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Exercise 3. Let S ⊆ Rd. Prove that co(S) is the collection of all finite convex combinations of elements
in S.

Proof. We have that co(S) =
󰁗
{T ⊆ Rd : S ⊆ T, T convex}. We wish to show that

󰀫
x ∈ Rd : x =

n󰁛

i=1

αiyi,

n󰁛

i=1

αi = 1,αi ≥ 0 ∀ i, yi ∈ S ∀ yi

󰀬
=

󰁟
{T ⊆ Rd : S ⊆ T, T convex}

We will use set containment.

(⊆): Take some x ∈ Rd, such that ∃ {y1, . . . , yn}, {α1, . . . ,αn} s.t. yi ∈ S ∀ i ∈ {1, . . . , n},
󰁓n

i=1 αi = 1,
αi ∈ [0, 1] ∀ i ∈ {1, . . . , n} where x =

󰁓n
i=1 αiyi. Since yi ∈ S ∀ i ∈ {1, . . . , n}, yi ∈ T ∀ T since S ⊆ T .

Since each T is convex, by Proposition 1 in the Convexity notes,
󰁓t

i=1 αiyi ∈ T ∀ T where S ⊆ T and T

convex. Thus, since x =
󰁓t

i=1 αiyi, x ∈ T ∀ T , meaning that x ∈
󰁗
{T ⊆ Rd : S ⊆ T, T convex}.

(⊇): Take some x ∈
󰁗
{T ⊆ Rd : S ⊆ T, T convex}. Consider two cases. First, if x ∈ S, then

choosing α1 = 1, α2 = 0, and some y ∈ S where y ∕= x, we have that x = α1x + α2y, so x ∈󰀋
x ∈ Rd : x =

󰁓n
i=1 αiyi,

󰁓n
i=1 αi = 1,αi ≥ 0 ∀ i, yi ∈ S ∀ yi

󰀌
.

Next, assume that x ∕∈ S. The fact that x ∈ co(S) implies that ∃ n ∈ N, {yi,αi}ni=1 s.t. x =
󰁓n

i=1 yiαi for
yi ∈ T ∀ i, T . We also have that for at least one j, yj ∕∈ S. If yj can be written as a finite convex combination
of elements of S, then writing it as such creates a finite convex combination of elements of S that equal x. If
yj cannot by written as a finite convex combination of elements of S, then there exists Tj such that S ⊆ Tj

and x, yj ∕∈ Tj , where Tj convex. Thus, if x cannot be written as a finite convex combination of elements of
S, x ∕∈ co(S). By contrapositive, x ∈

󰀋
x ∈ Rd : x =

󰁓n
i=1 αiyi,

󰁓n
i=1 αi = 1,αi ≥ 0 ∀ i, yi ∈ S ∀ yi

󰀌
.

Exercise 7. Prove that co(S) = cl(co(S)).

Proof. We wish to show that
󰁟󰀋

T ⊆ Rd : S ⊆ T, T is convex and closed
󰀌
=

󰁟󰀋
T ⊆ Rd : co(S) ⊆ T, T closed

󰀌

(⊆): If x ∈ co(S), then x ∈ T ∀ T convex and closed, where S ⊆ T . Since S ⊆ T and T convex, co(S) ⊆ T .
Since T is also closed, and these hold for all T , x ∈ cl(co(S)).

(⊇): If x ∈ cl(co(S)), then x ∈ T for all co(S) ⊆ T where T is closed. Since S ⊆ co(S), S ⊆ T . Since not all
T ∋ x are necessarily convex, the set of T that are convex, closed, and contain S is a subset of the set of T
that x are in. Thus, x ∈ co(S).

Exercise 10. Prove that a function is concave (convex) if and only if its subgraph (epigraph) is convex.

Proof.
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(⇒): Assume that a function f is concave. Take some (x, y), (x′, y′) ∈ sub(f), so we have that f(x) ≥ y and
f(x′) ≥ y′. Fix α ∈ (0, 1). It suffices to show that (αx + (1 − α)x′,αy + (1 − α)y′) ∈ sub(f). Since f is
concave, we have that

f(αx+ (1− α)x′) ≥ αf(x) + (1− α)f(x′) ≥ αy + (1− α)y′

Where the second inequality follows from the assumption that (x, y), (x′, y′) ∈ sub(f). Thus, sub(f) is
convex.

(⇐): We have that sub(f) is convex. FSOC, assume that f is not concave, meaning that there exist
x, x′,α ∈ (0, 1) such that

f(αx+ (1− α)x′) < αf(x) + (1− α)f(x′)

This implies that there is positive distance between the two quantities, so there exist y, y′ ∈ R such that
f(αx+ (1−α)x′) < αy+ (1−α)y′ ≤ αf(x) + (1−α)f(x′). However, that would imply that (x, y), (x′, y′) ∈
sub(f), but (αx+(1−α)x′,αy+(1−α)y′) ∕∈ sub(f), which contradicts the assumption that sub(f) is convex.
Thus, f is concave.

The same proof applies for f being convex if and only if its epigraph is convex, flipping the respective
inequalities.

Example 11. Prove that an affine function is both convex and concave.

Proof. We have that f : X → R is affine, meaning that f(x) = ax + b for some a, b ∈ Rd,R. Consider
x, x′ ∈ X. We have that

f(αx+ (1− α)x′) = a(αx+ (1− α)x′) + b = α(ax+ b) + (1− α)(ax′ + b) = αf(x) + (1− α)f(x′)

Thus, f(αx + (1 − α)x′) ≥ αf(x) + (1 − α)f(x′) meaning that f is concave, and f(αx + (1 − α)x′) ≤
αf(x) + (1− α)f(x′), meaning that f is convex.

Exercise 12. Prove that a function is quasiconcave (resp. quasiconvex) if and only if the upper (resp.
lower) contour sets are convex.

Proof. (⇒): We have that f : X → R is quasiconcave. Take some x, y in the upper contour set r of f .
That means that for some r, f(x) ≥ r and f(y) ≥ r. Then, for some α ∈ (0, 1),

f(αx+ (1− α)y) ≥ min{f(x), f(y)} ≥ r

where the first inequality follows from quasiconcavity of f . Thus, αx+ (1− α)y is in the upper contour set
r of f , and the upper contour sets of f are convex.

(⇐): We have that the upper contour sets of f are convex. Consider some x, y ∈ X. Take r = min{f(x), f(y)}.
Since f(x) ≥ r and f(y) ≥ r by construction, x and y are in the upper contour set r of f . Since the upper
contour sets are convex, αx + (1 − α)y for some α ∈ (0, 1) is also in the upper contour set r of f , which
means that f(αx+ (1− α)y) ≥ r = min{f(x), f(y)}. Thus, f is quasiconcave.

The same proof follows, reversing the inequalities, for quasiconvex and the lower contour sets.

Exercise 13. True or false:If f is a (quasi)concave function and h : R → R is a nondecreasing function,
then h ◦ f is (quasi)concave.
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(i) True!

Proof. Consider some x, y. Take r = min{f(x), f(y)}. Then x, y are each in the upper contour set r
of f , which is convex because f is quasiconcave. This means that f(αx+(1−α)y) ≥ min{f(x), f(y)}.
WLOG, assume that f(x) ≤ f(y). Since h is nondecreasing, we have that

f(αx+ (1− α)y) ≥ f(x) = min{f(x), f(y)} =⇒ (h ◦ f)(αx+ (1− α)y) ≥ (h ◦ f)(x)

Thus, h ◦ f is quasiconcave.

(ii) False! Consider the example of f(x) = 1 and be any strictly increasing and strictly convex function.
f(x) is affine and thus concave, but h ◦ f = h which is strictly convex (and thus not concave).

Exercise 1. Let X ⊆ Rd be convex. Prove or give a counterexample:

(i) True!

Proof. We have that f and g are convex. Consider for some x, y ∈ X,α ∈ (0, 1):

(f + g)(αx+ (1− α)y) = f(αx+ (1− α)y) + g(αx+ (1− α)y)

≤ αf(x) + (1− α)f(y) + αg(x) + (1− α)g(y)

= α(f + g)(x) + (1− α)(f + g)(y)

Where the inequality follows from the assumption that f and g are convex.

(ii) False! Consider f(x) = −x and g(x) = x − |x|
2 . f is convex and thus quasiconvex, and g is monoton-

ically increasing and thus quasiconvex, but their sum is the function (f + g)(x) = − |x|
2 which is not

quasiconvex because the lower contour set for, e.g., r = −1 is the disjoint intervals (−∞,−2] ∪ [2,∞)
which is not convex by inspection.

(iii) True!

Proof. f is concave implies that for arbitrary x, y ∈ X, α ∈ (0, 1),

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) ≥ min{f(x), f(y)}

where the second inequality follows from a direct property of minima. Thus, f is quasiconcave.

(iv) True!

Proof. f is concave implies that for arbitrary distinct x, y ∈ X, α ∈ (0, 1),

f(αx+ (1− α)y) > αf(x) + (1− α)f(y) ≥ min{f(x), f(y)}

where the second inequality follows from a direct property of minima. Thus, f is strictly quasiconcave.
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