
Problem Set 9

Due: TA Discussion, 1 November 2023.

1 Exercises from class notes

From “5. Differentiation.pdf”.

Exercise 18. Let F : R4 → R2. Suppose the conditions for the implicit function theorem are
satisfied at all points and that F(x∗1 , x∗2 , y∗1 , y∗2) = 0. Let h = (h1, h2) denote the implicitly defined
function of (x1, x2) for the relation F(x1, x2, y1, y2) = (0, 0) near (x∗1 , x∗2 , y∗1 , y∗2). Give explicit for-
mulae for ∂hi

∂xj
for i, j ∈ {1, 2}.

Exercise 19. Prove the Inverse Function Theorem. Hint: An inverse function of f : X → Y, f−1,
satisfies following equation:

y − f
(

f−1 (y)
)
≡ 0.

Thus, we can think of x = f−1(y) as being implicitly defined via the expression above.
From “6. Optimisation.pdf”.

Exercise 3 Prove the following: Suppose f is C2 on X, where int(X) is convex, and that f is
concave. Fix x∗ ∈ int(X). The following are equivalent:

(i) ∇ f (x∗) = 0.

(ii) f has a local maximum at x∗.

(iii) f has a global maximum at x∗.

Hint: Use Proposition 14 from “5. Differentiation.’

2 Additional Exercises

Exercise 1. Consider the equality-constrained optimisation problem from class notes:

max
x∈Rd

f (x) s.t. h (x) = 0, (1)
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where h(·) = (hk(·))K
k=1, and functions f : Rd → R and hk : Rd → R for each k ∈ {1, . . . , K} are

all C1. Define a function L : Rd × RK → R as

L (x, µ) = f (x) +
K

∑
k=1

µkhk (x) . (2)

Let
S :=

{
(x, µ) ∈ Rd × RK : ∇L (x, µ) = 0

}
.

and define SX as the project of S onto the first d components of S; i.e.,

SX :=
{

x ∈ Rd : ∃µ ∈ RK, (x, µ) ∈ S
}

.

Now consider the following problem:
max
x∈SX

f (x) . (3)

(i) Show that if a the problem (1) attains a global maximum at some x∗ ∈ Rd such that hk(x∗) =
0 for all k ∈ {1, . . . , K}, and the constraint qualification under equality constraints holds at
x∗, then a x◦ ∈ SX that solves (3) is also a global maximum.

(ii) Show that (3) is equivalent to
max

(x,µ)∈Rd×RK
L (x, µ) . (4)

Remark 1. The function L(x, µ) in (2) is called the Lagrangian of the problem (1). The solution to (4)
is called the solution to the Lagrangian.

Exercise 2. Let f : R2 → R and h : R2 → R be defined as f (x, y) := −y and h(x, y) := y3 − x2,
respectively. Consider the problem of maximising f with respect to (x, y) ∈ R2 such that h(x, y) =
0. Show that the unique solution to the constrained problem is at (0, 0). Show that the constraint
qualification under equality constraints is violated at (0, 0) and that there does not exist a µ ∈ R

that satisfies

∇ f (x∗) +
K

∑
k=1

µ∗
k∇hk (x

∗) = 01×K.

Exercise 3. Let f : R2 → R and g : R2 → be defined as f (x, y) := 1
3 x3 − 3

2 y2 + 2x and g(x, y) :=
x − y. Consider the problem of maximising f with respect to (x, y) ∈ R2 such that g(x, y) = 0.
Show that the constraint qualification under equality constraints holds everywhere. Solve for
(x∗, y∗, µ∗)’s that solve (4). Are these solutions to (1)?

Exercise 4. What do Exercises 2 and 3 above tell you about solving (1) via (4)?
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