)] > v′2(x0). In the context of part (a), this implies
that if one individual decides to invest in a risky lottery, a second individual with a not-greater
coefficient of absolute prudence will also invest, and they will not invest less.

(c) We have that v′′′(x) > 0 for all x, then v′ is convex, meaning that v′ exhibits risk-loving behavior.
Since E[y] = 0, we have that E[v′(x+ y)] > v′(x) for all x.

(d) We have that the coefficient of absolute risk aversion is decreasing in wealth, meaning that

∂

∂w

󰀗
−v′′(x)

v′(x)

󰀘
< 0 =⇒ −v′′′(x)v′(x)− (v′′(x))2

(v′(x))2
=

v′′(x)

v′(x)

󰀕
v′′(x)

v′(x)
− v′′′(x)

v′′(x)

󰀖
< 0

Thus, we have that − v′′(x)
v′(x) < − v′′′(x)

v′′(x) .

14. We have that u󰂏(·) is strongly more risk-averse than u(·) if and only if there exists a positive constant
k and a nonincreasing, concave function v(·) such that u󰂏(x) = ku(x) + v(x) for all x.

(a) We have that the coefficient of absolute risk aversion for u󰂏 at some x is

r(x, u󰂏) = −ku′′(x) + v′′(x)

ku′(x) + v′(x)

we want to show that

−ku′′(x) + v′′(x)

ku′(x) + v′(x)
≥ −u′′(x)

u′(x)
=⇒ u′(x)(ku′′(x) + v′′(x)) ≤ u′′(x)(ku′(x) + v′(x))

This simplifies to

ku′(x)u′′(x) + u′(x)v′′(x) ≤ ku′(x)u′′(x) + u′′(x)v′(x) =⇒ u′(x)v′′(x) ≤ u′′(x)v′(x)
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Which holds as long as

−v′′(x)

v′(x)
≥ −u′′(x)

u′(x)

Since, by assumption, u is increasing and concave, and v is non-increasing and concave, the left
side is non-negative and the right side is non-positive. Conclusion follows.

(b) Suppose FSOC that there exists u󰂏(x) = ku(x) + v(x), where v is non-constant, non-increasing,
and concave. Define M such that M = inf{C ∈ R : u(x) ≤ C ∀ x}. Since u is increasing, as
x → ∞, u(x) → M . However, since v is non-constant and non-increasing, ∃ x ∈ R sufficiently
large such that u󰂏(x) > u󰂏(x+ ε) for some ε > 0. This contradicts the assumption that u󰂏 must
be increasing.

(c) We have from (a) that strong risk aversion implies Arrow-Pratt risk aversion. It remains to show
that the converse is not true. Consider the functions u(x) = − exp(−αx) and v(x) = − exp(−βx),
where β > α. Both functions exhibit constant absolute risk aversion, so v is more risk-averse than
u in the Arrow-Pratt sense. However, since they are each bounded above, by (b) v is not strongly
more risk-averse than u.

15. We have a risk-averse decision maker, investing x1 in a riskless asset and x2 in a risky asset that pays
a with probability π and b with probability 1− π. They begin with w = 1.

(a) Since the decision-maker is risk-averse, they will invest strictly positive levels in the riskless asset
if there is a probability of loss with respect to the risky asset. Thus, the necessary condition is
that at least one of a, b is strictly less than 1.

(b) Again, since the decision-maker is risk-averse, they will invest in the risky asset only if its expected
value is greater than that of the riskless asset, i.e.when πa+ (1− π)b > 1.

(c) The decision-maker is maximizing the problem

max
x1,x2

πu(x1 + ax2) + (1− π)u(x1 + bx2) s.t. x1, x2 ∈ [0, 1], x1 + x2 = 1

The first condition falls away because we’re assuming that the conditions from (a) and (b) hold,
so the Lagrangian this admits is

L = πu(x1 + ax2) + (1− π)u(x1 + bx2) + λ(1− x1 − x2)

The first order conditions are

∂L
∂x1

= πu′(x1 + ax2) + (1− π)u′(x1 + bx2)− λ = 0

∂L
∂x2

= aπu′(x1 + ax2) + b(1− π)u′(x1 + bx2)− λ = 0

which, combining, get

πu′(x1 + ax2) + (1− π)u′(x1 + bx2) = aπu′(x1 + ax2) + b(1− π)u′(x1 + bx2)

which imply
π(1− a)u′(x1 + ax2) + (1− π)(1− b)u′(x1 + bx2) = 0

The final first order condition is

∂L
∂λ

= 1− x1 − x2 = 0 =⇒ x1 + x2 = 1
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(d) Using the implicit function theorem, and holding b constant, define

g(x1, a,π) = π(1− a)u′(x1 + a(1− x1)) + (1− π)(1− b)u′(x1 + b(1− x1))

We have that

∂x1

∂a
= −

∂g
∂a
∂g
∂x1

= − −πu′(x1 + a(1− x1)) + π(1− a)(1− x1)u
′′(x1 + a(1− x1))

π(1− a)(1− a)u′′(x1 + a(1− x1)) + (1− π)(1− b)(1− b)u′′(x1 + b(1− x1))

where all terms in the numerator and denominator are negative, so ∂x1

∂a ≤ 0.

(e) If we are assuming, like in (d), that a < 1, it follows that b > 1. Thus, as π increases, the lottery
gets worse, so the decision maker would invest more in the riskless asset. Thus, I conjecture that
∂x1

∂π > 0.

(f) From the first order conditions and the implicit function theorem, we have that

∂x1

∂π
= − ∂g/∂π

∂g/∂x1

We know that the denominator is negative, from part (d). It remains to show that the numerator
is positive, and conclusion will follow. We have that

∂g

∂π
= (1− a)u′(x1 + a(1− x1))󰁿 󰁾󰁽 󰂀

>0

− (1− b)u′(x1 + b(1− x1))󰁿 󰁾󰁽 󰂀
<0

> 0

16. An individual has Bernoulli utility function u(·) and initial wealth w. Let lottery L offer a payoff of G
with probability p and a payoff of B with probability (1− p).

(a) The individual would sell the lottery for no less than the amount that would guarantee the same
expected utility – i.e., a price y such that

pu(w +G) + (1− p)u(w +B) = u(w + y)

(b) They would purchase the lottery for an amount x such that they would have the same expected
utility whether they had the lottery or not – i.e., a price x such that

pu(w − x+G) + (1− p)u(w − x+B) = u(w)

(c) In general, x ∕= y, as the different levels of wealth will change how much the lottery is ‘worth’ to
the decision maker. However, if u exhibits constant absolute risk aversion, then they will coincide.
If u exhibits CARA, then the above conditions imply that

w − cw = (w − x)− cw−x

where cw is the certainty equivalent of the lottery with wealth w and cw−x is the certainty
equivalent of the lottery with wealth w − x.

(d) Directly calculating (using Wolfram), we get that y solves

p
√
20 + (1− p)

√
15 =

󰁳
10 + y =⇒ y = −5

󰀓
4
√
3p2 − 7p2 − 4

√
3p+ 6p− 1

󰀔

and x solves

p
√
20− x+(1−p)

√
15− x =

√
10 =⇒ x =

5
󰀓
2p3 + 7p2 ± 2

√
2
󰁳
−2p5 + 7p4 − 8p3 + 3p2 − 8p+ 1

󰀔

4p2 − 4p+ 1
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17. We have that an individual faces a two-period portfolio allocation problem, dividing her wealth between
a risky asset with return x and a safe asset with return R. They have initial wealth w0, and in period
t ∈ {1, 2} their wealth depends on the portfolio αt−1 chosen previously, defined by

wt = ((1− αt−1)R+ αt−1xt)wt−1

The individual is maximizing w2, where we assume that x1, x2 are i.i.d.

Proof. First, assume that u has CRRA preferences. The wealth at the end of each period is

w1 = ((1− α0)R+ α0x1)w0 and w2 = ((1− α1)R+ α1x2)w1

Combining, we get that

w2 = ((1− α1)R+ α1x2)((1− α0)R+ α0x1)w0

Since CRRA preferences are scale-invariant, for any λ we have that u(λx) = λ1−σu(x), where σ is the
coefficient of relative risk aversion. When the consumer is maximizing the expected utility, we have
that

E[u(w2)] = E
󰀅
((1− α1)R+ α1x2)

1−σu(w1)
󰀆
= E[u(w1)] · ((1− α1)R+ α1 E[x2])

1−σ

Thus, the choice of α that maximizes w1 will also maximize w2, since xi are i.i.d., and α0 = α1.

Next, assume that u has CARA preferences. We know that u has the form u(x) = − exp(−γx), where
γ > 0 is the coefficient of absolute risk aversion. Thus,

E[u(w2)] = E [u(w1) exp(−γ(((1− α1)R+ α1x2)))]

However, we cannot split the expectation here as above, since we do not know that the relevant
moments for x necessarily exist. Thus, the choice of α1 depends on x1, so it will not necessarily hold
that α0 = α1.

18. Suppose that a decision maker has utility u(x) =
√
x.

(a) We have that wealth w = 5. The coefficient of absolute risk aversion is

−u′′(w)

u′(w)
= − (−0.25)w−1.5

(0.5)w−0.5
=

1

2

√
5√
125

=
1

2
· 1
5
= 0.1

The coefficient of relative risk aversion is

−w
u′′(w)

u′(w)
= 5 · 1

10
= 0.5

(b) The certainty equivalent of this lottery is

u−1(0.5u(16) + 0.5u(4)) = u−1(2 + 1) = u−1(3) = 9

The probability premium is π such that

u(10) = (0.5 + π)u(16) + (0.5− π)u(4) =⇒
√
10 = 2 + 4π + 1− 2π =⇒ π =

√
10− 3

2

(c) The certainty equivalent of this lottery is

u−1(0.5u(36) + 0.5u(16)) = u−1(3 + 2) = u−1(5) = 25

The probability premium is π such that

u(26) = (0.5 + π)u(36) + (0.5− π)u(16) ⇒
√
26 = 3 + 6π + 2− 4π ⇒ π =

√
26− 5

2

The probability premium is higher in the first lottery, which implies that u has decreasing absolute
risk aversion, implied by the fact that it has constant relative risk aversion.
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19. We have that an individual has utility u(x) = − exp(−αx) with α > 0, and initial wealth w. He
invests in a riskless asset with return r and N jointly normally distributed random assets with means
µ = (µ1, . . . , µN ) and variance V . We assume that V is full rank.

Denote by xi the amount invested in risky asset i, and by yi its return. The agent’s realized wealth is

w′ =

󰀣
w −

N󰁛

i=1

xi

󰀤
r +

N󰁛

i=1

xiyi

By the properties of jointly normal distributions, w′ ∼ N
󰀓󰀓

w −
󰁓N

i=1 xi

󰀔
r +

󰁓N
i=1 xiµi, x

TV x
󰀔
. The

expected utility of this is
E[u(w′)] = E[− exp(−αw′)]

Using the properties of the moment generating function of a normal random variable, we have that

E[u(w′)] = − exp

󰀥󰀣󰀣
w −

N󰁛

i=1

xi

󰀤
r +

N󰁛

i=1

xiµi

󰀤
(−α)− (xTV x)

α2

2

󰀦

Monotonically transforming this by ln(·), we get that expected utility is maximized when

−α(µ− r)− α2V x = 0 =⇒ x =
µ− r

αV

where the − in the numerator denotes elementwise subtraction.
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