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Problem 1. Exchange economy with three agents

1. The aggregate endowment in each period is
󰁓3

i=1 e
i
t = 3 ∀ t = 0, 1, . . . .

2. In an Arrow-Debreu market structure, markets are open before time begins – sometimes denoted as
period −1. The agents commit to a stream of trades and prices, which themselves implicitly define
a consumption stream for each agent. They will all trade amongst themselves, reallocating resources
from the agent with positive endowment in each period towards the agents with 0 endowment.

A competitive Arrow-Debreu equilibrium is a stream of equilibrium prices {p̂t}∞t=0 and consumptions
{ĉit}∞t=0 such that given {p̂t}, for each i ∈ {1, 2, 3}, {ĉit} solves

max
{ĉit}

∞󰁛

t=0

βt log(cit)

subject to

∞󰁛

t=0

p̂tc
i
t ≤

∞󰁛

t=0

p̂te
i
t

cit ≥ 0 ∀ t = 0, 1, . . .

Additionally, markets clear, meaning that

c1t + c2t + c3t = e1t + e2t + e3t ∀ t = 0, 1, . . .

3. In a sequential market structure, markets are open each period, and trade occurs at each time t. Agents
trade claims to consumption in period t+1. Specifically, the agent with positive endowment in period
t+ 1 will trade some of their endowment to the other two agents.

A competitive sequential equilibrium is a stream of implied equilibrium consumption claims {ãT it}∞t=0

and consumptions {c̃it}∞t=0 such that for each i ∈ {1, 2, 3}, {c̃it} solves

max
{cit},{ai

t+1}

∞󰁛

t=0

βt log(cit)

subject to, for all t = 0, 1, . . . ,

cit +Qta
i
t+1 ≤ eit + ait

−ait+1 ≤ 3

cit ≥ 0
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where 3 is the natural debt limit, since the maximum endowment is 3, meaning that borrowing more
than 3 in any period will lead to negative consumption. Additionally, we have that markets fully clear,
meaning that for each t,

3󰁛

i=1

cit = 3 =

3󰁛

i=1

eit

and
3󰁛

i=1

ait+1 = 0

4. The proposition is:
Proposition 1. The Arrow-Debreu Equilibrium and the Sequential Trading Equilibrium are equivalent
as long as both ĉit = c̃it for all t = 0, 1, . . . , and i = {1, 2, 3} and p̂t+1 = Qtp̂t, where ĉ denotes the
Arrow-Debreu consumption, c̃ denotes the sequential consumption, p̂ denotes the Arrow-Debreu prices,
and Qt is the sequential equilibrium pricing kernel.

5. We can solve this problem for each agent i, and then solve for the equilibrium. We have that

L =

∞󰁛

t=0

βt log(cit)− λi

󰀣 ∞󰁛

t=0

ptc
i
t −

∞󰁛

t=0

pte
i
t

󰀤

The first order conditions give us

∂L
∂cit

=
βt

cit
− λipt = 0 =⇒ βt = citλ

ipt

and
∂L

∂cit+1

=
βt+1

cit+1

− λipt+1 = 0 =⇒ βt+1 = cit+1λ
ipt+1

Combining, we get that
pt+1(c

1
t+1 + c2t+1 + c3t+1) = βpt(c

1
t + c2t + c3t )

and using market clearing

pt+1(e
1
t+1 + e2t+1 + e3t+1) = βpt(e

1
t + e2t + e3t ) =⇒ pt+1 = βpt

and assuming that p̂0 = 1, we have that p̂t = βt. Using the first order conditions, we have that

p̂t+1c
i
t+1 = βp̂tc

i
t =⇒ cit+1 = cit = ci ∀ t = 0, 1, . . .

The values of the endowments for each consumer are
∞󰁛

t=0

p̂te
1
t = 3

∞󰁛

t=0

β3t =
3

1− β3

∞󰁛

t=0

p̂te
2
t = 3β

∞󰁛

t=0

β3t =
3β

1− β3

∞󰁛

t=0

p̂te
3
t = 3β2

∞󰁛

t=0

β3t =
3β2

1− β3

Thus, from the budget constraint, we have that

󰀃
c1t , c

2
t , c

3
t

󰀄
=

󰀕
3− 3β

1− β3
,
3β − 3β2

1− β3
,
3β2 − 3β3

1− β3

󰀖
for all t = 0, 1, . . .

Recall also from above that
p̂t = βt for all t = 0, 1, . . .
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6. The agents are better off! If there was no trade, agent 1 would receive utility of log(3) in period 1,
utility of −∞ in period 2, utility of −∞ in period 3, utility of β4 log(3) in period 4, and so on, and
their total utility would be −∞. Instead, they receive total utility

3− 3β

1− β3

∞󰁛

t=0

βt =
3

1− β

Similarly, agent 2 receives 3β
1−β3 instead of −∞, and agent 3 receives 3β2

1−β3 instead of −∞. All agents
strictly benefit.

7. As shown above from the first order conditions, the equilibrium consumption sequences are constant
over time because p̂t = βt for all t, meaning that since

p̂t+1c
i
t+1 = βp̂tc

i
t

we have that
cit+1 = cit for all i ∈ {1, 2, 3}, t = 0, 1, . . .

Thus, consumption streams are constant over time. A plot of the consumption streams and prices over
time is:

t

y

{ĉ1}

{ĉ2}

{ĉ3}

{p̂t}

Figure 1: Consumption Streams and Prices Over Time

We can see that, for any β ∈ (0, 1) and any t ∈ N ∪ {0}, u(ĉ1t ) > u(ĉ2t ) > u(ĉ3t ), since utility is strictly
increasing and β2ĉ1t = βĉ2t = ĉ3t =⇒ ĉ1t > ĉ2t > ĉ3t . Note that they are not equal. Even though the
endowments are similarly structured, agent 1 has a distinct advantage by having the endowment in the
first period, meaning that they have a higher discounted total endowment than agents 2 or 3. Agent 2
also has a higher discounted total endowment than agent 3. The higher total discounted endowment,
the more bargaining power, so the higher consumption in the Arrow-Debreu structure.

8. We have that an asset a0 gives a stream {at} of dividends, where at = 0.05 for all t = 0, 1, . . . . The

3



total discounted value of that asset under the equilibrium prices p̂t is

∞󰁛

t=0

p̂tat = 0.05

∞󰁛

t=0

p̂t = 0.05

∞󰁛

t=0

βt =
0.05

1− β

9. We have that the social planner is maximizing weighted utility subject to a budget of the total endow-
ments. She is solving

max
{cit}

3󰁛

i=1

λi
∞󰁛

t=0

βt log(cit)

subject to
3󰁛

i=1

cit ≤
3󰁛

i=1

eit = 3 for all t = 0, 1, . . .

where cit ≥ 0 ∀ i, t, and λ3 = 1.

10. We have that the social planner solves the Lagrangian

L =

∞󰁛

t=0

󰀥
3󰁛

i=1

λiβt log(cit)− θt

󰀣
3󰁛

i=1

cit −
3󰁛

i=1

eit

󰀤󰀦

The first order conditions are

∂L
∂cit

=
λiβt

cit
− θt = 0 =⇒ βt =

θtc
i
t

λi

The same condition holds for each agent i, so for agents 1 and 2 we have that

λ1 =
c1t
c3t

=⇒ c1t = λ1c3t

and

λ2 =
c2t
c3t

=⇒ c2t = λ2c3t

This means that their equilibrium consumption is strictly increasing in their social planning weights.
Additionally, we have that

∂L
∂θt

=

3󰁛

i=1

cit −
3󰁛

i=1

eit = 0 =⇒ c1t + c2t + c3t = 3

which means we can rewrite the first order conditions as

c1t = λ1(3− c1t − c2t ) =⇒ c1t = λ1 3− c2t
1 + λ1

and then

c2t = λ2(3− c1t − c2t )

= λ2

󰀕
3− λ1 3− c2t

1 + λ1
− c2t

󰀖

⇒ c2t =
3λ2

1 + λ1 + λ2
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Substituting back into the expression for c1t , we get

c1t = λ1

󰀕
3− c1t −

3λ2

1 + λ1 + λ2

󰀖

⇒ c1t =
3λ1

1 + λ1 + λ2

and finally, substituting into the (binding) budget constraint, we get

c3t = 3− 3λ1

1 + λ1 + λ2
− 3λ2

1 + λ1 + λ2
=

3

1 + λ1 + λ2

Since the social planner’s weights do not change, we can say that cit = cit+1 = · · · = ci for all i ∈ {1, 2, 3}
and t = 0, 1, . . . . Thus, we have that

(c1, c2, c3) =

󰀕
3λ1

1 + λ1 + λ2
,

3λ2

1 + λ1 + λ2
,

3

1 + λ1 + λ2

󰀖

For the first order conditions to be identical, it must be the case that the consumption streams that
solve them be identical. Thus, we must have that

3− 3β

1− β3
=

3λ1

1 + λ1 + λ2

3β − 3β2

1− β3
=

3λ2

1 + λ1 + λ2

3β2 − 3β3

1− β3
=

3

1 + λ1 + λ2

Solving using Wolfram Alpha, we get that this is true when

λ1 =
1

β2
and λ2 =

1

β

11. Consumption streams are not constant. In our original problem, we found that consumption streams
were constant because the first order conditions simplified to

pt+1(c
1
t+1 + c2t+1 + c3t+1) = βpt(c

1
t + c2t + c3t )

and using market clearing, we get that

pt+1(e
1
t+1 + e2t+1 + e3t+1) = βpt(e

1
t + e2t + e3t )

From there, we were able to divide out the total endowments to get a simple recursive relationship on
prices. However, in this case, if t (mod) 3 = 0, then

󰁓3
i=1 e

i
t = 3, but otherwise

󰁓3
i=1 e

i
t+1 = 4. Since

aggregate endowments are not equal in each period, the simple recursive relationship on prices does
not exist and consumption streams are not constant. Formally, since p̂t+1 is not necessarily equal to
βp̂t, the relationship p̂t+1c

i
t+1 = βp̂tc

i
t does not simplify down to cit+1 = cit.

Problem 2. One-period Pareto problem

1. Take some c, c′ ∈ R. We have that for fixed θ,

vθ(c) = max
c1,c2

θu(c1) + (1− θ)w(c2) subject to c1 + c2 = c
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and
vθ(c

′) = max
c1,c2

θu(c1) + (1− θ)w(c2) subject to c1 + c2 = c′

To show that vθ is concave, it suffices to show that for c, c′ ∈ R2
+ and α ∈ (0, 1),

αvθ(c) + (1− α)vθ(c
′) ≤ vθ(αc+ (1− α)c′)

We have that there exist maximizing bundles (c1, c2) such that c1 + c2 = c, and (c1
′
, c2

′
) such that

c1
′
+ c2

′
= c′. This means that

αvθ(c) + (1− α)vθ(c
′) = α(θu(c1) + (1− θ)w(c2)) + (1− α)(θu(c1

′
) + (1− θ)w(c2

′
))

= θ(αu(c1) + (1− α)u(c1
′
)) + (1− θ)(αw(c2) + (1− α)w(c2

′
))

< θu(αc1 + (1− α)c1
′
) + (1− θ)w(αc2 + (1− α)c2

′
)

≤ vθ(αc+ (1− α)c′)

Where the strict inequality uses the strict concavity of u and w, and the weak inequality uses the fact
that since α(c1 + c2) + (1− α)(c1

′
+ c2

′
) = αc+ (1− α)c′, the bundle is feasible and thus weakly less

than the maximizing bundle. Thus, vθ is strictly concave, and the solution to this problem is a concave
utility function dependent on θ.

2. We have that the social planner is optimizing over the Lagrangian

L = θu(c1) + (1− θ)w(c2) + λ(c− c1 − c2)

For some c, vθ(c) admits a maximizing pair (c1, c2). At this maximizing pair (and the original c), it
must be the case that the first order conditions are equal to zero. Formally, we have that

∂L
∂c1

= θu′(c1)− λ = 0 =⇒ θu′(c1) = λ

and
∂L
∂c2

= (1− θ)w′(c2)− λ = 0 =⇒ (1− θ)w′(c2) = λ

So at a maximizing c, it must be the case that θu′(c1) = (1 − θ)w′(c2) = λ. Additionally, from our
definition of the Lagrangian, we know that v′θ(c) = λ. Thus, we have that at any c,

v′θ(c) = θu′(c1) = (1− θ)w′(c2)

where (c1, c2) is the maximizing consumption pair.

Problem 3. Proving the First Welfare Theorem.

1. We have that there exists a feasible allocation {c̃ti}∞t=0 such that U(c̃1) > U(ĉ1). Since we are assuming
(as in all Arrow-Debreu equilibria) that U ′(c) > 0 ∀ c, we can say that U(c̃1) > U(ĉ1) ⇐⇒ c̃1 > ĉ1.
Taking the left-inner-product with the price vector p̂, we get that

p̂ · c̃1 > p̂ · ĉ1 =⇒
∞󰁛

t=0

p̂tc̃
1
t >

∞󰁛

t=0

p̂tĉ
1
t

2. We have that there exists feasible allocation {c̃ti}∞t=0 such that U(c̃i) ≥ U(ĉi) for all i ∕= 1. Consider
two cases for arbitrary i. First, assume that U(c̃i) > U(ĉi). Then, as in part (1), we have that󰁓∞

t=0 p̂tc̃
i
t >

󰁓∞
t=0 p̂tĉ

i
t =⇒

󰁓∞
t=0 p̂tc̃

i
t ≥

󰁓∞
t=0 p̂tĉ

i
t.
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Next, assume that U(c̃i) = U(ĉi). Since we have that U ′(c) > 0 ∀ c, this implies that c̃i = ĉi. Taking
the left-inner-product with the price vector p̂, we get that

p̂ · c̃i = p̂ · ĉi =⇒
∞󰁛

t=0

p̂tc̃
i
t =

∞󰁛

t=0

p̂tĉ
i
t =⇒

∞󰁛

t=0

p̂tc̃
i
t ≥

∞󰁛

t=0

p̂tĉ
i
t

3. The two above conditions combine to imply that c̃i ≥ ĉi for all i, and that c̃1 > ĉ1. This implies that󰁓
i

󰁓∞
t=0 c̃

i
t >

󰁓
i

󰁓∞
t=0 ĉ

i
t. However, recall that markets clear in any Arrow-Debreu equilibrium. This

means that since we assumed that {ĉ} was an Arrow-Debreu allocation, that
󰁓

i

󰁓∞
t=0 ĉ

i
t =

󰁓
i

󰁓∞
t=0 e

i
t.

That implies that
󰁓

i

󰁓∞
t=0 c̃

i
t >

󰁓
i

󰁓∞
t=0 e

i
t, which violates our earlier assumption that {c̃} was a

feasible allocation. This is a contradiction, so it must be the case that ({ĉit}∞t=0)i∈I is Pareto efficient.

7


