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Moving from endowment economies

So far, we have only studied economies with no production. These were useful to
familiarize ourselves with

▶ Equilibrium concept

▶ Consumption smoothing across time and across histories

▶ Asset pricing

▶ Efficiency of allocations

These models are obviously not very good at explaining growth. We now introduce
production.

We will use the growth model as a gateway to study dynamic programming.
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Main facts about long-run growth

Kaldor (1959) popularized the following six stylized facts concerning long run economic
growth

1. Output per capita, Y /N, grows at a constant rate

2. The capital to labor ratio, K/N, grows at constant rate

3. The interest rate, R, is fairly constant

4. The output to capital ratio, Y /K , is fairly constant

5. The share of value added going to labor and capital are fairly constant

6. There are wide dispersion in Yi/Ni across countries
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Neoclassical growth model in discrete time
▶ Time is discrete, t = 0, 1, 2, . . .
▶ In each period, three goods are traded:

• labor services nt
• capital services kt
• final good output yt that can be consumed (ct) or invested (it)

▶ Aggregate Production function F
• output yt = F (kt , nt) is consumed or invested yt = ct + it
• investment increases capital stock which depreciate at rate δ > 0

kt+1 = (1− δ)kt + it

▶ Preferences: large number of identical, infinitely lived households:

u({ct}∞t=0) =
∞∑
t=0

βtU(ct)

▶ Endowments: initial capital k0 given and one unit of time each period.
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Optimal growth
For now, we will concerned ourselves with optimal growth. We will study the problem
of a social planner who maximizes total welfare.

Definition 1 (Feasible allocation)

An allocation {ct , kt+1, nt}∞t=0 is feasible if, for all t ≥ 0

F (kt , nt) = ct + kt+1 − (1− δ)kt

ct ≥ 0, kt ≥ 0, 0 ≤ nt ≤ 1

k0 given

Definition 2 (Pareto efficient allocation)

An allocation {ct , kt+1, nt}∞t=0 is Pareto efficient if it is feasible and there is no other
feasible allocation {ĉt , k̂t+1, n̂t}∞t=0 such that

∞∑
t=0

βtU(ĉt) >
∞∑
t=0

βtU(ct)
8 / 64



Social planner problem

The SP solves:

w(k0) = max
{ct ,kt+1,nt}∞t=0

∞∑
t=0

βtU(ct)

subject to:

F (kt , nt) = ct + kt+1 − (1− δ)kt

ct ≥ 0, kt ≥ 0, 0 ≤ nt ≤ 1

k0 given

How can we interpret w(k̄0)?

▶ Function that gives the total lifetime utility of the representative household with
initial capital stock k̄0 when the social planner is behaving optimally.
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Assumptions
We make the following assumptions:
▶ Utility function

1. U is continuously differentiable, strictly increasing, strictly concave and bounded
2. Inada conditions: limc→0 U

′(c) = ∞ and limc→∞ U ′(c) = 0
3. β ∈ (0, 1)

▶ Production function

1. F is continuously differentiable and homogenous of degree 1, strictly increasing and
strictly concave

2. F (0, n) = F (k, 0) = 0 for all k , n > 0
3. Inada condition: limk→0 Fk(k , 1) = ∞ and limk→∞ Fk(k, 1) = 0

These assumptions imply:

▶ From the structure of U, nt = 1 for all t

▶ We can write
f (k) = F (k, 1) + (1− δ)k

What properties does f have?
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Simplified social planner problem

Since ct = f (kt)− kt+1, we can write the SP problem as

w(k0) = max
{kt+1}∞t=0

∞∑
t=0

βtU(f (kt)− kt+1)

subject to:

0 ≤ kt+1 ≤ f (kt)

k0 given

▶ Why do we care about this problem?

It turns out that the welfare theorems apply
here. By solving the SP problem we solve for the competitive equilibrium.

▶ How do we solve it? This is an infinite dimensional optimization problem. We will
use dynamic programming to rewrite the problem in a much simpler form.
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Dynamic programming

Main idea: Use the stationary nature of the economic environment to rewrite the
problem in a recursive way.

w(k0) = max
{kt+1}∞t=0 s.t.

0≤kt+1≤f (kt), k0 given

∞∑
t=0

βtU(f (kt)− kt+1)

= max
k1 s.t.

0≤k1≤f (k0), k0 given

(
U(f (k0)− k1)

+ β

 max
{kt+1}∞t=1 s.t.

0≤kt+1≤f (kt), k1 given

∞∑
t=1

βt−1U(f (kt)− kt+1)



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Dynamic programming

Intuitively, it looks like:

w(k0) = max
0≤k1≤f (k0)
k0 given

U(f (k0)− k1) + βw(k1)

▶ When is the intuitive suggestion correct?

▶ Why is this new problem better than the old one?

much simpler than finding
{kt+1}∞t=0
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Recursive formulation

Denote by v(·) the value function for this new formulation of the problem:

v(k) = max
0≤k ′≤f (k)

{
U(f (k)− k ′) + βv(k ′)

}
(*)

Interpretation: v(k) is the discounted lifetime utility of the representative agent, from
the current period onward, if the social planner has initial capital stock k and allocates
consumption optimally.

▶ (*) is the recursive formulation of the planner’s problem.

▶ (*) is a functional equation called the Bellman equation.

▶ k is called the state variable. It completely describes the economy today.

▶ k ′ is called the control variable. It is decided today by the planner.

▶ To solve (*) we need a value function and a policy function k ′ = g(k).
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Recursive formulation

This new approach raises questions:

▶ Under what conditions does a solution to (*) exist and, if so, is it unique?

Contraction Mapping Theorem

▶ Under what conditions can we solve (*) and be sure that we have solved the
sequential problem? (i.e. v = w and g(k) generates the optimal {kt+1}∞t=0).
Bellman’s Principle of optimality

▶ Is there a simple algorithm that allows us to solve (*)?
Contraction Mapping Theorem

Proving these results requires heavier mathematics that we will introduce later. For
now, we will look at a few examples and show the link between the social planner
problem and competitive equilibrium.
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An example of a recursive problem

Let U(c) = log(c), F (k , n) = kαn1−α and δ = 1. Then f (k) = kα and

v(k) = max
0≤k ′≤kα

{
log(kα − k ′) + βv(k ′)

}
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Guess and verify

First approach: Guess and verify

Guess that v(k) has the form

v(k) = A+ B log(k)

for some constant A and B that we have to determine.

Now the maximization problem (taking k as given is)

max
0≤k ′≤kα

{
log(kα − k ′) + β

(
A+ B log(k ′)

)}
and the FOC is

k ′ =
βBkα

1 + βB
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Guess and verify

The second step is to plug back the optimal k ′ into the Bellman equation:

v(k) = max
0≤k′≤kα

{log(kα − k ′) + βv(k ′)}

= log(kα − k ′) + β(A+ B log(k ′))

= log

(
kα

1 + βB

)
+ βA+ βB log

(
βBkα

1 + βB

)
= − log(1 + βB) + βA+ βB log

(
βB

1 + βB

)
+ α log(k) + αβB log(k)

Was our guess correct?

Yes!

B = α(1 + βB)

A =
1

1− β

(
αβ

1− αβ
log(αβ) + log(1− αβ)

)
Is the solution unique?
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Guess and verify

We now need to find the allocation. Remember that g(k) = k ′:

g(k) =
βBkα

1 + βB

= αβkα

How can we interpret this policy rule?

Save a constant fraction αβ of output kα and
consume what’s left.
We can construct the whole sequence {kt+1}∞t=0

k1 = g(k0) = αβkα0

k2 = g(k1) = αβkα1 = (αβ)1+αkα
2

0

k3 = g(k2) = . . .

How useful is the guess and verify approach? Unfortunately, it works in very few cases.
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Value function iteration
1. Guess an arbitrary function v0(k), say v0(k) = 0

2. Solve
v1(k) = max

0≤k ′≤kα

{
log(kα − k ′) + βv0(k

′)
}

The solution is k ′ = g1(k) = 0 for all k . Therefore

v1(k) = log(kα − 0) = α log(k)

3. Since we know v1, now we can solve

v2(k) = max
0≤k ′≤kα

{
log(kα − k ′) + βv1(k

′)
}

4. Repeat for
vn+1(k) = max

0≤k ′≤kα

{
log(kα − k ′) + βvn(k

′)
}

to get {vn}∞n=0 and {gn}∞n=0.

5. Will these sequences converge to the optimum solution g∗ and v∗?

Yes by the
CMT.
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Value function iteration a numerical example

A computer can only deal with finite-dimensional objects. We can only approximate
the value function.

Here is an example from Dirk Krueger’s notes.

▶ Discretize the space:k , k ′ ∈ K = {0.04, 0.08, 0.12, 0.16, 0.2}
▶ Value functions vn:

(vn(0.04), vn(0.08), vn(0.12), vn(0.16), vn(0.2))

▶ Pick values for the parameters. Say, α = 0.3 and β = 0.6.
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Value function iteration a numerical example

Numerical algorithm

1. Initial guess v0(k) = 0 for all k ∈ K .

2. Solve
v1(k) = max

0≤k ′≤k0.3

{
log(k0.3 − k ′) + 0.6× 0

}
Optimal policy k ′(k) = g1(k) = 0.04 for all k ∈ K . Plugging back in:

v1(0.04) = log(0.040.3 − 0.04) = −1.077

v1(0.08) = log(0.080.3 − 0.04) = −0.847

v1(0.12) = log(0.120.3 − 0.04) = −0.715

v1(0.16) = log(0.160.3 − 0.04) = −0.622

v1(0.20) = log(0.200.3 − 0.04) = −0.55
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Value function iteration a numerical example

Next iteration
v2(k) = max

0≤k ′≤k0.3

{
log(k0.3 − k ′) + 0.6v1(k

′)
}

Start with k = 0.04:

v2(0.04) = max
0≤k ′≤0.040.3

{
log(0.040.3 − k ′) + 0.6v1(k

′)
}
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Value function iteration a numerical example
Let’s try different values for k ′.

If k ′ = 0.04, then

v2(0.04) = log(0.040.3 − 0.04) + 0.6(−1.08) = −1.72

If k ′ = 0.08, then

v2(0.04) = log(0.040.3 − 0.08) + 0.6(−0.85) = −1.71

If k ′ = 0.12, then

v2(0.04) = log(0.040.3 − 0.12) + 0.6(−0.72) = −1.77

If k ′ = 0.16, then

v2(0.04) = log(0.040.3 − 0.16) + 0.6(−0.62) = −1.88

If k ′ = 0.20, then

v2(0.04) = log(0.040.3 − 0.20) + 0.6(−0.55) = −2.04

Therefore, for k = 0.04 the optimal choice is k ′(0.04) = g2(0.04) = 0.08 and
v2(0.04) = −1.71 24 / 64



Value function iteration a numerical example

Summary of the second iteration: Table below shows the value of

(k0.3 − k ′) + 0.6v1(k
′)

for different values of k and k ′.

(k, k ′) 0.04 0.08 0.12 0.16 0.2

0.04 -1.72 -1.71* -1.77 -1.88 -2.04
0.08 -1.49 -1.45* -1.48 -1.55 -1.64
0.12 -1.36 -1.31* -1.32 -1.37 -1.44
0.16 -1.27 -1.21* -1.21 -1.25 -1.31
0.20 -1.20 -1.13 -1.13* -1.16 -1.20
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Euler equation approach

Back to original problem:

w(k0) = max
{kt+1}∞t=0

∞∑
t=0

βtU(f (kt)− kt+1)

subject to:

0 ≤ kt+1 ≤ f (kt)

k0 given

We cannot use the standard Kuhn-Tucker theorem to solve the optimization problem.
Why?

Infinite-dimensional object
But we can solve the SP problem if there is a final period, T .
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Euler equation approach

In which case:

wT (k0) = max
{kt+1}Tt=0

T∑
t=0

βtU(f (kt)− kt+1)

subject to:

0 ≤ kt+1 ≤ f (kt) and k0 given

▶ We obviously have kT+1 = 0 (right?).

▶ The problem is now optimization of a continuous function in a finite-dimensional
space on a compact set: a solution exists (Extreme Value Theorem).

▶ Since the constraint set is convex (right?) and U is strictly concave (by
assumption) there is a unique optimum and the FOCs are necessary and sufficient.
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Lagrangian

We can use the usual tools:

L = U(f (k0)− k1) + . . .

+ βtU(f (kt)− kt+1) + βt+1U(f (kt+1)− kt+2) + . . .

+ βTU(f (kT )− kT+1)

FOCs

∂L

∂kt+1
= −βtU ′(f (kt)− kt+1) + βt+1U ′(f (kt+1)− kt+2)f

′(kt+1) = 0
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Lagrangian

U ′(f (kt)− kt+1)︸ ︷︷ ︸
Cost in utility of saving

1 unit more capital for t+1

= βU ′(f (kt+1)− kt+2)︸ ︷︷ ︸
Discounted add. utility

from 1 more unit of cons.

f ′(kt+1)︸ ︷︷ ︸
Add. prod. with one

more unit of cap. in t+1

▶ This equation is called the Euler equation

▶ System of T second order difference equations with T + 1 unknowns {kT+1}Tt=0

▶ With kT+1 = 0 we can solve for {kt+1}Tt=0 (can be a huge pain)
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Lagrangian
Going back to our example with log utility: U(c) = log(c) and f (k) = kα.
The Euler equation is

1

kαt − kt+1
=

βαkα−1
t+1

kαt+1 − kt+2

kαt+1 − kt+2 = αβkα−1
t+1 (k

α
t − kt+1)

Trick: Define zt ≡ kt+1

kα
t
. Interpretation?

1− zt+1 = αβ

(
1

zt
− 1

)
zt+1 = 1 + αβ − αβ

zt

Why is that a nicer equation?
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Lagrangian
We know that zT = 0. Solve backwards from T . Since

zt =
αβ

1 + αβ − zt+1

we get

zt = αβ
1− (αβ)T−t

1− (αβ)T−t+1

and therefore

kt+1 = αβ
1− (αβ)T−t

1− (αβ)T−t+1
kαt

ct =
1− αβ

1− (αβ)T−t+1
kαt

Notice that
lim

T→∞
kt+1 = αβkαt

Looking familiar?
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Graphical analysis

Drawing a little graph can bring big insights into the behavior of the economy.

zt+1 = 1 + αβ − αβ

zt

Plotting zt+1 against zt informs us about the dynamics of the system.

▶ Since kt+1 ≥ 0 we have zt ≥ 0

▶ limzt→0 1 + αβ − αβ
zt

= −∞
▶ limzt→∞ 1 + αβ − αβ

zt
= 1 + αβ > 1

▶ zt+1 = 0 for zt =
αβ

1+αβ < 1
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Steady state

Define a steady state as:
zt+1 = zt = z

There are two steady states in this economy:

z = 1 + αβ − αβ

z
(z − 1)(z − αβ) = 0

Therefore z = 1 and z = αβ are steady states.
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Going back to the infinite horizon case

w(k0) = max
{kt+1}∞t=0

∞∑
t=0

βtU(f (kt)− kt+1)

subject to:

0 ≤ kt+1 ≤ f (kt)

k0 given

The Euler equation

U ′(f (kt)− kt+1) = βU ′(f (kt+1)− kt+2)f
′(kt+1)

As before we have a second order difference equation but we are missing a terminal
condition.
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Transversality condition

We impose on additional condition on the problem:

lim
t→∞

βtU ′(f (kt)− kt+1)f
′(kt)︸ ︷︷ ︸

value in discounted utility terms
of one more unit of capital

kt︸︷︷︸
capital
stock

= 0

▶ Transversality plays the role of the missing terminal condition. It is an optimality
condition.

▶ Meaning: shadow value of capital has to converge to zero.

▶ Mathematically it is a condition coming from the use of the Separating
Hyperplane Theorem to find optimality conditions in an infinite-dimensional
context. See note on Chris Sims website.

▶ Can also be: limt→∞ λtkt+1 = 0. Where λ is LM on ct + kt+1 = f (kt).
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Transversality condition

Theorem 1
Let U, β and F satisfy our earlier assumptions. Then an allocation {kt+1}∞t=0 that
satisfies the Euler equations and the transversality condition solves the sequential
social planners problem, for a given k0.

See SLP Theorem 4.15 for a proof.

▶ Does not work for log utility (since not bounded) but a similar theorem exist for
this case.

▶ The theorem gives sufficient conditions for optimality.

▶ The conditions of the theorem are necessary for the log-case (Ekelund and
Scheinkman, 1985)
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Transversality condition

Going back to our log example: U(c) = log(c) and f (k) = kα. The TVC becomes

lim
t→∞

βtU ′(f (kt)− kt+1)f
′(kt)kt = lim

t→∞

αβtkαt
kαt − kt+1

= lim
t→∞

αβt

1− zt

The Euler equation is still

zt+1 = 1 + αβ − αβ

zt

How do we solve this?

Guess z0, iterate and check if TVC holds.
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Transversality condition

We have already done part of the work for the previous graph:

1. if z0 < αβ: in finite time zt < 0 which violates kt+1 ≥ 0

2. if z0 > αβ: we go to limt→∞ zt = 1 which violates TVC (take a few steps to
show)

3. if z0 = αβ: then zt = αβ for all t > 0. This satisfies Euler equation and the TVC

lim
t→∞

αβt

1− zt
=

αβt

1− αβ
= 0

The theorem tells us that zt = αβ is an optimal solution.
The log-case is basically the only example that can be done by hand. In general, we
need to use computation methods.
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Modified golden rule
Steady-state (SS): social optimum or CE with ct = c∗ and kt+1 = k∗.
The Euler equation:

U ′(f (kt)− kt+1) = βU ′(f (kt+1)− kt+2)f
′(kt+1)

U ′(ct) = βU ′(ct+1)f
′(kt+1)

At a SS:

f ′(k) =
1

β
≡ 1 + ρ

where ρ is called the time discount rate. Since f ′(k) = Fk(k , 1) + 1− δ, we obtain the
modified golden rule

Fk(k
∗, 1)− δ = ρ

In our example

α(k∗)α−1 = ρ+ 1 =
1

β
and k∗ = (αβ)

1
1−α

The planner’s optimal sequence will converge to k∗ regardless of k0.
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Modified golden rule

Why is it called the modified golden rule?
The resource constraint is

ct = f (kt)− kt+1

c = f (k)− k

Therefore to maximize consumption per capita we need

f ′(kg ) = 1

Fk(k
g , 1)− δ = 0

where kg is called the golden rule capital stock.
Why does the SP find it optimal to pick k∗ < kg in the long run?

Because the agent is
impatient.
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Balanced growth path
What do you think of our growth model so far?

Let’s add population growth (Nt = (1 + n)t) and labor-augmenting technological
progress:

F (Kt ,Nt(1 + g)t)

What’s the utility function now? Either (ct is per capita):
▶ per capita lifetime utility

∞∑
t=0

βtU(ct)

▶ or lifetime utility of the entire dynasty

∞∑
t=0

(1 + n)tβtU(ct)

Resource constraint

(1 + n)tct + Kt+1 = F (Kt , (1 + n)t(1 + g)t) + (1− δ)Kt
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Balanced growth path
Define

c̃t =
ct

(1 + g)t

k̃t =
kt

(1 + g)t
=

Kt

(1 + n)t(1 + g)t

We can rewrite the resource constraint as:

c̃t + (1 + n)(1 + g)k̃t+1 = F (k̃t , 1) + (1− δ)k̃t

In order to obtain a balanced growth path, we assume CRRA utility U(c) = c1−σ

1−σ .

∞∑
t=0

βt c
1−σ
t

1− σ
=

∞∑
t=0

β̃t c̃
1−σ
t

1− σ

where β̃ = β(1 + g)1−σ
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Balanced growth path

The social planner solves

max
{kt+1}∞t=0

∞∑
t=0

β̃t (f (k̃t)− (1 + g)(1 + n)k̃t+1)
1−σ

1− σ

subject to

0 ≤ (1 + g)(1 + n)k̃t+1 ≤ f (k̃t)

k0 given

A balanced growth path is a socially optimal allocation where all variables grow at a
constant rate. Here it corresponds to a steady state for {c̃t , k̃t+1}.
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Balanced growth path

Euler equations

(1 + n)(1 + g)(c̃t)
−σ = β̃(c̃t+1)

−σ
(
Fk(k̃t+1, 1) + (1− δ)

)
Steady state on {c̃ , k̃}

(1 + n)(1 + g) = β̃
(
Fk(k̃

∗, 1) + (1− δ)
)

Defining β̃ ≡ 1
1+ρ̃ we find

(1 + n)(1 + g)(1 + ρ̃) =
(
Fk(k̃

∗, 1) + (1− δ)
)

which is (approximately)
Fk(k̃

∗, 1)− δ ≈ n + g + ρ̃
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Competitive equilibrium
So far we have been interested in the social planner’s problem. Now we decentralize
the Pareto allocation to a competitive equilibrium.

▶ Arrow-Debreu market structure

▶ Perfect competition
▶ Ownership

• Households own firms (receive their profits)
• Households own capital (they rent it to firms)

▶ Goods:
• Final output yt : Used for consumption and investment. Its price is pt (quoted in

period 0).
• Labor nt : Let wt be the price of one unit of labor delivered in period t (quoted in

period 0) in terms of the period t consumption good. wt is called the real wage.
The nominal wage is wtpt .

• Capital services kt : Let rt be the rental price of one unit of capital services delivered
in period t, quoted in period 0, in terms of the period t consumption good. rt is the
real rental rate, the nominal rate is ptrt
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Firms

Firms behave competitively in output and factor markets.
The representative firm’s problem is, given a sequence of price {pt ,wt , rt}∞t=0:

π = max
{yt ,nt ,kt}∞t=0

∞∑
t=0

pt(yt − rtkt − wtnt)

subject to

yt = F (kt , nt) for all t ≥ 0

yt , nt , kt ≥ 0
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Households
Households own capital stock and supply labor and capital services. They decide how
much to consume and how much to save (through capital accumulation). Taking
prices {pt ,wt , rt}∞t=0 as given the representative household solves

max
{ct ,it ,xt+1,kt ,nt}∞t=0

∞∑
t=0

βtU(ct)

subject to

∞∑
t=0

pt(ct + it) ≤
∞∑
t=0

pt(rtkt + wtnt) + π

xt+1 = (1− δ)xt + it

0 ≤ nt ≤ 1, 0 ≤ kt ≤ xt

ct , xt+1 ≥ 0, x0 given

Here we are being very careful. We will have kt = xt .
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Definition on an equilibrium

Definition 3
A Competitive Equilibrium (Arrow-Debreu) is a set of prices {pt ,wt , rt}∞t=0 and
allocations for the firm {ydt , ndt , kt}∞t=0 and the household {ct , it , xt+1, k

s
t , n

s
t}∞t=0 such

that

1. Given prices, the allocation of the representative firm solves the firm’s problem.

2. Given prices, the allocation of the representative household solves the household’s
problem.

3. Markets clear:

yt = ct + it (Goods market)

ndt = nst (Labor market)

kdt = kst (Capital services market)
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Characterizing the equilibrium

In equilibrium:

kt = kdt = kst

nt = ndt = nst

All prices must be strictly positive: pt , rt ,wt > 0
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Firm’s problem

The firm problem is static

max
kt ,nt≥0

pt(F (kt , nt)− rtkt − wtnt)

Marginal product pricing

rt = Fk(kt , nt)

wt = Fn(kt , nt)

Using constant return to scale and Euler’s theorem

πt = pt(F (kt , nt)− Fk(kt , nt)kt − Fn(kt , nt)nt) = 0
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Indeterminacy of Number of Firms

Constant return to scale imply marginal products are homogeneous of degree 0.
Differentiate

F (λk , λn) = λF (k , n)

with respect to, say, k

λFk(λk , λn) = λFk(k , n)

Fk(λk , λn) = Fk(k , n)

Now take λ = 1/n:
Fk(k/n, 1) = Fk(k, n)

All firms operate with same capital-labor ratio

rt = Fk(k , n) = Fk(k/n, 1)
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Indeterminacy of Number of Firms

As a consequence, total output could be produced by one representative firm or nt
firms with one worker:

F (kt , nt) = ntF (kt/nt , 1)

Both number of firms as well as output per firm are indeterminate and irrelevant in
equilibrium. Only determinate things are k/n and total output y .
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Household’s problem

We have nt = 1, kt = xt and it = kt+1 − (1− δ)kt
The budget constraint holds with equality, we can write:

max
{ct ,kt+1}∞t=0

∞∑
t=0

βtU(ct)

subject to

∞∑
t=0

pt(ct + kt+1 − (1− δ)kt) =
∞∑
t=0

pt(rtkt + wt)

ct , kt+1 ≥ 0, k0 given
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Household’s problem

Using µ as the LM of the budget constraint, the FOC wrt to ct , ct+1 and kt+1 are

βtU ′(ct) = µpt

βt+1U ′(ct+1) = µpt+1

µpt = µ(1− δ + rt+1)pt+1

Which yield

βU ′(ct+1)

U ′(ct)
=

pt+1

pt
=

1

1− δ + rt+1

(1− δ + rt+1)βU
′(ct+1)

U ′(ct)
= 1
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Household’s problem

Using our previous notation (f (k) = F (k , 1) + (1− δ)k) and the marginal pricing
equation:

rt = Fk(kt , 1) = f ′(kt)− (1− δ)

and goods market clearing
ct = f (kt)− kt+1

we obtain
f ′(kt+1)βU

′(f (kt+1)− kt+2)

U ′(f (kt)− kt+1)
= 1

Which is exactly the same Euler equation as in the SP problem.
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Household’s problem

TVC for the household:
lim
t→∞

ptkt+1 = 0

Using the FOC:

lim
t→∞

ptkt+1 =
1

µ
lim
t→∞

βtU ′(ct)kt+1

=
1

µ
lim
t→∞

βt−1U ′(ct−1)kt

=
1

µ
lim
t→∞

βt−1βU ′(ct)(1− δ + rt)kt

=
1

µ
lim
t→∞

βtU ′(f (kt)− kt+1)f
′(kt)kt

Which is the same as the Planner’s TVC.
We have loosely shown that the welfare theorems hold.
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Rest of the economy

Notice that once we have determined the equilibrium capital stock we are done

ct = f (kt)− kt+1

yt = F (kt , 1)

it = yt − ct

nt = 1

rt = Fk(kt , 1)

wt = Fn(kt , 1)
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Sequential markets equilibrium

Household problem

max
{ct ,kt+1}∞t=0

∞∑
t=0

βtU(ct)

subject to

ct + kt+1 − (1− δ)kt = wt + rtkt

ct , kt+1 ≥ 0

k0 given

Firm’s problem
max

kt ,nt≥0
F (kt , nt)− wtnt − rtkt
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Sequential markets equilibrium

Definition 4
A sequential markets equilibrium is prices {wt , rt}∞t=0, allocations for representative
household {ct , kst+1}∞t=0 and for representative firm {ndt , kdt }∞t=0 such that

1. Given k0 and {wt , rt}∞t=0, household allocations solves household maximization
problem.

2. For each t ≥ 0, given (wt , rt) firm allocation (ndt , k
d
t ) solves firms’ maximization

problem.

3. Markets clear: for all t ≥ 0

ndt = 1

kdt = kst

F (kdt , n
d
t ) = ct + kst+1 − (1− δ)kst
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Recursive competitive equilibrium

▶ State variables (k ,K ). Control variables (c , k ′)

▶ Bellman equation

v(k,K ) = max
c,k ′≥0

U(c) + βv(k ′,K ′)

c + k ′ = w(K ) + (1 + r(K )− δ)k

K ′ = H(K )

▶ K ′ = H(K ) is the aggregate law of motion.

▶ Solution is a value function v and policy functions c = C (k ,K ) and k ′ = G (k ,K ).

▶ Firms

w(K ) = Fl(K , 1)

r(K ) = Fk(K , 1)
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Recursive competitive equilibrium

Definition 5
A RCE is a value function v : R2

+ → R and policy functions C ,G : R2
+ → R+ for the

representative household, pricing functions w , r : R+ → R+ and an aggregate law of
motion H : R+ → R+ such that

1. Given w , r and H, v solves the Bellman equation and C ,G are the associated
policy function.

2. The pricing functions satisfy the firms FOC

3. Consistency
H(K ) = G (K ,K )

4. For all K ∈ R+

c(K ,K ) + G (K ,K ) = F (K , 1) + (1− δ)K
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