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Problem 1: Xi are i.d.i.d with E[Xi] = µi and var[Xi] = σ2
i .
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Problem 2: From Bayes’ Rule, we have that
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which simplifies to
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Since we have that X1 ∼ N (µ,σ2), we have that (X1 − µ)/σ ∼ N (0, 1). Thus, defining Φ as the cdf of the
standard normal, we get that this equation is equivalent to
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Problem 3 We have that the standard normal density is given by
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Then to find E[Z2], we can use the definition and get that
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where the last equality follows from the fact that the mean of a standard normal is 0, and the integral over
R of any pdf is 1.
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(a) We have from the definition that the marginal distribution of Y is
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(b) Recall that the conditional density of a random variable is the joint density divided by the marginal
density of the other random variable. We have that

f(x | Y = y) =
f(x, y)

fY (y)
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Thus,
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(c) We have that Z is a linear combination of two jointly normal random variables, so it is jointly normal
with Y . It thus suffices to show that cov(Z, Y ) = 0, because with jointly normal random variables
uncorrelatedness implies independence. Then

cov(Z, Y ) = E[ZY ]− E[Z]E[Y ]
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Thus, Z and Y are independent.

Problem 5

(a) We have that E[u] = E[H ′e] = H ′ E[e] = H ′0 = 0. We also have that var(u) = var(H ′e) =
H ′var(e)H = H ′Inσ

2H = Inσ
2. Thus, u = H ′e ∼ N (0, Inσ

2).

(b) We have that E[u] = E[A−1e] = A−1 E[e] = A−10 = 0. We also have that var(u) = var(A−1e) =
A−1var(e)A−1′ = A−1ΣA−1′ = A−1AA′A−1′ = (A−1A)(A′A−1′) = InIn = In. Thus, u = A−1e ∼
N (0, In).

Problem 6 We have that

cov(σ̂2, X̄) = E[σ̂2X̄]− E[σ̂2]E[X̄]

= E[σ̂2(X̄ − µ)] + E[µσ̂2]− µE[σ̂2]

= E[σ̂2(X̄ − µ)]

There are a number of sufficient conditions. One would be if the sample mean X̄ is equal to the population
mean µ.
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