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2. We have a consumer whose utility function is u(x, t) =
󰀓
x

1
2 + (w − t)

󰀔2

(a) We have that the consumer is solving

max
x,l∈R+

u(x, l) =
󰀓
x

1
2 + l

󰀔2

subject to
px ≤ w − l ≡ px+ l ≤ w

i.e., they are maximizing consumption and leisure subject to consumption not exceeding their
wage for the total hours worked.

(b) Our Lagrangian is

L =
󰀓
x

1
2 + l

󰀔2

+ λ(w − l − px)

For the first order conditions, we get

∂L
∂x

=
x1/2 + l

x1/2
− pλ = 0 =⇒ λ =

x1/2 + l

p · x1/2

∂L
∂l

= 2x1/2 + 2l − λ = 0 =⇒ λ = 2x1/2 + 2l

∂L
∂λ

= w − l − px = 0 =⇒ px+ l = w

Setting them equal and solving, we get that

x1/2 + l

p · x1/2
= 2x1/2 + 2l =⇒ 2px1/2(x1/2 + l) = x1/2 + l

so we get that the Walrasian demand for x is

x󰂏 =
1

4p2

and inputting into the budget constraint, we get

p

4p2
+ l = w =⇒ l󰂏 = w − 1

4p

Note that this might create a corner solution – if w < 1
4p , then the consumer always work.

Formally, our Walrasian demand functions are

x󰂏(p, w) =

󰀫
1

4p2 w ≥ 1
4p

w otherwise
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and

l󰂏(p, w) =

󰀫
w − 1

4p w ≥ 1
4p

0 otherwise

(c) Going back to the originally stated utility function, the indirect utility function is defined by

V (p, w) := max
x,t∈R+

󰀓
x

1
2 + (w − t)

󰀔2

subject to
px ≤ t

We first solve for the Walrasian demand functions. Our Lagrangian is

L =
󰀓
x

1
2 + (w − t)

󰀔2

+ λ(t− px)

and our first order conditions are

∂L
∂x

=
x1/2 + w − t

x1/2
− pλ = 0 =⇒ λ =

x1/2 + w − t

px1/2

∂L
∂t

= −2
󰀓
x1/2 + w − t

󰀔
+ λ = 0 =⇒ λ = 2

󰀓
x1/2 + w − t

󰀔

∂L
∂λ

= t− px = 0 =⇒ t = px

Which implies that

2
󰀓
x1/2 + w − t

󰀔
=

x1/2 + w − t

px1/2
=⇒ x󰂏 =

1

4p2

and
t󰂏 = px󰂏 =

1

4p

which is the same as above, a confirmation that this formulation also works. As above, we have
admitted a corner, where the worker will not take any time off if 1

4p > w. Formally, our Walrasian
Demand is

x󰂏(p, w) =

󰀫
1

4p2 w ≥ 1
4p

w otherwise

and

t󰂏(p, w) =

󰀫
1
4p w ≥ 1

4p

w otherwise

From the definition of the indirect value function, we have that

V (p, w) = u(x󰂏, t󰂏) =

󰀣󰀕
1

4p2

󰀖 1
2

+

󰀕
w − 1

4p

󰀖󰀤2

=

󰀕
1

2p
+ w − 1

4p

󰀖2

=

󰀕
1

4p
+ w

󰀖2

(d) For leisure to be strictly positive, we will assume that w ≥ 1
4p . We can find the expenditure

function by inverting the value function, since e(p, V (p, w)) = w. We get that

ū =

󰀕
1

4p
+ e(p, ū)

󰀖2

=⇒ e(p, ū) =
√
ū− 1

4p

From Shephard’s Lemma, since u′′ = − 1
x3/2 < 0, the implied preferences 󰃒 are strictly convex,

we have that
hx(p, ū) =

∂e(p, ū)

∂p
=

1

4p2

2



3. We have that e(p, u) = g(u)r(p) for some strictly increasing g, r

(a) From Shephard’s Lemma, we have that hi(p, u) = g(u)∂r(p)∂pi
. Since e is two strictly increasing

functions multiplied, we can say that hi(p, V (p, w)) = xi(p, w) which means that xi(p, w) =

g(V (p, w))∂r(p)∂pi
. It remains to find a form for g(V (p, w)). From the expenditure function we have

that e(p, V (p, w)) = w, so g(V (p, w))r(p) = w which implies that V (p, w) = g−1(w/r(p)), where
g−1 exists because g is strictly increasing. Thus, we have that x󰂏

i (p, w) =
w

r(p)
∂r(p)
∂pi

.

(b) If Walras’ Law holds, we have that p · x = w, which implies that

L󰁛

i=1

pixi(p, w) = w =⇒
L󰁛

i=1

pi
w

r(p)

∂r(p)

∂pi
= w

Which means that
L󰁛

i=1

pi
∂r(p)

∂pi
= r(p)

We don’t need to make any assumptions on g(u) for this to hold, as it was eliminated before
considering Walras’ Law. For Walras’ Law to hold, we need local non-satiation of the utility
function itself.

(c) The distribution of budgets does not matter for aggregate demand! Because
󰁓I

i=1 x
i(p, wi) =

󰁓I
i=1

wi

r(p)r
′(p) =

󰁓I
i=1 wi

r(p) r′(p) = x(p,
󰁓I

i=1 w
i), we can construct a representative agent with

total wealth who has the same preferences as all of the agents.

4. We know that the expenditure function of the consumer is e(p, U) = Upα1 p
β
2

(a) We need to know that the expenditure function is (i) continuous, (ii) nondecreasing in each pi, (iii)
strictly increasing in U , (iv) homogeneous of degree 1 in p, and (v) concave in p. Parts (i) and (iii)
are satisfied immediately. For e to be nondecraesing in each pi, it must be the case that α,β ≥ 0.
For them to be homogeneous of degree 1 in p, it must be the case that e(λp, U) = λe(p, U), which
requires that

e(λp, U) = λα+βe(p, U)

be equal to λe(p, U), meaning that α + β = 1. Finally, e must be concave in p, meaning that
e′′(p, U) < 0. This is satisfied as long as α,β ≤ 1.

Thus, we must have that α,β ∈ [0, 1] and α+ β = 1.

(b) From Shephard’s Lemma, we have that the Hicksian demand functions are

h1(p, U) =
∂e(p, U)

∂p1
= αUpα−1

1 pβ2

and
h2(p, U) =

∂e(p, U)

∂p2
= βUpα1 p

β−1
2

To find the indirect utility function, we will use the identity that e(p, V (p, w)) = w, so we have
that

w = V (p, w)pα1 p
β
2 =⇒ V (p, w) = wp−α

1 p−β
2

Finally, the uncompensated demand is found using Roy’s Identity, where we have that

x1(p, w) = −
∂V (p,w)

∂p1

∂V (p,w)
∂w

= −−αwp−α−1
1 p−β

2

p−α
1 p−β

2

=
αw

p1
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and

x2(p, w) = −
∂V (p,w)

∂p2

∂V (p,w)
∂w

= −−βwp−α
1 p−β−1

2

p−α
1 p−β

2

=
βw

p2

(c) From Corollary 2.57, we have that hi(p, V (p, w)) = xi(p, w). From there, we have that

x1(p, w) = h1(p, V (p, w)) = αV (p, w)pα−1
1 pβ2 = αwp−1

1 p02 =
αw

p1

and
x2(p, w) = h2(p, V (p, w)) = βV (p, w)pα1 p

β−1
2 = βwp−1

2 p01 =
βw

p2

(d) We have that α = β = 1
2 , w = 512, and an increase in prices from p = (1, 1) to p′ = (16, 16).

i. We have that the utility attained under the original prices is

V (p, w) = 512 · 1−α · 1−β = 512

and that the utility attained under the new prices is

V (p′, w) = 512 · 16−α · 16−β =
512

16
= 32

We have that the compensating variation is

CV (p, p′, w) = w − e(p′, V (p, w)) = 512− 512 · 16α · 16β = −7, 680

and that the equivalent variation is

EV (p, p′, w) = e(p, V (p′, w))− w = 32 · 1α1α − 512 = −480

ii. The absolute value of the compensating variation is significantly higher than the absolute
value of the equivalent variation, because the amount required to pay the consumer so that
they will be able to afford their old consumption under the new prices is a lot higher than
the amount their attained utility actually changes under the new prices.

It seems more reasonable to pay the consumer their compensating variation. The equivalent
variation is the amount they would take from the consumer instead of changing prices, but
in order for the consumer to agree to the price change, they would need to pay him the
compensating variation.

5. Evaluate the following claims:

(a) We have that u(x) = 2 ln(x1) + 2 ln(x2) = 2 ln(x1x2) and u󰂏(x) = x1x2. We have that the first
expenditure function is

e(u, p1, p2) := min
x∈R+

p1x1 + p2x2 s.t. 2 ln(x1x2) ≥ u

and the second expenditure function is

e(u󰂏, p1, p2) := min
x∈R+

p1x1 + p2x2 s.t. x1x2 ≥ u󰂏

If u󰂏 = exp(u/2), we have that the conditions here become

x1x2 ≥ exp
󰀓u
2

󰀔
=⇒ 2 ln(x1x2) ≥ u

So since the optimizing function and the feasible set are the same, we have that

e(u, p1, p2) = e(u󰂏, p1, p2)
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(b) We have that the price of good i changes from pi to p′i > pi, and that the consumer’s wealth
increases from w to w′ = w + (p′i − pi)x

󰂏
i (p, w). First, note that the consumer will always attain

weakly higher utility under the new prices and wealth. Considering their old optimal bundle x󰂏,
because of local non-satiation we have that p · x󰂏 = w. This means that, since no other prices
changed,

p′ · x󰂏 = p · x󰂏 + (p′i − pi)x
󰂏
i (p, w) = w + (p′i − pi)x

󰂏
i (p, w) = w′

Since the old bundle is attainable under the new prices and wealth, the consumer will always
attain weakly higher utility, as u(x󰂏) ≤ maxx∈Γ(X) u(x) by definition.

From the Slutsky equation, we have that the change in demand for a change in price of the same
good is

∂xi(p, w)

∂pi
=

∂hi(p, u)

∂pi
− xi(p, w)

∂xi(p, w)

∂w

We have, from our definitions of the properties of Hicksian and Walrasian demand, that the first
partial on the right is (weakly) negative since the Hicksian demand is itself the partial of the
expenditure function with respect to price, and the expenditure function is concave in prices. We
do not know whether the demand for good i is increasing in wealth or not. That depends on
whether good i is normal or inferior. If it is normal, the consumer will demand less good i under
the new prices and wealth. If it is inferior, and sufficiently inferior, it may be the case that they
will demand more – in that case, good i would be a Giffen good.

(c) This claim is false. To see why, we will solve the consumer’s maximization problem. The KKT
conditions hold, so we can solve it from the first order conditions. The Lagrangian is

L =

T󰁛

t=1

βtu(ct) + λ

󰀣
w −

T󰁛

t=1

ct

󰀤

the first order conditions for arbitrary t, t+ 1 are:

∂L
∂ct

= βtu′(ct)− λ = 0 =⇒ λ = βtu′(ct)

∂L
∂ct+1

= βt+1u′(ct+1)− λ = 0 =⇒ λ = βt+1u′(ct+1)

These combine to get the Euler Equation

u′(ct) = βu′(ct+1)

Since this applies for all t, and assuming arbitrary utility functions, we can say that the ratio of
optimal consumption in period t and period t + 1 is constant for all utility functions. Since we
also have that

󰁓T
t=1 ct = w, it must be that optimal consumption does not depend on the utility

function at all.

6. The paper I read was “Pricing Power in Advertising Markets: Theory and Evidence” by Matt Gentzkow,
Jesse Shapiro, Frank Yang, and Ali Yurukoglu. In this paper, the authors generalize a model of adver-
tising that implies that TV advertisements attain more money per person seeing each advertisement
even when the number of people watching TV decreases, because the average income of each person
watching TV increases. This relies on Walras’ Law holding at least somewhat abstractly, as if the
average viewer has higher income, they will spend more on consumption, and thus more per ad seen.
They test this model empirically, and find that it holds.
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https://web.stanford.edu/~gentzkow/research/ad-price-drivers.pdf

