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Section Exercise 1. Let A C R be nonempty. Then there exists a sequence of elements of A, (x,)
such that x, — sup A.

Suppose A is bounded above. We know that, for all € > 0, there exists x € A such that
sup A > x > sup A — €. Then choose x, € A such that sup A > x, > sup A — 1/n. This defines a
sequence converging to sup A.

Suppose A is unbounded above. Then sup A = oo and for all n € IN, we can find an x,, € A such
that x,, > n. This defines a sequence diverging to co = sup A. O

Remark 1. Because Exercise 14 appears before Definition 8 (infinite limits) in the lecture notes, I
assume that the limits in the exercise are real numbers. Analogous results do hold with infinite
limits, so long as everything is well-defined (no co — co or oo - 0 expressions).

Exercise 14 (i). Prove or disprove: If x, — x and y, — y, then (x, + y,)n converges to x + y.

Solution: True. For any e, for sufficiently large n, we have |x, — x| < § and |y, —y| < §. This
gives us |x, — x| + |y, — y| < €. Using the triangle inequality, we have |(x, + y,) — (x +y)| =
X0 =X+ yn —y| < |xn —x[+|yn —y| <e.

Exercise 14 (ii). Show that if x, — x and y, — y, then x,y,, — xy.

Fix € > 0. Taking N € NN sufficiently large we know that n > N implies |x, — x| < € and
lyn — y| < €. The sequence (y,) converges, so it is bounded. We can thus say 0 < |y,| < m for
some m > 0. Then

|XnYn — xy| = [Xuyn — XYn + xYn — xy| = [(Xn — X)yn +x(yYn —y)| < [x0 — x| - [yn| +[x] - [yn — Y|

<em+|xle = (m+|x|)e

which is just a positive constant times €.
Exercise 14 (iv). Show that if x,, — x # 0 with x,, # 0 for all n, then x% — %

Fix € > 0 and choose N € N sufficiently large that n > N implies |x, — x| < €. Note that
€ > |x — x| > |x| — |x4|. Rearranging, we have |x,| > |x| —e. Without loss of generality, take
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€ < 7|x|, so that |x| — e > 5|x|. Taking reciprocals, ol < e < Tl
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Section Exercise 2. Prove or disprove: (x,) has a subsequence converging to x € R iff for all € > 0
infinitely many terms of (x,) liein (x —€,x +¢€).

By Exercise 16, if a subsequence x,, — x, then for all € > 0 all but finitely many terms of x,, are
contained in (x — €, x + €). It follows that infinitely many terms of the original sequence (x,) are
contained in the same interval. Conversely, if for all positive €, infinitely many terms of (x,) lie in
(x —€,x +€), then we can define a subsequence converging to x as follows: let x,, € (x —1,x+ 1),
and for all k > 2, let x,,, € (x — %,x + %) and n; > ng_q.

Section Exercise 3. Prove: A sequence x, converges to x € R if and only if every subsequence
(x4, ) contains a subsubsequence (x,, ) that converges to x.

“Only if" is straightforward—every subsequence of a convergent sequence converges itself. “If” is
more challenging. Let (x,) be a sequence such that every subsequence, (x,, ), contains its own
subsubsequence, (x,, ), converging to x. Choose an arbitrary e > 0. We want to show that, for
sufficiently large N, n > N implies |x, — x| < €. Suppose not. Then for all N, there exists k > N
such that |x; — x| > €. This defines a subsequence, (x;), which clearly has no subsubsequence
converging to x. This contradicts our hypothesis, so we must have x, — x.

Exercise 33. Consider the following non-theorem: Let x, — x > 0 and (y,) be any sequence. Then
lim sup x,y, = xlimsupy,. Disprove this, then identify a tiny change to the assumptions that
makes it true (but don’t prove it).

Solution: A counterexample would be x, = 1/n and y, = n. Another would be x, = 1/n and
yn = —n. Note that in these cases the right-hand-side would be undefined. Either the assumption
that x > 0 or the assumption that (y,) is bounded would make the statement true.

Section Exercise 4. Show that

lim sup x, = sup{x | x,, — x for some subsequence of (x,), (x,, )}
n—00

First we consider the case —oo < limsup, x, < co.

Let x* = limsup, x,. Suppose some subsequence x,, — x* + €, for some € > 0. Then for all
K € N, there exists k > K with x,, > x* + 5. It follows that for all N € IN, there exists m > N
with x,, > x* + §. Thus, sup{x,;, X41,... } > x* + § for all n. This implies limsup,, x, > x* 4 § =
limsup, x,, + 5, which is a contradiction. So x* is an upper bound on the set of subsequential
limits.

Alternatively, suppose that the limits of all convergent subsequences are weakly less than x* — ¢,
for some € > 0. By Section Exercise 3, there exists some positive § < € such that at most
finitely many x, lie in (x* — ¢, x*|. Denote these terms by x,,, ..., Xy,. Then n > ng + 1 implies
sup{xu, Xut1,...} < x* = 4. It follows that limsup, x, < x* —4 = limsup, x, — J, which is
another contradiction. So x* is the least upper bound on the set of subsequential limits.
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Now we consider the case lim sup,, x,, = co. This implies that sup, {x,, X,41, Xnt2, ... } = oo for all
n € IN. Thatis, forall M € R and all n € IN, there exists k > n such that x;, > M. In fact, for each M,
there exists infinitely many such x;. Applying this with M =1,2,3, ..., we obtain a subsequence
(x¢) that diverges to co. Thus sup{x | x,, — x for some subsequence of (x,), (x,,)} = co.

Finally, we consider the case limsup, x, = —oo. This implies x, — —oco, and thus every subse-
quence X, — —o.



