
ECON 6170 Module 3 Answers

Patrick Ferguson

Exercise 1. The base cases k = 1, 2 hold by definition of a convex set. Suppose that the proposition
is true for the case k. That is, if {α1, . . . , αk} ⊆ [0, 1] satisfy ∑k

i=1 αi and {x1, . . . , xk} ⊆ S then

k

∑
i=1

αixi ∈ S

Suppose {λ1, . . . , λk+1} ⊆ [0, 1] sum to 1 and {x1, . . . , xk+1} ⊆ S. If λj = 1 then we are done.
Otherwise, define

αi :=
λi

∑k
j=1 λj

for i = 1, . . . , k. Then {α1, . . . , αk} ⊆ [0, 1] satisfy ∑k
i=1 αi and so

x :=
k

∑
i=1

λi

∑k
j=1 λj

xi ∈ S

by the induction hypothesis. Let γ = ∑k
j=1 λj. Then γ ∈ [0, 1]. By the base case,

k+1

∑
i=1

λixi = γx + (1 − γ)xk+1 ∈ S

Exercise 2. Let x, y ∈ ⋂
S∈C S and α ∈ [0, 1]. Then x, y ∈ S for all S ∈ C and so, by convexity of

each, αx + (1 − α)y ∈ S for all S ∈ C. It follows that αx + (1 − α)y ∈ ⋂
S∈C S.

Exercise 3. Let C denote the set of all finite convex combinations of elements of S.

By Proposition 1, we know that for every convex set T that contains S, every finite convex
combination of elements of S is an element of T. Since that holds for all T that contain S, every
finite convex combination of elements of S is in the intersection of all T that contain S, which is
co(S). C is, therefore, a subset of co(S).

Let x = ∑n
i αixi and y = ∑m

j β jyj be convex combinations of elements in S. Then

λx + (1 − λ)y =
n

∑
i

λαixi +
m

∑
j
(1 − λ)β jyj

is also a convex combination of elements of S, so C is convex. Clearly C contains S, so co(S) ⊆ C.
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Exercise 4. True. This holds trivially for the empty set. Suppose, then, that S is nonempty and
open. Let z ∈ co(S). Then we can write

z =
n

∑
i=1

αixi

for some xi ∈ S and αi ∈ [0, 1] that sum to 1. Openness of S implies that for each xi, there exists ε i

such that Bεi(xi) ⊆ S. Let ε = min{ε i | i = 1, . . . , n}. Then we can write

Bε(xi) ⊆ S

for all i. Take w ∈ Bε(z). We want to show that w ∈ co(S), which would imply Bε(z) ⊆ co(S).
This, in turn, would be sufficient to prove openness of co(S). Write

w = z + w − z =
n

∑
i=1

αixi + w − z =
n

∑
i=1

αi(xi + w − z) =:
n

∑
i=1

αiyi

where yi := xi + w − z for all i. Thus w is a convex combination of y1, . . . , yn, so if y1, . . . , yn ∈ S,
we would have w ∈ co(S). But for all i,

∥yi − xi∥ = ∥xi + w − z − xi∥ = ∥w − z∥ < ε

so yi ∈ Bε(xi) ⊆ S.

Exercise 5. False. Take the set

{(x, y) ∈ R2 | x ̸= 0 and y ≥ 1/x2}

This set is closed, but its convex hull is R × R++ which is not closed.
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Exercise 6. To show that co(X) is bounded, fix a point y ∈ X. Let M := sup{∥x∥ | x ∈ X}. Let z
be a point in co(X). For some m ∈ N, z can be written as a convex combination of m points in X.
Write

z =
m

∑
i=1

αixi

where ∑m
i=1 αi = 1 and 0 ≤ αi ≤ 1 for i = 1, 2, . . . , m. Then

∥z∥ =

∥∥∥∥∥ m

∑
i=1

αixi

∥∥∥∥∥ ≤
m

∑
i=1

αi∥xi∥ ≤
m

∑
i=1

αi M = M

To show that co(X) is closed, fix a sequence in co(X), (xi), converging to x ∈ Rn. Using
Carathéodory’s Theorem, for all i ∈ N we can write

xi = αi,1xi,1 + . . . + αi,n+1xi,n+1

where the αi,k lie in [0, 1] and sum to 1, and the xi,k are points in X. By the compactness of X,
each sequence (xi,k)i∈N has a subsequence that converges to a point, x∗k ∈ X. Moreover, by the
compactness of [0, 1], each (αi,k)i∈N has a subsequence that converges to a number, α∗

k , between 0
and 1. Passing to the subsequences,

lim
i

xs
i = lim

i
(αi,1xi,1 + . . . + αi,n+1xi,n+1) = α∗

1 x∗1 + . . . + α∗
n+1x∗n+1

Let x∗ := α∗
1 x∗1 + . . . + α∗

n+1x∗n+1. Then (the subsequence) xs
i → x∗. We want to show that

x∗ ∈ co(X). It suffices to show that ∑n+1
k=1 α∗

k = 1. But this is just the limit of the sequence
(∑n+1

k=1 αi,k)i∈N = (1)i∈N, which is 1. Therefore, the sequence (xi) has a subsequence (xs
i ) converging

to x∗ ∈ co(X). But xi → x so x = x∗ ∈ co(X). Since (xi) is an arbitrary convergent sequence in X,
X is closed.

Exercise 7. co(S) is a convex set containing S, so co(S) ⊆ co(S). It is therefore a closed set
containing co(S), so cl(co(S)) ⊆ co(S).

Conversely, to show that co(S) ⊆ cl(co(S)), we need to show that the closure of a convex set is
itself convex. Then cl(co(S)) will be a closed, convex set containing co(S).

Let x and y be elements of cl(C), where C is some convex set. Then there exist sequences of
elements of C such that xn → x and yn → y. But then αxn + (1 − α)yn defines a sequence of
elements that are also in our convex set C. Moreover, αxn + (1 − α)yn → αx + (1 − α)y, so the
latter is also in cl(C), implying cl(C) is convex.

Exercise 8. Take the example of

{(x, y) ∈ R2 | x < 0 and y ≥ 1/x2}

and
{(x, y) ∈ R2 | x > 0 and y ≥ 1/x2}

(compare Exercise 5). Both sets are closed. Any closed halfspace containing either must also
include the y-axis. Therefore, they are not strongly separated.

3



Exercise 9. Apply the Strong Separating Hyperplane Theorem, noting that {x} is a compact and
convex set disjoint from Y.

Exercise 10. Let X := R × R++ ∪ {(1, 0)} and Y := R × R−− ∪ {(−1, 0)}. Both sets are nonempty
and convex and they are disjoint from each another. The unique separating hyperplane is the
x-axis, (0, 1) · (x, y) = 0. But (0, 1) · (1, 0) = 0 and (0, 1) · (−1, 0) = 0.

Exercise 11. Suppose f : S → R is concave. Let (x, y) and (x′, y′) be elements of the subgraph of f .
Then y ≤ f (x) and y′ ≤ f (x′), so

αy + (1 − α)y′ ≤ α f (x) + (1 − α) f (x′) ≤ f (αx + (1 − α)x′)

where the last inequality uses concavity of f . It follows that

α(x, y) + (1 − α)(x′, y′) = (αx + (1 − α)x′, αy + (1 − α)y′) ∈ sub S

Therefore, the subgraph of f is convex.

Conversely, if the subgraph of f is convex, then it contains the convex combination

α(x, f (x)) + (1 − α)(x′, f (x′)) = (αx + (1 − α)x′, α f (x) + (1 − α) f (x′))

But this implies f (αx + (1 − α)x′) ≥ α f (x) + (1 − α) f (x′), so f is concave.

The proof of the corresponding result for the epigraph of a convex function is analogous.

Exercise 12.

f (λx + (1 − λ)x′) = a · (λx + (1 − λ)x′) + b

= λ(a · x + b) + (1 − λ)(a · x′ + b)

= λ f (x) + (1 − λ) f (x′)

Exercise 13. Suppose f is quasiconcave. Fix y ∈ R and consider x, x′ such that f (x), f (x′) ≥ y.
Then f (αx + (1 − α)x′) ≥ min{ f (x), f (x′)} ≥ y. This implies convexity of the upper contour sets
of f .

Conversely, suppose the upper contour sets of f are all convex. Fix x, x′ ∈ X. WLOG, f (x) ≥ f (x′)
so that both x and x′ both lie in the upper contour set of f with bound y = f (x′). Then their
convex combination αx + (1 − α)x′ also lies in this upper contour set, so f (αx + (1 − α)x′) ≥
f (x′) = min{ f (x), f (x′)}. It follows that f is quasiconcave.

f is quasiconvex ⇐⇒ − f is quasiconcave ⇐⇒ the upper contour sets of − f are convex. But the
upper contour sets of − f are clearly just the lower contour sets of f .

Exercise 14. True.

(h ◦ f )(αx + (1 − α)x′) ≥ h(min{ f (x), f (x′)})
= min{(h ◦ f )(x), (h ◦ f )(x′)}

The analogous result does not hold for concave functions. For example, f (x) := x is concave and
h(x) := exp(x) is strictly increasing, but (exp ◦ f )(x) = exp(x) is strictly convex.
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Exercise 15. False. Consider the piecewise function given by

f (x) :=

{
1 if 0 ≤ x ≤ 1

x if x < 0 or x > 1

This function has a local maximum at x = 1/2, but no global maximum.

Exercise 1 (Additional exercise on PS 5).

(i) True.

( f + g)(αx + (1 − α)x′) = f (αx + (1 − α)x′) + g(αx + (1 − α)x′)

≤ α f (x) + (1 − α) f (x′) + αg(x) + (1 − α)g(x′)

= α( f + g)(x) + (1 − α)( f + g)(x′)

(ii) False. For example, f (x) := −ex and g(x) := −e−x are both monotone (and hence quasicon-
vex). But ( f + g)(x) = −ex − e−x is not quasiconvex, as for x = log 2, for example,

( f + g)
(

1
2

x +
1
2
(−x)

)
= ( f + g)(0) = −2 > −2 − 1

2

= −elog 2 − 1
elog 2

= ( f + g)(log 2)

= ( f + g)(x)

= max{( f + g)(x), ( f + g)(−x)}

(iii) True. This follows from α f (x) + (1 − α) f (x′) ≥ min{ f (x), f (x′)} for α ∈ [0, 1].

(iv) True. Follows as (iii) but with x ̸= x′ and strict inequality.
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