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Patrick Ferguson

Exercise 1. Let f be a function with a discontinuity at x such that there is a sequence xn → x
with f (xn) → y ̸= f (x).1 Then F(x) := { f (x)} is a valid example. F is singleton-valued and
thus closed-valued. And there exists xn → x and yn → y such that yn ∈ { f (xn)} for all n and
y /∈ { f (x)}, so F is not closed at x.

For example, F : R ⇒ R defined by F(x) := {1{x > 0}} is equal to {1} for positive x and {0}
elsewhere. It is singleton-valued and thereby closed-valued. But the sequence 1

n → 0 and 1 ∈ F( 1
n )

for all n but the constant sequence 1, 1, 1, . . . converges to 1 /∈ F(0), so F is not closed at 0.

Exercise 2. False. By Proposition 5 (ii), we know that our counterexample cannot be closed-valued.
Let F : R ⇒ R be a correspondence defined by F(x) := (0, 1] for all x ∈ R. Let U be an open
subset of R. Then

F−1(U) =

{
R if (0, 1] ⊆ U

∅ otherwise

R and ∅ are both open, so F is upper hemicontinuous. But (x, 1
n ) → (x, 0) /∈ Gr F, so F(x) is not

closed.

Exercise 3. F is not lower hemicontinuous. To see this, consider the sequence (2 − 1
n ) → 2 in X

and the point 1 ∈ F(2) = [0, 2]. Proposition 2 (ii) tells us that for F to be lower hemicontinuous,
there must exist a sequence yn ∈ F(2 − 1

n ) such that yn → 1. But F(2 − 1
n ) = { 1

n , 2 + 1
n}, so any

such yn sequence can only converge to 0 or 2.

G is not lower hemicontinuous either, by the exact same argument.

G is not upper hemicontinuous by Proposition 5 (ii), because it is closed-valued but doesn’t have a
closed graph. To see that it doesn’t have a closed graph, consider the sequence in R2, (2 − 1

n , 1
n ),

which consists of elements of Gr G. This sequence converges to (2, 0) but 0 /∈ G(2) = [1, 3], so
(2, 0) /∈ Gr G.

F is upper hemicontinuous. By Proposition 2 (i), it is sufficient to show that if xn → x and
yn ∈ F(xn) for all n then some subsequence ynk → y ∈ F(x). We proceed by cases.

Note that (xn) has a subsequence entirely contained in either (−∞, 2), [2, 3], or (3, ∞). It is WLOG,
then, to only consider sequences that are entirely contained in exactly one of these three intervals.

First, suppose xn < 2 for all n. Then x ≤ 2, and yn = 2 − xn or yn = 4 − xn for all n. This
implies that there is either a subsequence ynk = 2 − xnk → 2 − x ∈ F(x) or a subsequence

1That is, the discontinuity shouldn’t be oscillating or infinite from all directions.
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ynk = 4 − nk → 4 − x ∈ F(x).

Second, suppose xn > 3 for all n. Then x ≥ 3. Then yn = xn − 3 → x − 3 ∈ F(x).

Third, suppose 2 ≤ xn ≤ 3 for all n. Then 2 ≤ x ≤ 3. Moreover, yn ∈ [2 − xn, 4 − xn] ⊆ [−1, 2] for
all n. So yn must have a convergent subsequence, ynk → y. But 2 − xnk ≤ ynk ≤ 4 − xnk so, by the
squeezing theorem, 2 − x ≤ y ≤ 4 − x.

Exercise 4.

(i) Upper semicontinuous. The budget correspondence is compact-valued, so we can use
Proposition 2 (i) to show that it is upper hemicontinuous. Let (pi, wi) → (p, w) be a
convergent sequence in Rn+1

++ and (xi) be a sequence in Rn
+ such that xi ∈ B(pi, wi) for all i.

We use superscripts for sequence indexation, and subscripts for vector indexation. Because
(pi, wi) converges, it must be bounded. It follows that (xi) must also be bounded, and hence
must have a convergent subsequence xh → x.

Then
ph · xh ≤ wh

for all h. Note that ph · xh → p · x by continuity of (x, y) 7→ x · y. Weak inequalities hold in
the limit, so

p · x ≤ w

and therefore, x ∈ B(p, w).

(ii) Lower semicontinuous. Take an arbitrary x ∈ B(p, w). Let (pi, wi) → (p, w). We want to
construct a sequence of points in Rn

+ that converges to x, such that the points lie in the
corresponding B(pi, wi). We have

p · x ≤ w

which implies
(1 + δi)p · (1 − δi)x ≤ (1 + δi)(1 − δi)w = (1 − (δi)2)w

for any 0 < δi < 1. Choose (δi)∞
i=1 such that δi → 0; and for large i, pi

j ≤ (1 + δi)pj for
j = 1, 2, . . . , n, and wi ≥ (1 − (δi)2)w. Such a (δi) exists because pi → p and wi → w. Define
(xi) by xi

j := (1 − δi)xj for all i, j. Then xi → x and

pi · xi = pi · (1 − δi)x

≤ (1 + δi)p · (1 − δi)x

≤ (1 − (δi)2)w

≤ wi

so xi ∈ B(pi, wi) for large i.

Exercise 5 (Additional exercise).

(a) Graph is closed.

Upper hemicontinuous as F(X) is bounded so we can apply Proposition 5 (i).
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Not lower hemicontinuous as we can take a sequence xn → x in the domain at which F(xn)

is a singleton and F(x) is the interval. Take y ∈ F(x) such that y lies in the interior of that
interval. Then no yn → y for yn ∈ F(xn).

(b) Graph is not closed due to open endpoints in the center.

Because F is closed-valued (F(x) = {y} or F(x) = ∅), this implies that F is not upper
hemicontinuous, by Proposition 5 (ii). We can also disprove upper hemicontinuity using
Proposition 2 (i) and taking a sequence xn → x∗, where x∗ is the point such that F(x) = ∅.
Clearly there is no y ∈ ∅ such that ynk → y. Alternatively, we can also simply note that
F−1(∅) = {x∗} which is closed.

F is lower hemicontinuous, because if y ∈ F(x) then y ∈ {a, b}, the range of F. If y = a, then
there exists ε > 0 such that yn = a for all yn ∈ F(xn) with xn ∈ (x − ε, x + ε). We can also use
the inverse image characterisation of lower hemicontinuity. If U ⊆ Y is open then

F−1(U) =


R \ {x∗} if a, b ∈ U

∅ if a, b /∈ U

(−∞, x∗) if a ∈ U, b /∈ U

(x∗, ∞) if a /∈ U, b ∈ U

where x∗ is the empty-valued point, a < b are the two values in F(X). In all cases, F−1(U) is
open.

(c) The graph is closed.

Because F(X) is bounded, we can apply Proposition 5 (i) to infer that F is upper hemicontin-
uous. We can also use Proposition 2 (i), noting that if yn is in F(xn) then F(xn) is nonempty,
so (xn, yn) must lie on one of the curves in the graph. These are closed and bounded sets,
so (sequentially) compact. Therefore, (xn, yn) must have a convergent subsequence, (xnk , ynk)

converging to a point on the same curve. But xnk → x, so (xnk , ynk) → (x, y) with y ∈ F(x).

F is not lower hemicontinuous. This follows from Proposition 2 (ii). Take one of the endpoints
of the curves, denoted by the solid circles, and denote this (x, y). Take a sequence xn → x,
where F(xn) = ∅ for all n. Then there is no yn sequence in a sequence of empty sets, so we
cannot construct yn → y satisfying yn ∈ F(xn) for large n.

(d) Graph is not closed as we can take a sequence on the graph approaching the open point.

To determine upper hemicontinuity, it will be helpful to write the correspondence down:

F(x) :=


a if x < x∗

[a, b) if x = x∗

b if x > x∗

Note that F−1(−∞, b) = (−∞, x∗] which is not closed. Thus, F is not upper hemicontinuous.
Note also that because F is not closed-valued we cannot use Propositions 2 or 5 to prove that F
is not upper hemicontinuous.
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F is not lower hemicontinuous by the exact same reasoning as in (a).

(e) Graph of F is the union of two curves, so is closed.

We can disprove upper hemicontinuity by taking a sequence xn → x∗, where x∗ is the point at
the vertical asymptote, such that xn > x∗ for all n. Then yn ∈ F(xn) implies yn → ∞ /∈ F(x∗).

F is not lower hemicontinuous. To see this, consider (x∗, y) at the right endpoint of the left
arm. Let xn → x∗ be such that xn > x∗ for all n. Then there is no yn with yn ∈ F(xn) for large
n such that yn → y.

Part 2:

Γ1 is compact-valued and we can construct a sequence (xn, yn) ∈ Gr Γ1 that converges to (x1, y1) /∈
Gr Γ1 or (x2, y2) /∈ Gr Γ1. Therefore, Γ1 is not upper hemicontinuous at either x1 or x2.

A sequence in the graph of Γ2, (xn, yn) → (x1, y1) will satisfy y1 ∈ Γ2(x1), so Γ2 is upper
hemicontinuous at x1. Γ2(x2) ⊆ U, U open, implies Γ2(Bε(x2)) ⊆ U for sufficiently small ε, so Γ2

is upper hemicontinuous at x2 also. However, Γ2 is not upper hemicontinuous at at least some of
the points x > x2. This is because Γ2(x) is open but Γ2(Bε(x)) ⊈ Γ2(x) for any ε > 0.

Γ3 is not upper hemicontinuous at x1. For if we let Γ3(x1) = [a, b], then Γ3(x1) ⊆ (a − δ, b + δ) but
Γ3(x1 + ε) ⊈ (a − δ, b + δ) for sufficiently small δ and arbitrarily small ε. An analogous argument
tells us that Γ3 is not upper hemicontinuous at x2 either.

Γ2 and Γ3 aren’t lower hemicontinuous at either x1 or x2, by the same argument used in (a) above.

If y1 ∈ Γ1(x1), then (x1, y1) must be at the black dot. Clearly, any xn → x1 will have yn ∈ Γ1(xn)

such that yn → y1. If y2 ∈ Γ1(x2) then (x2, y2) must lie along the solid line, including the black dots.
Again it is clear that xn → x2 implies that there exists yn ∈ Γ1(xn) such that yn → y2. Therefore,
Γ1 is lower hemicontinuous at both x1 and x2. It is visually clear that it is lower hemicontinuous
everywhere else too.
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