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A Search and Matching Model

The problem sets in this course will focus on a “simple” Neoclassic model with search and
matching in the labor market. Intellectually, search is an important feature for our models
to be able to speak to unemployment and, depending on the wage-setting design, can do
a better job matching macro data than a model with frictionless labor markets. Computa-
tionally, search makes employment a state variable, which makes our job as computations
macroeconomists a little more interesting. The following notes present the model we will be
using, in two different formulations.

1 Planner’s Economy

We first introduce the planner’s version of our model economy. This will make our derivation
of the equilibrium conditions much easier. But it also eliminates some interesting externalities
that play a crucial role in many analyses of model with search.

In the planner economy, consumer welfare is given by

U({Ct}) ≡
∞∑
t=0

βt C
1−σ
t

1− σ
(1)

The household supplies a unit of labor inelastically, St = 1.
The production side of the economy is specified by a production function

Yt = AtK
α
t N

1−α
t , (2)

a law of motion that describes how capital evolves,

Kt+1 = (1− δk)Kt + It, (3)

and a law of motion that describes how workers match and separate with firms,

Nt = (1− δn)Nt−1 +M(Vt, St). (4)

In the above, M(Vt, St) is an aggregate matching function that determines how many
new workers the firm can hire as function a function of the number of vacancies posted in
the economy, Vt, and the number of workers searching for positions St = 1. This function is
assumed to be a constant returns to scale function. The parameters δk measures how quickly
capital depreciates, and δn is the exogenous rate of separation of workers who leave their jobs
in a period.
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The aggregate resource constraint is

Yt = Ct + It + ϕnVt. (5)

The planner problem is therefore

max
{Ct,It,Vt,Yt,Nt,Kt+1}

E0 [U({Ct})]

subject to (2) - (5). We could eliminate variables and constraints from this problem, but
we’ll wait until later to do that.

We’ll now derive necessary optimality conditions using two different techniques. Eventu-
ally, we’ll see that the two approach suggest different methods for solving the model.

1.1 Solution Method 1: The Lagrangian

The Lagrangian of the model is:

max
{Ct,It,Vt,Yt,Nt,Kt+1}

E0

∞∑
t=0

βt

{
C1−σ

t

1− σ
+ λ1,t

(
AtK

α
t N

1−α
t − Yt

)
+ λ2,t ((1− δk)Kt + It −Kt+1)

+ λ3,t ((1− δn)Nt−1 +M(Vt, St)−Nt)

+ λ4,t (Yt − Ct − It − ϕnVt)

}
The model’s necessary first order conditions – without any simplification – are:

0 = C−σ
t − λ4,t (C)

0 = λ2,t − λ4,t ( I)

0 = λ3,tMv(Vt, St)− ϕnλ4,t (V)

0 = −λ1,t + λ4,t (Y)

0 = λ1,tAtK
α
t (1− α)N−α

t − λ3,t + βEt [λ3,t+1(1− δn)] (N)

0 = −λ2,t + βEt

[
λ1,t+1At+1αK

α−1
t+1 N

1−α
t+1 + λ2,t+1(1− δk)

]
. (K)

Notice that I’ve been careful to state my constraints so that all Lagrange multipliers turn
out to be positive. The equations above imply that λ1,t = λ2,t = λ4,t = C−σ

t and λ3,t =
C−σ

t ϕn/Mv(Vt, St), so we eliminate these variables from everywhere. The simplified first
order conditions are

1 = βEt

[(
Ct+1

Ct

)−σ (
At+1α(Kt+1/Nt+1)

α−1 + 1− δ
)]

(6)

ϕn

Mv(Vt, St)
= At(1− α)(Kt/Nt)

α + βEt

[(
Ct+1

Ct

)−σ
ϕn

Mv(Vt+1, St+1)
(1− δn)

]
, (7)

plus all of constraints (2) - (5) again.
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Equation (6) is often called the “capital Euler Equation”, or sometimes the “intertemporal
Euler equation” although obviously there is more than one intertemporal optimality condition
in this model. This equation equates the cost of purchasing one unit of investment (the
consumptions-investment exchange rate is just unity) and the benefits that it brings. These
benefits only occur the following period, when the capital earns its marginal product and a
fraction of it continue on into the second period.

Equation (7) is the “labor Euler equation” or, sometimes, the “vacancy posting condi-
tion”, since it equates the cost of hiring an additional work (equal to the cost of posting
a position ϕ, divided the by the marginal increase in the number of jobs created by that
posting, Mv(Vt, St)) with the returns of having that worker. Notice that since we assume
the work starts producing in the same period, their marginal product is in terms of today’s
technology At. The second term on the right-hand-side of (7) is the value of having a worker
(equivalently, the cost of replacing a worker) times the probability that the worker hired
today does not separate between periods.

In both (6) and (7), returns that happen in the future are discounted to be in terms of

units of consumption today by Mt+1 ≡ β
(

Ct+1

Ct

)−σ

. This object Mt+1 is often referred to as

the “stochastic discount factor” because it converts future returns which may be uncertain
into certainty-equivalent units of consumption today. It has a very important role in macro-
finance, asset pricing, as well as macroeconomics models where risk plays an important role.
Please take note that Mt+1 is not related with the matching function M(·) or its derivative
Mv(·): I’ve chosen this confusing notation because these objects often appear in this literature
with similar notation. The fact that this notation is fairly standard give you a hint that asset
pricing and labor search models are not studied together all that often.

The Matching Function

In the above, we’ve left the matching function M(Vt, St) as a generic function. Most of
the literature following Mortensen and Pissarides (1994) has assumed that the matching
function satisfies the standard assumption of a Neoclassical production function. For now we
will assume

M(Vt, St) = χV ε
t S

1−ε
t . (8)

This function has lots of advantages, but also a big disadvantage: it doesn’t guarantee
that the probability that a vacancy posted is filled by a worker actually falls in [0, 1]. Or,
relatedly, that the number of people hired actually is less than the number of people looking
for jobs. You can look at den Haan et al. (2000) for some ideas about other possible matching
functions that are more micro-founded, though they can also be a bit harder to work with.

Let now impose this form and our assumption that St = 1, to get

Mv(Vt, St) = εχV ε−1
t . (9)

Exogenous Processes

The final step to closing our model is to make some assumption about the exogenous processes
in the model economy. We could assume that any of the parameters we’ve named are time-
varying, and indeed some of these “shocks” have appeared in all kinds of DSGE models.
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Instead, for now, we’ll assume that technology is the only thing that is moving exogenously.
In particular, we’ll assume

log(At+1) = ρ log(At) + σaϵt+1. (10)

Steady State

Before we approach our model numerically, we are almost always going to want to find
the value of endogenous variables at the models steady state. (If the model has a trend in
productivity, then we are going to look for the balanced growth path, which can be surprising
tricky!). To find the steady state, we can write necessary equilibrium conditions (2) - (7)
again but dropping time subscripts everywhere. Our assumptions about productivity imply
that A = 1 in a non-stochastic steady state.

Y = KαN1−α (11)

I = δkK (12)

N =
χ

δn
V ε (13)

Y = C + I + ϕnV (14)

1 = β
(
α(K/N)α−1 + 1− δ

)
(Kss)

ϕn

εχV ε−1
= (1− α)(K/N)α + β

ϕn

εχV ε−1
(1− δn) (V ss)

As is often the case in models based on the Neoclassical growth model, equation (Kss) is
going to be a good place to start to “unwind” these equations. We find that the steady-state
capital to labor ratio is:

K

N
=

(
β−1 − 1 + δ

α

) 1
α−1

. (15)

Often in models like this it easy to find K/N and hard to find their levels. But the search
side of this economy actually helps us in this case. Using (V ss), we can do some rearranging
to find

V =

(
εχ

ϕn

(1− α)

1− β(1− δn)
(K/N)α

) 1
1−ε

. (16)

From here, equation (13) lets us back out N . We can can then get the level of K from the
ratio. The levels Y and I come from equations (11) and (12). Finally, we can back out C
from (14).

Whenever we want to solve a model, its a very good idea to have this steady state worked
out. First, in doing so, we’ll often catch mistakes with out dynamic equations. Second, we’re
able to see peculiarities about our model that are hard to see otherwise. Here, for example,
its clear could find parameters that lead to negative consumption in steady-state. That’s
not a great implication for a model to have and have to decide if we think this is a sign of
fundamental problem with the coherence of the model, or just a situation that we can ignore
because, for example, it only occurs at really strange values of the parameters.
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1.2 Solution Method 2: The Value function

To solve the planner’s problem with the value function approach, we first set up our Bellman
Equation:

V (Kt, Nt−1, At) = max
Kt+1,Nt

Ut (Ct) + βEtV (Kt+1, Nt, At+1) (17)

subject to

Ct = Yt + It + ϕVt (18)

= AtK
α
t N

1−α
t − (Kt+1 − (1− δk)Kt)− ϕn

(
Nt − (1− δn)Nt−1

χ

) 1
ε

. (19)

The second equality uses Yt = AtK
α
t N

1−α
t , It = Kt+1 − (1− δk)Kt. Also, we know that

Vt =

(
Nt − (1− δn)Nt−1

χ

) 1
ε

(20)

from rearranging Nt = (1− δn)Nt−1 + χV 1−ε
t Sε

t and imposing that St = 1.
Imposing these constraints, we have:

V
(
Kt, Nt−1, At

)
= max

Kt+1,Nt
U

AtK
α
t N

1−α
t −

(
Kt+1 − (1 − δt)Kt

)
− ϕn

(
Nt − (1 − δn)Nt−1

χ

) 1
ε

 + βEtV
(
Kt+1, Nt, At+1

)
. (21)

The first-order conditions are:

−U ′ (Ct) + βEtVK (Kt+1, Nt, At+1) = 0 (Kt+1)

U ′ (Ct)

[
−ϕn

εχ

(
Nt − (1− δn)Nt−1

χ

) 1
ε−1

+At

(
Kt

Nt

)α

(1− α)

]
+ βEtVN (Kt+1, Nt, At+1) = 0 (Nt)

Side bar: envelope theorem

To proceed, we need to compute the derivatives VK(·) and VN(·). Basically, the envelop
theorem says that we ignore the “chain rule” terms in taking these derivatives, and just
focus on the “obvious” appearances of the states Kt and Nt−1. Let us do a quick proof of
the result we need for VK(·).

Suppose that we already knew the optimal policy functions Kt+1 = K(Kt, Nt−1, At) and
Nt = N(Kt, Nt−1, At). Then we could write the value function as

V
(
Kt, Nt−1, At

)
= U

AtK
α
t N

1−α
t −

(
K(Kt, Nt−1, At) − (1 − δt)Kt

)
− ϕn

(
N(Kt, Nt−1, At) − (1 − δn)Nt−1

χ

) 1
ε

+

βEtV
(
K(Kt, Nt−1, At),N(Kt, Nt−1, At), At+1

)
without the max operator. Now let’s take the derivative for Kt, using all the appropriate
chain rules:

VK
(
Kt, Nt−1, At

)
= U

′
(Ct) ·

[
At

(
Kt

Nt

)α−1

α + (1 − δk)

]
(22)

− U
′
(Ct)

∂K

∂Kt
+ βEtVK

(
Kt+1, Nt, At+1

) ∂K

∂Kt
(23)

+ U
′
(Ct)

−
ϕn

εχ

(
Nt − (1 − δn)Nt−1

χ

) 1
ε
−1

+ At

(
Kt

Nt

)α

(1 − α)

 ∂N

∂Kt
+ βEtVN

(
Kt+1, Nt, At+1

) ∂N

∂Kt
(24)
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But, now compare the terms in equation (23) to those in the first-order condition (Kt+1).
The terms in (23) must sum to zero! The same is true for the term in (24). So that we have

VK (Kt, Nt−1, At) = U ′ (Ct) ·

[
At

(
Kt

Nt

)α−1

α + (1− δk)

]
. (25)

Back to the FOCs

So, using envelope theorem for both K and N , we find:

VK (Kt, Nt−1, At) =U ′ (Ct) ·

[
At

(
Kt

Nt

)α−1

α + (1− δk)

]
(26)

VN (Kt+1, Nt, At) =U ′ (Ct) ·

[
ϕn

εχ

(
Nt − (1− δn)Nt−1

χ

) 1
ε
−1

(1− δn)

]
(27)

Combine the FOCs – (Kt+1), (Nt) – and Envelope conditions – (26) and (27), – to get:

U ′
t(·) = βEtU

′
t+1(·)

[
At+1

(
Kt+1

Nt+1

)α−1

α+ (1− δk)

]
(28)

U ′
t(·)

[
ϕn

εχ

(
Nt − (1− δn)Nt−1

χ

) 1
ε−1

]
= U ′

t(·)
[
At

(
Kt

Nt

)α

(1− α)

]
(29)

+ βEtU
′
t+1(·)

[
ϕn

εχ

(
Nt+1 − (1− δn)Nt

χ

) 1
ε−1

(1− δn)

]
. (30)

Rearranging, and imposing our functional form for the matching functions, these can the
identical “capital Euler equation” and “labor Euler equation” that we found for the planner
problem.

2 The Decentralized Economy

Household Consider a household that chooses consumption and investment in shares of
the representative firm. The household’s objective is to maximize the following expected
discounted sum of utilities:

max
{Ct,St}

E0

∞∑
t=0

βt

{
C1−σ

t

1− σ
+ λt [WtNt + St−1 (Dt + Pt)− Ct − StPt]

}
where Ct is the consumption at time t, σ is the coefficient of relative risk aversion, λt is

the Lagrange multiplier on the budget constraint at time t, Wt is the wage rate at time t,
Nt is the amount of labor supplied by the household at time t, St is the amount of shares
of the representative firm held by the household at time t, Dt is the dividend paid by the
representative firm at time t, Pt is the price of a share of the representative firm at time t,
and β is the discount factor.

The household’s first-order condition for consumption Ct is:
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C−σ
t = λt

The household’s first-order condition for investment in shares St is:

λtPt = βEt [λt+1 (Dt+1 + Pt+1)]

→ Pt = βEt

 (
Ct+1

Ct

)−σ

︸ ︷︷ ︸
Stochastic Discount Factor

(Pt+1 +Dt+1)


And note that St = 1 for a representative agent model.

Firms The firm chooses the optimal levels of output, vacancies, investment, employment,
and capital stock, and pays a wage wt. The probability a vacancy gets filled, Qt, is taken as
exogenous.

The firm’s objective function represents the discounted present value of profits, where
profits are defined as revenue minus costs:

max
{Yt,It,Vt,Kt+1,Nt+1}

E0

∞∑
t=1

βt

{
λt

λ0

[Yt − wtNt − It − ϕnVt]

+
1

λ0

Γ1,t [(1− δn)Nt−1 + VtQt −Nt]

+
1

λ0

Γ2,t [(1− δk)Kt + It −Kt+1]

+
1

λ0

Γ3,t

[
AtK

α
t N

1−α
t − Yt

]}
The firm’s first order conditions are:

λt

λ0

=
1

λ0

Γ3,t ⇒ λt = Γ3,t (Y)

λt

λ0

=
1

λ0

Γ2,t ⇒ λt = Γ2,t (I)

λt

λ0

ϕn =
1

λ0

Γ1,tQt ⇒ Γ1,t = λt
ϕn

Qt

(V)

Γ2,t

λ0

= βEt

[
Γ3,t+1

λ0

At+1α

(
Kt+1

Nt+1

)α−1

+
1

λ0

Γ2,t+1 (1− δk)

]
(K)

0 =
−λt

λ0

wt −
1

λ0

Γ1,t +
1

λ0

Γ3,tAt

(
Kt

Nt

)α

(α− 1) +
β

λ0

Et [Γ1,t+1 (1− δn)] (N)

We can reorganize these FOCs as:

ϕn

Qt

= At (Kt/Nt)
α (1− α)−wt + βEt

[
λt+1

λt

(1− δn)
ϕn

Qt+1

]
(Decentralized)

7



Now recall the Social Planner’s Problem gave us:

ϕn

Mv(·)
= At

(
Kt

Nt

)α

(1− α) + βEt

[
λt+1

λt

(1− δn)
ϕn

Mv(·)

]
(Social Planner)

, where Mv(·) = χεV ε−1
t S1−ε

t .
Now let’s examine the differences colored in the two equations above. Notice that the

probability of a vacancy being matched is defined as

Qt =
Matches

Vacancies
=

χV ε
t S

1−ε
t

Vt

= χ

(
St

Vt

)1−ε

, while the marginal increase in the number of jobs created by a marginal posting is

Mv(Vt, St) = χε

(
St

Vt

)1−ε

.
If we plug in these expressions into our “labor Euler equations” in the decentralized and

planner economy, we will arrive at:

ϕn

χ

(
Vt

St

)1−ε

= MPLt−wt + βEt

[
λt+1

λt

(1− δn)
ϕn

χ

(
Vt+1

St+1

)1−ε
]

(Decentralized)

ϕn

χε

(
Vt

St

)1−ε

= MPLt + βEt

[
λt+1

λt

(1− δn)
ϕn

χε

(
Vt+1

St+1

)1−ε
]
, (Social Planner)

where the two differences are marked in red and blue.
The first difference appears as in the decentralized economy, the firm could not internalize

the fact that the probability of successful matching decreases (i.e. the labor market becomes
more crowded) when an additional vacancy is posted. But the planner could internalize this
and thus faces a higher perceived cost of hiring (as ε < 1).

The second difference appears as in the decentralized economy, the firm experiences lower
benefits than the social benefits (MPL) since it only gets to keep the value of marginal
product after compensating the marginal labor for its wage.

Now, let’s think about how to make the two conditions coincide with each other such that
the decentralized economy would be efficient. Such scenario would only happen if we have:

MPLt − wt = εMPLt (31)

Nash Bargaining of Wages In a search model (like ours), there is a surplus generated
by a match (namely MPL + the continuation value). For now, let us assume a worker gets
zero earnings if they have no job. Then, loosely speaking, any wage between 0 and MPL
plus continuation value is consistent with equilibrium, i.e. something that both workers and
firms would prefer to walking away from the bargaining table.
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Now we focus on a particular wage setting paradigm known as “Nash Bargaining”, in
which workers and firms bargain over the current wage, taking as given the wage that will
be realized in future periods.

To analyze this bargaining problem, we need to compute the surplus that firms and
workers earn if they stay in a given working arrangement. Denote W̄t (wt) to be the workers’
surplus and Jt (wt) the firms’ surplus. Given the relative bargaining power for both sides (η
being the bargaining power of households and 1− η being the bargaining power of the firm),
the “bargaining problem” maximizes the following Cobb-Douglas product:

max
wt

[
W̄t (wt)

]η [
Jt (wt)

1−η] ,
which captures the idea that workers and firms share the surplus of a match according to
their “bargaining powers”.

Now let’s try to write down the worker’s surplus and the firm’s surplus. If the worker
and firm come to no agreement, and the bargaining collapses, then the firm will pay no wage
and earn no profit: it’s outside option is worth zero. On the other hand, if an agreement to
pay wage wt is made between both parties after bargaining, then the value of the match to
the firm can be written as

Jt = MPLt − wt︸ ︷︷ ︸
Today’s Profits

+ β(1− δn)Et

[(
Ct+1

Ct

)−δ

Jt+1

]
︸ ︷︷ ︸

Future Value if not separated

. (J)

We need to make some additional assumptions about what happens to the household if
no agreement to work is reached. Our starting assumption is going to be that the household
earns no wages (or no unemployment benefits). Under our slightly unusual assumptions St =
is fixed exogenously, so having an additional unemployed worker does not change the stock
of potential workers the representative household can send out for employment tomorrow,
and the continuation value of an unemployed worker is zero.

On the other hand, if the worker and firms agree on wage wt, then the value of the match
to worker is:

W̄t = wt︸︷︷︸
Today’s Wage

+ β(1− δn)Et

[(
Ct+1

Ct

)−δ

W̄t+1

]
︸ ︷︷ ︸

Future Value if not separated

+ βδnEt

[(
Ct+1

Ct

)−δ

Ūt+1

]
︸ ︷︷ ︸

Future Value if separated=0

. (W)

With the expressions for W̄t (wt) and Jt (wt) in hand, we can finally attempt to solve the
Nash Bargaining problem:

max
wt

[
W̄t (wt)

]η [
Jt (wt)

1−η]
Taking the FOC w.r.t. wt yields:

ηW̄t (wt)
η−1 Jt (wt)

1−η − W̄t (wt)
η · (1− η)Jt (wt)

−η = 0

Rearranging this, we have:

W̄t (wt) =
η

1− η
Jt (wt) (32)
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We then substitute (32) into (W) to get

η

1− η
Jt = wt + β (1− δn)Et

[(
Ct+1

Ct

)−δ
η

1− η
Jt+1

]
.

Now, using (J) to write the left-hand-side differently:

η

1− η

{
MPLt − wt + β (1− δn)E

[(
Ct+1

Ct

)−δ

Jt+1

]}
= wt+β (1− δn)Et

[(
Ct+1

Ct

)−δ
η

1− η
Jt+1

]
Simplifying this, we get:

η (MPLt − wt) = (1− η)wt (33)

wt = η ·MPLt + (1− η) · 0 , (34)

which is the solution to the Nash Bargaining problem. Note that 0 is simply the value of the
worker’s outside option.

Efficiency Now recall that by comparing the labor Euler equation for the decentralized
economy and the planner economy, we arrived at the conclusion that if (31) holds (MPLt −
wt = εMPLt), then the decentralized economy would be efficient.

Under Nash Bargaining with MPLt − wt = (1 − η), this efficient condition would be
achieved if

η = 1− ε. (35)

This is known as the “Hosios efficiency condition”.
To gain some intuition on why efficiency might still be achieved given the externalities

in the decentralized model, we take the stance from the firm and consider the following two
forces:

1. The firm pays the entire vacancy cost, but only receives a fraction of the surplus from the
match, which suggests that firm’s incentives to post vacancies are lower than optimum.
This force is governed by η.

2. The firm does not rationalize the fact that the labor market becomes more congested
as it posts its vacancies, which means that the firm’s incentives to post vacancies are
higher than optimum. This force is governed by ε, the curvature in the matching
function.

Under the parameterization η = 1 − ε, the two opposing externalities cancel out with
each other and efficiency is achieved.
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