
Course Title

Solutions to Ungraded Problems
1. An individual with initial wealth w0 > 0 has EU preferences over gambles with payoff

function u(x) =
√
x. She has a lottery ticket that pays off $0 with probability 1/2 and

$12 with probability 1/2. For how much would she be willing to sell the ticket?

Solution: The expected utility of the gamble if the individual pays p is

1

2

√
w0 + 12− p+

1

2

√
w0 − p

and the utility of not accepting the gamble is
√
w0.

Obviously you are not going to solve this
analytically. And this is the point of the
problem. What do you do when you need
an answer and your model isn’t going to
conveniently give you one.

A good trick is to approximate the util-
ity function around w0 to get a rough an-
swer (which is quite good when w0 is large).√
x+ h ≈ (1/2

√
x)h. Replacing the rad-

icals with their first-order approximation
around w0 gives the ex post obvious answer
that p = 6.

2. Suppose your friend is a big NBA fan, and a game between the Celtics and the Knicks
is coming up. It’s another Boston–New York thing, and the friend has intense feelings
about the outcome. Boston can either Win, Tie, or Lose. Possible distributions over
outcomes are p = (pw, pt, pl) where the three coefficients are non-negative and sum
to 1. Your friend’s preferences are that p ≻ q if either pw > qw or pw = qw and pt > qt.
Obviously, you think, your friends preferences do not have an EU representation because
they do not have any utility representation (why?). Nonetheless, it’s interesting to ask
(for some of us, at least) which of the vNM axioms are violated by this order?

Solution: Preferences are clearly transitive and complete. What about independence?
Suppose p ⪰ q and 0 < α ≤ 1. Choose r and consider two cases:

i) Suppose that pw > qw. Then αpw+(1−α)rw > αpw+(1−α)rw so αp+(1−αr) ≻
αq + (1− αr). Clearly the converse holds as well.
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ii) Suppose pw = qw and pt > qt. Then αpw + (1 − α)rw = αpw + (1 − α)rw and
αpt + (1− α)rt > αpt + (1− α)rt. Again, αp+ (1− αr) ≻ αq + (1− αr). Clearly
the converse holds as well.

3. Show that the three vNM axioms for preferences with a finite set of outcomes are inde-
pendent, in the sense that no two implies a third.

Solution: The solution requires constructing examples; of an order that satisfies each
pair of axioms but not the third.

(a) To show that completeness is independent, consider the partial order described
by two continuous utility functions, u(x) and v(x), which are not positive affine
transforms of each other, such that p ⪰ q iff Epu ≥ Equ and Epv > Eqv. This
partial order satisfies independence and the Archimedean axiom.

(b) About transitivity, I lied. After thinking about it, I realized that independence
implies transitivity. To see why, suppose ⪰ is an intransitive order which satisfies
independence. Recall that the independence axiom forces indifference surfaces to be
hyperplanes (intersected with the set of prob dists). So take some set of indifference
hyperplanes which are ordered cyclicly. Draw a line transverse to them all, and
choose some finite set of points p1, . . . , pn on the line such that p1 ≻ p2 ≻ · · · ≻
pn ≻ p1. Since pn ≻ p1, αpn + (1−α)pn ≻ p1 + (1−α)pn by independence. Choose
α so that αpn + (1− α)p1 = pn−1. Then pn ≻ pn−1, but by construction pn−1 ≻ pn.
A contradiction.

(c) Here is an order which satisfies independence, completeness, and transitivity, but
not Archimedes. Again consider two continuous utility functions u and v, and define
p ≻ q is Epu > Equ or Epu = Equ and Epv > Eqv.

(d) Obviously one can describe a utility function on the set of probability distributions
which is continuous and not linear in probabilities.

4. Suppose that X is a subset of the set of real numbers. A probability distribution µ
first-order stochastic dominates (FOSD) a probability distribution ν If their CDFs are
ordered Fµ(x) ≤ Fν(x) for all x, with strict inequality for some real x. Intuitively, ν puts
more weight on all small numbers than does µ. A payoff function u : X → R respects
first-order stochastic dominance if for all µ and ν such that µ FOSD ν, Eµu > Eνu;
that is, µ is better than ν. Show that expected utility preferences with payoff function u
respect first-order stochastic dominance if and only if u is increasing almost surely with
respect to µ and ν.

Solution: Actually, once again . . . FOSD implies u is increasing, but the converse is
not.
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Suppose x1 < x2 ∈ X, and u(x1) > u(x2). Consider two lotteries p = (p1, p2) and
q = (q1, q2) that put all their mass on x1 and x2. If p1 > q1 then q stochastically
dominates p. But clearly Epu > Equ, so if ⪰ respects FOSD, then u cannot represent it.

An equivalent definition of FOSD is that µ stochastically dominates ν iff Eµf > Eνf for
every strictly increasing f : X → R. Another kind of stochastic dominance is second-
order stochastic dominance: µ second-order dominates ν if Eµf > Eνf for every strictly
increasing and concave f : X → R.

5. A problem only for those who have (or want to have) theory chops. MWG prove the EU
representation theorem for finite sets. In this case we can think of combining lotteries
by taking convex combinations. Lotteries that have certain outcomes are called simple
lotteries. The lottery αp + (1− α)q can be thought of as a lottery whose outcomes are
simple lotteries: p with probability α and q with probability (1 − α). Such lotteries
are called compound lotteries. We implicitly assumed that compound lotteries can be
reduced to simple lotteries by multiplying through by the scalars and adding. So it
suffices to think of mixing lotteries as taking convex combinations. This doesn’t really
work well for more complex settings. Instead we talk about mixture spaces.

A mixture space is a set P and a family of operations ◦a : P × P → P for 0 ≤ a ≤ 1
such that

a. p⊗1 q = p,

b. p⊗a q = q ⊗1−a p,

c. (p⊗b q)⊗a q = p⊗ab q.

Show that these axioms imply that

d. p⊗a p = p,

e. (p⊗b q)⊗a (p⊗c q) = p⊗ab+(1−a)c q.

Solution: For part d),

p⊗a p = (p⊗1 q)⊗a p by a

= (q ⊗0 p)⊗a p by b

= q ⊗0a p = q ⊗0 p by c

= p⊗1 q by b

= p by a

3 of 4



For part e)

(p⊗b q)⊗a (p⊗c q) =
(
p⊗c q)⊗b/c q

)
⊗a (p⊗c q) by c

=
(
q ⊗1−b/c (p⊗c q)

)
⊗a (p⊗c q) by b

= q ⊗a−ab/c (p⊗c q) by c

= (p⊗c q)⊗1−a+ab/c q by b

= p⊗ab+(1−a)c q by c

It seems that mixtures are just a tedious way of rewriting convex sets. But this is not
true. The deeply interested among you might see if you can construct an example of a
non-convex mixture space.
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