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1. A Bernoulli random variable X is

P(X = 0) = 1− p

P(X = 1) = p

We have a random sample Xi, i = 1, . . . , n from X.

(a) Note that the PMF for some Xi is

f(x) = P(Xi = x) = px(1− p)1−x

for x ∈ {0, 1}. The likelihood function is

L(p) =

n󰁜

i=1

pXi(1− p)1−Xi

and so the log likelihood function is

ℓ(p) =

n󰁛

i=1

(Xi log p+ (1−Xi) log 1− p) = log p

n󰁛

i=1

Xi + log(1− p)

󰀣
n−

n󰁛

i=1

Xi

󰀤

To find the MLE estimator, we find the first order condition, and get that

∂ℓ

∂p
=

1

p

n󰁛

i=1

Xi −
1

1− p

󰀣
n−

n󰁛

i=1

Xi

󰀤
= 0

which, simplifying, gets us that

p̂MLE =
1

n

n󰁛

i=1

Xi = X̄n

(b) Note that by inspection, E[X2] < ∞, as E[X],E[X2] ≤ 1. Note also that E[X] = p. Thus, by the
central limit theorem, we have that

√
n(X̄n − E[X])

d→ N (0,Var(X)) =⇒
√
n(p̂MLE − p)

d→ N (0,Var(X))

(c) Note that the asymptotic variance of p̂MLE is the same as the variance of the random variable
X. The estimator I propose for the asymptotic variance is

σ̂2
n =

1

n− 1

n󰁛

i=1

(Xi − X̄n)
2

(d) To show that σ̂2 is consistent, we need that

σ̂2
n

p→ Var(X) ≡ lim
n→∞

E[σ2
n] = Var(X)
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Note that, since X2
i = Xi for any outcome, we have that E[X2] = E[X] = p, so

Var(X) = E[X2]− (E[X])2 = p− p2 = p(1− p)

Thus, we have that fixing some n,

E[σ̂2
n] =

1

n− 1

n󰁛

i=1

E[(Xi − X̄n)
2]

=
1

n− 1

n󰁛

i=1

E
󰀅
(Xi − p+ p− X̄n)

2
󰀆

=
1

n− 1

n󰁛

i=1

E
󰀅
(Xi − p)2

󰀆
+ 2E[(Xi − p) (X̄n − p)󰁿 󰁾󰁽 󰂀

=0

] + E[(p− X̄n)
2

󰁿 󰁾󰁽 󰂀
=0

]

=
1

n− 1

n󰁛

i=1

E[(Xi − E[Xi])
2] =

n

n− 1
Var(X) by IID

Thus, as n → ∞, E[σ̂2
n] → Var(X), so σ̂2

n is a consistent estimator.

(e) We have that the efficient score is

S =
∂

∂p
log f(X | p) = ∂

∂p
[(X log p+ (1−X) log 1− p)] =

X

p
− 1−X

1− p

which simplifies to

S =
X − p

p(1− p)

Thus,

Var(S) = Var

󰀕
X − p

p(1− p)

󰀖
=

Var(X)

(p(1− p))2
=

1

p(1− p)

and
Fp =

1

p(1− p)

(f) We have that another measure of the information is the curvature of ℓ(p):

−∂2ℓ(p)

∂p2
= − ∂2

∂p2
[(X log p+ (1−X) log 1− p)] = − ∂

∂p

󰀗
X

p
− 1−X

1− p

󰀘

which, evaluating, returns

−∂2ℓ(p)

∂p2
=

󰀕
X

p2
+

1−X

(1− p)2

󰀖

Taking the expectation, we get that:

E
󰀗
X

p2
+

1−X

(1− p)2

󰀘
=

󰀕
E[X]

p2
+

1− E[X]

(1− p)2

󰀖
=

󰀕
1

p
+

1

1− p

󰀖
=

1

p(1− p)

Which is the same as part (e)!

(g) The Cramer-Rao lower bound is

(nFp)
−1 =

󰀕
n

p(1− p)

󰀖−1

=
p(1− p)

n
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(h) Recall that p̂MLE is the sample mean. From class, we know that the variance of the sample mean
is

Var(p̂MLE) =
Var(X)

n
=

p(1− p)

n

So the variance of the MLE estimator is the same as the CRLB!

(i) Since p = E[X], I propose the sample mean estimator as the method of moments estimator:

p̂MME =
1

n

n󰁛

i=1

Xi

2. We have that X ∼ U [0, θ] for some θ > 0. Note that the density of X is

f(x | θ) = 1

θ
· 1x∈[0,θ]

So the log density is

log f(x | θ) =
󰀫
− log(θ) 0 ≤ x ≤ θ

−∞ otherwise

We have that the log likelihood is

ℓ(θ) =

󰀫
−n log(θ) maxi Xi ≤ θ

−∞ otherwise

Since this is always negative, it is maximized when θ is minimized in the finite region, meaning when
θ = maxi Xi. Thus, the maximum likelihood estimator θ̂MLE is maxi Xi.

3. We have that the log density is

log f(x | µ,σ2) = log

󰀕
1√
2πσ2

exp

󰀕
(x− µ)2

2σ2

󰀖󰀖
= −1

2
log(2π)− 1

2
log(σ2)− (x− µ)2

2σ2

so the log likelihood function is

ℓ(µ,σ2) =

n󰁛

i=1

log f(Xi | µ,σ2) = −n

2
log(2π)− n

2
log(σ2)−

󰁓n
i=1(Xi − µ)2

2σ2

First, to find µ̂MLE , we take first order conditions with respect to µ. We get that

∂ℓ(µ,σ2)

∂µ
=

󰁓n
i=1(Xi − µ)

σ2
= 0 =⇒

n󰁛

i=1

(Xi − µ) = 0 =⇒ µ̂MLE =
1

n

n󰁛

i=1

Xi

Next, to find σ̂2
MLE , we take first order conditions with respect to σ2, and get that

∂ℓ(µ,σ2)

∂σ2
= − n

2σ2
+

󰁓n
i=1(Xi − µ)2

2σ4
= 0 =⇒ −nσ2 = −

n󰁛

i=1

(Xi − µ)2

which implies that

σ̂2
MLE =

1

n

n󰁛

i=1

(Xi − µ)2

4. We will prove the Information Matrix Equality, letting f = f(x | θ0), ∇j mean partial with respect
to the jth element θ(j), and ∇jk mean second-order with respect to θ(j) and θ(k). Suppose we can
exchange the integral

󰁕
and derivatives ∇j .
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(a) We have that

∇j

󰀗󰁝
fdx

󰀘
= ∇j [1] =⇒

󰁝
∇jf(x | θ0)dx = 0

From the chain rule and the definition of expected value, we get that

0 =

󰁝
∇jf(x | θ0)dx =

󰁝
f(x | θ0)∇j log f(x | θ0)dx = E[∇j log f(x | θ0)]

(b) Differentiating both sides with respect to θ(k) and using Leibniz rule, we get that

0 = ∇k E[∇j log f(x | θ0)] = E[∇jk log f ] + E[(∇j log f)(∇k log f)]

5. We have that g(x) is the density of a random variable with mean µ and variance σ2. We have that X
is a random variable with density

f(x | θ) = g(x)(1 + θ(x− µ))

We know all of g(x), µ, and σ2. The unknown parameter is θ, and we assume that X has bounded
support so that f(x | θ) ≥ 0 for all x.

(a) We have that
󰁝 ∞

−∞
f(x | θ)dx =

󰁝 ∞

−∞
g(x) + θg(x)(x− µ)dx =

󰁝 ∞

−∞
g(x)dx+ θ

󰁝 ∞

−∞
g(x)(x− µ)dx

and since g is a density and from the definition of expectation, we have that
󰁝 ∞

−∞
f(x | θ)dx = 1 + θ · 0 = 1

(b) We have that

E[X] =

󰁝 ∞

−∞
xf(x | θ)dx =

󰁝 ∞

−∞
xg(x) + θxg(x)(x− µ)dx

so

E[X] = µ+ θ

󰁝 ∞

−∞
x2g(x)− µxg(x)dx = µ+ θ

󰀕󰁝 ∞

−∞
x2g(x)dx− µ

󰁝 ∞

−∞
xg(x)dx

󰀖

Thus,
E[X] = µ+ θσ2

(c) We have that the log density is

log f(x | θ) = log g(x) + log(1 + θ(x− µ))

so the efficient score is

∂

∂θ
f(X | θ) = ∂

∂θ
[log g(X) + log(1 + θ(X − µ))] =

X − µ

1 + θ(X − µ)

and the Fisher Information is

Fθ0 = E

󰀥󰀕
X − µ

1 + θ0(X − µ)

󰀖2
󰀦
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(d) When θ0 = 0, this expression simplifies to

Fθ0 = E
󰁫
(X − µ)

2
󰁬
= Var(X)

(e) We have that the likelihood function is

L(θ) =

n󰁜

i=1

f(Xi | θ)

so the log likelihood function is

ℓ(θ) = logL(θ) =

n󰁛

i=1

log f(Xi | θ) =
n󰁛

i=1

log g(Xi) + log(1 + θ(Xi − µ))

(f) The first order condition is
∂

∂θ
ℓ(θ) =

n󰁛

i=1

Xi − µ

1 + θ(Xi − µ)
= 0

(g) From the asymptotic properties of MLE estimators, we know that the unique MLE estimator θ̂
has the property of

√
n(θ̂ − θ0)

d→ N (0,F−1
θ0

) = N

󰀳

󰁃0,

󰀣

E

󰀥󰀕
X − µ

1 + θ0(X − µ)

󰀖2
󰀦󰀤−1

󰀴

󰁄

(h) When θ0 = 0, we have that
√
n(θ̂ − θ0)

d→ N
󰀃
0,Var(X)−1

󰀄

6. To complete the proof, note that the variance expanded is:

E

󰀥󰀕
∂

∂θ
log f(X | θ0)− E

󰀗
∂

∂θ
log f(X | θ0)

󰀘󰀖󰀕
∂

∂θ
log f(X | θ0)− E

󰀗
∂

∂θ
log f(X | θ0)

󰀘󰀖′
󰀦

From the Analog Principle, we have that θ0 maximizes the expected log likelihood function, meaning
that using Liebniz integral rule, since θ0 is a local maximum,

E
󰀗
∂

∂θ
log f(X | θ0)

󰀘
=

∂

∂θ
E[log f(X | θ0)] = 0

and thus,

Var

󰀕
∂

∂θ
log f(X | θ0)

󰀖
= E

󰀥󰀕
∂

∂θ
log f(X | θ0)

󰀖󰀕
∂

∂θ
log f(X | θ0)

󰀖′
󰀦

and by i.i.d.,

E

󰀥󰀕
∂

∂θ
log f(X | θ0)

󰀖󰀕
∂

∂θ
log f(X | θ0)

󰀖′
󰀦
= nE

󰀥󰀕
∂

∂θ
log f(x | θ0)

󰀖󰀕
∂

∂θ
log f(x | θ0)

󰀖′
󰀦
= nFθ0
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7. From class, we have that the MME is

F̂n(x) =
1

n

n󰁛

i=1

1Xi≤x

Note that each 1Xi≤x is a Bernoulli random variable with mean F (x). We can view the empirical
distribution function as the sample mean of a Bernoulli process, where F (x) is the population mean.
Cast this way, we have that by Central Limit Theorem

√
n(F̂n(x)− F (x))

d→ N (0,Var(1Xi≤x))

and from the properties of a Bernoulli random variable, 1Xi≤x has variance p(1 − p), where p is the
population mean. Thus, we have that

√
n(F̂n(x)− F (x))

d→ N (0, F (x)(1− F (x)))

8. Let X follow an exponential distribution with pdf f(x) = θ exp(−θx), x ≥ 0, θ > 0. The expected
value of X is given by E[X] = 1

θ .

(a) We have that the efficient score is

S =
∂

∂θ
log f(X | θ) = ∂

∂θ
[log(θ)− θX] =

1

θ
−X

Thus, the Fisher information is

E

󰀥󰀕
1

θ
−X

󰀖2
󰀦
= E

󰀗
1

θ2
− 2X

θ
+X2

󰀘
=

1

θ2
− 2

θ2
+ E[X2]

Using the definition of expected value, we have that

E[X2] =

󰁝
x2f(x)dx =

󰁝
x2θ exp(−θx)dx =

2

θ2

Thus, the Fisher information simplifies to

Fθ =
1

θ2
− 2

θ2
+

2

θ2
=

1

θ2

and the CRLB is

(nFθ)
−1 =

θ2

n

(b) Note that since E[X] = 1
θ , we have that defining the function g(x) = x−1, E[g(X)] = θ, the MME

for θ is

θ̂MME =
1

n

n󰁛

i=1

1

Xi

(c) Using Delta Method, since 1
n

󰁓n
i=1 Xi and g(·) are scalar-valued, we have that by the CLT,

√
n(θ̂MME − θ) =

√
n(g(µ̂)− g(µ))

d→ N (0, (g′(u) |µ)
2
Var(X))

We have that the variance is

Var(X) = E[X2]− (E[X])2 =
2

θ2
− 1

θ2
=

1

θ2
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and that
g′(u) |µ= − 1

u2

󰀏󰀏󰀏
µ
= − 1

E[X]2
= −θ2

Thus, the asymptotic distribution of θ̂MME is

√
n(θ̂MME − θ)

d→ N
󰀕
0, (−θ2)2

1

θ2

󰀖
= N (0, θ2)
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