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Problem 1 (Bob and his coconuts)

1. Bob’s maximization problem is:

max
{ct},{bt+1}

∞󰁛

t=0

βtu(ct)

subject to ct + bt ≤ (1 + rt)bt−1

b0 + c0 ≤ e0

ct ≥ 0

bt ≥ 0, b−1 = 0

e0 > 0, {rt} given

with β ∈ (0, 1), u′ > 0, u′′ < 0.

Where ct is the number of coconuts eaten in period t, bt is the number of coconuts planted in period
t, rt is the harvest rate of coconuts, and β is the discount factor.

2. Since utility is strictly increasing, only the budget constraint is relevant for this problem. The La-
grangian is

L =

∞󰁛

t=0

βtu(ct) + λt((1 + rt)bt−1 − ct − bt)

and the first order conditions imply that

∂L
∂ct

= βtu′(ct)− λt = 0

and
∂L
∂bt

= −λt + λt+1(rt+1 + 1) = 0

combining, we get
−βtu′(ct) + βt+1(rt+1 + 1)u′(ct+1) = 0

and so
u′(ct) = β(rt+1 + 1)u′(ct+1)

3. From the first order conditions, we can say that consumption is constant in every period if and only if
β(rt+1+1) = 1 ∀ t. This implies also that r1+1 = r2+1 = · · · = r+1 = 1

β ⇒ r = 1−β
β . If that is true,

u′(ct) = u′(ct+1) ∀ t, and thus the maxima are attained at the same point, meaning that ct = ct+1 ∀ t.
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4. We are assuming that ct = c ∀ t, which means we are also assuming r1 = r2 = · · · = r. First, note that
this means that c1 = c, and since b−1 = 0, this implies that b0 = e0 − c. Note that this assumption
relies on the fact that β ∈ (0, 1) and r = 1

β > 1, meaning that planting coconuts is worth strictly
more than saving them for the next period – for each coconut Bob plants, he will attain r coconuts,
while he only attains 1 coconut for each coconut he saves. Thus, et = 0 ∀ t = 1, . . . . Since we have
that b0 = e0 − c, we can solve for bt recursively. We have that bt = (r + 1)bt−1 − c, meaning that
c = (1 + r)bt−1 − bt ∀ t = 1, . . . . Solving for b0, we get that

b0 =
c

1 + r
+

b1
1 + r

b0 =
c

1 + r
+

c

(1 + r)2
+

b2
(1 + r)2

...

b0 = c

∞󰁛

t=1

1

(1 + r)t
+ lim

t→∞

bt
(1 + r)t

and because (1 + r) > 1, limt→∞
bt

(1+r)t = 0. Thus, from the definition of geometric series, b0 = c
r , so

c
r = e0 − c, meaning that c = r

1+r e0.

At the beginning of each period t, Bob will have (1 + r)bt−1 coconuts. At time t = 1, he will have
(1 + r)b0 = c 1+r

r coconuts, and he will consume c of them, leaving b1 = c
r . At time t = 2, he will have

(1 + r)b1 = c 1+r
r coconuts, and will be left with b2 = c

r . This holds for all t, so at any time t, he will
have (1 + r)bt−1 = c 1+r

r = e0 coconuts to start with.

5. We have that
lim
r→∞

c = e0 lim
r→∞

r

1 + r
= e0

This limit is finite, which does not make much sense – as Bob’s rate of return increases, he will get
more and more coconuts available to him each period, so he should be consuming more. However, we
assumed above that r + 1 = 1

β , meaning that as r → ∞, β → 0, meaning that as he can attain more
coconuts in the future, future coconuts are worth less to him. We actually have that Bob consumes his
entire endowment in the first period, and doesn’t plant any coconut seeds. If we relaxed the assumption
that r + 1 = 1

β , Bob would consume more as r increases, and actually make use of his increasing rate
of return.

Problem 2 (CRRA Utility)

1. We have that

lim
σ→1

c0t − 1

1− 1
=

0

0

We can use l’Hôpital’s rule, and we get that

lim
σ→1

e(1−σ) ln(ct)(− ln(ct))

−1
= ln(ct)

2. First, we define the respective derivatives. We have that

U ′(c) = c−σ

and
U ′′(c) = −σc−σ−1
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Thus, the Arrow-Pratt coefficient of relative risk aversion is

−cU ′′(c)

U ′(c)
=

−c · (−σc−σ−1)

c−σ
= σ

cσ

cσ
= σ

3. Recall that U ′(c) = c−σ. Then the intertemporal elasticity of substitution is

− ∂ ln(ct+1/ct)

∂ ln(U ′(ct+1)/U ′(ct))
= − ∂ ln(ct+1/ct)

∂ ln(cσt /c
σ
t+1)

=
∂(ln(ct+1)− ln(ct))

σ∂(ln(ct+1)− ln(ct))
=

1

σ

4. First, note that U is not strictly increasing, strictly concave, nor do the Inada conditions hold if σ = 0.
For the rest of this problem, I will assume that σ > 0.

Assuming that c > 0 (which we can because the Inada conditions do hold), we have that U ′(c) = 1
cσ > 0,

so the CRRA utility function is strictly increasing, and that U ′′(c) = −σ 1
cσ+1 < 0, so the CRRA utility

function is strictly concave. Finally, we can see that limc→0
1
cσ = ∞ and limc→∞

1
cσ = 0, so U satisfies

the Inada conditions.

5. We have that for any ct, ct+s,

MRS(ct+s, ct) =

∂u(c)
∂ct+s

∂u(c)
∂ct

=
βt+sU ′(ct+s)

βtU ′(ct)
= βs cσt

cσt+s

Then we have that fixing some λ > 0,

MRS(λct+s,λct) =
βt+sU ′(λct+s)

βtU ′(λct)
= βs (λct+s)

−σ

(λct)−σ
= βs cσt

cσt+s

Thus, u is homothetic if U is of CRRA form.

6. We have that the Lagrangian for each consumer is

L1 =

∞󰁛

t=0

βtU(ct) + µ1(y −
∞󰁛

t=0

ptct)

L2 =

∞󰁛

t=0

βtU(ct) + µ2(λy −
∞󰁛

t=0

ptct)

Taking derivatives with respect to ct and ct+1, we get

∂L1

∂ct
=

∂L2

∂ct
= βtc−σ

t − µipt = 0

and
∂L1

∂ct+1
=

∂L2

∂ct+1
= βt+1c−σ

t+1 − µipt+1 = 0

which imply that
󰀕
ct+1

ct

󰀖−σ

=
pt+1

βpt

⇒ ln(ct)− ln(ct+1) =
1

σ
ln

󰀕
pt+1

βpt

󰀖

⇒ ln(c0)− ln(ct) =
1

σ

t−1󰁛

i=0

ln

󰀕
pi+1

βpi

󰀖

⇒ ct = c0

t−1󰁜

i=0

󰀕
pi+1

pi

󰀖− 1
βσ
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Since this is independent of the income, it holds for both consumers. Substituting into the budget
constraint, which holds with equality because utility is strictly increasing, strictly concave, and the
Inada conditions hold, we get

∞󰁛

t=0

ctpt = y ⇐⇒
∞󰁛

t=0

c0

t−1󰁜

i=0

󰀕
pi+1

pi

󰀖− 1
βσ

pt = y ⇐⇒ ĉ0 =

󰀥 ∞󰁛

t=0

t−1󰁜

i=0

󰀕
pi+1

pi

󰀖− 1
βσ

pt

󰀦−1

y

∞󰁛

t=0

ctpt = λy ⇐⇒
∞󰁛

t=0

c0

t−1󰁜

i=0

󰀕
pi+1

pi

󰀖− 1
βσ

pt = λy ⇐⇒ c̃0 = λ

󰀥 ∞󰁛

t=0

t−1󰁜

i=0

󰀕
pi+1

pi

󰀖− 1
βσ

pt

󰀦−1

y

and thus,
ĉt
c̃t

=
y

λy
=⇒ c̃t = λĉt ∀ t = 0, . . .

7. We have that ct +
at+1

1+rt+1
= et + at. Our Lagrangian is

L =

∞󰁛

t=0

βtU(ct) + λt

󰀕
et + at − ct −

at+1

1 + rt+1

󰀖

and the necessary first order conditions for optimum are

∂L
∂ct

= βtU ′(ct)− λt = 0 =⇒ λt = βtU ′(ct)

and
∂L
∂at

= λt −
λt−1

1 + rt
= 0

Combining, we get

βtU ′(ct) =
βt−1

1 + rt
U ′(ct−1)

Thus, the Euler Equation is
U ′(ct−1) = β(1 + rt)U

′(ct)

and the Euler equation relating consumption at time t and time t+ 1 is

U ′(ct) = β(1 + rt+1)U
′(ct+1)

8. We have that ct = (1 + g)tc0. This means that at time t, the Euler Equation says that

U ′((1 + g)t−1c0) = β(1 + r)U ′((1 + g)tc0)

which implies that
(1 + g)−σ(t−1)c−σ

0 = β(1 + r)(1 + g)−σtc−σ
0

meaning that
(1 + g)σt

(1 + g)σt−σ
= β(1 + r) ⇒ (1 + g)σ = β(1 + r)

9. We have that r = 1
β (1 + g)σ − 1, meaning that

∂r

∂g
=

σ

β
(1 + g)σ−1 > 0

As g increases, r will also increase. The magnitude of that increase will be inversely proportional
to the intertemporal elasticity of substitution. As 1/σ gets smaller, the increase in r as g increases
becomes larger. Intuitively, think about this relationship as follows: as the intertemporal elasticity of
substitution shrinks, the consumer is less responsive to changes in the real interest rate. This means
that the rate of growth will more directly affect the real interest rate.
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10. Suppose that u is homothetic, meaning that MRS(ct+s, ct) = MRS(λct+s,λct) ∀ λ > 0, c. Fix a
balanced growth path (1+g), with g > 0, and assume that consumption is growing along this balanced
growth path such that ct = (1 + g)tc0. It remains to show that this growth path is consistent with a
constant interest rate. Take the Euler equation:

U ′(ct−1) = β(1 + rt)U
′(ct)

We have that
U ′((1 + g)t−1c0) = β(1 + rt)U

′((1 + g)tc0)

which means that
U ′((1 + g)t−1c0)

U ′((1 + g)tc0)
= β(1 + rt)

Then, taking λ = (1 + g)j for some j ∈ N, we have that additionally

U ′((1 + g)t−1+jc0)

U ′((1 + g)t+jc0)
= β(1 + rt+j)

Thus, since the left side of both equations is equivalent to MRS(ct−1, ct) and MRS(λct−1,λct), the
fact that u is homothetic implies that β(1+ rt) = β(1+ rt+j), meaning that rt = rt+j . This holds ∀ j,
so a homothetic utility function with a balanced growth path implies a constant interest rate.

Problem 3 (CARA Utility)

1. We have that U ′(c) = γe−γc and U ′′(c) = −γ2e−γc. Thus, the coefficient of absolute risk aversion is

γ(c) = −−γ2e−γc

γe−γc
= γ

and is constant. However, the coefficient of relative risk aversion is

−c
−γ2e−γc

γe−γc
= cγ

which is increasing in c.

2. u is not homothetic. We have that u is homothetic if MRS(ct, ct+s) = MRS(λct,λct+s) ∀ λ > 0 and
c. With CARA utility, we have that

MRS(ct, ct+s) =

∂u(c)
∂ct

∂u(c)
∂ct+s

=
βtγe−γct

βt+sγe−γct+s
= β−seγ(ct+s−ct)

However, we also have that

MRS(λct,λct+s) =
βtγλe−γλct

βt+sγλe−γλct+s
= β−seλγ(ct+s−ct)

since MRS(ct, ct+s) ∕= MRS(λct,λct+s), u is not homothetic.

3. We follow the same logic as in Problem 2 Part 6. The two Lagrangians are

L1 =

∞󰁛

t=0

βtU(ct) + µ1

󰀣
y −

∞󰁛

t=0

ptct

󰀤
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and

L2 =

∞󰁛

t=0

βtU(ct) + µ2

󰀣
λy −

∞󰁛

t=0

ptct

󰀤

Taking the FOCs with respect to ct and ct+1, we get

∂L1

∂ct
=

∂L2

∂ct
= βtγe−γct − µipt = 0

and
∂L1

∂ct+1
=

∂L2

∂ct+1
= βt+1γe−γct+1 − µipt+1 = 0

Combining, we get
e−γct+1

e−γct
=

pt+1

βpt

−γ(ct+1 − ct) = ln

󰀕
pt+1

βpt

󰀖

ct − c0 = − 1

γ

t−1󰁛

i=1

ln

󰀕
pi+1

βpi

󰀖

and finally,

ct = c0 −
1

γ

t−1󰁛

i=1

ln

󰀕
pi+1

βpi

󰀖

Combining with the original budget constraint, we get

∞󰁛

t=0

pt

󰀥
c0 −

1

γ

t−1󰁛

i=1

ln

󰀕
pi+1

βpi

󰀖󰀦
= y

c0

∞󰁛

t=0

pt = y +

󰀥
1

γ

∞󰁛

t=0

pt

t−1󰁛

i=1

ln

󰀕
pi+1

βpi

󰀖󰀦

ĉ0 =

󰀣 ∞󰁛

t=0

pt

󰀤−1 󰀣
y +

󰀥
1

γ

∞󰁛

t=0

pt

t−1󰁛

i=1

ln

󰀕
pi+1

βpi

󰀖󰀦󰀤

and we also get that

c̃0 =

󰀣 ∞󰁛

t=0

pt

󰀤−1 󰀣
λy +

󰀥
1

γ

∞󰁛

t=0

pt

t−1󰁛

i=1

ln

󰀕
pi+1

βpi

󰀖󰀦󰀤

Thus, we have that

ĉt − c̃t = (1− λ)y

󰀣 ∞󰁛

t=0

pt

󰀤−1

∀ t = 0, . . .

so

c̃t = ĉt − (1− λ)y

󰀣 ∞󰁛

t=0

pt

󰀤−1

∀ t = 0, . . .
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