Econ 6190 Problem Set 6

Fall 2024

1. [Hansen 7.12] Take a random variable Z such that E[Z] = 0 and var[Z] = 1. Use Chebyshev’s
inequality to find a ¢ such that P[|Z| > d] < 0.05. Contrast this with the exact ¢ which solves
P[|Z] > ¢] = 0.05 when Z ~ N(0,1). Comment on the difference.

2. [Second exam, 2022| Let X be a random variable following a normal distribution with mean

p and variance o2 > 0. We draw a random sample {X;, X»,... X,,} from X and construct a

sample mean statistic X = £ 3" | X;.

(a)

(b)
(c)

(d)
(e)

Fix 6 > 0. Find an upper bound of P{‘X - u| > ¢} by using Markov inequality with
r =2

Repeat the exercise (a) but using Markov inequality with r = 4.

Compare the two bounds in (a) and (b) above when § = o and when n is at least 2. Which

one of them gives you a tighter bound of P{|X — ,u’ > 0}7?
Since we know X is normal, find the exact value of P{|X — u| > 6}.

From (d), we see that the tail probability of a normal sample mean is much thinner than
what Markov inequality predicts. In fact, we can show that if Z ~ N(u,o?), then

P{|Z — | > 8} < 2exp (—%) ()

Given (1), find a constant ¢ such that
P{|X — p| <c} > 0.95.

That is, we can predict that with a probability of at least 0.95, sample average is within
c—distance of its true mean. What is the prediction of ¢ if you only use Chebyshev’s

inequality?

Given your answer to (e), how much more data do we have to collect if we want the
prediction of ¢ based on Chebyshev’s inequality to be the same as that based on (1)



3. Consider a sample of data {X7,... X}, where
Xi=pu+oe,1=1...n,

where {e;}7_, are iid and E[e;] = 0, var(e;) = 1, {0;};_, are n finite and positive constants, and

1 € R is the parameter of interest.
(a) Let
1 n
~o_ 1 X,
H1 o ZZI

be the sample mean estimator. Under what condition is fi; a consistent estimator of u?

Under what condition is ji; — p = Op(\/iﬁ)?
(b) Let
1 X;
. n Z?:l o2
H2=TS5w 1
n Z?:l o2
be an alternative estimator of x. Under what condition is jip a consistent estimator of p?

Under what condition is jig — p = Op(\/%;)?

(c) Compare the MSE of fi; and fiz. Which one is more efficient and why?

4. Suppose that XY, LY and Y, & 0. Suppose a function f is continuously differentiable at 0,
show that X,,(f(Y,) — f(0)) A f(0)Y, where f'(0) is the first derivative of f at 0.

5. Let {Xi...X,} be a sequence of i.i.d random variables with mean p and and variance o?. Let
X=X

(a) If u # 0, how would you approximate the distribution of (X)? in large samples as n — 0o?

(b) If 41 = 0, how would you approximate the distribution of (X)? in large samples as n — 0o?



1.

Note since EZ = 0, EZ? = var(Z). Hence by Chebyshev’s inequality,

E[Z?] var(Z) 1
92 92 62

P[|Z| > 6] <

Let 5 = 0.05, we find 0 = /20 ~ 4.47
On the other hand, if we know Z is standard normal, let ®(-) be the cdf of a standard normal.
It follows

P(|Z] > 8] =P{Z > 0} + P{Z < =6}
=1 — () + (—9)
=2(1—®(0))

Setting 2(1 — ®(5)) = 0.05, we get ¢(§) =1 — 0.025 = 0.975. That is, ¢ is the 97.5 percent quantile
of a standard normal. Looking from the statistical tables, § ~ 1.96.

If we do not know the distribution of Z, we get
P[|Z] > 4.47] < 0.05, (1)

which holds for all distributions with mean 0 and variance 1. On the other hand, if we know the

distribution of Z (say standard normal), we can get a much sharper bound:
P[|Z]| > 1.96] = 0.05 (2)

which only holds for this specific distribution. Note even when Z is standard normal, (1) is still a

correct statement. It is just less sharp than (2).



(a) [5 pts] Fix 6 > 0. Find an upper bound of P{|X - u| > 0} by using Markov inequality

when r = 2.
Answer: P{|X — pu| >} < ]E[X(;;“]z = bias(X);””(x) . Since X is unbiased, bias(X) = 0.
Also, var(X) = % Thus, P{|X — p| > 6} < EXSZM = %

(b) [5 pts] Repeat the exercise (b) but using Markov inequality when r = 4.
Answer:P{P_( — ,u| >4} < EP—;—Z"P . Notice since X is normal, X ~ N(p, ”;2) Therefore,
E[X —p]* = E[X —E[X])*, which is the fourth-th centralized moment of X, equalling 32—;
It follows P{|)_( - ,ul >4} <

30?
34n2

(c) [5 pts|] Compare the two bounds in (a) and (b) above when § = o and when n is at least
2. Which one of them gives you a tighter bound of P{|X — u| >0}
Answer: When 6 = o, using r = 2 yields P{|)_{ — ,u| >0} < %, while using r = 4 yields
P{|X —p| >6} < 5.
Therefore, when n > 3, 7% < %, applying r = 4 gives a tighter bound; if n = 3, they give
the same bound. If n =2, then applying r = 2 gives a tighter bound.

(d) [5 pts] Since we know X is normal, find the exact value of P{|X — u| > d}.

Answer: P{|)_(—/1’>5}:P{ >%}:2<1_®(6_§>>

(e) [10 pts| From (d) we see that the tail probability of a normal sample mean is much thinner

X—p

v

than what Markov inequality predicts. In fact, we can show that if Z ~ N(u,0?), then

52
— < ).
P{|Z — p| > 6} < 2exp < 202) (1)
Given (1), find a constant ¢ such that

P{|X — p| <c} >0.95.

That is, we can predict that with a probability of at least 0.95, sample average is within
c—distance of its true mean. What is the prediction of ¢ if you only use Chebyshev’s
inequality?

Answer: It suffices to find ¢ such that P{|)_( — ,u| > ¢} < 0.05. Note again X ~ N(, "f)
Therefore, to use (1), set ¢ = 2exp (—;%) = 0.05. It follows ¢ = %\/m ~ 2.72%.
If Chebyshev’s inequality were used, then we need to set % = 0.05, i.e., c = \/%\/LE ~

4.47%.

(f) [5 pts] Given your answer to (e), how much more data do we have to collect if we want

the prediction of ¢ based on Chebyshev’s inequality to be the same as that based on (1)?

Answer: let n, be the sample size based on Chebyshev’s prediction, and let ny be the sample

size based on (1). Setting 4472 = 2.72\/Ln_1 implies \/—% = 321, That is, n. ~ (%)in,

i.e., we have to collect around 1.7 times more data if we only uses Chebyshev’s inequality.



(a) [5 pts] Let
1 n
=157,
= ;

be the sample mean estimator. Under what condition is /i; a consistent estimator of u?
Under what conditions is fi; — p = OP(%)?

Answer: Clearly E[X;] = p, i.e., iy is unbiased. Also, iy = 23" (n+05e;) = p+
Ly oiei. Thus, var(pn) = var(2>7  0ie)) = 5> 0F (by iid assumption of
{ei};—;). Thus, by Chebyshev’s inequality, fi; is consistent if #Zi":laf = o(1), and
fr—p = Op(ﬁ) if 13" 02 = O(1) (or equivalently, L7 02 is asymptotically
bounded). [an answer of i.i.d leads to consistency gets 0 points.|

(b) [10 pts] Let
Y
S S
be an alternative estimator of . Under what condition is fi; a consistent estimator of u?

Under what conditions is fis — p = Op(ﬁ)?

iy, % L sn
. ~ . . ~ n i=1 o -+
Answer: First, note [y is also unbiased. Also, iz = TS % M+ 121 12. Thus,
n i=1
o
LG i
~ =1 o;
UGT(MZ) = var | Tor 1 = ! p) 221 1% =1 L = nl —. Thus,
W Xi=1 2 Ly L) n ; "(1 n L) -
i n 2ui=1 2 w 2ui=1,2 f
fia is consistent if Y i 1—15 — 00 as n — oo (or equivalently, Z” ST S o(1)). And
%

fio —p =0 ( =) if Z" = 1s asymptotically bounded.
2

(c) [10 pts] Compare the MSE of fi; and jiz. Which one is more efficient?

Answer: Both of them are unbiased. The one with a smaller variance is more efficient.

X 11
var(fu) = non o}
i=1

arithmetic mean

1 1
var(jiz) = -
(

n(ivn %)

[ —

harmonic mean
Since harmonic mean is always no bigger than arithmetic mean for positive numbers, it
follows var(fiz) < var(ft1), i.e., fia is at least as efficient as 1. In fact, as long as there

is some o; # 0 for i # j, then var(fio) < var(fn).



U.

By mean value theorem or Taylor expansion:
f(Y) = f(0) = (Y)Y, — 0) = f/(Y)Y,, where Y lies on the line between Y,, and 0. Therefore

we have:

Note:
o X, Y, LY as given.

e (V)5 f(0) (Y, B 0. Therefore, as Y lies on the line between Y, and 0, it implies ¥ % 0
too. The claim follows by continuous mapping theorem.)

Conclusion follows by continuous mapping theorem.

(a)
Let f(z) = 2% So we are required to derive the asymptotic distribution of f(Z) using delta

method.
Step 1 Do the expansion(of f(z) around f(u) )

o () — f(u) = f'(2)(x — u), where Z lies on the line between Z and u.

e Therefore we have:
VAlf(@) - f(w)] = f@)Va(E - u)

o V/n(z —u) % N(0,02) by central limit theorem for ii.d. data.

e /(%) & f'(u) (z % u by Khintchine Law of large numbers. Therefore, as Z lies on the
line between z and w, it implies # % u too. The claim follows by continuous mapping

theorem.)

Step 2 Therefore we have form



