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Exercise 6 Every real-valued function f : S → R is continuous at every isolated point x ∈ S.

Proof. We have that x is an isolated point, meaning that ∃ ε > 0 s.t. Bε(x) ∩ S = {x}. Fix some ε′ > 0.
We have that f is continuous at x if ∃ δ s.t. |f(x) − f(y)| < ε′ whenever |x − y| < δ ∀ y ∈ S. We can take
δ < ε. Then, since Bε(x) ∩ S = {x}, the set {y ∈ S | |x− y| < δ} is a singleton that contains only x. Thus,
since |f(x)− f(x)| = 0 < ε′ for each ε′ > 0, f is trivially continuous at x. This holds for any f where f(x)
is well-defined.

Exercise 7 Prove the following using the ε− δ definition of continuity.

Proposition 7. If f : S → R is continuous at x0, f(x0) ∈ T ⊆ R, and g : T → R is continuous at f(x0),
then the composite function g ◦ f is continuous at x0.

Proof. Fix ε > 0. Since g is continuous at f(x0), ∃ δg > 0 s.t. |f(x0) − f(y)| < δg =⇒ |g(f(x0)) −
g(f(y))| < ε ∀ f(y) ∈ T . Then take εf = δg. Since f is continuous at x0, ∃ δf > 0 s.t. |x0 − y| <
δf =⇒ |f(x0) − f(y)| < εf ∀ y ∈ S. Then, we have that the composition works as follows: For ε > 0,
∃ δf s.t. ∀ y ∈ S, |x0 − y| < δf =⇒ |f(x0) − f(y)| < δg =⇒ |g(f(x0)) − g(f(y))| < ε. Thus, g ◦ f is
continuous.

Exercise 8 True!

Proof. Note that max{f, g} = 1
2 (f + g) + 1

2 |f − g|. We will use many elements of Proposition 6. Since g is
continuous, −g is continuous from (ii), taking k = −1 ∈ R. Then f − g is continuous from (iii), and |f − g|
is continuous from (i). Additionally, (f + g) is continuous from (iii), and 1

2 |f − g| and 1
2 (f + g) are both

continuous from (ii), taking k = 1
2 ∈ R. Finally, max{f, g} = 1

2 (f + g)+ 1
2 |f − g| is continuous from (iii).

Exercise 9 This statement is true! First, we will prove the useful lemma indicated.
Lemma 1. A sequence {xn} converges to x if and only if for every subsequence {xnk

} there exists sub-
subsequence {xnkl

} that converges to x.

Proof. (⇒) xn → x ⇒ {xn} Cauchy, meaning that ∀ ε > 0, ∃ N ∈ N s.t. |xn − xm| < ε ∀ n,m > N .
Taking some subsequence {xnk

}, we have that |xni − xnj | < ε if ni, nj > N where N is from the initial
sequence. Thus, {xnk

} is Cauchy. Taking a sub-subsequence {xnkl
}, we have that |xnki

− xnkj
| < ε as

long as nki , nkj > N , where N is again from the initial sequence. Thus, {xnkl
} is Cauchy, so it converges

by Theorem 2. It remains to show that {xnkl
} converges to x. FSOC, assume that xnkl

→ y ∕= x. Then
|y − x| = δ > 0. Taking ε = δ/3, we have that ∃ N ∈ N s.t. xnkl

∈ Bε(y) ⇒ xnkl
∕∈ Bε(x) ∀ nkl

> N , which
implies that xn ∕→ x, which is a contradiction. Thus, xnkl

→ x.

(⇐) Proof by contrapositive. Assume that there exists a subsequence {xnk
} such that all sub-subsequences

{xnkl
} do not converge to x. Consider two cases. First, assume that there exists some {xnkl

} such that
xnkl

→ y ∕= x. This is the exact same case as the assumed contradiction above, where we showed that
xn ∕→ x. Second, assume that all {xnkl

} do not converge. This means that ∀ y ∈ R, ∃ ε > 0 s.t. ∀ N ∈
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N, ∃ n > N s.t. |xnkl
− y| > ε. Taking y = x, and recalling that xnkl

∈ {xn} ∀ nkl
, this is a direct negation

of the definition of convergence, so xn ∕→ x.

Now we move on to the main result:
Proposition 1. f : S → R is continuous at x0 if and only if for every monotonic sequence {xn} converging
to x0, f(xn) → f(x0).

Proof. (⇒) If f is continuous, then xn → x ⇒ f(xn) → f(x). This holds also for monotone xn → x.

(⇐) We have that for all monotone {yn} where yn → y, f(yn) → f(y). Take some {xn} not necessarily
monotone, where xn → x. It suffices to show that f(xn) → f(x), from the sequential definition of continuity.
Take any subsequence {xnk

}. From Proposition 7, it has a monotone sub-subsequence {xnkl
}, and from

Exercise 26, xnkl
→ x. By assumption, f(xnkl

) → f(x). Thus, since we have that for the sequence f(xn),
every subsequence f(xnk

) has a sub-subsequence f(xnkl
) that converges to f(x), f(xn) → f(x) by Lemma

1.

Exercise 1 Let S ⊂ R be open. Prove that a function f : S → Rs is continuous if and only if for every
open set A ⊂ Rd, f−1(A) is open.

Proof. (⇒) We have that f is continuous. FSOC, assume that f−1(A) is not open, meaning that there
exists x ∈ f−1(A) s.t. ∀ ε > 0, Bε(x) ∕⊆ f−1(A). Fix some δ > 0. Then ∃ y1 ∈ Bδ(x) ⊆ S s.t. y1 ∕∈ f−1(A).
Consider the sequence defined by yn = {y ∈ S : y ∈ B 1

n δ(x), y ∕∈ f−1(A)}. Definitionally, ∀ ε > 0, ∃ N ∈
N s.t. ∀ n > N, |yn − x| < ε, because 1

nδ → 0. Thus, yn → x. However, f(yn) ∕∈ A ∀ yn. Since A is open,
∃ ε′ > 0 s.t. Bε′(f(x)) ⊆ A. f(yn) ∕∈ Bε′(f(x)), so taking ε = ε′, ∕ ∃ n ∈ N s.t. |f(yn) − f(x)| < ε. This
contradicts the assumption that f is continuous, since yn → x but f(yn) ∕→ f(x).

(⇐) We have that for every open A ⊂ Rd, f−1(A) is open. Fix some x ∈ f−1(A), and some ε > 0. Bε(f(x))
is an open subset of S by definition, so f−1(Bε(f(x))) is open by assumption. Since x ∈ f−1(Bε(f(x))),
∃ δ > 0 s.t. Bδ(x) ⊆ f−1(Bε(f(x))). Thus, we have shown that for every ε > 0, x, y ∈ S, ∃ δ > 0 s.t. |x−y| <
δ ⇒ |f(x)− f(y)| < ε. Thus, f is continuous.
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