Econ 6190 Problem Set 5

Fall 2024

1. Consider a random variable Z,, with the probability distribution

—n  with probability +
Zn =140 with probability 1 —
2n with probability

(a) Does Z, % 0 as n — 00? Give your reasoning clearly.
(b) Calculate EZ,. Does EZ,, — 0 as n — 00?
(c) Calculate var[Z,].

2. Let X,, and Y,, be sequences of random variables, and let X be a random variable.

(a) If X,, B cand X,, —Y,, 20, show ¥, & c.
(b) If X, 2 X and a, is a deterministic sequence such that a, — a, show that a, X, = aX.

(¢) If X,, 2 0, show that % 51

3. Let X be a random variable and let A be a set in R. Show that E[1{X € A}] = P{X € A},
where

1 fXeA

1{X € A} = :
0 ifX¢A

4. Let {X;...X,} be random sample.

(a) Suppose X; has pdf f(z) = e **1{z > 0} for some constant #. Show that
min(X1, Xs, ... X,) 5 6.

(b) Suppose X; is UJ0, 6] for some constant ¢ > 0. Show that
max (X1, Xo,... X,) 2 6.

5. |Hansen 7.6] Take a random sample {X7,..., X,,}. Which of the following statistics converge
in probability by the weak law of large numbers and continuous mapping theorem? For each,
which moments are needed to exist?



(b 711:1 ng?
C) max;<y X;,
2
% Z?:l Xi2 - (% Z?:l Xi) )
S X7

6. [Hansen 7.7] A weighted sample mean takes the form X = % > w; X, for some non negative
constants w; satisfying %Z?’:l w; = 1. Assume X; is i.i.d.

(a) Show that X* is unbiased for p = E[X],

(b

)

) Calculate var (X}),

(c) Show that a sufficient condition for X % 1 is that n=2 3" | w? — 0,
)

max;<n W;

(d) Show that a sufficient condition for the condition in part (c) is — 0 as n — oo.
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The WLLN (or specifically, Khinchine’s Weak Law of Large Numbers) says + 3" | X 5 B[X] if
{Xi,i=1...n} are i.i.d and E|X;| = E|X| < co. Hence

(a) 137" X2 5 E[X?] if EX? < co. That is, we require the second moment to be finite

(b) 23°"  X? B E[X?] if E[X;|* < co. We need third moment to be finite.

(¢) max;<, X; can not be written as an average and does not converge. If the support of X;
is bounded, say |X;| < oo, then for sure max;<, X; is bounded too. In this case, we can say
max;<, X; = Op(1).

(d) I EX? < o0,

1 n
= X?HEXY,
n

i=1

and by continuous mapping theorem: = 3" X7 — (£ 377" Xi)2 2 B[X?] — (E[X])* = var(X)

n

(e) Similarly, if EX? < oo and by WLLN and CMT:

S XE AN X, EX)
?:1 X7’ % Z?:l Xz (]E [X])z )

provided EX > 0
(f) If E|X;| < oo, 23" | X; — EX. Note the function 1{u > 0} is continuous for all points
except 0. By CMT (specifically in this case, Slutsky’s Theorem), as long as EX # 0,

1 < P
1{— X; 1{EX
{- ; >0} 5 1{EX > 0}
(g) 130 XiY; B EXY if E|XY| < oo. Since by Cauchy-Schwarz inequality

E|XY| < VEX2VEY?,

a sufficient condition for E|XY| < oo is EX? < oo and EY? < co. That is, we require both X and

Y to have finite second moment.

o

(a) Note EX; = EL3" wX; = 23" wEX; = 237 wip = pt 30w = pl = p,
where the first equality is by definition of X, the second equality holds by linearity of expectations
and because w;,7 = 1...n are constants, the third equality holds by random sampling assumption
EX; = EX = pu, the fourth equality holds since y is a constant so we can take it out of the summation,
and fifth equality holds by assumption %Z?:l w; = 1. Thus X* is unbiased.



where the first equality holds by definition of X*, the second equality uses algebra of variance, the
third equality holds because by random sampling, w;X; and w;X; are independent for i # j so all
covariance terms are zero. The fourth equality uses variance algebra again, and the final equality
holds by assuming var(X;) = o2 for some constant o?.
(¢) By Chebyshev’s inequality, X % p if E[(X} — 1)?] — 0 as n — 0. Since
= (bias(f(;:))z + var(X})
2 n
g 2
where the last equality holds by answers to (a) and (b). Hence E[(X} — )% — 0if 53" w? — 0

as n — 0.

(d) Note w;,7 = 1...n are non-negative constants and £ 3" w; = 1. It follows

n
EDBTEFDS
n? 4 Yon?4 o
=1
1 n
— w; | max w;
TLQZ v (i<n 7’)
= | max w; E W;
i<n
= | max w; E w;
i<n

1
= | maxw; | —
i<n n

Hence a sufficient condition for n™2>>" | w? — 0 is (max;<, w;) =~ — 0, or (max;<, w;) = o(n).
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