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1. We have that u(w) = − exp(−raw), for ra > 0. First, note that the decision maker is risk-averse, as
this Bernoulli utility function is concave in w. Furthermore, her coefficient of absolute risk aversion is

A(w) = −u′′(w)

u′(w)
=

r2a exp(−raw)

ra exp(−raw)
= ra

which is constant, meaning that the decision maker has constant absolute risk aversion, so we may feel
free to ignore wealth effects. Saying that the agent invests x in the risky asset, which has (random)
gross return ε ∼ N (µ,σ), and w0 − x in the risk-free asset, where the risk-free asset has a gross return
of rf , her wealth is

w = xε+ (w0 − x)rf = xµ+ x(R− µ) + (w0 − x)rf

with first and second moments

E[w] = xµ+ (w0 − x)rf and Var(w) = x2σ2

Using the moment generating function for X ∼ N (µ,σ2), we get that

E[exp(tX)] = exp

󰀕
tµ+

t2σ2

2

󰀖

So her expected utility under CARA utility is

E[u(w)] = − exp

󰀕
−ra E[w] +

r2a
2

Var(w)

󰀖
= − exp

󰀕
−raxµ− rarf (w0 − x) +

r2ax
2σ2

2

󰀖

Maximizing this function is equivalent to maximizing the exponent. The first order condition with
respect to x gives

−raµ+ rarf + r2axσ
2 = 0

Thus, we have that
x󰂏 =

µ− rf
raσ2

Taking into account corners, we get that the optimal level of investment is

x󰂏 =

󰀫
0 rf ≥ µ

max
󰁱

µ−rf
raσ2 , w0

󰁲
otherwise

(note that this is in real dollar values – to get the share of wealth, simply divide everything by w0)

2. Suppose that ≽ satisfies the Savage axioms with state space S and outcome space X, and suppose that
it has an SEU representation with payoff function u and belief distribution µ. Prove that for every
non-null event A the preference order σA has an SEU representation. What is it?

Proof. We will define the preference order σA as follows:

f ≽A g if and only if f |A≽ g |A
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(intuitively, f is weakly preferred to g conditional on A if and only if the restriction of f to A is
preferred to the restriction of g to A under the global preference relation)

Since ≽ has an SEU representation, the expected utility of f is

E
µ
[u ◦ f ] =

󰁝

s∈S

u(f(s))dµ(s)

To construct the SEU representation of σA, we need a conditional utility function and a conditional
belief distribution. The conditional utility function is over outcomes, and will coincide with u. Define
the conditional belief distribution µ(· | A) as follows, using the definition of conditional probabilities:

µ(B | A) =
µ(B ∩A)

µ(A)

Thus, we can show that σA has an SEU representation as follows. Consider two acts f, g ∈ F . From
above, we have that

f ≽A g ⇐⇒ E
µ
[u ◦ f | A] ≥ E

µ
[u ◦ g | A]

Expanding, we get that

f ≽A g ⇐⇒
󰁝

s∈A

u(f(s))dµ(s | A) ≥
󰁝

s∈A

u(g(s))dµ(s | A)

The SEU representation for σA is

E
µ
[u ◦ f | A] =

󰁝

s∈A

u(f(s))dµ(s | A)

3. Let M denote the right triangle in the plane with vertices x = (0, 1), y = (0, 0), and z = (1, 0). Each
m ∈ M can be written uniquely as αmx+ (1− αm)(βmy + (1− βm)z). Define the mixture operators

m⊗λ n =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

z if m = n = z;m = z & λ = 1; or n = z & λ = 0

(λαm + (1− λ)αn)x+ otherwise
(1− (λαm + (1− λ)αn))y

(a) This is not a mixture space. Consider the following counterexample, showing that it violates the
first axiom of mixture spaces:

Counterexample. This is not a mixture space. Consider m = (0.5, 0.5), which admits the unique
coordinates αm = 0.5, βm = 0. For arbitrary n, we have that m ⊗1 n = αmx + (1 − αm)y =
(0, 0.5) ∕= m.

(b) It doesn’t. It admits no indifference curves.

4. We have that X has density f(x) = x−6/5/5 and Y has density g(x) = x−3/2/2.

(a) Note first that neither of the functions are densities over the domains (−∞,∞) or (0,∞), as they
are (respectively) not well-defined over the negative real numbers and diverge on (0, 1). However,
if we consider the domain [1,∞), we have that

󰁝 ∞

1

f(x)dx =

󰁝 ∞

1

g(x)dx = 1

Thus, we will restrict them each to the domain [1,∞).
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Recall that a distribution X first order stochastically dominates Y if their CDFs are ordered
FX(x) ≤ FY (x) for all x, with strict inequality holding for at least one x. We construct the CDFs
by integrating the densities. Formally, we have that

F (x) =

󰁝 x

1

f(t)dt =

󰀕
− 1

t1/5

󰀏󰀏󰀏󰀏
x

1

= 1− 1

x1/5

and

G(x) =

󰁝 x

1

g(t)dt =

󰀕
− 1

t1/2

󰀏󰀏󰀏󰀏
x

1

= 1− 1

x1/2

Since x ∈ [1,∞), we can say that for any x, F (x) ≤ G(x). Additionally, taking x = 2, we have
that F (x) ≈ 0.13 < 0.29 ≈ G(x). Thus, X first-order stochastically dominates Y .

(b) We have that u(x) =
√
x. Since this function is strictly increasing, the decision maker will always

prefer a lottery that first-order stochastically dominates, so they will always prefer X. To see why
concretely, consider that the decision maker will prefer X to Y if

󰁝 ∞

1

u(x)f(x)dx >

󰁝 ∞

1

u(x)g(x)dx =⇒
󰁝 ∞

1

u(x)d(F (x)−G(x)) > 0

Note that, integrating by parts, we have that for some CDF F ,
󰁝 ∞

1

u(x)dF (x) = u(x)F (x)|x=∞
x=1 −

󰁝 ∞

1

u(x)F (x)dx

Thus, since F (1) = G(1) = 0 and F (∞) = G(∞) = 1, we have that
󰁝 ∞

1

u(x)d(F (x)−G(x)) = −
󰁝 ∞

1

u(x)(F (x)−G(x))dx =

󰁝 ∞

1

u(x)(G(x)− F (x))dx > 0

since G(x) ≥ F (x) ∀ x.

5. We have that
s1 s2

a1 0 −8
a2 −10 0
a3 −4 −3

(a) If the decision maker believes that p1 = 1/4 and p1 = 3/4 with equal probability, her expectation
is that

p1 =
1

2
· 1
4
+

1

2
· 3
4
=

1

2

(b) Given that E[p1] = 1
2 , we have that E[a1] = −4, E[a2] = −5, and E[a3] = −3.5. She will choose

a3.

(c) Define p′ as the decision maker’s posterior belief over the probability that the probability of state
1 is 3/4. Her prior belief is that p′ = 1/2. Having been told that the previous draw was of s1, we
have that by Bayes’ Rule

p′ = P
󰀝
p1 =

3

4

󰀏󰀏󰀏󰀏s−1 = s1

󰀞
=

P{s−1 = s1 | p1 = 3/4}
P{s−1 = s1 | p1 = 3/4}+ P{s−1 = s1 | p1 = 1/4} =

3/4

3/4 + 1/4
=

3

4

Thus, her expectation is that

E[p1] = p′
3

4
+ (1− p′)

1

4
=

9

16
+

1

16
=

5

8
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Her expected utilities from each choice are:

E[a1] =
5

8
· 0 + 3

8
·−8 = −3

E[a2] =
5

8
·−10 +

3

8
· 0 = −6.25

E[a3] =
5

8
·−4 +

3

8
·−3 = −3.625

Thus, she will choose a1

(d) Again define p′ as the posterior that the probability of state 1 is 3/4. Again by Bayes’ rule, we
have that

p′ = P
󰀝
p1 =

3

4

󰀏󰀏󰀏󰀏s−1 = s2

󰀞
=

P{s−1 = s2 | p1 = 3/4}
P{s−1 = s2 | p1 = 3/4}+ P{s−1 = s2 | p1 = 1/4} =

1/4

1/4 + 3/4
=

1

4

Thus, her expectation is that

E[p1] = p′
3

4
+ (1− p′)

1

4
=

3

16
+

3

16
=

3

8

Her expected utilities from each choice are

E[a1] =
3

8
· 0 + 5

8
·−8 = −5

E[a2] =
3

8
·−10 +

5

8
· 0 = −3.75

E[a3] =
3

8
·−4 +

5

8
·−3 = −3.375

Thus, she will choose a3

(e) From part (b), we know that the decision maker’s expected utility when she has no information
is −3.5. From part (c), we know that her expected utility when she is told s1 is −3 and from
part (d), her expected utility when she is told s2 is −3.375. She has prior expectation that the
probability of s1 is 1

2 , so we have that her expected expected utility is

1

2
·−3 +

1

2
·−3.375 = −3.1875

so she gains, in expectation, −3.1875 − (−3.5) = 0.3125 from knowing the value of the state in
the previous period.

6. In the three-color Ellsberg paradox, we have that R = 30 and B +G = 60. We also have that, under
the generally accepted results,

R ≻ B and B +G ≻ R+G

Note first that we do have complete preferences, over the acts that we have been given, despite the
fact that we do not know how they rank, for example, G and B. Since we have that the act f (pay
$100 if Red, nothing if Green or Blue) is preferred to g (pay $100 if Blue, nothing if Red or Green).
Define h as “pay nothing if Green” and k as “pay $100 if Green”. Then we have that f |A h ≻ g |A h,
where A = {Red or Blue}, but f |A k ≺ g |A k. Thus, the second Savage axiom is violated. The
Savage axioms three through five concern outcomes. None of them are violated, as long as we make
the (reasonable) assumption that people prefer $100 to $0.

So the three-color Ellsberg paradox violates Savage P2.
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