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Exercise 7 from Notes The claim is true.

Proof. WLOG, assume that supS ≥ supT . max{supS, supT} = supS. By definition, supS ≥ s ∀ s ∈ S.
Also since supS ≥ supT , supS ≥ supT ≥ t ∀ t ∈ T . Thus, since supS ≥ s ∀ s ∈ S and supS ≥ t ∀ t ∈ T ,
supS is an upper bound of S ∪ T , and so supS ≥ sup(S ∪ T ).

It remains to show that supS is the least upper bound of S ∪ T . This follows directly from the ε-ball
definition of supremum. ∀ ε > 0, ∃ s ∈ S s.t. s+ ε > supS. If it were the case that supS ≥ sup(S ∪T ), then
∃ ε′ > 0 s.t. supS = sup(S ∪ T ) + ε. However, choosing ε < ε′, ∃ s ∈ S s.t. s+ ε > supS ⇒ s > supS − ε >
sup(S∪T ). This is a contradiction, so supS is the least upper bound of S∪T , and since suprema are unique,
sup(S ∪ T ) = max{supS, supT}.

Exercise 1

(i) sup(A+B) = supA+ supB

Proof. Take some a + b ∈ A + B. Since a ≤ supA and b ≤ supB, a + b ≤ supA + supB. Thus,
supA+supB is an upper bound of A+B. It remains to show that supA+supB is the least upper bound
of A+B. FSOC, assume that sup(A+B) < supA+supB. Choose ε = (supA+supB−sup(A+B))/3.
By the ε-ball definition of suprema, ∃ a ∈ A and b ∈ B s.t. a + ε > supA and b + ε > supB. a + b ∈
A+B by definition, but since ε = (supA+supB−sup(A+B))/3, a+b > supA+supB−2ε > sup(A+B).
This is a contradiction, so supA + supB is the least upper bound of A + B, and since suprema are
unique, sup(A+B) = supA+ supB.

Alternative Topological Proof:1

Proof. Consider the closure of A, denoted A, where A = A ∪ ∂A, the union of A and the boundary
of A, as well as B. Since the closure contains the union of all sequences in the set, sup(A) ∈ A, and
sup(A) = sup(A). Similarly, sup(B) = sup(B) ∈ B. Also note that sup(A+B) = sup(A+B) ∈ A+B.
Also note that since a ≤ sup(A) ∀ a ∈ A and b ≤ sup(B) ∀ b ∈ B, a+ b ≤ sup(A) + sup(B) ∀ a+ b ∈
A + B. Thus, since sup(A) + sup(B) ∈ A + B, sup(A) + sup(B) = sup(A + B), since suprema are
unique, and so supA+ supB = sup(A+B).

(ii) sup(A−B) = supA− inf B

Proof. Take some a − b ∈ A − B. Since a ≤ supA and b ≥ inf B, a − b ≤ supA − inf B. Thus,
supA−inf B is an upper bound of A−B. It remains to show that supA−inf B is the least upper bound
of A−B. FSOC, assume that supA− inf B > sup(A−B). Choose ε = (supA− inf B > sup(A−B))/3.
By the ε-ball definition of suprema and infima, ∃ a ∈ A and b ∈ B s.t. a+ ε > supA and b− ε < inf B.
a − b ∈ A − B by definition, but we have that a − b > supA − inf B − 2ε > sup(A − B). This is
a contradiction, so supA − inf B is the least upper bound of A − B, and since suprema are unique
sup(A−B) = supA− inf B.

1Because Topology is fun!
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Exercise 2

(i) supa∈A infb∈B f(a, b) ≤ infb∈B supa∈A f(a, b)

Proof. By the ε-ball definition of suprema, ∀ ε > 0, ∃ a′ ∈ A s.t. infb∈B f(a′, b)+ε > supa∈A infb∈B f(a, b).
Also, from the definition of infima, we have that infb∈B f(a′, b) ≤ infb∈B supa∈A f(a, b). Combining,
we get that

sup
a∈A

inf
b∈B

f(a, b)− ε < inf
b∈B

f(a′, b) ≤ inf
b∈B

sup
a∈A

f(a, b)

and since this is true ∀ ε > 0, we have that supa∈A infb∈B f(a, b) ≤ infb∈B supa∈A f(a, b).

(ii) Consider the function f : [0, 1]2 → R where

f(a, b) =

󰀻
󰁁󰀿

󰁁󰀽

0 a ∕= 0, b = 0

0 a ∕= 1, b = 1

1 otherwise

infb∈B f(a, b) = 0 since given any a, either b = 0 or b = 1 will attain f(a, b) = 0, so the left side is
supa∈A 0 = 0. However, supa∈A f(a, b) = 1, since given any b, a choice of a = 0 or a = 1 will attain
f(a, b) = 1, so the left side is infb∈B 1 = 1. Thus, supa∈A infb∈B f(a, b) < infb∈B supa∈A f(a, b).
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