The Principal Agent
model



The revelation principle

Definition. A mechanism is a message space M and a
mapping 4(-) from M to the space of outcomes which writes
as h(m) = (Q(m),t(m)) for all m belonging to M.



Any mechanism induces an allocation rule.
Assume here quasilinear preferences: 0v(Q) — ¢

Let:
m*(0) € arg maxOv(Q(m)) — 1(m)

Then a mechanisms M induces the allocation rule:

a(0) = O(m*(0)),1(m*(0)).



A direct mechanism is a mechanism in which M; = ®;: the
message space for i is i's type space.

Is there loss of generality in restricting attention to direct
mechanisms?



Definition. A direct revelation mechanism is a mapping g(-)
from the space of types to the space of outcomes which

writes as g(6;) = (¢(0;),T(0;)) for all 9,.

The principal commits to offer ¢(0;) at a price 7(0;) if the
agent reports to be of type 6..



Definition. An agent finds it incentive compatible to
announce his/her type in correspondence to g if and only if:

Ov(q(0)) —T(0) = 0'v(¢(0")) — T(6')



Definition. A direct revelation mechanism g(-) is truthful if it
IS incentive compatible for the agent to announce his true

type for any type.

Definition. A direct revelation mechanism g(-) is
individually rational if 0v(q(0)) — T(0) > u for any type.



Theorem (Revelation Principle). Any possible allocation
rule a(0) obtained with a mechanism {M, 4(-)} can also be
implemented with a truthful direct revelation mechanism.



Proof. We will show that if an outcome function is
Implemented by a mechanism, then it can be implemented
by a direct mechanism as well.

This implies that there is no loss of generality in studying
direct mechanisms.



Mechanism {M, h(-)} induces an outcome function

g(0) = O(m*(0)), T(m*(0)).

Construct the functions /Q\ — Qom*, T = Tom*, so that;

0(0),7©0) = 0(m*(0)), T(m*(0))

This is a direct mechanism implementing outcome g(6).

Is it truthful?
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To verify that g(0) is a direct, truthful mechanisms we need
to verify truthfulness. Since:

m*(0:) € arg max0,y(Q(m)) — t(m)

We must have:

0.(O(m*(0,))) — TO(m*(0:)) > 0:(Q(m*(6)))) — TO(m*(6,))
= 0:(000))) - T(0:) = 0:(0(0;)) - T(0,)

for any 6,,6;.
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The optimal direct
mechanism with 2 types
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The seller’s problem can be written as:

max f(7; — cq1) + (1 = f)(Tn — cqn)

O:v(g(0.)) —T(0r) > 0,v(g(0n)) — T(0g) IC,

s. 1. 01v(q(0n)) — T(On) = O0uv(q(01)) —T(0L) ICh
0:v(q(0m) — T(0n) = 0 IRy
0.v(q(0L)) —T(0L) = 0 IR,

To solve this problem we proceed in steps.
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Step 1

Note that /R; and ICy implies IR y:

Ouv(q(On)) —T(On) = Oyv(q(0L)) — T(01)
> 0v(g(0r)) —T(O0) >0
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Step 2

Consider a relaxed version of the problem in which we
ignore ICy:

IIT}%{S,B(TL —cqr) + (1 = B)B(Tu — cqu)

iy 0uv(q(On)) —T(On) = 0yv(q(0L)) —T(0L) ICH
- 0.v(q(0.)) —T(01) > 0 IR;
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Note that the value of this program is not lower than the
value of the original program.

If, once we have solved it, we can prove that indeed IC; is
satisfied at the solution, then the two values coincide.
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Step 3

Note that if 0,v(¢(0.)) — T(0.) > 0, then we can increase
7(01) without violating any other constraint (indeed relaxing
ICp).

This change increases the payoff, a contradiction

The case for ICy is similar.
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Step 4
Note that from /Cy; we can write:

O0uv(q(0n)) — T(On) = Ouv(g(0L)) —T(0L)
= 0.v(q(0L)) —T(0L) + (O —0.)v(q(0L))
= (O —0.)v(q(0L))
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Substituting this and IR;, seller’'s program becomes:

QHV(Q(QH)) —CqH
x 3(6 0 —cq(0 B
max OLGO) ~cq00) +(1- P )< 00— 0 >

For the contract we solve this problem.

Note that the objective function above, I, is not necessarily
concave.
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Observe that:

(1=-B)Ov"(q0n))) <0
WqH,(JL — WQLJ]H =0

WQH,QH

So this problem is concave if the hessian is negative
(semi-)definite:

Wara = POV (q(0)) — (1 =B)Oun—0)v"(qr) <O

This is however no always the case.

It is the case if S is high enough, or 6 — 6, is small enough.
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We will see more examples below.

We assume here that concavity is satisfied.
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Our focs are:

0nv'(qOn)) =c

QLV,(Q(GL)) — : 1—5 QH—9L>

5 0L

Note that: ¢(0x) > q(01).

For this to be a solution we need to verity that IC; is
satisfied.
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From the binding /Cy we have:

Ouv(q(On)) — T(On) = Onv(q(0L)) — T(0L)
- Oy(v(q(On)) —v(q0L))] = T(On) — T(0L)
- 0.[v(g(On)) —v(g(01))] < T(On) —T(01)

Implying:
0.v(q(0L)) —1T(0L) = 0.v(g(On)) —T(On) IC

We conclude that the solution of the relaxed problem is a
solution of the original problem.
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Why did | need to wait until now to establish /C.?

Because | needed to show ¢(0y) > ¢(0y) for the argument.
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Solution then is:

0nv'(qOn)) =c

0.v'(q(0L)) = ¢

1 — 1-f 0y-0; >
B oL

Note:
® High types buy more than low types.

@ High types buy the efficient quantity; low types less than
efficient.

@® The low type receives a surplus of zero; the high type
receives a positive surplus.

25



Continuous types

Let us now assume that we have a continuum of types
0 € [0, 1] (without loss of generality)

The distribution of types is F.

The utility function is u(q,0) with uy(g,0) > 0, ue,(gq,0) > 0 or
alternatively uy(gq,0) < 0, up,(q,0) < 0
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A direct mechanism is now a function #(0) = (¢(0),T(0))
A direct mechanism is incentive compatible if:

u(q(0),0) — 1(0) > u(q(0"),0) — 7(6") for all 6,6’
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The optimal contract can now be written as:

max | T(0) — C(g(0))dF ()

u(q(0),0) — T(0) > u(q(0"),0) — 7(6") for all 9,6'
S. 1.
u(q(6),0) — T(0) > 0 for all 6

We first study the constraint set, then the solution of this
problem.
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Implementability

A direct mechanism & = (¢, T) is compact valued if
{(¢,T7) s.t. 30" such that ¢, T = (¢(9),7(6")) }

IS compact.

We now show that if ug,(¢,0) > 0 and a direct mechanism
h(0) is compact valued then %(0) is incentive compatible if
and only if:

U©") - U@ = | o to(q(x),x)dx for any 6",0' s.t. 6" < 6"

and ¢(0) is non decreasing
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Necessity
IC(0';0) constraint implies:

U®) = u(q(0),0) - T(0) = u(q(6"),6) — 1(6')

= U(9") + [u(q(6"),6) — u(q(6"),6")]
Or:

U®) - U8") = [u(g(8),0) —u(q(6'),0")]
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Similarly 1C(6;60") implies:

U©") — U(0) = [u(q(6),0") —u(q(6),0)]
= U(0) - UO') < [u(q(0),0) —u(q(6),0')]
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We have:

u(q(8"),0) —u(q(8'),0") < UO) - U(®") < u(q(0),0) —u(q(6),0")

The single crossing condition implies that ¢(0) > ¢(0') for
6>0.

32



Moreover we have:

u(g(8"),0) —u(g(8).0") _ U®) - U®) _ ulg(®),0) —u(q(6).0")

0-6 -~ 0—-6 - -6
Taking the limitas 6 — 6" - 0, we have:

U'(0) = uo(q(0),0)

at all points of continuity of ¢(0).
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Now observe that:
® given that /2 is compact valued;

@® . is continuous.

Then U(0) must be continuous by the theorem of the
maximum since:

u) = max{u(q(9)9) (6"}

He
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Since U(0):
@ s continuous over a compact set;

@® with bounded derivative (at all point of existence).

Then the fundamental theorem of calculus implies that it is
integrable.
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Sufficiency

Assume:

9//

v -u@) =,

ug(q(x),x)dx forany 0”,0' s.t. 0’ < 0"
and ¢(0) is non decreasing

If the mechanism is not IC then there must be a § and a 0’
such that

U@') +u(q@9"),0) —u(q(0'),0") = u(q(0'),0) — 7(6")
> u(q(0),0) — T(0) = U(6)
and the reverse.
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So we can write:

u(q(0"),0) —u(q(0"),0") > U(0) — UO")
= u(q(0),0) —u(q(0"),0")
= IZ, ug(q(x),x)dx

Or:

IZ’ uo(q(0'),x)dx > jz, ug(q(x),x)dx
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That is:

-[Z’ [16(g(0"),x) — ua(q(x),x)]dx > 0

But using the monotonicity of g(x), we have:
ug(q(0"),x) — up(q(x),x) < ue(q(0'),x) —ue(q(0),x) = 0

a contradiction.
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Solving the seller’'s problem

It follows that the optimal contract is:

max [[7(6) - C(¢(6))1dF(0)

s.t. <

/

.

U) = [ uo(q(x).x)ds
¢(0) non decreasing

u(¢(0),0) - 7(0) = 0
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Note that 7(0) — C(¢(0)) = S(q(0),0) — U(0).
So we can write it as:
max [[S(¢(0),0) - U(0)1dF (©)

U(0) = _fg ug(q(x),x)dx
q(0) non decreasing and U(0) = 0

S. L.

We can substitute the first constraint in the profit function.
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We obtain:

n(q) = max [[S(q(6),0) - U(0)1dF(0)

= max [[ S(q(60).0) - [ uo(g(x). x)dx |f(6)do

41



Remember that by integration by parts we have:

j kz'dx = kZ j k' zdx
Let us apply this to:

1 o). J0)do
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Letting
z=-[1-F(@)]soz =F'(0) =f(0)

and k = _[s ug(q(x),x)dx so k' = ug(qg(x),x).

We have:

EU(O) = [, UO)dF(6)

= [ [ uo(q(x),x)dx + F'(6)db
= —[UO)[1 - FO))} + [ ua(q(x),x) - [1 - F(0)]d0

_ U(0) +E[u9(q(9),9) 1 }(g)(@) }
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So the problem becomes:

1 - F(0)
f0)

max J| ¢(6),60) - a(g(©),0 - U |are

s.t. ¢(0) non decreasing and U(0) = 0

This problem is not necessarily concave and does not
necessarily an interior solution.
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In the following we assume that:

1 - F(0)
f0)

(D(Q9 0) — S(qa 0) — ue(Q: 0)

IS quasiconcave in g and has a unique interior maximum.
Sufficient conditions for quasi concavity are:

S(q,0), typically uncontroversial

ug(q,0) not too concave
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The focs are:

S'(q(0),0) — us(q(0),06)

1 -FO) _

/(0)

0
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Assume that u(g,0) = ¢0 and C(g) = q2—2 Then we have:

1 — F(0)
f0)

1 — F(6)
f0)

5'(q(6),0) — us(q(0),0) =0 —-q(0) - q(0)

Note that under these assumptions ®(q,0) is concave and
has a unique interior maximum:

11— F(6)
f0)

q0) =0
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To prove that this is a solution we need to verify
monotonicity.

A necessary and sufficient condition for monotonicity of the
solution of the relaxed problem is that ®(g,0) > 0 for all

q,0.

To see this differentiate the foc and obtain:

Dy4(q,0)dg + Dyo(q,0)d0 = 0

N ﬂ — (qu(q,e)
de (DQQ(Q99)
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A sufficient condition for this is that u,» > 0 and u 0 (g,0) < 0

and that types satisfy the monotone hazard rate condition,
that is: —Z~ non decreasing.

In the example seen above we have u = 0q, us, = 1,
uqz0 = 0 so the MHRC alone is sufficient.
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What have we learned?
There is a trade off between efficiency and incentives:

S0(0).0) - g - uo((0).)

This leads to quantities that are distorted, lower than
efficient.

The previous formulation of surplus is very similar to the
formulation with discrete types:

1 — P;
5(g:,0:) — —5—[u(gi-1,0:) — u(g:,0:)]
We still have no distortion at the top, but now this concerns
a measure zero of types (only the highest type).
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