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In Section notes

Review

(Potential) Properties of ≿:

1. Rational + continuous

2. Strong monotonicity
=⇒ Weak version: local non-satiation (LNS)

3. Convexity

(Potential) Properties of u(.)

1. Continuity

2. (Quasi-) Concave

Relationship between properties of ≿ and u(.)

1. Continuous+Rational ≿ =⇒ ∃ continuous u(.) representing ≿.

2. Monotonic ≿ =⇒ u(.) is nondecreasing1.

3. Convex ≿ (+ LNS) =⇒ ∀u(.) representing ≿, u(.) is quasi-concave.

Let the hessian of u be Hu(x). We also have,

convex u(.) ⇐⇒ Hu(x) P.S.D ∀x

concave u(.) ⇐⇒ Hu(x) N.S.D ∀x

Properties of indirect utility function

1. V (p, w) is continuous in (p, w).

2. Non-increasing in p. Strictly increasing in w.

3. HoD 0.

The Bordered Hessian
The bordered Hessian is a determinant-based tool used to verify second-order conditions for constrained
optimization problems. Specifically, it applies to problems of the form:

max f(x1, x2, . . . , xn)

s.t. g(x1, x2, . . . , xn) = 0,

where f is the objective function, and g is the constraint.
To construct the bordered Hessian, follow these steps:

1Strong Monotonicity → Strictly Increasing
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1. Compute the Lagrangian:

L(x1, x2, . . . , xn, λ) = f(x1, x2, . . . , xn) + λg(x1, x2, . . . , xn).

2. Form the bordered Hessian matrix H, which has the following structure:

H =

[
0 ∇g⊤

∇g ∇2L

]
,

where:

• ∇g is the gradient of the constraint function g,

• ∇2L is the Hessian matrix of the Lagrangian with respect to x1, x2, . . . , xn.

The bordered Hessian is evaluated at the candidate solution (x∗, λ∗). For a maximization problem:

• The (n+ 1)-th leading principal minor of H (the determinant of the upper-left (n+ 1)× (n+ 1) submatrix)
must alternate in sign:

(−1)k det(Hk) > 0, for k = 2, 4, . . . , n+ 1,

where Hk is the k-th leading principal minor of H.

• For minimization problems, all even-order leading principal minors must be positive.

Example
Consider the problem:

max f(x1, x2) = x1x2, s.t. g(x1, x2) = x1 + x2 − 1 = 0.

1. Compute the Lagrangian:
L(x1, x2, λ) = x1x2 + λ(x1 + x2 − 1).

2. Compute the gradients:

∇g =

[
1
1

]
, ∇2L =

[
0 1
1 0

]
.

3. Form the bordered Hessian:

H =

0 1 1
1 0 1
1 1 0

 .

4. Check the minors for second-order conditions.

Conditions for Quasiconcavity and Concavity Based on the Bordered Hessian

1. Quasiconcavity

For a differentiable function f(x1, x2, . . . , xn), quasiconcavity is determined by the signs of the determinants of the
bordered Hessian minors:

• Necessary condition: The (n+ 1)-th bordered Hessian minor, denoted by Hn+1, alternates in sign:

(−1)k det(Hk) ≥ 0, for k = 2, 4, . . . , n+ 1.

• Sufficient condition: The (n+ 1)-th bordered Hessian minor alternates in sign strictly:

(−1)k det(Hk) > 0, for k = 2, 4, . . . , n+ 1.

2. Concavity

For a twice-differentiable function f(x1, x2, . . . , xn), concavity requires that the bordered Hessian determinants
satisfy the following conditions:

• Necessary condition: The bordered Hessian determinants for all even k must be non-positive:

det(Hk) ≤ 0, for k = 2, 4, . . . , n+ 1.

• Sufficient condition: The bordered Hessian determinants for all even k must be strictly negative:

det(Hk) < 0, for k = 2, 4, . . . , n+ 1.



Exercises

Preference and utility representation

u(x, y) = x3y2

The gradient of u(x, y) is the vector of partial derivatives with respect to x and y. Compute:

∂u

∂x
= 3x2y2,

∂u

∂y
= 2x3y

Thus, the gradient is:

∇u(x, y) =

[∂u
∂x
∂u
∂y

]
=

[
3x2y2

2x3y

]
The Hessian of u(x, y) is the matrix of second-order partial derivatives. Compute:

∂2u

∂x2
= 6xy2,

∂2u

∂y2
= 2x3,

∂2u

∂x∂y
=

∂2u

∂y∂x
= 6x2y

The Hessian matrix is:

Hu(x, y) =

[
∂2u
∂x2

∂2u
∂x∂y

∂2u
∂y∂x

∂2u
∂y2

]
=

[
6xy2 6x2y
6x2y 2x3

]
The bordered Hessian is constructed for a two-variable function as:

Hb =

 0 ∂u
∂x

∂u
∂y

∂u
∂x

∂2u
∂x2

∂2u
∂x∂y

∂u
∂y

∂2u
∂y∂x

∂2u
∂y2

 =

 0 3x2y2 2x3y
3x2y2 6xy2 6x2y
2x3y 6x2y 2x3


Compute the principal minors of Hb:

• First minor (H1):
det(H1) = 0.

• Second minor (H2):

det(H2) =

∣∣∣∣ 0 3x2y2

3x2y2 6xy2

∣∣∣∣ = 0

• Third minor (H3):

det(H3) =

∣∣∣∣∣∣
0 3x2y2 2x3y

3x2y2 6xy2 6x2y
2x3y 6x2y 2x3

∣∣∣∣∣∣
Expanding along the first row:

det(H3) = −3x2y2
∣∣∣∣6xy2 6x2y
6x2y 2x3

∣∣∣∣
Compute the determinant of the 2× 2 matrix:

det

[
6xy2 6x2y
6x2y 2x3

]
= 6xy2 · 2x3 − 6x2y · 6x2y = 12x4y2 − 36x4y2 = −24x4y2

Substituting back:
det(H3) = −3x2y2(−24x4y2) = 72x6y4

For concavity:

• H2 ≤ 0: Fails because det(H2) = 0.

• H3 ≤ 0: Fails because det(H3) = 72x6y4 > 0

Therefore, u(x, y) is not concave.
For quasiconcavity:

• H2 ≥ 0: Holds because det(H2) = 0.

• H3 ≥ 0: Holds because det(H3) = 72x6y4 > 0

Thus, u(x, y) is quasiconcave.



Optimization and Comparative Statics

(a)
max
x1,x2

u1(x1) + u2(x2) subject to: p1x1 + p2x2 ≤ w.

The Lagrangian for this problem is:

L = u1(x1) + u2(x2)− λ (p1x1 + p2x2 − w) .

The first-order conditions are:

∂L
∂x1

: u′
1(x

∗
1)− λ∗p1 = 0, (1)

∂L
∂x2

: u′
2(x

∗
2)− λ∗p2 = 0, (2)

∂L
∂λ

: p1x
∗
1 + p2x

∗
2 = w (3)

(b) We are interested in
dx∗

1

dw . Differentiating the FOCs with respect to w, we get,

u′′(x∗
1)
dx∗

1

dw
− dλ∗

dw
p1 = 0

u′′(x∗
2)
dx∗

2

dw
− dλ∗

dw
p2 = 0

p1
dx∗

1

dw
+ p2

dx∗
2

dw
= 1

In matrix form, −p1 u′′
1 0

−p2 0 u′′
2

0 p1 p2


∂λ∗

∂w
∂x∗

1

∂w
∂x∗

2

∂w

 =

00
1


Solving the system we get,

dx∗
1

dw
=

p1u
′′
2

p21u
′′
2 + p22u

′′
1

> 0

Because,
p1u

′′
2 < 0 and p21u

′′
2 + p22u

′′
1 < 0

(c) We are interested in
dx∗

1

dp1
. We use a similar approach as before, and take derivative of the FOCs with respect

to p1.

u′′(x∗
1)
dx∗

1

dp1
− dλ∗

dp1
p1 − λ∗ = 0

u′′(x∗
2)
dx∗

2

dp1
− dλ∗

dp1
p2 = 0

p1
dx∗

1

dp1
+ x∗

1 + p2
dx∗

2

dp1
= 1

In matrix form, −p1 u′′
1 0

−p2 0 u′′
2

0 p1 p2




∂λ∗

∂p1
∂x∗

1

∂p1
∂x∗

2

∂p2

 =

 λ∗

0
−x∗

1


Solving the system we get,

dx∗
1

dp1
=

−u′′
2x

∗
1p1 + λ∗p22

p21u
′′
2 + u′′

1p
2
2

< 0

Because,
p21u

′′
2 + u′′

1p
2
2 < 0 and − u′′

2x
∗
1p1 + λ∗p22 > 0


