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Exercise 6 Every real-valued function f: S — R is continuous at every isolated point = € S.

Proof. We have that z is an isolated point, meaning that 3 ¢ > 0 s.t. B.(z) NS = {z}. Fix some &’ > 0.
We have that f is continuous at = if 3 J s.t. |f(x) — f(y)| < & whenever |z —y| <V y € S. We can take
d < e. Then, since B.(z) NS = {z}, the set {y € S| |z —y| < d} is a singleton that contains only x. Thus,
since |f(z) — f(x)] =0 < &’ for each ¢’ > 0, f is trivially continuous at x. This holds for any f where f(z)
is well-defined. O

Exercise 7 Prove the following using the € — § definition of continuity.

Proposition 7. If f : S — R is continuous at xg, f(z9) € T C R, and g : T — R is continuous at f(zg),
then the composite function g o f is continuous at xg.

Proof. Fix € > 0. Since g is continuous at f(zo), 3 64 > 0 s.t. |f(zo) — f(y)| < 6g = |9(f(z0)) —
9(f(y))] < eV f(y) € T. Then take ey = d,. Since f is continuous at xg, 3 65 > 0 s.t. [zg — y| <
df = |f(zo) — f(y)| < ef Vy € S. Then, we have that the composition works as follows: For ¢ > 0,

3 6f st. Vy € Sfvo—yl < = |f(xo) — fy)| < dg = |9(f(z0)) — 9(f(y))] < e Thus, go fis
continuous. O

Exercise 8 True!

Proof. Note that max{f,g} = 3(f +g) + 3|/ — g|. We will use many elements of Proposition 6. Since g is
continuous, —g is continuous from (ii), taking k¥ = —1 € R. Then f — g is continuous from (iii), and |f — g|
is continuous from (i). Additionally, (f 4 g) is continuous from (iii), and 3|f — g| and 3(f + g) are both
continuous from (ii), taking k = 1 € R. Finally, max{f, g} = 3(f+g) + 3|f — g| is continuous from (iii). O

Exercise 9 This statement is true! First, we will prove the useful lemma indicated.
Lemma 1. A sequence {x,} converges to x if and only if for every subsequence {x,,} there exists sub-
subsequence {xn,, } that converges to x.

Proof. (=) z, — x = {x,} Cauchy, meaning that Ve > 0,3 N € Ns.t. |z, — x| <eVn,m> N.
Taking some subsequence {z,, }, we have that |v,, — 2,,| < € if n;,n; > N where N is from the initial
sequence. Thus, {zy,} is Cauchy. Taking a sub-subsequence {z,, }, we have that |z,, — Tn,,| < € as
long as ng,,ng; > N, where N is again from the initial sequence. Thus, {xnkl} is Cauchy, so it converges
by Theorem 2. It remains to show that {z,, } converges to z. FSOC, assume that z,, — y # z. Then
ly — 2| =0 > 0. Taking € = 6/3, we have that 3 N € Ns.t. x,, € Be(y) = ¥y, & B=(z) V ny, > N, which
implies that x,, # z, which is a contradiction. Thus, Tp,, — T

(<) Proof by contrapositive. Assume that there exists a subsequence {z,, } such that all sub-subsequences
{#n,, } do not converge to z. Consider two cases. First, assume that there exists some {z,, } such that
Tn,, — Y # x. This is the exact same case as the assumed contradiction above, where we showed that
Tn # x. Second, assume that all {a:nkl} do not converge. This means that Vy € Ry3e >0s.t. VN €



N,3n > N st. |2, —y|> e Taking y =z, and recalling that ,,, € {z,} V ny,, this is a direct negation
of the definition of convergence, so z,, /4 x. O

Now we move on to the main result:
Proposition 1. f: S — R is continuous at xo if and only if for every monotonic sequence {x,} converging
to o, f(xn) = f(20)-

Proof. (=) If f is continuous, then z,, - x = f(x,) — f(z). This holds also for monotone z,, — x.

(<) We have that for all monotone {y,} where y,, — v, f(yn) — f(y). Take some {x,} not necessarily
monotone, where z,, — z. It suffices to show that f(z,) — f(z), from the sequential definition of continuity.
Take any subsequence {x,, }. From Proposition 7, it has a monotone sub-subsequence {xnkl}, and from
Exercise 26, z,, — z. By assumption, f(2n, ) — f(z). Thus, since we have that for the sequence f(z,),
every subsequence f(zn,) has a sub-subsequence f(z,, ) that converges to f(z), f(2,) — f(z) by Lemma
1. O

Exercise 1 Let S C R be open. Prove that a function f : S — R?® is continuous if and only if for every
open set A C RY, f~1(A) is open.

Proof. (=) We have that f is continuous. FSOC, assume that f~1(A) is not open, meaning that there
exists z € f71(A) s.t. Ve > 0,B.(x) € f~1(A). Fix some § > 0. Then Jy; € Bs(x) C Ss.t. y1 & fH(A).
Consider the sequence defined by y, ={y € S:y € B%l;(:v), y & f~1(A)}. Definitionally, Ve >0, 3N €
Ns.t. Vn > N,|y, —z| <, because 2§ — 0. Thus, y,, — . However, f(y,) ¢ AV yn. Since A is open,
Je' > 0s.t. Bo(f(x)) C A flyn) € Ber(f(2)), so taking e = €', An € Ns.t. [f(yn) — f(z)] < e. This
contradicts the assumption that f is continuous, since y,, — x but f(y,) /4 f(z).

(<) We have that for every open A C R?, f~1(A) is open. Fix some x € f~!(A), and some £ > 0. B.(f(z))
is an open subset of S by definition, so f~1(B.(f(z))) is open by assumption. Since x € f~1(B.(f(z))),
36 > 0s.t. Bs(x) C f~1(B(f(x))). Thus, we have shown that for every ¢ > 0,7,y € S, 36 > 0s.t. [z —y| <
d=|f(z) — f(y)] <e. Thus, f is continuous. O



