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Exercise 2

1. Prove that the arbitrary union of open sets is open

Proof. Define a (not necessarily finite) collection of open sets O. We want to show that
󰁖

Oi∈O Oi

is open. Take some x ∈
󰁖

Oi∈O Oi. ∃ i s.t. x ∈ Oi. Since Oi is open, ∃ ε s.t. Bε(x) ⊆ Oi. Then
Bε(x) ⊆

󰁖
Oi∈O Oi. Thus,

󰁖
Oi∈O Oi is open.

2. Prove that the intersection of finitely many open sets is open

Proof. Define a finite collection of open sets O, where |O| = n < ∞. We want to show that
󰁗n

i=1 Oi

is open. Take some x ∈
󰁗n

i=1 Oi. We have that x ∈ Oi ∀ i = 1, . . . , n. Since each Oi is open, for
each Oi ∃ εi s.t. Bεi(x) ⊆ Oi. Define ε󰂏 = min{ε1, ε2, . . . , εn}. Then Bε󰂏(x) ⊆ Bεi(x) ∀ i. Thus,
Bε󰂏(x) ⊆ Oi ∀ i, so Bε󰂏(x) ⊆

󰁗n
i=1 Oi, and

󰁗n
i=1 Oi is open.

3. What about arbitrary intersections of open sets? Nope!

Disproof. Consider as an example O, where Oi ∈ O is defined as the interval (−1, 1
i ), and Oi is

defined as such for all i ∈ N. Then
󰁗

Oi∈O Oi = (−1, 0]. Taking x = 0, any ε admits Bε(x) that
contains some element of the positive reals. Thus, Bε(x) ∕⊆ (−1, 0] for all ε > 0, and

󰁗
Oi∈O Oi is not

open.

Exercise 3 Prove that the interval [a, b] is closed.

Proof. Note first that ∀ x ∈ [a, b], x ≥ a and x ≤ b. This means that sup[a, b] = b, and inf[a, b] = a, i.e.,
the interval [a, b] contains its suprema. Towards a contradiction, assume that there exists some sequence
{xn} ⊆ [a, b] such that xn → x for some x ∕∈ [a, b]. This admits two cases. First, assume that x > b, meaning
that ∃ ε′ > 0 s.t. x = b + ε′. Choosing ε < ε′, we have that ∃ N ∈ N s.t. |xn − x| < ε ∀ n > N . This
means that ∃ xn ∈ Bε(x). However, since we assumed that x − b = ε′ > ε, this would mean that xn > b,
contradicting the fact that b = sup[a, b] ≥ xn. The second case assumes that x < a, which means that
∃ ε′ > 0 s.t. x = a− ε′. Choosing ε < ε′, we have that ∃ N ∈ N s.t. |xn − x| < ε ∀ n > N . This means that
∃ xn ∈ Bε(x). However, since we assumed that a− x = ε′ > ε, this would mean that xn < a, contradicting
the fact that a = inf[a, b] ≤ xn. Thus, we have found a contradiction, so [a, b] contains its limit points and
is closed.

A second, topological proof:

Proof. Define an open cover of [a, b] as O, a (not necessarily finite) collection of open sets such that
[a, b] ⊆

󰁖
Oi∈O Oi. Define S := {x | [a, x] is covered by finitely many elements of O}. Note that S is

nonempty because taking x = a, since a ∈
󰁖

Oi∈O Oi, there exists at least one i such that a ∈ Oi, and {a} is
covered by finitely many (namely, one) elements of O. It remains to show that supS = b. First, note that
b is an upper bound of S trivially, because x ≤ b ∀ x ∈ [a, b]. Define x0 = supS. Towards a contradiction,
assume that x0 < b. First note that x0 > a, because a ∈ Oi, so ∃ ε > 0 s.t. Bε(a) ⊆ Oi, which means that
a+ ε > a can be covered by finitely many Oi ∈ O, so x0 > a. Note that since x0 is also in an open set (call
it O0), ∃ ε > 0 s.t. Bε(x0) ⊆ O0. By the density of the reals, ∃ y ∈ [a, b] s.t. x0 < y < x0 + ε. Thus, [a, y]
can be covered by a finite union of open sets, taking the union of the finite collection of open sets that cover
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[a, x0] and U0. This contradicts the earlier assumption that x0 = supS, so b = supS. Thus, [a, b] can be
covered by a finite subcover of O, and is compact. By Heine-Borel, it is closed.

Exercise 4

1. Prove that the arbitrary intersection of closed sets is closed

Proof. Define a (not necessarily finite) collection of closed sets C. We aim to show that
󰁗

Ci∈C Ci is
closed. Take some sequence {xn} ⊆

󰁗
Ci∈C Ci, where xn → x. We have that {xn} ∈ Ci ∀ Ci ∈ C.

Since each Ci is closed, by the limit definition of closed sets, x ∈ Ci ∀ Ci ∈ C. Thus, x ∈
󰁗

Ci∈C Ci,
and

󰁗
Ci∈C Ci is closed.

2. Prove that the finite union of closed sets is closed

Proof. Define a finite collection of closed sets C, where |C| = n < ∞. We aim to show that
󰁖n

i=1 Ci is
closed. Take some sequence {xn} ⊆

󰁖n
i=1 Ci, where xn → x. We have that at least one Cj ∈

󰁖n
i=1 Ci

contains infinite elements of {xn}, as {xn} is an infinite sequence so it cannot be the case that only
finite elements of it are contained in a finite union of sets. Define the subsequence {xnk

}, where
nk ∈ {n | xn ∈ Cj}. From Exercise 26 in Problem Set 2, {xnk

} → x. Since Cj is closed, x ∈ Cj , which
means that x ∈

󰁖n
i=1 Ci, so

󰁖n
i=1 Ci is closed.

3. What about arbitrary unions of closed sets? Nope!

Disproof. Define an infinite collection of closed sets C as follows: Cn ∈ C is such that Cn = { 1
n}, for

all n ∈ N. Each set is closed because finite sets are closed. However, taking {xn} where xn = 1
n , we

have that xi ∈ Ci ∀ i ∈ N. However, xn → 0, and 0 ∕∈
󰁖

Cn∈C Cn, so an infinite union of closed sets is
not necessarily closed.

Additional Exercise 1 Extend Bolzano-Weierstrass into Rd. The statement is:
Theorem 1. Every bounded sequence {xn}n ∈ Rd has a convergent subsequence {xnk

}k ∈ Rd.

Proof. Induction on d. The base case R1 is the exact statement of Bolzano-Weierstrass we had in class.
Assume that this theorem holds for each bounded sequence in Rk. It remains to show that it holds for bounded
sequences in Rk+1. Take some sequence {xn}n ∈ Rk+1 which is bounded, meaning that there exists b ∈ R
such that |xi,j | < b ∀ i, j. Take the sequence {xn}n\xk+1 ∈ Rk, i.e., the above bounded sequence less its final
element. Since this sequence is bounded, there exists a subsequence {xni

} ∈ Rk such that xni
→ x ∈ Rk. This

means, from class, that xni,j → xj ∀ j = 1, . . . , k. Finally, consider the sequence {xn,k+1}n ∈ R1. We have
that this sequence is bounded, so by Bolzano-Weierstrass it has a convergent subsequence, which we denote
as {xnl,k+1}l ∈ R, where xnl,k+1 → xk+1 ∈ R. Construct a subsequence of the (original) {xn}n ∈ Rk+1 as
follows. {xnm}m, where m ∈ {m | ∃ xni ∈ {xni} s.t. m = ni, ∃ xnl

∈ {xnl
} s.t. m = nl}. Since the two other

respective subsequences are infinite, {xnm} has infinite elements, and since xnm,j → xj ∀ j ∈ 1, . . . , k+ 1 by
definition, xnm

→ x. Thus, an arbitrary bounded sequence {xn}n ∈ Rk+1 has a convergent subsequence.

Additional Exercise 2 Prove the following:
Theorem 2. A set S ⊆ Rd is sequentially compact if and only if it is closed and bounded.

Proof. (closed and bounded ⇒ sequentially compact): We have that S is closed and bounded. Take some
sequence {xn}n ∈ S. Since S is bounded, {xn}n is bounded and has a convergent subsequence {xnk

}k → x
by Bolzano-Weierstrass. Since {xnk

}k ∈ S and S is closed, x ∈ S by the limit definition of closed sets. Thus,
S is sequentially compact.

(sequentially compact ⇒ closed): We have that S is sequentially compact. Take some convergent sequence
{xn}n ∈ S where xn → x. Since S is sequentially compact, {xn}n has a convergent subsequence {xnk

}k
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where xnk
→ x′ ∈ S. Since all subsequences of a convergent sequence converge to the same limit, x′ = x, so

x ∈ S. Thus, S contains its limit points and is closed.

(sequentially compact ⇒ bounded): Towards a contradiction, assume that S is sequentially compact but not
bounded. WLOG, assume that it is not bounded above, meaning that ∀ b ∈ Rd, ∃ x ∈ S s.t. x > b. We will
construct a sequence as follows. Take some x1 ∈ S. Since S is not bounded above, ∃ x2 ∈ S s.t. x2 > y ∀ y ∈
B1(x1), where B1(x1) is the ε-ball of length 1 about x1. If x2 did not exist in S, x2 would be an upper
bound for S. Thus, x2 ∈ S. Define x3, where x3 ∈ S where x3 > y ∀ y ∈ B1(x2), and do so to construct
xn ∀ n ∈ N. {xn}n is a sequence in S. It remains to show that it has no convergent subsequence. Note that
{xn}n is not Cauchy, since taking ε < 1, |xn − xm| > 1 > ε ∀ n,m ∈ N. Thus, {xn}n is not convergent.
Additionally, this condition holds for every subsequence {xnk

}k, since ∀ nk,mk ∈ N, |xnk
− xmk

| > 1, so
every subsequence is not convergent, contradicting the definition of sequential compactness. Note that we
assumed S was not bounded above, but the same proof with signs flipped suffices if S is not bounded below.
Thus, S is bounded.
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