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Introduction

Sections will primarily focus on reviewing difficult questions from the most recent problem set,
and difficult topics from the most recent lectures. I will also include original “Section Exercises”
that are similar in style to problem-set and exam questions. Where possible, these will include
actual past exam questions.

Exercise 7. Let S and T be nonempty and bounded subsets of R. TFU:

sup(S ∪ T) = max{sup S, sup T}

Solution. True. WLOG, let sup S ≥ sup T. Then for any s ∈ S, we have sup S ≥ s. Moreover, for
any t ∈ T, we have sup S ≥ sup T ≥ t. Therefore, for any x in S ∪ T, we have sup S ≥ x. Thus,
sup S is an upper bound for S ∪ T and we need only show that it is the least such upper bound.
Let u be an arbitrary upper bound for S ∪ T. Then u must also be an upper bound for S. But then,
by definition, sup S ≤ u. Since u is an arbitrary upper bound of S ∪ T, this means that sup S is the
least upper bound of S ∪ T.

Section Exercise 1. Use proof by induction and Exercise 7 to show that if {Si | i = 1, 2, . . . , N},
N ∈ N is a collection of nonempty and bounded subsets of R, then

sup

(
N⋃

i=1

Si

)
= max{sup Si | i = 1, . . . , N}

1Changed to avoid clash with Tak’s OH.
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Solution.
This is trivially true for N = 1, and Exercise 7 proves it for N = 2. Suppose that it’s also true for
some natural number N − 1 ≥ 2. That is,

sup

(
N−1⋃
i=1

Si

)
= max{sup Si | i = 1, . . . , N − 1} (1)

We want to show that it must then be true for N. Write

sup

(
N⋃

i=1

Si

)
= sup

(
N−1⋃
i=1

Si ∪ SN

)

= max

{
sup

(
N−1⋃
i=1

Si

)
, sup SN

}
= max {max{sup Si | i = 1, . . . , N − 1}, sup SN}
= max{sup Si | i = 1, . . . , N}

where the second equality uses Exercise 7, and the third equality uses our induction hypothesis
(1).2

Problem 1. Let A and B be nonempty subsets of R. Define A + B := {a + b | a ∈ A and b ∈ B},
and define A − B similarly. Show the following:

1. sup(A + B) = sup(A) + sup(B)

2. sup(A − B) = sup(A)− inf(B)

Solution.
1. Suppose x ∈ A + B. Then x = a + b for some a ∈ A, b ∈ B, implying a ≤ sup A and
b ≤ sup B. Thus x ≤ sup A + sup B. This implies sup A + sup B is an upper bound of A + B, and
so sup(A + B) ≤ sup A + sup B.

Conversely, say sup A + sup B > sup(A + B).

First, assume that both A and B are bounded above. Then sup A > sup(A + B)− sup B implying
that there exists an a ∈ A such that a > sup(A + B)− sup B. Therefore, sup B > sup(A + B)− a.
It follows that there must exist some b ∈ B such that b > sup(A + B)− a. This implies that there
exists a ∈ A and b ∈ B such that a + b > sup(A + B), contradicting the definition of sup(A + B).

Now, suppose that one of A or B has no upper bound. WLOG, say sup A = ∞. Then, because
B ̸= ∅, we have sup B > −∞, and so sup A + sup B = ∞. Furthermore, if for all M ∈ R, we
can find an a ∈ A such that a > M, then, fixing some b ∈ B, we can find some a + b ∈ A + B
such that a + b > M + b. Because M is arbitrary, this proves unboundedness of A + B above, so
sup A + B = ∞.

(Skip this in section.) 2. Define −B := {−x ∈ R | x ∈ B}.

2The fourth equality uses max{x1, . . . , xK} = max{max{x1, . . . , xK−1}, xK}. I consider this obvious enough not to
warrant proof, but it can be proven by an induction argument using the definition of a maximum.
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First, suppose that B is bounded below, or equivalently, −B is bounded above. This implies that
A− B = A+(−B) and sup(A− B) = sup A+ sup(−B) by part 1. The supremum of −B is defined
by sup(−B) ≥ −x for all x ∈ B and sup(−B) ≤ m, for all upper bounds, m, of −B. Equivalently,
− sup(−B) ≤ x for all x ∈ B and − sup(−B) ≥ −m, for all lower bounds, −m, of B. But this is
just the definition of the infimum of B, so inf B = − sup(−B). Thus, sup(A − B) = sup A − inf B.

Now, suppose B is unbounded below. Then inf B = −∞, so − inf B = −(−∞) = ∞. Therefore
sup A − inf B = ∞. Because B is unbounded below, for any M ∈ R, we can find some b ∈ B such
that b < −M. Equivalently, −b > M. Then, fixing some a ∈ A, we can find an a − b ∈ A − B such
that a − b > a + M. This proves unboundedness of A − B above, so sup(A − B) = ∞.

Remark 1. Note that we can only say there exists a ∈ A satisfying sup A − ϵ < a < sup A if sup A
is finite. If sup A were infinite, we would be saying ∞ < a < ∞, which doesn’t make sense.

Remark 2. If A was empty and B unbounded above, we would have sup A + sup B = −∞ + ∞,
which is undefined.3 Hence, the nonemptiness restriction in the question.

Section Exercise 2. Let (an) and (bn) be two sequences and define sup xn := sup{xn | n ∈ N}.
Prove that sup(an + bn) ≤ sup an + sup bn, and give an example to show that the inequality may
hold strictly. Compare with the previous problem.

Let xk = ak + bk for some k. Then xk ≤ sup an + sup bn. This implies sup an + sup bn is an upper
bound of (xn) = (an + bn), so sup(an + bn) ≤ sup an + sup bn. The reverse inequality does not
hold. Consider the sequences (an) = (−1, 1,−1, 1,−1, . . . ) and (bn) = (1,−1, 1,−1, 1, . . . ), which
have

sup(an + bn) = sup 0 = 0 < 2 = sup an + sup bn

The key difference from the previous problem is that sequence addition is defined for corresponding
entries, giving sup(an + bn) = sup{an + bn | n ∈ N}. Whereas set addition4 entails addition of
each element of one set with every element of the other. If we added the sequences as sets of values,
we would get sup{an + bm | n, m ∈ N}, which is potentially larger than the previous expression.

Problem 2. Let A and B be nonempty sets, and let f : A × B → R be some real valued function.

1. Show that
sup
a∈A

inf
b∈B

f (a, b) ≤ inf
b∈B

sup
a∈A

f (a, b).

2. Give an f : [0, 1]2 → R for which the above inequality is strict.

Note: For a real valued function, f , on a nonempty set, S, supx∈S f (x) ≡ sup{ f (x)|x ∈ S}.

Remark 3. Note that supa∈A f (a, b) = sup{ f (a, b) | a ∈ A} depends on b. However, if we plug
in a specific b, it is unique. Therefore, we can think of supa∈A f (a, b) as a function of b, call it
g : B → R. Then infb supa f (a, b) = infb g(b) = inf{g(b) | b ∈ B}.

3Intuitively, this means that the limit of the sum of two sequences, one diverging to ∞ and the other diverging to −∞
could equal any number in R ∪ {∞,−∞} or may not even exist, depending on the particular sequences being added.

4Formally, Minkowski addition.
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Solution to problem:
1. Suppose

sup
a∈A

inf
b∈B

f (a, b) > inf
b∈B

sup
a∈A

f (a, b)

Then there must exist ā ∈ A such that

inf
b∈B

f (ā, b) > inf
b∈B

sup
a∈A

f (a, b) (2)

(For otherwise supa∈A infb∈B f (a, b) would not be the supremum of {infb∈B f (a, b) | a ∈ A}). But
(2) is false as

f (ā, b) ∈ { f (a, b) | a ∈ A}

so
sup
a∈A

f (a, b) ≥ f (ā, b) for all b ∈ B

hence5

inf
b∈B

sup
a∈A

f (a, b) ≥ inf
b∈B

f (ā, b)

This proves
sup
a∈A

inf
b∈B

f (a, b) ≤ inf
b∈B

sup
a∈A

f (a, b)

by contradiction.

2. There are many possible counterexamples.6 For example, if f : [0, 1]2 → R is given by
f (a, b) = (a − b)2 then

sup
a∈A

(a − b)2 =

{
(1 − b)2 if b < 1

2 (set a = 1)

b2 if b ≥ 1
2 (set a = 0)

This implies infb∈B supa∈A(a − b)2 = (1/2)2 = 1/4. On the other hand,

inf
b∈B

(a − b)2 = 0 for all a ∈ A (set b = a)

Therefore,
sup
a∈A

inf
b∈B

(a − b)2 = 0 < 1/4 = inf
b∈B

sup
a∈A

(a − b)2

5Lemma: g(x) ≤ h(x) for all x ∈ X implies infx∈X g(x) ≤ infx∈X h(x). Proof: Suppose not. Then inf g(x) > inf h(x),
so there exists x such that inf g(x) > h(x). But then g(x) > h(x), a contradiction.

6 f (x, y) = 1{x = y} is a simple one.
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From the remark, supa∈A f (a, b) is a function of b, and infb∈B f (a, b) is a function of a. We know
that f (a, b) = (a − b)2 is minimised with respect to b by choosing b = a. Graphically, this is the
45◦ line through the origin on the contour plot. Whereas f (a, b) is maximised with respect to a by
choosing a = 1{a < 1/2}. On the contour plot, this is a vertical line between (0, 1) and (0, 1

2 ), and
a second vertical line between (1, 1

2 ) and (1, 0).

5


