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1. Sampling Model



Motivation

® Economists often collect data that consist of some
observations on variables of interest

Table: Some Observations from March 2009 Current Population Survey

Observation Wage Education

1 37.93 18
2 40.87 18
3 14.18 13
4 16.83 16
5 33.17 16
6 29.81 18
7 54.62 16
8 43.08 18
9 14.42 12
10 14.90 16
11 21.63 18
12 11.09 16
13 10.00 13
14 31.73 14
15 11.06 12
16 18.75 16
17 27.35 14
18 24.04 16
19 36.06 18
20 23.08 16

® The statistical view of the table:

a random sample from a large population, from which we
can learn about the wages/education of the population



The population

Definition: Let X be a random vector of interest. The
distribution of X, denoted as F, is called population
distribution, or population

We have n repeated observations made from X
{X1,X2... X},
which we call a sample or data

What we observe for Xj is an realization of the random vector
X1

Notation: Capital X refers to a random variable; lowercase x
refers to a realization of variable X

We need to model how these observations are collected



The random sampling model

¢ Definition: The collection of random vectors {X1, Xz ... Xy}
are called a random sample of size n from population F if
{X1... X5} are
® mutually independent
® have the same marginal distribution F

e Alternatively, we say {Xj ... X,} are independent and
identically distributed (iid) random vectors



® Because of the random sampling scheme, the joint pdf/pmf of
{X1... Xy} is given by

f(x1,%2...%n) = f(x1) f(x2) - f(xn)
—_————— ——
joint pdf/pmf marginal pdf/pmf of X;

= [T 70x)
i=1

because of random sampling,
all marginal distributions are the same

e If f(-) is known, we can use the joint pdf/pmf of the random
sample to calculate any probability events about the random
sample



Example: exponential distribution

e Let {Xi...X,} be a random sample from the exponential
distribution with parameter 3:
1 e_%x >0
B y X Z U,
Fix|B) =17
0, x <0
® Then, the joint pdf of {Xj...X,} is

f(x1,...Xn) :Hf(x,- | B)
i=1

N1 .
( ) e FXiN x>0 foralli=1,...n,
0, otherwise.

@



We may calculate

P{X1>2,....X,>2}

/ / f(Xl, N dX1 an
1 _lywn
= — | e B&=1Tdxy ... dX,
/2 /2 <5) 1

00 o /1 n—1 1 —n
—e 8 / <> e_ﬁz’:2xidX2...
2 2 6

:. (e—%)" _ o2

dxp(integrate out x1)



® Alternatively, we may also calculate

P{X1>2,....X,>2}
=P{Xy >2}-...-P{X, > 2}
= [P{X > 2}]"

_ (e_z/g)” _ e_2n/5

® In general, calculation of such probabilities for any random
sample may be difficult, even if the population distribution is
known



Statistics, parameters and estimators

A parameter 6 is any function of the population F

A statistic is a function of sample {X;: i =1,...,n}, say
T(Xi,...Xy) for a real or vector valued function T

A statistic is a random vector. lts distribution is called
sampling distribution

® Sampling distribution of T(Xi,...X,) can be quite tractable if
{X1,...X,} is a random sample

An estimator 0 for a parameter 6 is a statistic intended as a
guess about 6
* { is an estimate when it is a specific (or realized) value
calculated in a specific sample



Example 1: Judging whether | have a fair coin
® | want to figure out whether | have a fair coin by flipping it 10
times and recording 0 for each tail and 1 for each head

e Sample: X = (X1, X2...X,), where X; is the result of i-th
experiment

® Note X; ~ i.i.d. Bernoulli(p). That is, the pmf of each X; is
f(x;) = p(1 — p)t=

® The pmf of X is fx(x1,x2. .. xn) = [[12, P(1 — p)=%,
known up to p

® The goal is to make some judgment about p

® A statistic is any function of X, e.g.,
Y1 = {number of heads} = ZX,—

i=1

Y2 = {the order number of the first experiment resulting in heads, with 0 if no heads}
= X1+ 2X2(1 — X1) + 3X3(1 — XQ)(]. — X1) + ...



® For example, if we observe a sample {0,1,1,0,0,0,1,0,1,1},
Y1 =5, Yo =2.

® Notice both Y; and Y5 are random variables and have a
distribution that depends on p

® For example, in this example, Y7 follows a binomial
distribution with parameter (n, p)

P{Yi =k} = < K )pk(l—p>k,k=1,--.7n,

where



Example 2: Estimate average income of a worker

® Suppose you want to estimate the average income of a worker
aged between 25 and 65 who resides in lthaca

¢ A sample of n workers: X = {X1, Xa... Xy}, where
Xi ~iid. F(-), and F(-) is the unknown distribution of
income

® The distribution of X: Fx(x1,x2...xn) = [[_; F(xi)

® The parameter of interest is u = [ udF(u), the mean of the
unknown income distribution

® A statistic is any function of X, e.g.,

1 n
Yi= - ;X,- (average).
=
Y, = average of 80% of middle values (trimmed mean)

® The distribution of Y7 and Y5 can be difficult to characterize



The goal of this course

¢ Based on observed random sample/data {X; ... X,},
construct a “good” statistic to learn about the population
parameter of interest 6

® Here, “good” means “good statistical property”. = Requires
careful evaluation of the sampling uncertainty (the underlying
randomness of our data)=- Need to study the sampling
distribution of any statistic

® Three approaches: Finite sample approach, asymptotic
approach, and bootstrap



Alternative sampling models

® i.n.i.d. sampling: each X; is independent but not necessarily
identically distributed, i.e., X; is drawn from heterogeneous
population F;

® Bootstrap with replacement

® 2 finite population of N values {xq,...xn}

® Each X;,i =1...n,is drawn from the N values with equal
probability (think of drawing numbers from a hat)

® Then, each X; is a discrete random variable that takes on
values {xi,...xy} with equal probability 1/N

1
P{X;:Xk}:N,k:]....N

® The joint pmf of {Xi,X5...X,} is

1\"
P{Xlztl,...7Xn:tn}: (N) ,tjE{Xl,...XN},j:]....n.



® Bootstrap without replacement

a finite population of N values {xi,...xn}

Xi is drawn from the N values with equal probability %
Record X1 = x1

X is drawn from remaining N — 1 values equal probability

1 _
w—1- Record X; = x

e With bootstrap without replacement, the sample we get

(X1... Xp}

does not satisfy i.i.d assumption.



Useful result
In bootstrap without replacement,

(X1... X}

are NOT independently distributed. However, they are identically
distributed.

® Proof



2. Some Common Statistics



Sample mean and sample variance

® \We now define three statistics that are often used and provide
goos summaries of the random sample

® The sample mean is the arithmetic average of the values in a
random sample

o XiH X, 1E
X:—:— Xi

® The sample variance is the statistic defined by

1 —
52 = 1 Z(XI — Xn)2
i=1

The sample standard deviation is the statistic defined by

s= VR



Properties of sample mean and sample statistics

e X and s? are themselves random variables

e We start by deriving some basic algebraic properties of the
sample mean and variance

Theorem
The following are true:

® min, Y0 (X; —a)? = z:,r]:l(xi—)_()2

o (n—1)2 =", (X — X)? = 20 X? — n(X)?



Proof



Useful results

® \We now begin our study of sampling distributions by
considering their moments. The following result will be useful.

Theorem
Let {Xi,...X,} be a random sample from a population. Let g(x)
be a function such that Eg(X;) and var(X) exist. Then:

® E[X1, 8(X)] = nEg(Xy);
@ Var(3_1L; g(Xi)) = nVar(g(X1))



Proof



Moments of sample mean and variance

Theorem
Let {Xi,...Xnh} be a random sample from a population with mean
u and variance o2, then:
® E[X] = p,
2

® var(X) = Z,
(3] E[s2] =02



Proof

® To prove (1), directly use the linearity of expectations and iid
assumption

® To prove (2), note

_ 1 n 1 n
var[X] = var [n ZX,- = —var ZX"
i=1 i=1
1 « _
2 Zvar[X,-] (by mutual independence)
i=1
1 n
= > var[X] (by identical distribution)
i=1

1 2
= —var[X] = 7
n n

® Thus, the variance of sample mean declines with sample size
1
at rate



® To show (3), by the previous theorem,

zn: X,'2 —n (5(,7)2
=1

1
2 __
s T n-1 p

® Thus,

= 0'2,

where we have used
E [X?] = Var (X1) + (E[X1])?,
E | (Xn)?] = var (X) + (B [X])*.



3. Sampling from Normal Distribution



Motivation

In order to make statistical inference, we often need to know
the distribution of a statistics

The most widely used statistical model assumes samples are
drawn from a normal distribution

In this section, we study the properties of common statistics
when observations are normally distributed

This also leads us to many well-known sampling distributions



Normal sampling model

e Let {X1,Xa,...Xp} be a random sample from a normal
distribution N(u,02). This is called a normal sampling
model

® The normal sampling model has many attractive and tractable
properties, since {X1, X2, ... X,} follows a multivariate normal
distribution with positive-definite and diagonal covariance
matrix

® Before studying sampling distribution under the normal
sampling model, we first introduce the univariate and
multivariate normal distributions.



Univariate normal

® A random variable Z has the standard normal distribution,
written as Z ~ N(0, 1), if it has the density

1 x?
o(x) = \/T?exp <2> , Xx €R.

® The cdf of a standard normal does not have a closed form but
is written as

d(x) = /_ o(u)du.
® Note key properties of ¢(-) and & (-)

e [*_ ¢(x)dx =1 (a pdf must integrate to 1)

® $(x) = ¢(—x), and ®(—x) =1 — d(x) (due to symmetry of
¢(-) around 0)



® If Z~N(0,1), and X = p+0Z for p € R and o > 0, then X
has the normal distribution, written as X ~ N(u,0?).

® If X ~ N(u,0?) with o > 0, then X has the density

1 X — p)?
f(x | p,o?) = Wexp <_(202,u)>, x € R.




Moments of normal distribution

® All positive integer moments of the standard normal
distribution are finite. This is because the tails of the density
decline exponentially.

e If Z~N(0,1), then E[Z] =0, Var(Z) = 1.
® For any positive integer m,

E[7™] — 0, m odd,
N 27%(m"/’!2)! m even.




Quantiles of standard normal

® The normal distribution is commonly used for statistical
inference. Its quantiles are used for hypothesis testing and
confidence interval construction

Figure: Normal probabilities and quantiles

PlZ<x] P[Z>x] P[Z|>x]

x=0.00 0.50 0.50 1.00
x=1.00 0.84 0.16 0.32
x=1.65 0.950 0.050 0.100
x=1.96 0.975 0.025 0.050
x=2.00 0.977 0.023 0.046
x=2.33 0.990 0.010 0.020
x=2.58 0.995 0.005 0.010

® Historically, statistical and econometrics textbooks would
include extensive tables of normal (and other) quantiles. This
is unnecessary today since these calculations are embedded in
statistical software.



Multivariate standard normal

o lLet {Z1,2s,...2Zn} beiid standard normal. Therefore, the
joint pdf of {Z1, 2>, ... Zn} equals

f(z1,...zm) = [ [ f(2)

where z=(z1,2 ... 2zm)".

® The above density is called multivariate standard normal

density



® Definition: An m dimensional vector Z has the multivariate
standard normal distribution, written Z ~ N(0, /) if it has

joint pdf
1 Z'z
f(z)=——=exp| ——
(2) 2n)? p( 5 )

® |t is the joint pdf of m independently and identically
distributed standard normal random variables

® The mean of Z is E[Z] = 0, and the covariance matrix of Z is
var(Z) = Im

® Since we have now introduced a vector of random variables,
we next review some useful matrix-based notations.



Expectation and covariance

® Definition: The expectation of X € R™ is the vector of
expectations of its elements

E[X1]
E[X] = E[&]
E[X,]

® Definition: The m x m covariance matrix of X € R™ is

T = var(X) = E [(X — E[X]) (X — E[X])]

2
01 012 - O1m
2
021 0> 0 O2m
2
Oml Om2 -°° Om

where on the diagonal af =var(Xj),j =1...m, and on the
off-diagonal oj; = cov(Xj, Xj),i # j



Property of ¥

* Theorem: ¥ =E [(X — E[X]) (X — E[X])'] is
® symmetric: ¥ =Y/

® positive semi-definite: for any vector a # 0, aXa >0

® Proof: Symmetry holds because cov(Xj, Xj) = cov(Xj, X;).
For positive semi-definiteness,

d¥a=4dE [(X - E[X])(X—E[X])] a
=E [ (X — E[X]) (X — E[X])" 4]

:E{[a’(X—E[X])]z} >0

since [a/ (X — E[X])]* >0



Property of expectation and covariance

® Theorem: If X € R™ has expectation y and covariance

matrix >, and A is g x m, then AX is a random vector with
mean Ay and covariance AL A’

® Proof:

E[AX] = AE[X] = Ay

var[AX] = E [(AX — E[AX]
— E[A(X —E[X])
— E [A (X — E[X])
= AE [(X — E[X])
= ATA/

~—

(AX — E[AX])']
A (X — EX]))]
X — E[X]) A']
X — E[X])] A

N~ A~



Multivariate normal

¢ Definition: If Z ~ N(0, /,,) and X =+ BZ for g x m B,
then X has the multivariate normal distribution, written
X ~ N(u,X), with g x 1 mean vector . and g X g covariance
matrix > = BB’

e If X ~ N(u, X) where X is invertible, then X has pdf

o) — 1 oo [ =W x = p)
) = (2m) 3 (det)t T ( 2 >

® The mean of X is E[X] = u, the covariance matrix of X is
Var(X) = X.



Property of multivariate normal

Theorem: If X and Y are multivariate normal with
cov(X,Y) =0, then X and Y are independent

Theorem: If X ~ N(u, X) then
Y =a+ BX ~ N(a + By, BEB')

In words: if X is multivariate (jointly) normal, then any linear
combination of X is also multivariate (jointly) normal

However, note the following statement is WRONG:

® Wrong statement: If X and Y are both normal, then X +Y
are also normal



® Theorem: If (X, Y') are multivariate normal

) =m0 (5 20)
X px )7\ Xxy Xxx
with Xyy > 0 and X xx > 0, then the conditional
distributions Y | X and X | Y are also normal

Y| X ~N(py +ZyxZxx (X —px), Zyy - ZyxZyxZxy)
XY ~N(px+ZxvZyy (Y -uy), Zxx - ZxvZyyZyx)-



In summary

® Multivariate normal distribution has many attractive
properties. The most important insight is:

® |f a random vector X has a multivariate normal distribution,
then any of their marginal and conditional distributions are
also multivariate normal

® \We are now ready to study the sampling distribution of key
statistics under the normal sampling model



Sampling distribution under normal sampling model

® Theorem: if X;, i=1...n arei.i.d N(u,o?), then

® Proof: use the fact that a linear combination of multivariate
normal random variables is still normal



Sampling distribution of sample variance

® Recall sample variance is

1 < -
2 L 2
= i§_1(x, Xn)

® To study its distribution under normal sampling, introduce the
notion of x? distribution



¢ Definition: Let {Z1,2,...Z,} be r > 0i.i.d N(0,1) random
variables. Then >"7_; Z? follows a chi square distribution
with degrees of freedom r, written as x2

Figure: Chi-Square Densities



® Theorem: if X;, i =1...n arei.id N(u,0o?), then
(1) X, and s2 are independent;

_1\e2
9%"’)&1—1



Proof of statement @
Define residual & = X; — X,, i=1...n

Note &; is a linear combination of Xi,...,X,, which are
multivariate normal. So &; is also normal

Also E[&] = E[X;] —E[X,] = — p = 0, and

E [& (X — )]

= E[(X —ptp=X) (X0 — )]

E (X — 1) (% — )] = E [ (% — )]

cov(®;, X,) =

Since &; and X, are jointly normal, uncorrelatedness means
independence

Thus, any function of & (including s?) and X, are also
independent



Proof of statement @
(n— 1)

We now show ~—> X%—1

n

Write s =2

( X,)? and use proof by induction

First verify that (Ieft for homework)

" lix, - Xa? (1)

(n—1)s;=(n—2)s, 1 +
Consider n = 2. Define 0-s? = 0, so that we have

_ 1
= (X2 — X1)* = §(X2 - X1)?

Since )3%1 ~ N(0,1), we have

52 1 X2 — Xl 2
= ==X -X)= (2> ~xi

o 202



Suppose when n =k, k > 1, m ~ X34

Then for n = k + 1, we have from (1)

K _
ksipr = (k= 1)si + m(XkH - X)?

k—1)s2
Note we assumed % ~ X%(—l

Proof is done if we can establish

k —
(&) X =X~
k —
(v) W(XkH - Xk)2 is independent of s,%

(A) follows from X1 — X ~ N(0, %02)

(v) follows from statement @ and X1 independent of s2



Studentized t ratio
We know if {X1,...X,} are i.i.d N(u,o?), then

Xn —

a

/n

~ N(0,1)

If o is known, (2) can be used for inference on p

Usually o is unknown. Replacing o with s, it is natural to
consider distribution of X2zt

vn
Note _
— Xn—pt
X,,*,LL_ % _N(Oal)
N
o (n—1)

Xo—1 « - 2
Moreover, % is independent of \/%

v



e Definition: Let Z ~ N(0,1) and Q ~ x? be independent.
Then T = —Z— has a Student’s t distribution with r

\VQ/r

degrees of freedom, written as T ~ t,

® Theorem: if X;, i =1...n arei.id N(u,o?), then

Xn — 1

S

v

~ th—1



Student t distribution

— Cauchy
--+ Normal

— Logistic

- Normal

(a) Cauchy and Normal (b) Student t (c) Logistic

Figure: Normal, Cauchy, Student t, and Logistic Densities



Some facts about t distribution

The pdf of t, distribution is symmetric around 0
The pdf of t, distribution has heavier tails than N(0, 1)

Only the first r — 1 moment exists (vs. all moments of N(0, 1)
exists)

As r — o0, t, distribution is approaching to N(0,1)



Motivation for F distribution

® Variability comparison of two independent populations
N(ux,0%) and N(uy,0%)

2
. . . (o
® One ideal ratio is =%
Oy
. . . . . . 52
® |nformation about the aforementioned ratio is contained in S—);
Y
® Since (n-1)s5/02 ~ x2_;, (M=1)sy/62 ~ \2 |

[0k Xa-1/(n-1)
Sy/o2  Xmo1f(m—1)




F distribution

¢ Definition: Let Q, ~ X,% and Qq ~ X¢27 be independent. Then

Q"?" follows an F distribution with p and g degrees of

freedom, written as

Qp/p
Q/q

~ Fpq

Figure: F(m, r) Distribution Densities with r = 10



® Theorem: Let {Xi,...,X,} be a random sample from
N(ux,o%) population. Let {Yi,..., Y} be a random sample
from an independent N(uy, 0%) population. Then

/%

~Y
2
s 2
Y/UY

anl,mfl

® Some facts about F distribution
® If X ~ Fp,, then % ~ Frm

® If X ~ tg, then X2~ F 4



4. Sufficient Statistics



Introduction

Suppose we want to use a sample X = {Xi,..., X,} to learn
about a parameter of interest 6

All the information we can use is from X

However, X is a long list of vectors that can be hard to
interpret

As one data reduction technique, the concept of sufficient
statistics allows to separate information from X into two
parts: one part containing all useful information about 6 and
the other containing no useful information



Sufficient statistics

¢ Definition: A statistic T(X) is sufficient for  if the
conditional distribution of X given T(X) does not depend on 6

¢ A sufficient statistic T(X) contains all useful information
about @ in the following sense

® Experimenter 1 is provided with X and can learn about 8 from
pair (X, T(X))

Experimenter 2 is not provided with X, but only T(X)

Since T(X) is a sufficient statistics, the conditional
distribution of X given T(X) is known to Experimenter 2

® Experimenter 2 can back out the joint distribution of
(X, T(X)) without knowing X

Thus, Experimenter 2 has as much information as
Experimenter 1



® Theorem: If p(x|6) is the joint pdf or pmf of X and q(t|0) is
the pdf or pmf of a statistic T(X), then T(X) is a sufficient
statistic for 6 if

p(x|0)
q(t[0)

® Proof

does not depend on 6 for all x in the sample space.



Example: Normal sufficient statistic with known variance
® Let {X1...X,} beiid N(u,0?) where 02 known
® We show that sample mean T(X) = X is a sufficient statistic
for i
® Note the joint pdf of the sample X is

n ) . 9
f(X|,u) = H (27’[‘0’2)_E exp <_(’20—2M)>
n n XI _ 2
- ) o (-3 00 1)
i=1
2 (X — X+ X — p)?
e (R

i=1

= (27702)75 exp <_27_1(Xi — %)+ n(x — M)2>

202

where the last equality holds since the cross-product term

Yima (i = X)X —p) = (x = p) i (i —x) =0



® Recall in a normal sampling model X ~ N(, ‘772) It follows

—n n (xi—x)24n(x—p)?
p(xl6) (27.[.02) 2 exp (_Z,zl( 2i2+ (X—p) )
q(t[0) (27ra2/n)_% exp (— n()_;;m)

_1 s Sori(xi —X)?
=n2 (271'02) 2 exp <—1202> ,

which does not depend on pu.



Factorization Theorem

® |t may be unwise to use the definition of a sufficient statistic
to find a sufficient statistic for a particular parameter

® The following theorem allows find a sufficient statistic more
conveniently

® Theorem (Factorization Theorem): Let f(x|¢) be the joint
pdf or pmf of X. A statistic T(X) is a sufficient statistic for ¢
if and only if there exist functions g(t|0) and h(x) such that,
for all sample points x and for all parameter points 6

f(x|0) = g(T(x)[0)h(x). (3)



Proof for Factorization Theorem

® We give a proof only for discrete distributions

® Only if: Suppose T(X) is a sufficient statistic. Choose

g(t]0) = Po{ T(X) = t}

Since T(X) is sufficient, h(x) does not depend on 6. For this
choice, we have

f(x]0) = Pp{X = x}
= Pp{X=x,T(X)=T(x)}
= Po{T(X) = T(x)} P{X = x| T(X) = T(x)}
= g(T(x)|0)h(x)

so the only if part is established



® For the if part, suppose factorization (3) exists

® Let g(t|f) be the pmf of T(X). To show T(X) is sufficient, it

suffices to examine the ratio (f(xm for each x

T(x)10)
® Define AT ={y: T(y) = T(x)}. Then
f(x[6)  g(T(x)|0)h(x)
a(TX)0) ~  a(T)]0) ety ()
m (by definition of pmf)
__ &(T(x)|0)h(x) a
= T ETOOA) oo )

g(T(x)|0)h(x)
g(T(X)10) 24, h(y)
__ hx)
ZAT(X) h(y)

which does not depend on 0

(T is a constant on Ayyy))



Example: Normal sufficient statistic with unknown variance

® Let {X1...X,} beiid N(u,o?) where 02 unknown. Thus,
the parameter is 0 = (u, 0?)
® Note we already know

n T (x5 — %)%+ n(x — p)?
f(x|6) = (2m0%) 2 exp (— izl 2)0; =) ),

which depends on x only through T;(x) = X, and
To(x) = s* = nil S (3 —x)?
® We can define h(x) =1 and

(n— 1)t + n(t, — M)2>
202

£(t16) = (01 o) = (2102) Ferp (-

® Thus f(x|0) = g(T1(x), T2(x)|u, 72)h(x). By the
Factorization Theorem,

T(X) = (T1(X), T2(X)) = (X, s?)

is a sufficient statistic for (i1, %) in this normal model



Example: discrete uniform distribution

® Let {Xi,...,X,} be a random sample from the discrete
uniform distribution on {1,2...60}. That is, the pmf for X; is

1 _
F(x[0) = 7, x=12...0,
0, otherwise.

Show that max; X; is a sufficient statistic for 6.

® Proof



Refinement of sufficient statistic

® |t should be obvious that each problem has numerous
sufficient statistic. For example:

® In the previous normal model with unknown variance,
(X, 1371 (xi — %)?) is also a sufficient statistic

® it is always true that the complete sample, X, is sufficient
statistic, as for all x

f(x]0) = f(T(X)|0)h(x), by letting T(X) = x, h(x) = 1.

® Also, any one-to-one function of a sufficient statistic is a
sufficient statistic (exercise)

® |s there one sufficient statistic better than another?



Minimal sufficient statistic

¢ Definition: A sufficient statistic 7*(X) is a minimal sufficient
statistic if for any sufficient statistic T(X), there exists some
function such that

T(X) = r(T(X)).

® The above definition implies that, for any sufficient statistic
T(X), if T(x) = T(y), then T*(x) = T*(y)

® |ntuitively, the minimal sufficient statistic achieves the greatest
data reduction without a loss of information about parameters



Finding a minimal sufficient statistic

® Theorem: Let 7(x|0) be the joint pdf or pmf of X. Suppose

there exists a T(X) such that, for every two sample points x
and y, the ratio

f(x|0)

f(yl0)

(

Then T(X) is a minimal sufficient statistic

does not depend on @ if and only if T(x) = T(y).

® \We leave this statement unproven here

® Note minimal sufficient statistic is also not unique



Example: Normal minimal sufficient statistic

Consider the previous example where {X ... Xy} is iid

N(u, 0?) with 02 unknown

Let x and ybe two sample points, and let (X, s?) and (¥, s?)
be the sample means and variances corresponding two the x
and y samples, respectively

It follows
-2 n—1 sf+n x—pu)?
Fxlg)  (2m0?) " exp (—L-tstplion)
FY10)  (2702) % exp ( W)
((n — 1)(sy — s7) + n(y* — X*) + 2np(x — )/))
P 202

This ratio is a constant not depending on (i, o2) if and only if
X =y and s = s2. Thus, (X, s?) is a minimal sufficient
statistic



4. Examples of Estimators and
Measures of Their Quality



Estimators and some examples

An estimator 0 for a parameter 6 is a also a statistic,
intended as a guess about 6

® ¢ is an estimate when it is a specific (or realized) value
calculated in a specific sample

Let population parameter be u = E[X]
* The sample mean is X, = 237 X

Let population parameter be § = E[g(X)] for some known
function g

* An estimator is the sample mean of g(X;): = % D I40.9)]

Let population parameter be 5 = h(E[g(X)]) for some known
functions g and h

* A plug-in estimator for 3 is 3 = h(f) = h (157 [g(Xi)])



Quality of an estimator: estimation bias

Definition: The bias of an estimator 6 of a parameter 6 is
bias[d] = E[A] — 0
® An estimator is is unbiased if the bias is zero
® Bias depends on the population distribution F
Let .# be a collection of possible distributions

An estimator 6 of a parameter 6 is unbiased in % if
bias[#] = O for every F € .#

Theorem: X is unbiased for i = E[X] if E|X| < oo

® Sample mean is an unbiased estimator for population mean as
long as population mean is finite



Quality of an estimator: sampling variance

® Definition: The variance of an estimator 9, also called
sampling variance, is var[f]

® We already know that If EX? < oo, then var[X] = "—: where
02 = var(X)

e Therefore, the variance of X declines with sample size at rate
1

n



Estimation of sampling variance
Sampling variance is the variance of an estimator and thus
usually unknown!

To estimate var[X,], we need an estimator for
o® = var[X] = E [(X — E[X])?]
The plug-in estimator for o2 is
1 —
S YRR WRCH
n
i=1

Theorem: If 62 < 0o, then E[62] = (1 — 1)o? (proof left as
homework).

Question: is there an unbiased estimator for o2?



Standard error

Definition: The standard error of an estimator f for
parameter 6 is

se(0) = V12, where V is an estimator for V = var[f]

Standard error can be interpreted as an estimator for V1/2,
the standard deviation of 6

Standard error is usually a biased estimator of V1/2

Example:
® sample mean X, is an estimator for p
® the exact variance of X, is ‘772
® if we estimate o2 by the plug-in estimator 2

&2
n

the standard error of X, is



Quality of an estimator: mean square error

e A standard measure of estimation quality is mean square error

(MSE)
e Definition: The mean square error of an estimator d for 6 is
mse(0) = E[( — 0)?]
® Theorem: For any estimator with a finite variance
mse(0) = var(f) + (bias[f])?
® Proof: start from
mse(f) = E[(0 — 0)?]
= E[(6 — E[f] + E[A] — 0)?]
and apply standard algebra

® An estimator with smaller MSE is considered to be better, or
more efficient



Best unbiased estimator

® Among a class of unbiased estimators, the one with the
lowest sampling variance also has the smallest MSE

® This motivates finding the best unbiased estimator for
estimating parameter 6

e Theorem: If 02 < oo, the sample mean X, has the lowest
variance among all linear unbiased estimators of p



Proof

® Consider a class of linear estimators
n
-y
i=1

with some weights {wy, ... w,}

® Unbiasedness requires
p=Ei=> wEX]=> wp
i=1 i=1
which holds if and only if
i=1

® The variance of ﬂ is

. (mdependence ) 2
var(fi) = var W, i W var ( =0 wi

i=1



® Hence the best unbiased linear estimator solves

n n
min g W,-2, s.t. g wi =1
W1...Wp

=1 i=1

=

which has an Lagrangian

L(Wl,...W,-,):Zn:W,?—)\ (iw,-—l)
i=1 i=1

e FOC with respect to w;,i=1...nis
A
2W,—)\:OjW,:§

implying w; = % in order to satisfy i, w; = 1. Conclusion
follows



® |n fact, we have a much stronger statement

e Theorem: If 02 < oo, the sample mean X, has the lowest
variance among all unbiased estimators of y



Multivariate means

® Let X € R™ be a random vector and p = E[X] be its mean.
The sample mean estimator for p is

1 n
Xy =~ ZX;
i=1
)_<1n
X2n

an

® Most properties of the univariate sample mean extend to the
multivariate mean



The multivariate mean is unbiased for the population
expectation: E [X,] = p

The exact covariance matrix of X, is

Var (

><|
I
&=
2
=
3>-</|
x
|
=
><|

X, is the best unbiased estimator for p

An unbiased covariance matrix estimator is




Connection between efficiency and sufficient statistics

® Suppose we have a random sample X = {Xj,..., X,,} from a
distribution Fp, where § € R¥ is the parameter of interest

Let § := §(X) be a candidate estimator for # that we, as
researchers, think is “good” (e.g., it has some desirable MSE
properties)

Suppose we also know that T(X) is a sufficient statistics for #

Question: Can we do better than 0?



Rao-Blackwell Theorem

Rao-Blackwell Theorem
Under the setup from last slide, let

§(X) :=E [§(X) | T(X)] .
Then,
® MSE(A(X)) < MSE(A(X))

e If §(X) is an unbiased estimator, so is §(X)



Proof



