Econ 6190 Problem Set 4

Fall 2024

1. Let {Xy,...,X,} bearandom sample from the uniform distribution on the interval (6,6 + 1) , —oo <
0 < oco. Find a minimal sufficient statistic for . This question shows that the dimension of a

minimal sufficient statistic does not necessarily match the dimension of the unknown parameter.

2. |Mid term, 2022| Suppose X ~ N(u, 0?) with an unknown mean p and known variance o2 > 0.
We draw a random sample X := {X;, X5,... X,,} of size n from X. We are interested in

estimating p based on X.
(a) Find a minimal sufficient statistic for pu.

(b) Suppose now 02 = 1 and n = 1. Consider the following estimator 0 = %Xl for some

known ¢ > 0.

i. Find the MSE of 6. Is § unbiased?

ii. Compare the MSE of § with the MSE of § = X;. Which one is more efficient? (Hint:

there is a range of values of y for which 6 is more efficient).

iii. Based on your answer to (ii), which of the two estimators, 6 or 9~, is more efficient

when = ¢?

3. Let {Xj,..., X,,} be arandom sample from finite second moment, and let 6% = £ 3% (X;—X)?

be an estimator for 02 = var(X). Show E[6?] = (1 — L)o? and thus find the bias of 62.

4. [Hong] Suppose { X1, X, ... X,} is iid N(0,0?). Consider the following estimator for o:
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a) the sampling distribution of né?/c?.



5. Let {Xy,...,X,} be a random sample from a Poisson distribution with parameter A

e AN

J!

P{X;,=j} = j=01...

(a) Find a minimal sufficient statistic for A, say 7.

(b) Suppose we are interested in estimating probability of a count of zero § = P{X = 0} =
e~*. Find an unbiased estimator for 6, say 6;. (Note P{X = 0} = E[1{X = 0}].)

(c) Is the estimator in (b) a function of the minimal sufficient statistics 7°7

(d) Use the definition of a sufficient statistic and an unbiased estimator, show that the esti-
mator 0, = E[6,|T] is also unbiased and MSE(6,) < MSE(6;).

() Based on (d), find an analytic form of 6.



L)

(b)

The joint pdf of X is

1 O<z;<f+1,0=1...n,

f(x[0) = ,
0 otherwise,
equivalent to
1 maxz; — 1< 6 <minuxz,,
f(x[0) = ,
0 otherwise.
Thus, for two sample points x and y, the numerator and denominator of ratio ;E;Ig; will

be positive for the same values of 6 if and only if maxz; = maxy, and minz; = miny;.

Furthermore, when maxz; = maxy; and minx; = miny;, ;E;‘iz; = 1. Therfore, the

minimal sufficient statistic is (max; X;, min; X;).

Answer: For any two sample points x and y
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which does not depend on p if and only if Z = . Thus, a minimal sufficient statistic is
T(X)=X.

i. Find the MSE of 6. Is 6 unbiased?
Answer: MSE() = E[(6 — 0)?] = bias?(f) + var(f).

bias(f) = E[0] — p
c? L
Terlt T T e

~ c? 2
var(f) = (02 n 1) -1

A 2 4 I~ . .
Thus, MSE(0) = (62'[:_21)2 + (Cfil) = Z‘c‘ji—f)g Also, 6 is biased unless pu = 0.




ii. Compare the MSE of § with the MSE of § = X;. Which one is more efficient? (Hint:
there is a range of values of u for which 6 is more efficient).

Answer: MSE(6) = 6% = 1. Therefore,
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MSE(0) — MSE(f) =

A~ ~

Since ¢® +1 > 0, MSE(#) — MSE(#) > 0 if and only if
p? =2 —1>0,

ie., when g > V22 +1 or p < —v2c2+ 1. Thus, 6 is more efficient when p €
(—00, =22 + 1)U(V2¢2 + 1, 00). And 6 is more efficient when p € (—v22 + 1,v/2¢2 + 1).

iii. Based on your answer to (ii), which of the two estimators, 6 or 6, is more efficient

when p = ¢?
Answer: since it always holds that ¢ € (—v/2¢2 + 1,v/2c¢% + 1), 0 is more efficient when
L= C.
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