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TA: Patrick Ferguson

November 1, 2024

Implicit Function Theorem

Theorem 6 (Implicit function theorem). Suppose f : X x Y C R? x R" — R™ is C! and X x Y is
openll] Let (x0,0) € X x Y be a point at which

(i) f(x0,y0) =0;
(ii) Dyf(xo,Y0) is invertible.
Then:

(i) There exists Be,(xo) C X and Be,(yo) C Y such that for all x € B, (xo) there exists a unique
Yy € Be, (yo) such that f(x,y) = 0.

(ii) So there exists a function g : Be (x0) — B, (yo) that satisfies
(a) g(x0) = yo;
(b) f(x,g(x)) =0 forall x € Be (x0);

(c) gis Cl, with derivative
Dg(x) = —(Dyf(x,g(x))) ' Dxf (x,g(x))

Example 1. Suppose f : R> — R is given by f(x,y) := x — y?. The level set {(x,y) | f(x,y) = 0}
is shown below. The graph of the implicit function g : B, (xo) — B, (yo) is given by the red subset
of the level set. Note that ¢ maps into but not necessarily onto B, (yo), that is, there may be some
Yy € B, (yo) that are not in the range g[B;, (xo)]-

1To be explicit, we mean X C RY and Y C R™.
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Note also that if we took xo = yo = 0, then D, f(0,0) = w = —2-0 = 0, violating hypothesis

(ii). Indeed, for any e, > 0, any function defined on B, (0) must violate f(x, g(x)) = 0 for x < 0.
Similarly, at the graphed (xo, yo) > 0, we must choose ¢, small enough that it excludes x < 0.

Exercise 19. Prove the inverse function theorem: Suppose f : X C R? - Y CRYis C, xp € int X,
and define yo := f(xo). If

(i) Df(xp) is invertible.
Then:

(i) There exists Be,(xo) € X and B, (yo) C Y such that for all y € B, (yo) there exists a unique
x € Be,(x0) such that f(x) = y.

(i) So there exists a function g : Be,(x0) — Be,(yo) that satisfies
(@) (fog)(y) =y forally € Be,(yo);
(b) gis C!, with derivative
Dg(y) = (Df(s(y))) ™
Write
Fxy) =y —f(x)

Then Fis C!, F(xo,y0) = 0, and DyF(xo,y0) = —Df(xp) is invertible. It is WLOG to assume that
X xYis openE|

It follows that we can apply the implicit function theorem to obtain:

(i) There exists B, (yo) C Y and B, (x9) C X such that for all y € B, (yo) there exists a unique
x € Be, (xp) such that F(x,y) = 0. That is, y = f(x).

(ii) So there exists a function g : B, (o) — Be,(x0) that satisfies
@ &(vo) = xo;
(b) F(g(y),y) = 0forally € B, (yo); thatis, y = (f 0 ) (v);

2Because Xo € int X, Y can be extended to RY, and the Cartesian product of open sets is open.




(c) gis C!, with derivative

Static Optimisation

Theorem 3 (Necessity). Let f : RY 5 R, b : RY — R, and gj: R? — R be C1 foreach k € {1,...,K}
and each j € {1,...,]}. Suppose x* is a local maximum of f on the constraint set

r:= {xele|hk(x):0f0rk:1,...,Kandgj(x) 20forj:1,...,]}

Let E C {1,...,]} denote the set of binding constraints at x* and let gr := (gj);cE. Suppose that

rank(D h(x) ]>:K+|E|. )

g (x7)
Then, there exists u* & RX and A* € R/ such that

A7 20 forallje{1,...,]}, (10)
Aigj(x *)zOforalle{l I (11)
VF(x*)+ Zkahk ZA*Vg] =0, (12)

k=
Section Exercise 1. Show that Theorems 1 and 2 are special cases of Theorem 3.
Theorem 1 is the case of only (K) equality constraints. The constraint qualification (9) then becomes
rank Dh(x*) = K

and the conclusion omits and (II), and changes (12) to

K
Vi(x*)+ kz WiV (x*) =07
-1

Theorem 2 is the case of only (J) inequality constraints. The constraint qualification then becomes
rank Dgr(x*) = |E|

The nonnegativity constraints and complementary slackness conditions are unchanged.
The FOC becomes

J
Vi(x*)+ gAngj(x*) =07
]:



Section Exercise 2 (From MT3 2023 Q3). Let f : RY — R and gj: R? — Rforj=1,...,] allbe CL.
Consider the following problem:

max f(x) stgj(x) >0forj=1,...,]

xeX

Suppose x* is a local maximum that satisfies the constraints.

(i) Suppose g1(-) = gj(-) for j =2,...,]. Can the constraint qualification be satisfied? If not,
what can we do?

Not in general. It follows from the question that Dgi(-) = Dg;(-) for j = 2,...,]. Moreover
either all the constraints bind or none binds. It follows that if | > 2 and the constraints
bind, rank Dgg(x*) =1 < | = |E|. If we remove all but the first constraint, the optimisation
problem is unchanged, but the constraint qualification can be satisfied.

(ii) Suppose g1(-) = —g2(-). Can the constraint qualification be satisfied? If not, what can we do?

No. We know that Dgi(-) = —Dg»(-). Moreover, g1(x*) > 0 and —g1(x*) > 0 imply that
21(x*) = 0, so both constraints bind. It follows that rank Dgg(x*) < |E| —1 < |E|. We
can resolve this by replacing the two inequality constraints with one equality constraint,
g1(x) = 0, and using the Theorem of Lagrange.

Section Exercise 3.
(i) Specialise Theorem 3 to the unconstrained case.

Proposition 2. Let f : RY — R be C'. Suppose x* is a local maximum of f on R?. Then,

VF(x)=0".

(ii) Let X C R? be open and define f|x : X — R by f|x(x) = x for all x € X. Show that x* € X
is a local maximum of f|x on X iff it is a local maximum of f on R,

If X is open and x* € X, then there exists a sufficiently small ¢ > 0 such that B := B,(x*) C X.
Then x* is a local maximum of f|x on X <= f(x*) > f(x) for all x € Bs(x*) N X <—
f(x*) > f(x) for all x € Bs(x*) with § < e <= x* is a local maximum of f on R

(iif) Show that it suffices in Proposition 1, that f be continuously differentiable at x* (as opposed
to everywhere in RY).

Note that the solution to part (ii) implies that the behaviour of f outside of Bs(x*) is irrelevant
to whether x* is a local maximum of f. But J is an arbitrary positive real number. Suppose it
were necessary that f be C! at x # x*. Then choose 6 < ||x — x*|| to obtain a contradiction.

Exercise 1. Consider the equality-constrained problem from class notes:

max f(x) st h(x) =0 1)

x€R4

wheref:]Rd—HRandhk:]Rd—HR,k:l,...,KareallC]. Defineﬁ:]RdXIRK—HRby

K
L(x,p) == f(x)+ 1;1 pichy(x)



Let

S:={(x,u) | VL(x,p) = 0}

and define Sx as the projection of S onto the first d components of S, i.e.,

Sx := {x | there exists u such that (x, ) € S}

Now consider the following problem:

(i)

(ii)

max f(x) )

xeSx

Show that if problem (T)) attains a global maximum at x* € R¥ and the constraint qualification
holds at x*, then a x° that solves is also a global maximum of .

If problem (I) attains a global maximum at x* and the constraint qualification holds, then by
the Theorem of Lagrange, there exists #* € RX such that

K
V) 4+ Y i Vig(x*) =0
=1

But the left-hand side is just V£ (x*, u*). Moreover, the constraints imply V, L(x*, u*) =
h(x*) = 0. Taken together, we have

VL(x, 1) =0

So (x*,u*) € S and x* € Sx. It follows that f(x°) > f(x*). Moreover, x° € Sx implies that
there exists ° such that V.L(x°, u°) = 0. But V,L(x°, u°) = 0 implies that x° satisfies the
constraints. Therefore, x° is also a global maximiser for problem (T).

Show that (2) is equivalent to

L(x, 3
o2 (x, 1) (3

if the latter has a solutionﬁ

Let (¥, ') solve (B). Then Proposition 1 on unconstrained optimisation implies that (x/, i’) €
S, so x" € Sx. Moreover, by definition of (x/, '),

L, p) = () + i (x) = f(x°) + 3 ughi(x°) = L(x°,1°)

where x° maximises (). But x’, x° € Sx implies h(x’) = h(x°) = 0.It follows that

f(x) = f(x°)

so x’ is also a solution to (). Conversely, x’ € Sx and the definition of x° imply

f(x7) = f(x)

Moreover, we know that 1(x°) = h(x") = 0 so

L) = f(x°) + Y puche(x°) > f(x) + Y pmihe(x') = L(x', 1)
for any u°. It follows that (x°, u°) solves (B).

3The text in red has been added—the result does not go through in its absence. Thank you to Wanxi for pointing this

out.



Exercise 2. Consider the problem
max f(x,y) sth(x,y) =0
X,y

where f(x,y) := —y and h(x,y) := y> — x>. Show that the unique solution to the problem is at 0;
that the constraint qualification is violated at 0; and that there does not exist u € R satisfying

K
Vi(x*)+ kX: WiVhe(x*) =0
—1

The equation y® — x> = 0 is equivalent to y* = x2. In particular, this implies that y > 0. Maximising
—y is equivalent to minimising y, which is achieved by choosing y = 0. The constraint then implies
that the optimal x = 3/2 = 0.
_ | 9h(0,0) 9n(0,0)| __ 2|
Dh(0,0) = [T T} - [—z-o 3.0 } - [0 o]

and the constraint qualification is that rank Dh(x,y) = 1. The rank of a matrix is the maximal
number of its rows (or columns) that can comprise a linearly independent set. Here, we have one
row, which is a zero vector, and the set {0} is not linearly independent. Therefore rank Dh(x, y) =0,
violating the constraint qualification.

Note also that for any y € R,

V£(0,0) + uVh(0,0) = [0 —1} +u [o o} - [o —1} £ [0 o}



