
ECON 6130
Problem Set 4

Gabe Sekeres

November 1, 2024

Worked with Omar Andujar on Problem 1.

n.b. Each problem is on a new page (Problem 2 begins on pg. 15, and Problem 3 begins on pg. 18), and each
part of Problem 1 is on a new page. Specifically Problem 1 includes a large number of code blocks, which
are inserted inline for readability. All code is Julia, and is my own. I’ve written each function for future use,
so it is likely they are not optimized. The totality of the code runs in 7.53 seconds, over 260 value function
iterations and 2,000 periods of simulation, which is quick enough for my purposes.

Problem 1. Consider the following problem:

max
{ct}∞

t=0

E

󰀥 ∞󰁛

t=0

βtu(ct)

󰀦

subject to
ct + kt+1 = eytkαt + (1− δ)kt

where yt is a random process.

1. We have that, defining π(y′|y) as the probability of state y′ given current state y, and Y as the state
space of the Markov chain, preferences are

E

󰀥 ∞󰁛

t=0

βtu(ct)

󰀦
=

∞󰁛

t=0

󰁛

yt∈Y

βtπ(yt)u(ct(y
t))

where ct(yt) = eytkαt + (1 − δ)kt − kt+1. With state variables y and k, as well as control variable k′,
we get the Bellman equation

v(k, y) = max
0≤k′≤eykα+(1−δ)k

󰀻
󰀿

󰀽u(eykα + (1− δ)k − k′) + β
󰁛

y′

π(y′ | y)v(k′, y′)

󰀼
󰁀

󰀾

A sufficient condition that the value function is continuous is that Berge’s theorem holds, meaning
that the feasible set is upper hemi-continuous and compact-valued, each conditions met trivially, and
that the function u is continuous. To ensure that the value function is monotone, we need that the
feasible set is further nonempty, which is implied by δ ∈ [0, 1], and continuous, which is also met by this
formulation. Additionally, we need that u is bounded and that β ∈ (0, 1), as well as that eykα+(1−δ)k
is strictly increasing in k, for which we need α > 0. From that, we get that the unique fixed point v is
strictly increasing, from the Monotonicity of the Value Function Theorem (SLP Theorem 4.7). Finally,
to ensure that v is strictly concave, we need that the value function is strictly concave, which we can
meet by fixing α ∈ (0, 1), and noting that the feasible set is already convex. Then, we will have that
by the Strict Concavity Theorem (SLP Theorem 4.8) that v is strictly concave.

In summary, in addition to the formulation above, we need that u is continuous and bounded, that
δ ∈ [0, 1], that β ∈ (0, 1), and that α ∈ (0, 1). If those conditions are met, the value function will be
continuous, monotonically increasing, and concave.
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2. To construct the Markov chain, we need the parameters for the persistence of the process, the long-run
variance of yt, the long-run mean of yt, the distribution of εt, and the size of the sample space. All are
given except the long-run mean of yt, but since εt has mean 0 and the persistence is less than 1, the
long-run mean of yt will be 0.

I simulated the Markov chain over 2,000 periods using Julia, and found that the long-run mean was
0.059, the serial correlation was 0.992, and the volatility was 0.277. Repeated simulations found similar
numbers in that range.

The Markov chain was:

Figure 1: Markov Chain

In order to find these values, I defined the following functions:

"""
tauchen(persistence, lr_var, lr_mean, e_mean, size_space)

Implements Tauchen’s method for a size_space-point Markov chain
approximation

of a persistent process with a given long-run mean and variance, and
normally-distributed noise.

Returns the state space and the transition matrix.

Needs: Distributions

"""
function tauchen(persistence, lr_var, lr_mean, e_mean, size_space)

@assert size_space % 2 == 1
# Compute variance of shock
e_var = (1 - persistence ^ 2) * lr_var

# Make the state space
z = collect(range(lr_mean - ((size_space - 1) / 2) * sqrt(lr_var),

lr_mean + ((size_space - 1) / 2) * sqrt(lr_var), length =
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size_space))

# Initialize transition matrix
P = zeros(size_space, size_space)

# Compute transition probabilities
# Note: Currently O(n^2). Doesn’t matter for small sizes, but could

likely be improved to O(n) if more fine grid.
for i in 1:size_space

for j in 1:size_space
if j == 1

P[i,j] = cdf(Normal(e_mean, sqrt(e_var)), (z[j] -
persistence * z[i] + 0.5 * sqrt(lr_var)))

elseif j == size_space
P[i,j] = 1 - cdf(Normal(e_mean, sqrt(e_var)), (z[j] -

persistence * z[i] - 0.5 * sqrt(lr_var)))
else

P[i,j] = cdf(Normal(e_mean, sqrt(e_var)), (z[j] -
persistence * z[i] + 0.5 * sqrt(lr_var))) - cdf(Normal
(e_mean, sqrt(e_var)), (z[j] - persistence * z[i] -
0.5 * sqrt(lr_var)))

end
end

end

return z, P
end

"""
stationary_distribution(P)

Given a transition matrix, return the stationary distribution.

Needs: LinearAlgebra
"""
function stationary_distribution(P)

# Find the eigenvector corresponding to eigenvalue 1
vals, vecs = eigen(P’)
stat_dist = vecs[:, argmax(vals)]

# Normalize the eigenvector
stat_dist = stat_dist ./ sum(stat_dist)

# Return the real part
return real(stat_dist)

end

"""
simulate_markov_chain(P, z, N, stationary_dist)
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Given a state space and a transition matrix, simulate a Markov chain for N
periods, starting

from a stationary distribution.

Returns the simulated chain.

Needs: StatsBase

"""
function simulate_markov_chain(P, z, N, stationary_dist)

# Initialize state vector
y_state = zeros(Int, N) # Index of the realization of the variable
y_val = zeros(N) # Value of the realization of the variable

# First period: use stationary distribution
num = rand()
cumulative_sum = 0.0
for j in 1:eachindex(stationary_dist)

cumulative_sum += stationary_dist[j]
if num <= cumulative_sum

y_state[1] = j
y_val[1] = z[j]
break

end
end

# Following periods: use transition matrix
for i in 2:N

num = rand() # Random variable drawn from uniform distribution
cumulative_sum = 0.0
for j in 1:eachindex(z)

cumulative_sum += P[y_state[i-1], j]
if num <= cumulative_sum

y_state[i] = j
y_val[i] = z[j]
break

end
end

end

return y_val
end

And ran the following code, using the packages Distributions, LinearAlgebra, StatsBase,
and Plots:

# Set parameters
persistence = 0.98
lr_var = 0.1
lr_mean = 0.0
e_mean = 0.0
size_space = 7
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N = 2000

# Compute the state space and the transition matrix
z,P = tauchen(persistence, lr_var, lr_mean, e_mean, size_space)

# Compute the stationary distribution
stationary_dist = stationary_distribution(P)

# Simulate the Markov chain
simulated_chain = simulate_markov_chain(P, z, N, stationary_dist)

# Compute long-run mean, serial correiation, and volatility
long_run_mean = mean(simulated_chain)
serial_correlation = cor(simulated_chain[1:end-1], simulated_chain[2:end])
volatility = std(simulated_chain)

# Output the results:
println("Long-run Mean: $long_run_mean")
println("Serial Correlation: $serial_correlation")
println("Volatility: $volatility")

p = plot(simulated_chain, title="Markov Chain Simulation, T = 2000",
xlabel="Time", ylabel="yt", legend=false)

display(p)
savefig(p,"/Users/gabe/Dropbox/Notes/Cornell_Notes/Fall_2024/Macro/Julia/

pset4_markov.png")
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3. We have that u(ct) = log ct, that β = 0.95, that δ = 0.1, and that α = 0.35. First, to appropriately
bound the grid, we need to find the steady state capital level. We get the Euler equation:

u′(f(kt)− kt+1) = βu′(f(kt+1)− kt+2)f
′(kt+1)

Which becomes

β(eyt+1αkα−1
t+1 + (1− δ))(eytkαt + (1− δ)kt − kt+1) = eyt+1kαt+1 + (1− δ)kt+1 − kt+2

and using the fact that at a steady state kt+1 = kt for all t and that the long-run mean of yt is 0, we
get that

β(αkα−1 + (1− δ))(kα + (1− δ)k − k) = kα + (1− δ)k − k

This simplifies to

β(αkα−1 + (1− δ)) = 1 =⇒ k󰂏 =

󰀕
1− β(1− δ)

αβ

󰀖 1
α−1

and in our terms, we have that k󰂏 ≈ 3.585.

I discretized k across a grid from 0.25k󰂏 to 2k󰂏, and using a similar value function iteration method as
in Problem Set 3, I found the following value and policy functions:

Figure 2: Value Functions
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Figure 3: Policy Functions

I defined the following functions in Julia:

"""
log_markov_utility(k_t, y_t, k_next, alpha, beta, v_next, P)

Computes utility for a given level of capital, choice of capital, and
value function.

Returns calculated utility.
"""
function log_markov_utility(k_t::Float64, y_t::Float64, k_next::Float64,

alpha::Float64, beta::Float64,
v_next::Vector{Float64}, P::Vector{Float64})
# Check feasibility of consumption
consumption = exp(y_t) * k_t^alpha + (1 - delta) * k_t - k_next

if consumption <= 0 || k_next <= 0
return -Inf # Large penalty for infeasible consumption

else
return log(consumption) + beta * sum(P .* v_next)

end
end

"""
function value_function_iteration(grid_size, size_space, k_grid, z, P,

alpha, beta, tol, utility_form)

Takes in parameters, a capital grid, and a functional form for utility,
and performs the value function iteration.

Returns the stream of value functions, and the indices of the optimal
policy choices.

"""
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function value_function_iteration(grid_size::Int, size_space::Int, k_grid
::Vector{Float64}, z::Vector{Float64},
P::Matrix{Float64}, alpha::Float64, beta::Float64, tol::Float64,

utility_form::Function)
# Initialize value function (2 layers for old and new iteration)
value = zeros(2, grid_size, size_space)
sup = 1.0 # To track convergence

# Initialize streams for value and policy functions
value_stream = []
policy_indices_stream = [] # To store the policy indices

# Objective value for each (i, k, j)
value_iter = zeros(grid_size, size_space, grid_size)

while sup >= tol
# Update the previous value function with the current one
value[1, :, :] .= value[2, :, :]

# Compute the new value function and policy extraction
simultaneously

policy_indices = zeros(Int, grid_size, size_space) # To store
policy (index of k_next)

for k in 1:size_space
for i in 1:grid_size

for j in 1:grid_size
# Compute utility and future value
value_iter[i, k, j] = utility_form(k_grid[i], z[k],

k_grid[j], alpha, beta, value[1, j, :], P[k, :])
end
# Maximize over next-period capital (k_grid)
max_value, max_index = findmax(value_iter[i, k, :])
value[2, i, k] = max_value # Store the maximum value
policy_indices[i, k] = max_index # Store the index of the

maximizing capital choice
end

end

# Push the current value function and policy indices into their
respective streams

push!(value_stream, copy(value[2, :, :]))
push!(policy_indices_stream, copy(policy_indices))

# Update the sup norm to track convergence
sup = maximum(abs.(value[2, :, :] - value[1, :, :]))

end

return value_stream, policy_indices_stream
end
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"""
extract_policy(grid_size, size_space, value_stream, k_grid)

Computes the policy that optimized every value function iteration.

Returns the stream of policy functions.
"""
function extract_policy(grid_size::Int, size_space::Int,

policy_indices_stream::Array{Any,1}, k_grid::Vector{Float64})
# Store the policy functions (chosen capital values)
policy_stream = []

# Iterate over each iteration to extract policy functions based on
indices

for iter in 1:length(policy_indices_stream)
policy = zeros(grid_size, size_space)

for i in 1:grid_size
for j in 1:size_space

# Use the policy index to get the chosen capital from
k_grid

policy[i, j] = k_grid[policy_indices_stream[iter][i, j]]
end

end

# Append the current policy function to the stream
push!(policy_stream, copy(policy))

end

return policy_stream
end

"""
solve_value_function(persistence, lr_var, lr_mean, e_mean, size_space,

grid_size, grid_min, grid_max, alpha, beta, tol, utility_form)

Take in parameters for the Tauchen Markov process and the capital grid, as
well as the problem parameters and a utility functional form.

Return a set of value function and policy function iterations, as well as
the capital grid.

"""
function solve_value_function(persistence::Float64, lr_var::Float64,

lr_mean::Float64, e_mean::Float64,
size_space::Int, grid_size::Int, grid_min::Float64, grid_max::Float64,

alpha::Float64, beta::Float64,
tol::Float64, utility_form::Function)
# Get sample space and transition matrix
z, P = tauchen(persistence, lr_var, lr_mean, e_mean, size_space)
# Get capital grid
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k_grid = collect(LinRange(grid_min, grid_max, grid_size))
# Perform value function iteration
value_stream, policy_indices_stream = value_function_iteration(

grid_size, size_space, k_grid, z, P, alpha, beta, tol,
utility_form)

# Extract policy function
policy_stream = extract_policy(grid_size, size_space,

policy_indices_stream, k_grid)

return value_stream, policy_stream, k_grid
end

and ran the following code:

# Problem Parameters:
N = 100
alpha = 0.35
beta = 0.95
delta = 0.1
tol = 1e-6

# Uncertainty Parameters:
persistence = 0.98
lr_var = 0.1
lr_mean = 0.0
e_mean = 0.0
size_space = 7

# Capital Grid Parameters:
k_ss = 3.585
grid_size = 100
grid_min = 0.25 * k_ss
grid_max = 2 * k_ss

# Utility function:
utility_form = log_markov_utility

value_stream, policy_stream, k_grid = solve_value_function(persistence,
lr_var, lr_mean, e_mean, size_space, grid_size, grid_min, grid_max,
alpha, beta, tol, utility_form)

p_final_value = plot()
for state in 1:size_space

plot!(p_final_value, k_grid, value_stream[end][:, state], label = "
State $state",

title = "Final Value Function for All States", xlabel = "State
Capital (k)", ylabel = "Value (v)")

end
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plot!(p_final_value, legend=:outerright)
display(p_final_value)
savefig(p_final_value, "/Users/gabe/Dropbox/Notes/Cornell_Notes/Fall_2024/

Macro/Julia/pset4_final_value_function.png")

p_final_policy = plot()
for state in 1:size_space

plot!(p_final_policy, k_grid, policy_stream[end][:, state], label = "
State $state",

title = "Final Policy Function for All States", xlabel = "State
Capital (k)", ylabel = "Chosen Capital (k’)")

end

plot!(p_final_policy, legend=:outerright)
display(p_final_policy)
savefig(p_final_policy, "/Users/gabe/Dropbox/Notes/Cornell_Notes/Fall_2024

/Macro/Julia/pset4_final_policy_function.png")

# Number of iterations:
iters = length(value_stream)
println("Number of Iterations: $iters")
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4. Using the final-period value and policy functions calculated in part (3), as well as the simulated random
process calculated in part (2), I simulated the process over N = 2, 000 periods. I sampled the given
0th period capital k0 from U(0.25k󰂏, 2k󰂏).

I found that the standard deviations of logged consumption, investment, and output were 0.342, 0.316,
and 0.333 respectively. I found that the correlation between consumption and investment was 0.939,
that the correlation between consumption and output was 0.998, and that the correlation between
investment and output was 0.961. I also plotted the values for the 2,000 periods:

Figure 4: Simulated Economy

Looking at the data on FRED, I combined series for real GDP, real investment, and real consumption
in the United States over the last sixteen years. They are presented here:

Figure 5: U.S. Economy

12



The relationships between the lines in the two plots are very similar – consumption and output are
extremely correlated, and investment is also correlated but tends to move more.

I used the following code to simulate the economy:

# Simulate the converged value function over a large number of periods
N = length(simulated_chain)

# Initialize vectors for storing values:
output = zeros(N-1)
consumption = zeros(N-1)
investment = zeros(N-1)
capital = zeros(N)

# Randomize first-period capital:
capital[1] = rand(k_grid)

for i = 1:(N-1)
# Set income state
income_state = argmin(abs.(z .- simulated_chain[i]))

# Use policy function to determine next-period capital
capital[i + 1] = policy_stream[end][argmin(abs.(k_grid .- capital[i]))

, income_state]

# Compute output, consumption, and investment
output[i] = exp(simulated_chain[i]) * capital[i] ^ alpha
consumption[i] = output[i] + (1 - delta) * capital[i] - capital[i + 1]
investment[i] = capital[i+1] - (1 - delta) * capital[i]

end

# Compute standard deviations of consumption, investment, and log(output)
std_log_consumption = std(log.(consumption))
std_log_investment = std(log.(investment))
std_log_output = std(log.(output))

# Compute correlations
corr_consumption_investment = cor(log.(consumption), log.(investment))
corr_consumption_output = cor(log.(consumption), log.(output))
corr_investment_output = cor(log.(investment), log.(output))

println("Standard deviation of consumption: $std_log_consumption")
println("Standard deviation of investment: $std_log_investment")
println("Standard deviation of output: $std_log_output")

println("Correlation between consumption and investment: $
corr_consumption_investment")

println("Correlation between consumption and output: $
corr_consumption_output")

println("Correlation between investment and output: $
corr_investment_output")

# Plot consumption, investment, and log(output)
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sim_plot = plot()
plot!(sim_plot,log.(consumption), label="Log(Consumption)", title="Output

and Choices Over Time", xlabel="Time", ylabel="Value")
plot!(sim_plot,log.(investment), label="Log(Investment)", title="Output

and Choices Over Time", xlabel="Time", ylabel="Value")
plot!(sim_plot,log.(output), label="Log(Output)", title="Output and

Choices Over Time", xlabel="Time", ylabel="Value")
plot!(sim_plot, legend=:outerright)
display(sim_plot)

savefig(sim_plot,"/Users/gabe/Dropbox/Notes/Cornell_Notes/Fall_2024/Macro/
Julia/pset4_simulated_economy.png")

I ran all of the code for this problem using the following shell file:

using Distributions, LinearAlgebra, StatsBase, Plots

@time begin
# Import relevant functions
include("pset4_markov_functions_julia.jl")
include("pset4_value_functions_julia.jl")

# Simulate Markov process:
include("pset4_markov_julia.jl")

# Value Function Iteration:
include("pset4_value_julia.jl")

# Simulate model
include("pset4_growth_sim.jl")

end
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Problem 2. Consider a neoclassical growth model with two sectors, one producing consumption goods
and one producing investment goods.

1. The planner’s problem is as follows:

max
{KC,t,KI,t}∞

t=0∈R∞
+

∞󰁛

t=0

βtu(Ct)

subject to

KC,t+1 = (1− δ)KC,t + IC,t

KI,t+1 = (1− δ)KI,t + II,t

L = LC,t + LI,t

Ct = F (KC,t, LC,t)

It = G(KI,t, LI,t)

It = IC,t + II,t

We can reformulate this problem recursively, and get the Bellman equation

v(KC,t,KI,t) = max
LC,t,IC,t

{u(Ct) + βv(KC,t+1,KI,t+1)}

where KC,t,KI,t are the state variables and LC,t, IC,t are the control variables. Using the constraints,
we can reformulate this as

v(KC,t,KI,t) = max
LC,t,IC,t

{u(F (KC,t, LC,t)) + βv ((1− δ)KC,t + IC,t, (1− δ)KI,t +G(KI,t, L− LC,t)− IC,t)}

2. Taking first order conditions with respect to the control variables LC,t and IC,t, we get

∂v(KC,t,KI,t)

∂LC,t
= u′(F (KC,t, LC,t))F2(KC,t, LC,t)− βv2(KC,t+1,KI,t+1)G2(KI,t, L− LC,t)

and
∂v(KC,t,KI,t)

∂IC,t
= βv1(KC,t+1,KI,t+1)− βv2(KC,t+1,KI,t+1)

Setting them equal to 0, we get the relationships

u′(F (·))F2(·) = βv2(·)G2(·) and v1(·) = v2(·)

Benveniste-Scheinkman gives us that

v1(KC,t,KI,t) = u′(F (KC,t, LC,t))F1(KC,t, LC,t) + β(1− δ)v1(KC,t+1,KI,t+1)

v2(KC,t,KI,t) = β(1− δ +G1(KI,t, LI,t))v2(KC,t+1,KI,t+1)

Combining with the first order conditions (w/r/t IC,t), we get that

u′(F (KC,t,KI,t))F1(KC,t, LC,t)+β(1−δ)v1(KC,t+1,KI,t+1) = β(1−δ+G1(KI,t, LI,t))v2(KC,t+1,KI,t+1)

and since we have that v1(·) = v2(·) for all t, this becomes

u′(F (KC,t, LC,t))F1(KC,t, LC,t) = v2(KC,t+1,KI,t+1)(βG1(KI,t, LI,t))

which implies that

v2(KC,t+1,KI,t+1) =
u′(F (KC,t, LC,t))F1(KC,t, LC,t)

βG1(KI,t, LI,t)
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Using the second Benveniste-Scheinkman condition, we get also that

v2(KC,t,KL,t)

1− δ +G1(KI,t, LI,t)
=

u′(F (KC,t, LC,t))F1(KC,t, LC,t)

G1(KI,t, LI,t)

and again using the fact that v1(·) = v2(·), we have

v1(KC,t,KL,t)

1− δ +G1(KI,t, LI,t)
=

u′(F (KC,t, LC,t))F1(KC,t, LC,t)

G1(KI,t, LI,t)

Using the first order condition w/r/t LC,t, and the fact that this has all not depended on the time
period so also holds for t+ 1, this becomes

u′(F (KC,t, LC,t))F2(KC,t, LC,t)

βG2(KI,t, LI,t)(1− δ +G1(KI,t+1, LI,t+1))
=

u′(F (KC,t+1, LC,t+1))F1(KC,t+1, LC,t+1)

G1(KI,t+1, LI,t+1)

So finally, we have the Euler equation:

u′(Ct)F2(KC,t, LC,t)

G2(KI,t, LI,t)
= β(1− δ +G1(KI,t+1, LI,t+1))

u′(Ct+1)F1(KC,t+1, LC,t+1)

G1(KI,t+1, LI,t+1)

The optimal solution to the planning problem, per Benveniste-Scheinkman, must satisfy thie Euler
equation for all levels of t.

3. Recall that from the second Benveniste-Scheinkman condition that

v2(KC,t,KI,t) = β(1− δ +G1(KI,t, LI,t))v2(KC,t+1,KI,t+1)

which implies that, at the steady state, β(1−δ+G1(·)) = 1 for all t. Thus, recalling that at the steady
state U ′(Ct) = U ′(Ct+1), our Euler equation becomes

F2(KC , LC)

G2(KI , LI)
=

F1(KC , LC)

G1(KI , LI)

Additionally, we need that K = KI +KC , L = LI + LC , and that

K = (1− δ)K +G(KI , LI) =⇒ K =
G(KI , LI)

δ

These conditions entirely characterize every steady state.

4. We have that F (KC , LC) = Kα
CL

1−α
C and G(KI , LI) = Kγ

I L
1−γ
I . This means that G1(KI , LI) =

γ
󰀓

KI

LI

󰀔γ−1

, so we have that

γ

󰀕
KI

LI

󰀖γ−1

=
1

β
− (1− δ) ⇐⇒ KI

LI
=

󰀕
1

βγ
− 1− δ

γ

󰀖 1
γ−1

We also have that F2(KC ,LC)
G2(KI ,LI)

= F1(KC ,LC)
G1(KI ,LI)

, which becomes

(1− α)
󰀓

KC

LC

󰀔α

(1− γ)
󰀓

KI

LI

󰀔γ =
α
󰀓

KC

LC

󰀔α−1

γ
󰀓

KI

LI

󰀔γ−1 ⇐⇒ α

1− α

KC

LC
=

γ

1− γ

KI

LI

Thus, we have that

KC =
1− α

α

γ

1− γ

󰀕
1

βγ
− 1− δ

γ

󰀖 1
γ−1

LC
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and that

KI =

󰀕
1

βγ
− 1− δ

γ

󰀖 1
γ−1

LI

Since we also have that

K =
G(KI , LI)

δ
⇐⇒ K =

Kγ
I L

1−γ
I

δ
= KC +KI

We can substitute in the above expressions for KI and KC , and since LI + LC = L is given, we have
two expressions for two unknowns (LI and LC), so the rest follows.
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Problem 3. Neoclassical growth with externality.

1. Note that since the collective households have unit mass and are identical, the social planner will solve
the problem assuming that ci = cj = c for all households i, j. Additionally, since they have unit mass,
we may assume that ct = Ct for all t, and that kt = Kt for all t. Finally, since households do not face
any disutility for working, we will assume that Nt = 1 for all t. The planner’s problem is

max
{ct}∞

t=0

∞󰁛

t=0

βtU(ct, Ct)

subject to

F (kt, 1) = ct + kt+1 + (1− δ)kt and Ct =

󰁝 1

0

ct and k0 ≥ 0 given

We can represent the social planner’s problem recursively, using a Bellman equation where the state
variable is k and the control variable is k′. The problem is:

v(kt) = max
kt+1

{U(ct, Ct) + βv(kt+1)}

subject to
F (kt) = ct + kt+1 − (1− δ)kt

where F (kt) = F (kt, 1).

2. Taking the first order condition with respect to kt+1, we get that

∂v(kt)

∂kt+1
= U1(ct, Ct) + U2(ct, Ct)− βv′(kt+1) = 0 =⇒ βv′(kt+1) = U1(ct, Ct) + U2(ct, Ct)

From Benveniste-Scheinkman, we get

v′(kt) = ((1− δ) + F1(kt))(U1(ct, Ct) + U2(ct, Ct))

By combining these two, we get the following Euler equation:

U1(ct, Ct) + U2(ct, Ct) = β((1− δ) + F1(kt+1))(U1(ct+1, Ct+1) + U2(ct+1, Ct+1))

3. A recursive competitive equilibrium is a value function v and policy functions C, G, prices w and r,
and the law of motion H such that the following hold:

(a) Given w, r, and H, v solves the Bellman equation and C and G are the associated policy functions.

(b) The pricing functions w and r solve the firm’s first order conditions.

(c) Consistency holds, meaning that H(Kt) = G(Kt,Kt).

(d) For all Kt, C(Kt,Kt) +G(Kt,Kt)− (1− δ)Kt = F (Kt, 1).

4. We have that the household’s problem is

max
{ct,kt+1}∞

t=0

∞󰁛

t=0

βtU(ct, Ct)

subject to
ct + kt+1 − (1− δ)kt = wt + rtkt

18



with k0 given. The Bellman equation is

v(k,K) = max
c,k′

{U(c, C) + βv(k′,K ′)}

subject to
c+ k′ = w(K) + (1 + r(K)− δ)k and F (K, 1) = C +K ′ − (1− δ)K

where the state variables are k and K, and the control variables are c and k′. We can take the first
order conditions, recalling that the household takes C is given. We get that

∂v(k,K)

∂c
= U1(c, C)− βv′(k′) = 0 =⇒ U1(c, C) = βv′(k′)

From Benveniste-Scheinkman, we get that

v′(k) = (1 + r − δ)U1(c, C)

Combining the two, as in part (2), we get the Euler equation

U1(c, C) = β(1− δ + r′)U1(c
′, C ′)

Recalling that in equilibrium, firms take the price as given and demand capital such that the price of
capital is equal to the marginal cost, we can say that r′ = F1(k). Thus, our Euler equation is (going
back to ct notation for later comparisons):

U1(ct, Ct) = β(1− δ + F1(kt+1))U1(ct+1, Ct+1)

5. The unique competitive equilibrium is not Pareto efficient. To see why, recall that the social planner’s
solution is necessarily Pareto efficient.1 We can see that the household’s Euler equation is different than
the social planner’s Euler equation, as the social planner internalizes the externality. Since they have
Euler equations, they have different solutions and it must therefore be the case that the competitive
equilibrium is not Pareto efficient.

1If it were not, it would not be a maximum.
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