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Introduction

Sections will primarily focus on reviewing difficult questions from the most recent problem set,
and difficult topics from the most recent lectures. I will also include original “Section Exercises”
that are similar in style to problem-set and exam questions. Where possible, these will include
actual past exam questions.

Exercise 7. Let S and T be nonempty and bounded subsets of R. TFU:

sup(SUT) = max{sup S,sup T}

Solution. True. WLOG, let sup S > sup T. Then for any s € S, we have sup S > s. Moreover, for
any t € T, we have supS > sup T > t. Therefore, for any x in S U T, we have sup S > x. Thus,
sup S is an upper bound for S U T and we need only show that it is the least such upper bound.
Let u be an arbitrary upper bound for S U T. Then u must also be an upper bound for S. But then,
by definition, sup S < u. Since u is an arbitrary upper bound of S U T, this means that sup S is the
least upper bound of SUT.

Section Exercise 1. Use proof by induction and Exercise [7] to show that if {S; | i = 1,2,...,N},
N € N is a collection of nonempty and bounded subsets of IR, then

N
sup (U Si> = max{supS; |i=1,...,N}

i=1

1Changecl to avoid clash with Tak’s OH.



Solution.
This is trivially true for N = 1, and Exercise [7] proves it for N = 2. Suppose that it’s also true for
some natural number N — 1 > 2. That is,

N-1
sup(U Si>:max{sup5i|i:1,...,N—1} (1)
i=1

We want to show that it must then be true for N. Write

- ([j si> — sup (NJ U sN>

i=1 i=1

N-1
= max {sup ( U Si> ,supSN}
i=1

= max {max{sup S; |i=1,...,N—1},supSn}
=max{supS;|i=1,...,N}

where the second equality uses Exercise[7] and the third equality uses our induction hypothesis
()4

Problem 1. Let A and B be nonempty subsets of R. Define A+ B:={a+b|a € Aandb € B},
and define A — B similarly. Show the following:

1. sup(A + B) = sup(A) + sup(B)
2. sup(A — B) = sup(A) —inf(B)

Solution.

1. Suppose x € A+ B. Then x = a+ b for some a € A,b € B, implying a < supA and
b <sup B. Thus x < sup A + sup B. This implies sup A + sup B is an upper bound of A + B, and
so sup(A + B) < sup A + sup B.

Conversely, say sup A + sup B > sup(A + B).

First, assume that both A and B are bounded above. Then sup A > sup(A + B) — sup B implying
that there exists an a € A such that a > sup(A + B) — sup B. Therefore, sup B > sup(A + B) —a.
It follows that there must exist some b € B such that b > sup(A + B) — a. This implies that there
exists a € A and b € B such that a + b > sup(A + B), contradicting the definition of sup(A + B).

Now, suppose that one of A or B has no upper bound. WLOG, say sup A = co. Then, because
B # @, we have sup B > —oo, and so sup A 4 sup B = co. Furthermore, if for all M € R, we
can find an 2 € A such that 2 > M, then, fixing some b € B, we can find somea+b € A+ B
such that a +-b > M + b. Because M is arbitrary, this proves unboundedness of A 4 B above, so
sup A+ B = co.

(Skip this in section.) 2. Define —B := {—x € R | x € B}.

The fourth equality uses max{xy, ..., xx} = max{max{xy,...,xg_1},xx}. I consider this obvious enough not to
warrant proof, but it can be proven by an induction argument using the definition of a maximum.



First, suppose that B is bounded below, or equivalently, —B is bounded above. This implies that
A—B = A+ (—B)and sup(A — B) = sup A+ sup(—B) by part 1. The supremum of —B is defined
by sup(—B) > —x for all x € B and sup(—B) < m, for all upper bounds, m, of —B. Equivalently,
—sup(—B) < x for all x € B and —sup(—B) > —m, for all lower bounds, —m, of B. But this is
just the definition of the infimum of B, so inf B = — sup(—B). Thus, sup(A — B) = sup A — inf B.

Now, suppose B is unbounded below. Then inf B = —o0, so —inf B = —(—o0) = oco. Therefore
sup A —inf B = co. Because B is unbounded below, for any M € IR, we can find some b € B such
that b < —M. Equivalently, —b > M. Then, fixing some a € A, we can find ana — b € A — B such
that a — b > a 4+ M. This proves unboundedness of A — B above, so sup(A — B) = c.

Remark 1. Note that we can only say there exists 2 € A satisfyingsup A —e <a <sup Aif sup A
is finite. If sup A were infinite, we would be saying co < a < oo, which doesn’t make sense.

Remark 2. If A was empty and B unbounded above, we would have sup A + sup B = —oo + oo,
which is undefinedﬁ Hence, the nonemptiness restriction in the question.

Section Exercise 2. Let (a,) and (b,) be two sequences and define sup x, := sup{x, | n € IN}.
Prove that sup(a, + b,) < supa, + sup by, and give an example to show that the inequality may
hold strictly. Compare with the previous problem.

Let x; = ai + by for some k. Then x; < supa, + sup b,. This implies sup a, + sup b, is an upper
bound of (x,) = (a, + by), so sup(a, + b,) < supa, + sup b,. The reverse inequality does not
hold. Consider the sequences (a,) = (—1,1,—-1,1,—1,...) and (b,) = (1,—-1,1,—1,1,...), which
have

sup(a, +b,) =sup0 =0 <2 =supa, +supb,

The key difference from the previous problem is that sequence addition is defined for corresponding
entries, giving sup(a, + b,) = sup{a, + b, | n € N}. Whereas set additiorﬁ entails addition of
each element of one set with every element of the other. If we added the sequences as sets of values,
we would get sup{a, + by, | n,m € N}, which is potentially larger than the previous expression.

Problem 2. Let A and B be nonempty sets, and let f : A x B — R be some real valued function.
1. Show that
inf b) < inf b).
ok o) < fnsup (o
2. Give an f : [0,1]?> — R for which the above inequality is strict.
Note: For a real valued function, f, on a nonempty set, S, sup, ¢ f(x) = sup{f(x)|x € S}.

Remark 3. Note that sup,., f(a,b) = sup{f(a,b) | a € A} depends on b. However, if we plug
in a specific b, it is unique. Therefore, we can think of sup,_, f(a,b) as a function of b, call it
g : B — R. Then infy sup, f(a,b) = inf, g(b) = inf{g(b) | b € B}.

3Intuitively, this means that the limit of the sum of two sequences, one diverging to co and the other diverging to —co
could equal any number in R U {co, —co} or may not even exist, depending on the particular sequences being added.
4Formally, Minkowski addition.



Solution to problem:
1. Suppose
sup mff(a b) > infsup f(a,b)

acA beB beB acA

Then there must exist 2 € A such that

inf f(a,b) > inf sup f(a,b) (2)

beB beB acA

(For otherwise sup, , infycp f(a,b) would not be the supremum of {inf,cp f(a,b) | a € A}). But
@) is false as

f(a,b) € {f(a,b)|ac A}

SO
sup f(a,b) > f(a,b) forall b € B
acA
hence|
inf sup f(a,b) > mff(a b)

beB acA

This proves

sup 1nff(a b) < mf supf(a b)

acA beB B hca

by contradiction.

2. There are many possible Counterexamplesﬁ For example, if f: [0,1]> — R is given by
f(a,b) = (a — b)? then

(seta=1)

_H)\2 —
sup(a =) (seta =0)

acA

(1-b)? ifb<
b? ifb>

N= N

This implies infyep sup,. 4(a — b)? = (1/2)? = 1/4. On the other hand,

;nlg(u— b)>=0forallac A (setb=a)
S

Therefore,

sup inf(a —b)?> =0 < 1/4 = inf sup(a — b)?

acA beB beB a€A

SLemma: g(x) < h(x) for all x € X implies inf,cx g(x) < infyex i(x). Proof: Suppose not. Then inf g(x) > infh(x),
so there exists X such that inf g(x) > k(). But then ¢(¥) > h(X), a contradiction.
6f(x,y) = 1{x = y} is a simple one.



From the remark, sup ., f(a,b) is a function of b, and infycp f(a, b) is a function of a. We know
that f(a,b) = (a — b)? is minimised with respect to b by choosing b = a. Graphically, this is the
45° line through the origin on the contour plot. Whereas f (4, b) is maximised with respect to a by
choosing @ = 1{a < 1/2}. On the contour plot, this is a vertical line between (0,1) and (0, 3), and
a second vertical line between (1, ) and (1,0).



