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1. A Bernoulli random variable X is

P(X=0=1-p
PX=1)=p
We have a random sample X;,i=1,...,n from X.

(a)

(c)

(d)

Note that the PMF for some Xj is

and so the log likelihood function is

n

p) = (Xilogp+ (1 - X;)log 1 —p) =logp y _ X; + log(1 —p) (n - ZX>

i=1 i=1
To find the MLE estimator, we find the first order condition, and get that

o 1 1 u

ip:;;xi_fp <n—;x> =0
which, simplifying, gets us that .,

1 _
PMLE = E;Xi =X,

Note that by inspection, E[X?] < oo, as E[X],E[X?] < 1. Note also that E[X] = p. Thus, by the
central limit theorem, we have that

V(X — E[X]) % N(0,Var(X)) = va(parre — p) = N(0, Var(X))

Note that the asymptotic variance of p;r g is the same as the variance of the random variable
X. The estimator I propose for the asymptotic variance is

6721 = ! Z(Xz - Xn)2

n—1

To show that &2 is consistent, we need that

62 & Var(X) = lim E[o?] = Var(X)

n—oo



Note that, since X? = X; for any outcome, we have that E[X?] = E[X] = p, so
Var(X) = E[X?] — (E[X])* = p —p* = p(1 —p)

Thus, we have that fixing some n,

=1 Y E[(X —EIX)? = % Var(X) by IID
i=1

Thus, as n — oo, E[62] — Var(X), so 62 is a consistent estimator.

(e) We have that the efficient score is

0 0 X 1-X
S=—1o X = —[(Xlogp+ (1 —X)logl — = — —
o g f(X |p) 8p[( gp + ( )log 1 —p)] 1,
which simplifies to
g X=Pp
p(1—p)
Thus,
X—p ) Var(X) 1
Var(S) = Var = =
) (p(l -p) (p(1=p))*  p(1-p)
and 1
y P
P op(l—p)

(f) We have that another measure of the information is the curvature of £(p):

_6(95;2]3) :_%[(Xlongr(l—X)logl_p)] -5 {X 1—X]

which, evaluating, returns

_ 04(p) (X n 1-X
Op? - P2 (1— p)2
Taking the expectation, we get that:

N [§+ (i:;;] N <]E1[7§] " l(l_—Ez[:)g]> - <%+ 1119) :p(ll—p)

Which is the same as part (e)!

(g) The Cramer-Rao lower bound is




(h) Recall that pysrg is the sample mean. From class, we know that the variance of the sample mean

is
Var(X) _ p(1—p)
n n
So the variance of the MLE estimator is the same as the CRLB!

Var(ﬁMLE) =

(i) Since p = E[X], I propose the sample mean estimator as the method of moments estimator:

PMME = %;Xz

2. We have that X ~ U[0, 4] for some 6 > 0. Note that the density of X is

1
f(x]0)= 9 Laiefo,0)
So the log density is
—log(@) 0<zx<¥0
1ogf<x|o>—{ ) .
—00 otherwise
We have that the log likelihood is

_nl Y.<
o) = { nlog(fd) max; (= 0
—00 otherwise

Since this is always negative, it is maximized when 6 is minimized in the finite region, meaning when
0 = max; X;. Thus, the maximum likelihood estimator 05,1 is max; X;.

3. We have that the log density is

2

—u)? —
log f(x | p, 0%) = log (\/2;7 exp (%)) = —% log(27) — %log(az) — —(x2aé¢)

so the log likelihood function is

Z?:l(Xi - N)2

- n n
Up,0%) = log f(Xi | p,0°) = 3 log(2m) — 5 log(a?) — 952

i=1
First, to find jip; g, we take first order conditions with respect to u. We get that
86(#’3 0-2) Z:L:l(XZ

n n
— 1) ; i
o g ;:1( D) fare = ;:1

Next, to find 62, ;, we take first order conditions with respect to o2, and get that

(p, ®) n Z?:1(Xi —p)? 2 - 2
— 7 = R S e =0= —no :_Z(Xi_ﬂ)

i=1

Oo? 202

which implies that

4. We will prove the Information Matrix Equality, letting f = f(z | 6p), V; mean partial with respect
to the jth element 6, and Vir mean second-order with respect to 0U) and 6%). Suppose we can
exchange the integral | and derivatives V.



(a) We have that
v, U fdx] =V,[1] = /ij(:z: | 0o)dz = 0

From the chain rule and the definition of expected value, we get that

0= /vjf(x | 6y)dz = /f(:v | 60)V; log /(| Bo)dz = B[V, log f(z | 60)]

(b) Differentiating both sides with respect to 6*) and using Leibniz rule, we get that

0= VyE[V,log f(x | 00)] = E[V, log f] + E[(V,log f)(Vlog f)]

5. We have that g(z) is the density of a random variable with mean u and variance o2. We have that X
is a random variable with density

f(@]0) = g(x)(1+0(z — p))

We know all of g(z), u, and 0. The unknown parameter is 6, and we assume that X has bounded
support so that f(z | §) > 0 for all x.

(a) We have that

2

o0 o0

/: flx | 0)dr = / g(x) +0g(x)(x — p)dr = / g(z)dx + 9/ g(z)(x — p)da

oo
— 00 — 00 — 00

and since g is a density and from the definition of expectation, we have that

/OO flz|dz=1+60-0=1

(b) We have that
E[X] = / rf(x | 6)dx = / £g(x) + Oxg(x) (z — p)de

SO

o oo

E[X]=u+ 9/_(1 22g(x) — prg(x)dr = p+ 6 (/ x2g(x)dr — u/

— 00 — 00

xg(x)dx)

Thus,
E[X] = p + 00?

(c) We have that the log density is
log f(z [ 0) = log g(x) +log(1 + 6z — )

so the efficient score is

55X 16) = 37 log g(X) + log(1 + 00X — )] = 1

and the Fisher Information is




(d) When 6y = 0, this expression simplifies to

Fo, = E [(X - M)Q] — Var(X)

(e) We have that the likelihood function is

so the log likelihood function is

L

(0) = Hf(xi | 0)

06) = log L(9) = 3 log f(X; | 6) = Zlogg ) + log(L + 0(X; — )

i=1

(f) The first order condition is

(g) From the asymptotic properties of MLE estimators, we know that the unique MLE estimator 0

has the property of

(h) When 6y = 0, we have that

Vil —60) SN0, 7)) =N (o, (1@

(i) ))

Vi —65) 5 N (0, Var(X) ™)

6. To complete the proof, note that the variance expanded is:

e[(fymsscx 102 [fpwercx 1] (G ssx 0 - s [fyms ] ) |

From the Analog Principle, we have that 6, maximizes the expected log likelihood function, meaning
that using Liebniz integral rule, since 6y is a local maximum,

0
B | 1o X |00 =
and thus,
Var 4 log f(X | 6p) | =
a0 % )=
and by i.i.d.,

E

9 9 d
(gproesex 160 (gytoescx 160))

O Ellog f(X | 00)] = 0

= | (g s 1) (g 1ow X1 ew)/]

:nE

(880 log f(z | 60)> (6‘80 log f(x | 60)>/] = nFy,



7. From class, we have that the MME is
3 ( )— —1 Y 1
F.(z) = g <
P X; <

Note that each 1x,<;, is a Bernoulli random variable with mean F(x). We can view the empirical
distribution function as the sample mean of a Bernoulli process, where F'(z) is the population mean.
Cast this way, we have that by Central Limit Theorem

V(B (z) — F(z)) % N(0, Var(1x,<.))

and from the properties of a Bernoulli random variable, 1y,<, has variance p(1 — p), where p is the
population mean. Thus, we have that

Vi(E(z) — F(z)) % N(0, F(z)(1 - F(x)))

8. Let X follow an exponential distribution with pdf f(z) = fexp(—6z), x > 0, § > 0. The expected

value of X is given by E[X] = .

(a) We have that the efficient score is

9 P X
= 55108 f(X 6) = o5 [log(0) —6X] = 5 — X

Thus, the Fisher information is

2
1 12X 12
——X) |=E|l= -+ X? == - = X?
(9 )] E{e‘z o " ] 62 02+E[ ]

Using the definition of expected value, we have that

S

E

mm=/ﬁﬂWM=/f%wHMW=%

Thus, the Fisher information simplifies to

1 2 2 1
FcE et e e

and the CRLB is

02
a.\—1 —
(TL:/@) = n

(b) Note that since E[X] = %, we have that defining the function g(z) = 27!, E[g(X)] = 6, the MME
for 0 is

1 1
0 ==y —
MAME n;X

(¢) Using Delta Method, since £ > | X; and g(-) are scalar-valued, we have that by the CLT,

n

Vi(Oains — 0) = Valg(i) — g(i) % N(0, (¢/ (u) |,)* Var(X))

We have that the variance is

Var(X) = E[X?) - X)) = o5 — 5 = 2



and that 1 )
/ = —_—— = — = — 2
o) b= =25, =~ = ¢

Thus, the asymptotic distribution of éM ME 18

\/ﬁ(é[\/[ME — 9) —d> N (0, (—02)2%> == N(O, 02)



