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Problem 1. Let X̄n and s2n be the sample mean and variances. Suppose another observation Xn+1 becomes
available.

(a) We have that
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Problem 2. Find the distributions of:
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Since X and Y are iid normal and mutually independent, we can say that
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∼ N (0, 1)

(b) (X̄n − Ȳn)/
󰁳
2s2X/n: We have that from a theorem in class, since X is iid normal, that ns2X

σ2 ∼ χ2
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A student’s t distribution with n degrees of freedom.

(c) (X̄n − Ȳn)/
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A student’s t distribution with n degrees of freedom.
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A student’s t distribution with 2n− 2 degrees of freedom.

(e) (X̄n − Ȳn)/
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s2n/n: Since Z ∼ N (0, 2σ2), since X and Y are mutually independent, we have that
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Problem 3. Use X1, X2, X3 to construct a statistic with the following distributions:

(a) Chi-square distribution with 3 degrees of freedom. Note that since Xi ∼ N (i, i2), we have that
Xi−i

i ∼ N (0, 1). Then if Zi ∼ N (0, 1), we have that
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From the definition of chi-square distributions

(b) t distribution with 2 degrees of freedom. From above, we have that Xi−i
i ∼ N (0, 1). Then from the

definition of the t distribution, and defining Zi ∼ N (0, 1), we have that
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Problem 4. Show that Y = min{X1, . . . , Xn} is a sufficient statistic for θ, where f(x | θ) = e−(x−θ)1{x ≥
θ}.

Proof. We have that
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Since this does not depend on θ, Y = mini Xi is a sufficient statistic for θ.

Problem 5. Show that mini
Xi

i is a sufficient statistic.

Proof. We will use the Factorization Theorem. Note that
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Problem 6. Show that any one-to-one function of a sufficient statistic is also a sufficient statistic.

Proof. We have that a statistic T (x) is sufficient, meaning that there exist functions h(x) and g(T (X) | θ)
such that

fX(x | θ) = h(x)g(T (X) | θ)

If there exists T ′(x) such that T ′(x) = f(T (X)) for some bijective f , then we can say that since f is bijective
and invertible, T (X) = f−1(T ′(X))

fX(x | θ) = h(x)g(f−1(T ′(X) | θ)

so defining g󰂏 := g ◦ f−1, we get that

fX(x | θ) = h(x)g󰂏(T ′(X) | θ)

and since the conditions of the Factorization Theorem hold, T ′ is also a sufficient statistic.

Problem 7. The distribution of N (0,σ2) is
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Thus, since every observation x is squared, meaning that x2 = |X|2, we can simply set x = |X|, and have
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so φX(x) = g(|X| | σ2)h(x) and |X| is sufficient by the Factorization Theorem.
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