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(a) In the language of the course, list separately the exogenous state variables, the endogenous state

variables, and the endogenous control variables in this model. Finally, make a list of all of the exogenous

parameters of this economy (*)

• Exogenous state(s): At

• Endogenous state(s): Ct−1

• Endogenous jump(s) appearing as controls: Ct, Nt, Dt, Yt, St

• Endogenous jump(s) that no one has control over (subtle category): Wt

• Parameters: α, β, ϕ, δ , χ, ε, ρ

(b) Write the household’s Lagrangian optimization problem and find the first order necessary conditions

for optimality of the household. Denote the multipliers on the household budget constraint and labor

evolution constraint with λ1,t and λ2,t respectively (**)

The household solves the following problem (taking Wt as given):

max
Ct, St, Nt

E0

∞∑
t=0

βt log(Ct)− γ(St +Nt)

subject to

WtNt + πt = Ct

Ct = (1− δ)Ct−1 + Ph
t St

The Lagrangian of the problem writes:

L(·) = E0

∞∑
t=0

βt
(
log(Ct)− γ(St +Nt) + λ1,t(WtNt + πt − Ct) + λ2,t((1− δ)Ct−1 + Ph

t St − Ct)
)

Take the FOCs of the above problem, and you get:

∂L(·)
∂Nt

= 0 ⇐⇒ γ = λ1,tWt

∂L(·)
∂St

= 0 ⇐⇒ γ = Ph
t λ2,t

∂L(·)
∂Ct

= 0 ⇐⇒ 1

Ct
− λ1,t − λ2,t + βEt(1− δ)λ2,t+1 = 0

Combining the above, we get:

C−1
t − γ

Wt
− γ

Ph
t

+ βEt(1− δ)
γ

Ph
t+1

= 0

2



Final 2024 May 9, 2024

⇐⇒ γ

Ph
t

= C−1
t − γ

Wt
+ βEt(1− δ)

γ

Ph
t+1

(c) Interpret equation (10) above in words using a marginal cost = marginal benefit intuition (**)

This equation states that a necessary condition for the household to be along an optimal decision path is

that the marginal cost of matching with a consumption good be equal to the marginal benefit generated

by the newly formed match.

LHS = to get an extra shopping match, I need to invest 1
Ph

t
goods in shopping effort, which costs me γ

Ph
t

utils! (remark: we express it all in terms of the the numeraire, i.e. the consumption good here)

RHS = the right-hand side represents the marginal benefit of the match. First, I get the extra kick in

utility immediately generated by the match, C−1
t . But the match may or may not last and generate value

in the future (and possibly spare me the effort of shopping if the match does not get destroyed so I may

save up the opportunity cost of future searches). It thus embeds a continuation value adjusted for the

probability of destruction δ. Also, gathering the resources necessary for my shopping endeavor requires

additional work effort. One unit of labor gives me Wt goods so, to get one extra unit of the good, I need

to work 1/Wt units more, and this costs me γ/Wt utils.

(d) Write the social planner’s Lagrangian optimization problem and find the first order necessary condi-

tions for optimality. Denote the multipliers on the relevant constraints θi,t for i = 1, 2, .... (**)

Let us write the Lagrangian of the central planner, keeping in mind that the planner internalizes the

externality in her solving the problem:

L(·) = E0

∞∑
t=0

βt
[
log(Ct)− γ(St +Nt) + θ1,t(AtN

α
t − Ct − µDt) + θ2,t((1− δ)Ct−1 + χDε

tS
1−ε
t − Ct)

]
The FOCs write:

∂L
∂St

= 0 ⇐⇒ θ2,t(1− ε)χDε
tS

−ε
t = γ

∂L
∂Nt

= 0 ⇐⇒ θ1,tαAtN
α−1
t = γ

∂L
∂Dt

= 0 ⇐⇒ θ1,tµ = θ2,tχεD
ε−1
t S1−ε

t

∂L
∂Ct

= 0 ⇐⇒ 1

Ct
− θ1,t − θ2,t + βEt[θ2,t+1(1− δ)] = 0

We thus get:

∂L
∂Ct

= 0 ⇐⇒ C−1
t − γ

αAtN
α−1
t

+ βEt

[
γ(1− δ)

(1− ε)χDε
t+1S

−ε
t+1

]
=

γ

(1− ε)χDε
tS

−ε
t
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(e) Now write the Bellman equation that corresponds to the social planner’s optimization problem in this

economy and find the first-order necessary conditions for optimality using the envelope theorem. Show

that the conditions from (1.c) and (1.d) are equivalent (***)

The planner’s Bellman equation writes:

V (At, Ct−1) = max
Nt,Dt,Ct,Yt,St

log(Ct)− γ(St +Nt) + βEtV (At+1, Ct)

subject to

Yt = AtN
α
t

Ct = (1− δ)Ct−1 + χDε
tS

1−ε
t

Yt = Ct + µDt

Before moving on, one may want to perform a couple of adjustments:

Nt =

[
Ct + µDt

At

] 1
α

St =

[
Ct − (1− δ)Ct−1

χDε
t

] 1
1−ε

Therefore, taking the FOC wrt Ct, one gets:

C−1
t − γ

(1− ε)χDε
t

Sε
t − γ

N1−α
t

αAt
+ βEtV2(At+1, Ct) = 0

Now let us turn to the enveloppe condition:

V2(At, Ct−1) =
γ(1− δ)

(1− ε)χDε
t

Sε
t

Combining the two above equations, we get:

C−1
t − γ

αAtN
α−1
t

+ βEt

[
γ(1− δ)

(1− ε)χDε
t+1

Sε
t+1

]
=

γ

(1− ε)χDε
t

Sε
t

This is equivalent to (d).
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Solution I.

(a) Log-linearize equation (10) from first principals. You should log-linearize the equation around the

steady-state, but you may treat the steady-state values of endogenous variables as parameters (*)

We log-linearize the following:

γ

Ph
t

= C−1
t − γ

Wt
+ βEt(1− δ)

γ

Ph
t+1

We are asked to log-linearized from first principles, so we rewrite the equation as:

γ

χ

(
St

Dt

)ε

= C−1
t − γ

Wt
+ βEt(1− δ)

γ

χ

(
St+1

Dt+1

)ε

⇒ γ

χ
ε

(
S

D

)ε

st −
γ

χ
ε

(
S

D

)ε

dt = −ct
C

+
γ

W
wt + β(1− δ)

γ

χ
ε

(
S

D

)ε

Et[st+1 − dt+1]

⇐⇒ γ

χ
ε

(
S

D

)ε

st −
γ

χ
ε

(
S

D

)ε

dt +
ct
C

− γ

W
wt − β(1− δ)

γ

χ
ε

(
S

D

)ε

Et[st+1 − dt+1] = 0

(b) Using the log-linearized equation, compute the corresponding rows of the Fx, Fy, Fxp, Fyp matrices

that would be required for the log-linearization solution procedure we used in class (*)

Et

[0

0

′

︸ ︷︷ ︸
Fx

 at

ct−1

+



α

0

−α

0

− γ
W



′

︸ ︷︷ ︸
Fy



st

nt

dt

yt

wt


+

 0

1
C

′

︸ ︷︷ ︸
Fxp

at+1

ct

+



−κ

0

κ

0

0



′

︸ ︷︷ ︸
Fyp



st+1

nt+1

dt+1

yt+1

wt+1


]
= 0

Where α = γ
χε

(
S
D

)ε
and κ = β(1− δ)α
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Solution II.

(a) Using pseudo-code, describe an algorithm that solves for the approximate numerical value function

you found in (1.d) over a finite grid of points cgrid and agrid. Below, I proved some initial steps.

Your code does not need to compile, but you should pay special attention to indexing so that a naive

programmer could implement your algorithm. Also, be sure to test for convergence of your iterations

(****)

[agrid , theta , theta_bar] = AR1_rouwen(na,rho ,0,sigmaa);

agrid = exp(agrid);

%A/C combos as initial states

[aagr ,ccgr] = ndgrid(agrid ,cgrid);

aagr = aagr (:)' ;

ccgr = ccgr (:) ';

%S/N combos to choose from

[ccgr2 ,ddgr2] = ndgrid(cgrid ,dgrid);

ddgr2 = ddgr2 (:) ';

ccgr2 = ccgr2 (:) ';

%%

crit = 1;

vinit = zeros(na,nd);

%%

while crit > 10^( -7)

vinit_old = vinit;

EVp = repmat(theta*vinit ,1,nd);

for a = 1:na

for c = 1:nc

at = agrid(a);

cm1 = cgrid(c);

s = (((ccgr2 -cm1*(1- deltan))./chi).*ddgr2 .^(-eps)).^(1/(1 -
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eps));

n = (( ccgr2+mu.* ddgr2)./at).^(1/ alph);

vv = log(ccgr2) - gamma*(s+n) + bet*EVp(a,:);

[vinit(a,c),idx_tmp] = max(vv);

% idx(a,c) = idx_tmp; (optional)

end

end

crit = norm(vinit -vinit_old);

vinit_old = vinit;

end

% cpol = reshape(ccgr2(idx(:)) ,[na,nc]);

% dpol = reshape(ddgr2(idx(:)) ,[na,nd]);
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