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1. We have that the marginal density for a uniform random variable is fX(x) = 1x∈(θ,θ+1). Thus, the
joint pdf is

f(x | θ) =
󰀫
1 Xi ∈ (θ, θ + 1) ∀ i = 1, 2, . . .

0 otherwise

Consider the statistic T (X) = (mini Xi,maxi Xi) := (x(1), x(n)). This is a sufficient statistic by the
factorization theorem, as taking g(T (X) | θ) = 1θ≤x(1),x(n)≤θ+1 = 1θ∈(x(n)−1,x(1)) and h(x) = 1, we get
that f(x | θ) = g(T (X) | θ)h(x). Take some x, y ∈ X. Then we have that

f(x | θ)
f(y | θ) =

g(T (x) | θ)
g(T (y) | θ) =

󰀻
󰁁󰀿

󰁁󰀽

0 θ ∕∈ (x(n) − 1, x(1)), θ ∈ (y(n) − 1, y(1))

1 θ ∈ (x(n) − 1, x(1)), θ ∈ (y(n) − 1, y(1))

∞ θ ∕∈ (x(n) − 1, x(1)), θ ∕∈ (y(n) − 1, y(1))

This ratio is not dependent on θ if and only if (x(n) − 1, x(1)) = (y(n) − 1, y(1)), so T is a minimal
sufficient statistic for θ.

2. Suppose X ∼ N (µ,σ2) for unknown µ and known σ2. We are interested in estimating µ.

(a) Consider the statistic T (X) = X̄, which we showed in class was sufficient because taking g(X̄ |
µ) = exp

󰀓
−n(X̄−µ)2

2σ2

󰀔
and h(x) =

󰀓
1√
2πσ

󰀔n

exp
󰀓
−

󰁓n
i=1(Xi−X̄)2

2σ2

󰀔
, we get that

g(X̄ | µ)h(x) =
󰀕

1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(Xi − X̄)2

2σ2

󰀖
exp

󰀕
−n(X̄ − µ)2

2σ2

󰀖

=

󰀕
1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(Xi − X̄)2 + n(X̄ − µ)2

2σ2

󰀖

=

󰀕
1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(Xi − µ)2

2σ2

󰀖

= f(x | µ)

To show that it is minimal, consider samples X ∼ {X1, . . . , Xn} and Y ∼ {Y1, . . . , Yn}. We get
that

f(X | µ)
f(Y | µ) =

(2πσ)−n/2 exp
󰀓
− (n−1)s2X+n(X̄−µ)2

2σ2

󰀔

(2πσ)−n/2 exp
󰀓
− (n−1)s2Y +n(Ȳ−µ)2

2σ2

󰀔

= exp

󰀕
(n− 1)(s2X − s2Y ) + n(Ȳ − X̄) + 2nµ(X̄ − Ȳ )

2σ2

󰀖

Which does not depend on µ if and only if X̄ = Ȳ , so T (X) = X̄ is minimal.

(b) Suppose σ2 = 1 and n = 1. Consider the estimator θ̂ = c2

c2+1X1 for some c > 0.

i. The MSE of θ̂ is
MSE(θ̂) = bias(θ̂)2 +Var(θ̂)
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We have that

bias(θ̂) = E[θ̂]− θ =
c2

c2 + 1
E[X1]− µ = µ

󰀕
c2

c2 + 1
− 1

󰀖
= − µ

c2 + 1

So the estimator is not unbiased. We also have that

Var(θ̂) = E[(θ̂ − E[θ̂])2] = E

󰀥󰀕
c2

c2 + 1
(X1 − µ)

󰀖2
󰀦
=

c4

(c2 + 1)2
E[(X1 − µ)2] =

c4

(c2 + 1)2

Thus, we have that

MSE(θ̂) =
µ2 + c4

(c2 + 1)2

ii. We will first find
MSE(θ̃) = bias(θ̃)2 +Var(θ̃)

Where
bias(θ̃) = E[θ̃]− θ = E[X1]− µ = µ− µ = 0

and
Var(θ̃) = E[(θ̃ − E[θ̃])2] = E[(X1 − µ)2] = 1

Thus, MSE(θ̃) = 1. We have that

MSE(θ̂) > MSE(θ̃) ⇐⇒ µ2 > 2c2 + 1

Thus, if µ2 > 2c2 + 1, θ̃ is more efficient than θ̂.

iii. From my answer to (ii), when µ = c, then µ2 + c4 < (c2 + 1)2, so θ̂ is more efficient because
MSE(θ̂) < 1 = MSE(θ̃).

3. We have that σ̂2 = 1
n

󰁓n
i=1(Xi − X̄)2 is an estimator for σ2 = Var(X). We have that

E[σ̂2] = E

󰀥
1

n

n󰁛

i=1

(Xi − X̄)2

󰀦

=

󰀕
n− 1

n

󰀖
E

󰀥
1

n− 1

n󰁛

i=1

(Xi − X̄)2

󰀦

=

󰀕
n− 1

n

󰀖
E
󰀅
s2
󰀆

=

󰀕
1− 1

n

󰀖
σ2

where the last equality follows from a theorem in class that E[s2] = σ2. We thus have that the bias of
σ̂2 is

bias(σ̂2) = E[σ̂2]− σ2 = σ2

󰀕
1− 1

n
− 1

󰀖
= −σ2

n

4. Suppose X ∼ N (0,σ2). Consider the following estimator for σ2:

σ̂2 =
1

n

n󰁛

i=1

X2
i
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(a) We have that nσ̂2/σ2 =
󰁓n

i=1 X2
i

σ2 . Then, since Xi ∼ N (0,σ2), we have that defining Yi ∼
N (0, 1) ∀ i, 󰁓n

i=1 X
2
i

σ2
=

n󰁛

i=1

Y 2
i ∼ χ2

n

Thus, nσ̂2

σ2 ∼ χ2
n.

(b) We have that

E[σ̂2] =
1

n
E

󰀥
n󰁛

i=1

(Xi)
2 − 02

󰀦
=

1

n

n󰁛

i=1

E
󰀅
X2

i − E[Xi]
2
󰀆
=

1

n
nσ2 = σ2

(c) We have that

Var(σ̂2) = Var

󰀕
σ2

n

nσ̂2

σ2

󰀖

=
σ4

n2
Var(χ2

n)

=
σ4

n2
· 2n =

2σ4

n

(d) We have that

MSE(σ̂2) = bias(σ̂2)2 +Var(σ̂2)

=
󰀃
E[σ̂2]− σ2

󰀄2
+

2σ4

n

=
󰀃
σ2 − σ2

󰀄2
+

2σ4

n

=
2σ4

n

5. Let {X1, . . . , Xn} be a random sample from a Poisson distribution with parameter λ:

P{Xi = j} =
e−λλj

j!
∀ j = 0, 1, 2, . . .

(a) We have that

f(x) =

󰀫
e−λλx

x! x ∈ Z+

0 otherwise

So the joint pmf is

f(x | λ) =
n󰁜

i=1

f(xi) =

󰀫󰁔n
i=1 e

−λ λxi

xi!
xi ∈ Z+ ∀ i = 1, . . . , n

0 otherwise

which can be recast as

f(x | λ) = 1{xi∈Z+ ∀ i}e
−nλλ

󰁓n
i=1 xi

n󰁜

i=1

1

xi!

Taking the statistic T (x) =
󰁓n

i=1 xi, we get that by the factorization theorem, taking g(T (x) |
λ) = e−nλλT (x) and h(x) = 1{xi∈Z+ ∀ i}

󰁔n
i=1

1
xi!

we have that

f(x | λ) = g(T (x) | λ)h(x) = e−nλλ
󰁓n

i=1 xi1{xi∈Z+ ∀ i}

n󰁜

i=1

1

xi!
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To show that T is minimal, consider some X ∼ {X1, . . . , Xn} and Y ∼ {Y1, . . . , Yn}. We have
that

f(X | λ)
f(Y | λ) =

e−nλλ
󰁓n

i=1 Xi1{Xi∈Z+ ∀ i}
󰁔n

i=1
1

Xi!

e−nλλ
󰁓n

i=1 Yi1{Yi∈Z+ ∀ i}
󰁔n

i=1
1
Yi!

= λ
󰁓n

i=1 Xi−
󰁓n

i=1 Yi
1{Xi∈Z+ ∀ i}

󰁔n
i=1

1
Xi!

1{Yi∈Z+ ∀ i}
󰁔n

i=1
1
Yi!

and since this ratio is not dependent on λ if and only if
󰁓n

i=1 Xi =
󰁓n

i=1 Yi, i.e. when T (X) =
T (Y ), T is minimal.

(b) Define θ̂1 := 1
n

󰁓n
i=1 1{Xi=0}. Then we have that

bias(θ̂1) = E[θ̂1]− θ = E

󰀥
1

n

n󰁛

i=1

1{Xi=0} − e−λ

󰀦
=

1

n
nE[X = 0]− e−λ = P{X = 0}− e−λ = 0

(c) This estimator is not a function of the minimal sufficient statistic. To see why, consider the
fact that taking X = {0, 3}, θ̂1 = 1

2 and T (X) = 3, however taking Y = {1, 2}, θ̂1 = 0 but
T (Y ) = T (X) = 3.

(d) Since we have that θ̂2(X) = E[θ̂1(X) | T (X)], and since θ̂1 is an unbiased estimator and T (X) is
a sufficient statistic, we have that, by Rao-Blackwell, bias(θ̂2) = 0 and MSE(θ̂2) ≤ MSE(θ̂1).

(e) We have that θ̂2 = E[θ̂1 | T ]. Reformulating, we have that

θ̂2(X) = E

󰀥
1

n

n󰁛

i=1

1{Xi=0}

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

Xi = t

󰀦

=
1

n

n󰁛

i=1

E

󰀥
Xi = 0

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

Xi = t

󰀦

= E

󰀥
1{X1=0}

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

Xi = t

󰀦

= P

󰀫
X1 = 0

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

Xi = t

󰀬

=
P {X1 = 0,

󰁓n
i=1 Xi = t}

P {
󰁓n

i=1 Xi = t}

=
P {X1 = 0}P {

󰁓n
i=2 Xi = t}

P {
󰁓n

i=1 Xi = t}

Using the properties of the Poisson distribution, we can calculate this directly. We get that

θ̂2(X) =

󰀕
n− 1

n

󰀖󰁓n
i=0 Xi
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