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Worked with Wanxi Zhou and Fenglin Ye on Exercise 4.

Exercise 1. Consider the problem of maximizing u : R2 → R given by u(x1, x2) := x0.5
1 + x0.5

2 subject to
the budget constraint, i.e.

Γ :=
󰀋
(x1, x2) ∈ R2 : px1 + x2 ≤ m;x1, x2 ≥ 0

󰀌

where p,m > 0

(i) Prove that a solution to the utility maximization problem exists.

Proof. Note that the partials of u are

∂u

∂x1
=

0.5

x0.5
1

and
∂u

∂x2
=

0.5

x0.5
2

and the Hessian is

Hf =

󰀵

󰀹󰀷
− 0.25

x1.5
1

0

0 − 0.25
x1.5
2

󰀶

󰀺󰀸

Thus, since this is a diagonal matrix, the eigenvalues are negative and it is negative definite. Addition-
ally, the constraint functions are all affine and therefore concave. It remains to show that x󰂏 and λ󰂏

exist that satisfy the KKT conditions. From the KKT Theorem, it suffices to show that the constraint
qualification holds. Since u is strictly increasing in x1 and x2, the non-negativity constraints will not
bind. Thus, the only binding constraint is g(x) = px1 + x2 ≤ m ≡ m − px1 − x2 ≥ 0. We have that
Dg(x) =

󰀅
−p −1

󰀆
, and since this is a 2× 1 matrix, it has rank 1. Thus, the constraint qualification

holds.

Thus, by the sufficiency of concavity to KKT, there exists x󰂏 that satisfies the KKT conditions and x󰂏

is a global maximum.

(ii) Prove that a solution must lie on the boundary of the set Γ.

Proof. FSOC, assume that the global maximum x󰂏 is such that x󰂏 ∈ intΓ. Since interiors of sets are
open, ∃ ε > 0 s.t. Bε(x

󰂏) ⊆ intΓ. However, there exists x′ ∈ Bε(x
󰂏) such that x′

1 > x󰂏
1 and x′

2 > x󰂏
2.

Since u is strictly increasing in both inputs, u(x′) > u(x󰂏), which contradicts the fact that x󰂏 is a
global maximum. Thus, since the global maximum x󰂏 ∈ Γ and x󰂏 ∕∈ intΓ, it must be that x󰂏 ∈ ∂Γ.

(iii) Solve the Lagrangian as an equality-constrained one while ignoring the nonnegativity constraints. Does
the solution to the Lagrangian identify a solution to the original problem? Why or why not?
Solution. We have that the new Lagrangian is

L = x0.5
1 + x0.5

2 + λ(m− px1 − x2)
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The first order conditions are

∂L
∂x1

=
0.5

x0.5
1

− pλ = 0 =⇒ λ =
0.5

px0.5
1

∂L
∂x2

=
0.5

x0.5
2

− λ = 0 =⇒ λ =
0.5

x0.5
2

∂L
∂λ

= m− px1 − x2 = 0 =⇒ m = px1 + x2

Combining, we get that
x2 = p2x1 =⇒ x󰂏

1 =
m

p+ p2

and thus,
x󰂏
2 =

pm

1 + p

Note that the first order conditions are not zero at x󰂏, since λ󰂏 = − 0.5(1+p)√
pm ∕= 0. However, this is still

a solution of the primal problem. Notice that

px󰂏
1 + x󰂏

2 =
m+ pm

1 + p
= m

meaning that x󰂏 ∈ ∂Γ. This is a corner solution to the original problem, and does maximize it.

Exercise 2. Show that if the primal problem attains a global maximum at some x󰂏 ∈ Rd such that
hk(x

󰂏) = 0 for all k, gj(x󰂏) ≥ 0 for all j, and the constraint qualification holds at x󰂏, then an x◦ ∈ SX that
solves the other problem is also a global maximum.

Proof. We have that f, hk, gj are C1, and we have that x󰂏 solves the problem

max
x∈Rd

f(x) s.t. hk(x) = 0 and gj(x) ≥ 0 ∀ k, j

Since x󰂏 is a local maximum given that it is also a global maximum, we have that, from KKT with equality
and inequality constraints (Theorem 3 in the notes), and the fact that the constraint qualification is met,
that there exist µ󰂏 ∈ RK and λ󰂏 ∈ RJ such that

λ󰂏
j ≥ 0 ∀ j (1)

λ󰂏
jgj(x

󰂏) = 0 ∀ j (2)

∇f(x󰂏) +

K󰁛

k=1

µ󰂏
k∇hk(x

󰂏) +

J󰁛

j=1

λ󰂏
j∇gj(x

󰂏) = 0 (3)

We will show that (x󰂏, µ󰂏,λ󰂏) is a critical point of the Lagrangian. Note that (i) is met immediately by (3).
For (ii), note that ∂L

∂µk
= hk(x

󰂏) for all k, and since x󰂏 solves the problem, hk(x
󰂏) = 0 ∀ k. Finally, for (iii),

note that ∂L
∂λj

= gj(x
󰂏). From the conditions of the primal problem, ∂L

∂λj
≥ 0 for all j, and from (1) we have

that λ󰂏
j ≥ 0 for all j. Proof that (x󰂏, µ󰂏,λ󰂏) is a critical point of the Lagrangian follows from (2).

Since (x󰂏, µ󰂏,λ󰂏) ∈ S, we have that x󰂏 ∈ SX . Thus, for any x◦ that is a global maximum of

max
x∈SX

f(x)

we will have that f(x◦) ≥ f(x󰂏). It remains only to show that hk(x
◦) = 0 ∀ k and that gj(x◦) ≥ 0 ∀ j. Both

conclusions follow from the above observations that ∂L
∂µk

= hk(x
◦) for all k and that ∂L

∂λj
= gj(x

◦) for all j.
Since x◦ is a critical point by definition, the quantities are zero and non-negative respectively. Thus, x◦ is
feasible in the primal problem, and since f(x◦) ≥ f(x󰂏), x◦ is a global maximum of the primal problem.
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Exercise 3. Consider the consumer’s problem of maximizing u : R2 → R given by u(x1, x2) := x1 + x2

subject to the budget set

B(p1, p2,m) :=
󰁱
(x1, x2) ∈ R2

+ : m− p1x1 − p2x2 ≥ 0
󰁲

where p1, p2,m > 0.

(i) The constrained optimization problem is

max
x∈R2

+

x1 + x2 s.t. m− p1x1 − p2x2 ≥ 0

and the Lagrangian is
L(x,λ) = x1 + x2 + λ(m− p1x1 − p2x2)

(ii) First, note that the optimum must be on the border of the budget set. To see why, consider FSOC
an optimal x󰂏 ∈ intB. Then it must be the case that ∃ ε > 0 s.t. Bε(x

󰂏) ⊆ B, since interiors are
open. However, ∃ x′ ∈ Bε(x

󰂏) where x′
1 > x󰂏

1 and x′
2 > x󰂏

2. It would be the case that u(x′) > u(x󰂏)
by definition, which is a contradiction of the fact that x󰂏 is optimal. Thus, x󰂏 ∈ ∂B. Finally, it’s clear
that if the budget isn’t entirely exhausted, then utility could be improved by spending more budget
on at least one good. Thus, x󰂏 is such that m− p1x

󰂏
1 − p2x

󰂏
2 = 0

Since p1, p2,m > 0, this means that at least one element of x󰂏 is strictly positive. WLOG, say that
x󰂏
1 > 0. Then, at least one non-negativity constraint does not hold with equality, and we have that

rank(Dgk(x)) = rank
󰀕󰀗

−1 −1
1 0

󰀘󰀖
= 2 = |E|

(iii) By inspection, note that the first order conditions of the Lagrangian eliminate any x terms, so it would
be impossible to isolate optimal x using them. In fact, there are no critical points – since the utility
function is locally non-satiated, it has no critical points on the entire domain, let alone the feasible set.

Exercise 4. Suppose a firm’s production function is given by f : R3 → R, where

f(x1, x2, x3) := x1(x2 + x3)

The unit price of firm’s output is p > 0 and the input prices are wi > 0 for i ∈ {1, 2, 3}.

(i) The firm’s profit maximization problem is

max
q,x∈R1

+×R3
+

p · q − w · x s.t. q = x1(x2 + x3)

which simplifies to the problem

max
x∈R3

p · (x1(x2 + x3))− w · x s.t. x ≥ 0

The Lagrangian is
L(x,λ) = p · (x1(x2 + x3))− w · x− λ · x

for λ ∈ R3
+. Since the firm needs positive production, we need that x1 > 0, and at least one of x2, x3

must be positive. WLOG, assume that x2 > 0 as well, so those constraints don’t bind. The Lagrangian
becomes

L(x,λ3) = p · (x1(x2 + x3))− w · x− λ3x3
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and the first order conditions are

∂L
∂x1

= p(x2 + x3)− w1 = 0 =⇒ x󰂏
2 + x󰂏

3 =
w1

p

∂L
∂x2

= px1 − w2 = 0 =⇒ x󰂏
1 =

w2

p

∂L
∂x3

= px1 − w3 − λ3 = 0 =⇒ x󰂏
1 =

w3

p
+ λ3

∂L
∂λ

= x󰂏
3 = 0

(ii) We have that x󰂏
1 = w2

p , that x󰂏
2 + x󰂏

3 = w1

p , and that x󰂏
3 = 0. Thus, for any choice of (p, w), we have

that there is a critical point of the form

x󰂏 =

󰀕
w2

p
,
w1

p
, 0

󰀖

However, our assumption earlier that x󰂏
2 > 0 was WLOG, so we can change it to an assumption that

x󰂏
3 > 0, and get another critical point of the form

x󰂏 =

󰀕
w2

p
, 0,

w1

p

󰀖

(iii) Fix some (p, w) ∈ R4
++, and consider a point x󰂏 of the two identified above. Let’s say that x󰂏

2 = w1

p
and x󰂏

3 = 0. We have that the attained profit is

π(p, w) = p · w1w2

p2
− w1w2

p
− w2w1

p
− 0 = −w1w2

p
< 0

This is negative, but by choosing to produce f(x) = 0, the firm could attain zero profit, which would
be a strict improvement. Note that this also holds for the other critical point, so neither are optimal.
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