
About TA sections:

TAs: Ekaterina Zubova (ez268@cornell.edu), Zheyang Zhu (zz792@cornell.edu)

Section time and location: 8:40am - 9:55am Uris Hall 262 (section 201), Goldwin Smith
Hall 236 (section 202)

Office hours: Tuesdays 5-7 pm in Uris Hall 451 (Ekaterina), Thursdays 5-7 pm in Uris Hall
429 (Zheyang). Other times available by appointment (just send us an email!)

Our plan for today:

1 Impulse Response Functions 2

2 Value Function for Our Model 4

3 Solution Algorithm 3: Value Function Iteration 5
3.1 Functions in the helper_functions Folder . 5

3.1.1 struct2array.m and vec.m . 5
3.1.2 make_index.m . 5
3.1.3 AR1_rouwen.m . 5

3.2 Linearize (NOT log-linearize) the model . 6
3.2.1 linear_model.m . 6
3.2.2 model_df.m . 7

3.3 Value Function Iteration (solve_vf.m) . 7

1

mailto:ez268@cornell.edu
mailto:zz792@cornell.edu

ECON 6130 Section 11 November 15, 2024FA

1 Impulse Response Functions

An impulse response is the expected difference in a variable, conditional on a shock happening
versus not happening. For example, E[ŷt+1|εit = 1]− E[ŷt+1|εit = 0].

Using the notations we introduced earlier, impulse responses to a one-period temporary shock
on the first state variable can be analytically expressed as follows:

i = 0 - period when the shock is happening:

IR0(x̂t) = hx̂t−1 + η

10
0

− hx̂t−1 + η

00
0

 = η

10
0



IR0(ŷt) = g

hx̂t−1 + η

10
0

− hx̂t−1 + η

00
0


 = gη

10
0


Iterating forward:

i = 1 - one period after the shock:

IR1(x̂t+1) = h

hx̂t−1 + η

10
0

− hx̂t−1 + η

00
0


 = hη

10
0



IR1(ŷt+1) = gh

hx̂t−1 + η

10
0

− hx̂t−1 + η

00
0


 = ghη

10
0


For a general period i = k after the shock:

IRk(x̂t+k) = hk

hx̂t−1 + η

10
0

− hx̂t−1 + η

00
0


 = hkη

10
0



2

ECON 6130 Section 11 November 15, 2024FA

IRk(ŷt+k) = ghk

hx̂t−1 + η

10
0

− hx̂t−1 + η

00
0


 = ghkη

10
0


An impulse response function (IRF) shows how variables in a model respond over time to a one-

time shock. For example, in our model we considered one-period positive shock in technology. By
applying log-linearization, which approximates non-linear relationships around the steady state,
allowing us to analyze responses in linear terms, we got the following result:

The graphs clearly show that even though a productivity shock was introduced only in period
t = 0, we shill observe its effect in the following periods. The formulas above provide the analytical
basis for why this happens: initially, we observe the direct effect of the shock, which is the
immediate, primary response of variables directly affected. In the following periods, the shock’s
influence persists through the model’s dynamic structure, producing indirect effects as the initial
response propagates over time.

3

ECON 6130 Section 11 November 15, 2024FA

2 Value Function for Our Model

We can rewrite our model as a value function for the Social Planner in the following form:

V (Kt, Nt−1, At) = max
Kt+1,Nt

U(Ct) + βEtV (Kt+1, Nt, At+1)

subject to

Ct = Yt − It − ϕnVt = AtK
α
t N

1−α
t − (Kt+1 − (1− δk)Kt)− ϕn(

Nt − (1− δn)Nt−1

χ
)1/ε

and

U(Ct) ≡
C1−σ

t

1− σ

Remark: Note that we substituted It from the law of motion for capital and Vt from the law
of motion for labor and the definition of the matching function, assuming that St = S = 1.

To determine the optimality conditions, you need to derive the FOCs and Envelop conditions
by carefully taking derivatives with respect to control variables (FOCs) and endogenous states
(Envelope).

Combining two FOCs and two Envelope conditions, you will get capital and labor Euler equa-
tions:

C−σ
t = βEt

[
C−σ

t+11(At+1α

(
Kt+1

Nt+1

)α−1

+ 1− δk)

]

ϕn

χεV ε−1
t

= At

(
Kt

Nt

)α

(1− α) + βEt

[
C−σ

t+1

C−σ
t

(1− δn)
ϕn

χεV ε−1
t+1

]

Just as we saw before!

4

ECON 6130 Section 11 November 15, 2024FA

3 Solution Algorithm 3: Value Function Iteration

The sample codes for value function iteration provided by Ryan include two MATLAB functions
(model_df.m and parameters.m), one MATLAB script (linear_model.m) and one main
MATLAB script (solve_vf.m). Additionally, we will use eight helper functions (declare.m,
gx_hx_alt.m, make_prime.m, and passign.m, vec.m, struct2array.m, make_index.m,
AR1_rouwen.m) in the helper_functions folder.

3.1 Functions in the helper_functions Folder

We have previously seen what declare.m, gx_hx_alt.m, make_prime.m, and passign.m
do. Let’s understand the new functions.

3.1.1 struct2array.m and vec.m

The function, struct2array (with the help of vec.m), takes a struct, s, with multiple fields,
reshapes each field’s data into a column vector, and combines all these column vectors into one
single, long column vector a.

3.1.2 make_index.m

The function make_index.m:

1. Loops through each element in the input Y.

2. Creates a variable in the caller workspace for each element in Y, with a name based on the
element.

3. Sets the value of each variable to the position of the element in Y.

For example, if you call make_index([’A’, ’B’, ’C’]), then you would get variables a_idx,
b_idx, and c_idx in the workspace, with values 1, 2, and 3, respectively.

3.1.3 AR1_rouwen.m

This function, AR1_rouwen, generates a discrete approximation to an AR(1) process based on
Kopecky & Suen (2010). The method provides higher accuracy for persistent processes compared
to Tauchen’s Method that we previously used. The function takes four inputs:

• N: Number of grid points (discrete values) for the AR(1) process.

• rho: The persistence parameter of the AR(1) process.

5

ECON 6130 Section 11 November 15, 2024FA

• mu: The mean of the AR(1) process.

• sige: The standard deviation of the shock in the AR(1) process.

The function returns three outputs:

• grid: The values that represent the discrete approximation of the AR(1) process.

• theta: The transition probability matrix.

• theta_bar: The stationary distribution of the Markov chain approximation.

3.2 Linearize (NOT log-linearize) the model

To make educated an initial guess for our value function, we’ll use solutions from the linearized
model to start the value function iteration. The code below provides policy matrices derived
from the linearized model, which enable us to find our initial guess for the value function. While
starting the value function iteration with a rough guess, like a matrix of zeros, is acceptable, using
an educated guess can save considerable time.

3.2.1 linear_model.m

The script essentially combines the functionality of both model_ss.m and model.m. Key
aspects of this script include:

• We are not exponentiating variables; instead, we are solely linearizing the model.

• We include the value function as our jump variable.

• In the second-to-last line, the script generates a new MATLAB function in the current
folder: matlabFunction(fy,fx,fyp,fxp,fv,[Yss,Xss],’vars’,pvec,’file’, ’model_df.m’,
’optimize’, false):

– matlabFunction is a MATLAB command that converts symbolic expressions into a
function file. It allows you to save symbolic expressions in a way that makes them easy
to reuse without recalculating them every time.

– fy, fx, fyp, fxp, fv are symbolic matrices evaluated at steady-state values. [Yss, Xss]
is a vector of steady-state values for the state and jump variables.

– ’vars’, {pvec}: Tells MATLAB that the generated function should take one input,
pvec. pvec is a row vector containing the parameters of the model, so model_df.m

6

ECON 6130 Section 11 November 15, 2024FA

will take pvec as an input to evaluate fy, fx, fyp, fxp, fv, [Yss, Xss] based on the
parameter values.

– ’file’, ’model_df.m’: Specifies the name of the file to be created. MATLAB will save
the function as model_df.m in the current directory.

– ’optimize’, false: Prevents MATLAB from performing additional optimizations on
the generated code.

• The script also creates indices for the states and jumps using the make_index.m function.

3.2.2 model_df.m

The function is created by the model_df.m script using matlabFunction. It takes a row
vector, pvec, as input and outputs fy, fx, fyp, fxp, fv, and [Yss, Xss].

3.3 Value Function Iteration (solve_vf.m)

Again, we omit the explanation for the plotting codes.

• addpath(’helper_functions’) adds a directory containing helper functions.

• linear_model runs the linear_model.m script and creates the function, model_df.m.

• rehash updates the MATLAB list of known files in the folders, so that the newly-created
model_df function can be read.

• param = parameters loads the model parameters, stored in a struct param.

• pval = struct2array(param) converts the parameter structure to an array (a column
vector) for easy access.

• model_df(pval’) computes matrices of the linearized model.

• gx_hx_alt solves for policy matrices of the linearized model.

• eta = [0;1] represents the shock vector.

• Steady-state values are extracted from yxss.

• agrid: A grid of possible productivity levels A, generated from the AR1_rouwen function
to represent stochastic productivity. Remember to exponentiate the vector.

7

ECON 6130 Section 11 November 15, 2024FA

• kgrid and hgrid: Arrays representing possible values for K and H, created as a range around
the steady-state values.

• aagr and kkgr represent combinations of states, A and K.

• kkgr2 and hhgr2 represent possible choices of K ′ and H given different combinations of A
and K, i.e. K

′
(A,K) and H(A,K).

• kinit, hinit, and vinit are the initial guesses for the policy functions, K
′
(A,K) and

H(A,K), and value function, V (A,K), based on the policy matrices from the linearized
model.

• idx keeps track of the optimal choice indices for each combination of state variables.

• crit = 1 sets the initial difference between value functions as 1.

• jj counts the number of iterations.

• tic and toc starts and ends the timer for measuring performance.

• nfix = 25 sets the frequency of full policy updates for computational efficiency.

• The value function iterations continues until crit (the convergence criterion) is less than 1e-6
or the iteration count jj reaches 1000.

• vinit_old = vinit: vinit_old stores the value of vinit from the previous iteration, so we
can check if the value function is converging.

• EVp is a matrix that represents expected future values of the value function using the
transition matrix theta.

• if mod(jj,nfix) == 0: This checks if jj is a multiple of nfix. If true, we recompute the
policy functions for each possible combination of states. Otherwise, we skip this and use the
previous policy functions.

• In the recompute policy function case, we go through every possible combination of A and
K. We record the maximum value of the value function obtained and the index of the choices
that maximize the value function.

• In the reuse policy function case, we only update the value function.

• We check if the value function is converging by comparing the difference between vinit and

8

ECON 6130 Section 11 November 15, 2024FA

vinit_old. If the maximum difference is small enough, the loop will exit.

• Finally, we recover the optimal choice values from optimal choice index.

9

	Impulse Response Functions
	Value Function for Our Model
	Solution Algorithm 3: Value Function Iteration
	Functions in the helper_functions Folder
	struct2array.m and vec.m
	make_index.m
	AR1_rouwen.m

	Linearize (NOT log-linearize) the model
	linear_model.m
	model_df.m

	Value Function Iteration (solve_vf.m)

