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Section Exercise 1. Let A ⊆ R be nonempty. Then there exists a sequence of elements of A, (xn)

such that xn → sup A.

Suppose A is bounded above. We know that, for all ϵ > 0, there exists x ∈ A such that
sup A > x > sup A − ϵ. Then choose xn ∈ A such that sup A > xn > sup A − 1/n. This defines a
sequence converging to sup A.

Suppose A is unbounded above. Then sup A = ∞ and for all n ∈ N, we can find an xn ∈ A such
that xn ≥ n. This defines a sequence diverging to ∞ = sup A.

Remark 1. Because Exercise 14 appears before Definition 8 (infinite limits) in the lecture notes, I
assume that the limits in the exercise are real numbers. Analogous results do hold with infinite
limits, so long as everything is well-defined (no ∞ − ∞ or ∞ · 0 expressions).

Exercise 14 (i). Prove or disprove: If xn → x and yn → y, then (xn + yn)n converges to x + y.

Solution: True. For any ϵ, for sufficiently large n, we have |xn − x| < ϵ
2 and |yn − y| < ϵ

2 . This
gives us |xn − x|+ |yn − y| < ϵ. Using the triangle inequality, we have |(xn + yn)− (x + y)| =
|xn − x + yn − y| ≤ |xn − x|+ |yn − y| < ϵ.

Exercise 14 (ii). Show that if xn → x and yn → y, then xnyn → xy.

Fix ϵ > 0. Taking N ∈ N sufficiently large we know that n ≥ N implies |xn − x| < ϵ and
|yn − y| < ϵ. The sequence (yn) converges, so it is bounded. We can thus say 0 ≤ |yn| < m for
some m > 0. Then

|xnyn − xy| = |xnyn − xyn + xyn − xy| = |(xn − x)yn + x(yn − y)| ≤ |xn − x| · |yn|+ |x| · |yn − y|

< ϵm + |x|ϵ = (m + |x|)ϵ

which is just a positive constant times ϵ.

Exercise 14 (iv). Show that if xn → x ̸= 0 with xn ̸= 0 for all n, then 1
xn

→ 1
x .

Fix ϵ > 0 and choose N ∈ N sufficiently large that n ≥ N implies |xn − x| < ϵ. Note that
ϵ > |x − xn| ≥ |x| − |xn|. Rearranging, we have |xn| > |x| − ϵ. Without loss of generality, take
ϵ < 1

2 |x|, so that |x| − ϵ > 1
2 |x|. Taking reciprocals, 1

|xn| <
1

|x|−ϵ
< 1

1
2 |x|

.
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Then ∣∣∣∣ 1
xn

− 1
x

∣∣∣∣ = ∣∣∣∣ x − xn

xnx

∣∣∣∣ = |x − xn|
|xn| · |x|

<
ϵ

1
2 |x| · |x|

Section Exercise 2. Prove or disprove: (xn) has a subsequence converging to x ∈ R iff for all ϵ > 0
infinitely many terms of (xn) lie in (x − ϵ, x + ϵ).

By Exercise 16, if a subsequence xnk → x, then for all ϵ > 0 all but finitely many terms of xnk are
contained in (x − ϵ, x + ϵ). It follows that infinitely many terms of the original sequence (xn) are
contained in the same interval. Conversely, if for all positive ϵ, infinitely many terms of (xn) lie in
(x − ϵ, x + ϵ), then we can define a subsequence converging to x as follows: let xn1 ∈ (x − 1, x + 1),
and for all k ≥ 2, let xnk ∈ (x − 1

k , x + 1
k ) and nk > nk−1.

Section Exercise 3. Prove: A sequence xn converges to x ∈ R if and only if every subsequence
(xnk) contains a subsubsequence (xnki

) that converges to x.

“Only if" is straightforward—every subsequence of a convergent sequence converges itself. “If” is
more challenging. Let (xn) be a sequence such that every subsequence, (xnk), contains its own
subsubsequence, (xnki

), converging to x. Choose an arbitrary ϵ > 0. We want to show that, for
sufficiently large N, n ≥ N implies |xn − x| < ϵ. Suppose not. Then for all N, there exists k ≥ N
such that |xk − x| ≥ ϵ. This defines a subsequence, (xk), which clearly has no subsubsequence
converging to x. This contradicts our hypothesis, so we must have xn → x.

Exercise 33. Consider the following non-theorem: Let xn → x ≥ 0 and (yn) be any sequence. Then
lim sup xnyn = x lim sup yn. Disprove this, then identify a tiny change to the assumptions that
makes it true (but don’t prove it).

Solution: A counterexample would be xn = 1/n and yn = n. Another would be xn = 1/n and
yn = −n. Note that in these cases the right-hand-side would be undefined. Either the assumption
that x > 0 or the assumption that (yn) is bounded would make the statement true.

Section Exercise 4. Show that

lim sup
n→∞

xn = sup{x | xnk → x for some subsequence of (xn), (xnk)}

First we consider the case −∞ < lim supn xn < ∞.

Let x∗ = lim supn xn. Suppose some subsequence xnk → x∗ + ϵ, for some ϵ > 0. Then for all
K ∈ N, there exists k ≥ K with xnk ≥ x∗ + ϵ

2 . It follows that for all N ∈ N, there exists m ≥ N
with xm ≥ x∗ + ϵ

2 . Thus, sup{xn, xn+1, . . . } ≥ x∗ + ϵ
2 for all n. This implies lim supn xn ≥ x∗ + ϵ

2 =

lim supn xn +
ϵ
2 , which is a contradiction. So x∗ is an upper bound on the set of subsequential

limits.

Alternatively, suppose that the limits of all convergent subsequences are weakly less than x∗ − ϵ,
for some ϵ > 0. By Section Exercise 3, there exists some positive δ < ϵ such that at most
finitely many xn lie in (x∗ − δ, x∗]. Denote these terms by xn1 , . . . , xnK . Then n ≥ nK + 1 implies
sup{xn, xn+1, . . . } ≤ x∗ − δ. It follows that lim supn xn ≤ x∗ − δ = lim supn xn − δ, which is
another contradiction. So x∗ is the least upper bound on the set of subsequential limits.
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Now we consider the case lim supn xn = ∞. This implies that supn{xn, xn+1, xn+2, . . . } = ∞ for all
n ∈ N. That is, for all M ∈ R and all n ∈ N, there exists k ≥ n such that xk ≥ M. In fact, for each M,
there exists infinitely many such xk. Applying this with M = 1, 2, 3, . . . , we obtain a subsequence
(xk) that diverges to ∞. Thus sup{x | xnk → x for some subsequence of (xn), (xnk)} = ∞.

Finally, we consider the case lim supn xn = −∞. This implies xn → −∞, and thus every subse-
quence xnk → −∞.

3


