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9. The consumer solves the problem

max w(w — ) + Efv(z + y)]

where y ~ F(-). Denote the solution to this problem as z* and the solution to the problem where y is
degenerate with mean 0 as xg.

(a)

()

(d)

Recall that in the degenerate problem, since u and v are concave, we have that v’ (zg)—u'(w—x¢) =
0. HE[V (zo+y)] > v'(x0), we have that E[v(zo+y)] —u'(w—1x0) > 0, so g is not a maximizer of
the problem. It remains to show that the true maximizer is greater than zg. At xg, we have that
E[v'(zo + y)] > v/ (w — xp). At the true maximizer z*, we have that E[v'(z* 4+ y)] = «/'(w — z*).
Conclusion follows by noting that v and v are concave, so v’ and v are decreasing in the argument.
Thus, x* > xg.

We have that for v; and ve, —v{"(x)/v{(z) < —vy’'(z)/vY(z) for all =, and that E[v](zo + y)] >
vi(zo). Note that the coefficient of absolute risk aversion of v is equivalent to the coefficient
of absolute prudence of v;. Thus, from Proposition 6.C.2 in Mas-Colell, we have that since v}
has a coefficient of absolute risk aversion that is not greater than v}, v} has a greater certainty
equivalent than v], meaning that E[v}(zo + y)] > v4(zo). In the context of part (a), this implies
that if one individual decides to invest in a risky lottery, a second individual with a not-greater
coeflicient of absolute prudence will also invest, and they will not invest less.

We have that v"/(z) > 0 for all z, then v’ is convex, meaning that v’ exhibits risk-loving behavior.
Since E[y] = 0, we have that E[v/(z + y)] > v'(x) for all .

We have that the coefficient of absolute risk aversion is decreasing in wealth, meaning that
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Thus, we have that — HOREEUOR

14. We have that u*(-) is strongly more risk-averse than u(-) if and only if there exists a positive constant
k and a nonincreasing, concave function v(-) such that u*(z) = ku(z) + v(z) for all z.

(a)

We have that the coeflicient of absolute risk aversion for u* at some x is

ku” (x) +v"(x)

* T\ N\
rlw,wt) = ku'(z) +v'(z)
we want to show that

ku(2) +v"(2) u’(x)
ku'(x) + o' (z) = u'(x)

This simplifies to

ku'(z)u” (z) + o' (2)v" (z) < ko' (z)u” () + o (2)0' (2) = o/ (2)v" () < o (2)v'(z)



Which holds as long as

Since, by assumption, v is increasing and concave, and v is non-increasing and concave, the left
side is non-negative and the right side is non-positive. Conclusion follows.

Suppose FSOC that there exists u*(x) = ku(x) + v(x), where v is non-constant, non-increasing,
and concave. Define M such that M = inf{C € R : u(zx) < C' V z}. Since u is increasing, as
x — oo, u(x) — M. However, since v is non-constant and non-increasing, 3 = € R sufficiently
large such that u*(z) > u*(x + €) for some ¢ > 0. This contradicts the assumption that «* must
be increasing.

We have from (a) that strong risk aversion implies Arrow-Pratt risk aversion. It remains to show
that the converse is not true. Consider the functions u(z) = —exp(—ax) and v(z) = — exp(—pz),
where 8 > «a. Both functions exhibit constant absolute risk aversion, so v is more risk-averse than
u in the Arrow-Pratt sense. However, since they are each bounded above, by (b) v is not strongly
more risk-averse than u.

15. We have a risk-averse decision maker, investing x; in a riskless asset and x5 in a risky asset that pays
a with probability 7 and b with probability 1 — 7. They begin with w = 1.

(a)

(b)

()

Since the decision-maker is risk-averse, they will invest strictly positive levels in the riskless asset
if there is a probability of loss with respect to the risky asset. Thus, the necessary condition is
that at least one of a,b is strictly less than 1.

Again, since the decision-maker is risk-averse, they will invest in the risky asset only if its expected
value is greater than that of the riskless asset, i.e.when wa + (1 —7)b > 1.

The decision-maker is maximizing the problem

max mu(x1 + axe) + (1 — m)u(zy + bxs) s.t. 21,29 € [0,1], 21 + z2 =1
T1,T2

The first condition falls away because we're assuming that the conditions from (a) and (b) hold,
so the Lagrangian this admits is

L =mu(r1 + azxs) + (1 — m)u(zy + bxe) + A(1 — 1 — x2)

The first order conditions are

oL _ mu' (21 + axs) + (1 — m)u' (21 + bxa) = A =0
6.’[1
oL , ,
Do aru'(z1 + axs) + b(1 — m)u'(x1 + bze) — A =0
2

which, combining, get
mu' (z1 + azg) + (1 — m)u' (21 + br2) = amu/ (21 + axa) + b(1 — m)u (21 + bxo)
which imply
7(1 —a)u'(z1 + axa) + (1 —7)(1 — b)u'(z1 + bxa) =0
The final first order condition is

oL
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(d) Using the implicit function theorem, and holding b constant, define
g(z1,a,7) =7(1 —a)u' (v + a(l — 1)) + (1 —7)(1 — b)u'(z1 + b(1 — x1))
We have that

or, % —m/ (21 + a(l — 21)) + 7(1 — a)(1 — z1)u” (z1 + a(l — 21))

a2 a(l—a)(1—a)(z1 +a(l—21) + (1—m)(1 = b)(1—b)u"(z1 +b(1 —21))

T1

where all terms in the numerator and denominator are negative, so % <0.

(e) If we are assuming, like in (d), that a < 1, it follows that b > 1. Thus, as 7 increases, the lottery
gets worse, so the decision maker would invest more in the riskless asset. Thus, I conjecture that
0.
G > 0.

(f) From the first order conditions and the implicit function theorem, we have that

0x1 dg/om

or _Bg/aml

We know that the denominator is negative, from part (d). It remains to show that the numerator
is positive, and conclusion will follow. We have that
dg

P (1—a)u'(z1 +a(l —x1))— (1= b)u/(z1 +b(1 —21)) >0

>0 <0

16. An individual has Bernoulli utility function u(-) and initial wealth w. Let lottery L offer a payoff of G
with probability p and a payoff of B with probability (1 — p).

(a) The individual would sell the lottery for no less than the amount that would guarantee the same
expected utility — i.e., a price y such that

pu(w + G) + (1 — p)u(w + B) = u(w + y)
(b) They would purchase the lottery for an amount z such that they would have the same expected
utility whether they had the lottery or not — i.e., a price = such that
pu(w —z+ G) + (1 — p)u(w — z + B) = u(w)
(c) In general, x # y, as the different levels of wealth will change how much the lottery is ‘worth’ to

the decision maker. However, if u exhibits constant absolute risk aversion, then they will coincide.
If u exhibits CARA, then the above conditions imply that

W=y =(W—1T) = Cy_qg

where ¢, is the certainty equivalent of the lottery with wealth w and c¢,_, is the certainty
equivalent of the lottery with wealth w — x.

(d) Directly calculating (using Wolfram), we get that y solves
P20+ (1—p)VI5=/10+y =y =5 (4\/§p2 —7p? — 4/3p + 6p — 1)

and x solves

5 <2p3 +7p? £ 2V2\/—2p5 + Tp* — 8p® + 3p% — Sp + 1)
V20 — 2+ (1-p)V15 —z = V10 = 2 =

4p? —4p+1



17. We have that an individual faces a two-period portfolio allocation problem, dividing her wealth between
a risky asset with return x and a safe asset with return R. They have initial wealth wq, and in period
t € {1,2} their wealth depends on the portfolio a1 chosen previously, defined by

wy = (I —ap—1) R+ ayp—12¢)we—y
The individual is maximizing wy, where we assume that x1, zs are i.i.d.
Proof. First, assume that © has CRRA preferences. The wealth at the end of each period is
w1 = (1 —ag)R+ apzr1)wy and we = ((1 —a1)R+ agz2)w;
Combining, we get that
wy = ((1 —a1)R+ a122)((1 — o) R + apz1)wo

Since CRRA preferences are scale-invariant, for any A we have that u(\z) = A ~%u(z), where o is the
coefficient of relative risk aversion. When the consumer is maximizing the expected utility, we have
that

E[u(w2)] = E [(1 = a1) R + arz2)' ™ 7u(w)] = Elu(w:)] - (1 — a1) R+ a1 E[z2])' ™7

Thus, the choice of o that maximizes w; will also maximize ws, since z; are i.i.d., and ag = ay.

Next, assume that v has CARA preferences. We know that « has the form u(x) = — exp(—~yx), where
v > 0 is the coefficient of absolute risk aversion. Thus,

E[u(wz)] = E [u(w:) exp(=y(((1 — a1) R + 122)))]

However, we cannot split the expectation here as above, since we do not know that the relevant
moments for x necessarily exist. Thus, the choice of oy depends on x1, so it will not necessarily hold
that ag = ag. O

18. Suppose that a decision maker has utility u(z) = /z.
(a) We have that wealth w = 5. The coefficient of absolute risk aversion is

' (w) (025w '® 1 V6 1 1

— = — = - =—-.-=0.1
u'(w) (0.5)w=05 2125 2 5
The coefficient of relative risk aversion is
u”(w) 1
— =5.—=0.5
v ' (w) 10

(b) The certainty equivalent of this lottery is
w1 (0.5u(16) + 0.5u(4)) =u 2+ 1) =u'(3) =9
The probability premium is 7 such that

V10 -3

u(10) = (0.5 + m)u(16) + (0.5 —mMu(d) = V10 =2+4dr+1-2n = 7w = 5

(¢) The certainty equivalent of this lottery is
u”1(0.5u(36) + 0.5u(16)) = w1 (3 +2) = u'(5) = 25
The probability premium is 7 such that
V26 — 5
2

The probability premium is higher in the first lottery, which implies that « has decreasing absolute
risk aversion, implied by the fact that it has constant relative risk aversion.

u(26) = (0.5 + m)u(36) + (0.5 — mM)u(16) = V26 =3+ 6r+ 2 —4dr = 7 =



19. We have that an individual has utility u(z) = —exp(—az) with a > 0, and initial wealth w. He
invests in a riskless asset with return  and N jointly normally distributed random assets with means
w=(p1,...,un) and variance V. We assume that V is full rank.

Denote by z; the amount invested in risky asset ¢, and by y; its return. The agent’s realized wealth is

N N
w' = (w - Z%) T+inyi
i=1 =1

By the properties of jointly normal distributions, w’ ~ N ((w — Zf\;l xi) r+ Zfil Tifhi, xTVx>. The
expected utility of this is
E[u(w')] = E[- exp(—aw’)]

Using the properties of the moment generating function of a normal random variable, we have that

N N o2
Elu(w)] = —exp l((w - Z%) T+ szﬂz> (—a) — (xTVa:)?
i=1 i=1

Monotonically transforming this by In(-), we get that expected utility is maximized when

w—r

2
_ _ _ 1% 0
a(u 7’) a“ VvV — T

where the — in the numerator denotes elementwise subtraction.



