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Exercise 1. Toward a contradiction, suppose that

sup f(x) > sup f(x)

xel xel
Then there exists x’ € I'; such that
f(x") > sup f(x)
xel

But x’ € T, also, so this is a contradiction.

Exercise 2. By definition of sup

x*G{xGX f(x)zsg;r)f(z)} < f(x*)>f(x) forallxeTl
and
x*e{xex <gof><x)=sgg<gof><z>} = (g0) () = (gof) (x) forallxeT

Because g is strictly increasing, we also have for all x that
f) 2 fx) <= (gof) (") = (g0 f) (x)

The result follows. If ¢ was a weakly increasing function, we would instead have
fT) 2 fx) = (8of)(x) 2 (gof) (%)

This implies

zel zel

{xEX

This may hold with inequality: consider the set {0,1} and the functions f(x) := x and g(x) := 1.

fo) =spraf e fxex

(g0 f) (x) =sup(gof) (Z)}

Exercise 3. By definition, (iii) == (ii). If f has a local maximum at x* then for x sufficiently close
to x*, f(x*) > f(x). Because f is concave and differentiable on the convex set int X, Proposition
14 implies that V f(x*)(x — x*) < 0 for x close to x*. It follows that Vf(x*) < 0and Vf(x*) >0,
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so Vf(x*) = 0. Therefore, (ii) = (i). It remains to show that (i) = (iii). Suppose that
Vf(x*) = 0. Applying Proposition 4 again,

V) (x =) 2 f(x) = f(x7)
for all x € intX. It follows that 0 > f(x) — f(x*) for all such x, or equivalently, f(x*) > f(x).
Suppose x € bd X. Continuity of f (implied by differentiability) tells us that for all € > 0, there
exists x’ close enough to x that f(x) < f(x’) 4 e. This implies that f(x) < f(x*) 4+ ¢ for all € > 0.
That is, f(x) < f(x*). Thus, f has a global maximum at x*.

Exercise 4. g is clearly C! and concave. f is clearly C! on R\ {0,1}. To see if f is differentiable at
0, we consider left- and right-derivatives,

_ 3
lim L= fO) .
b0 h w0 h
= lim K>

h,0

=0

and do the same at 1,

Therefore, f is differentiable everywhere, with derivative

3x2 if x <0
fl(x)=<0 ifo<x<1
2(x—1) ifx>1
It is easy to see that this is continuous: in particular, if x — 0 then f/'(x) — 0 and if x — 1 then

f'(x) — 0. The derivative of f is everywhere nonnegative, so f is monotone and thus quasiconcave.
f is not concave because

(k) rmocd-Frbro s

Let x* € [0,1]. Then f'(x*) = 0 and g(x*) > 0, so the KKT conditions are satisfied by A* = 0.
But f(x*) = 0 < f(x) for any x > 1. This suggests that we cannot remove condition (14) from
Theorem 5: if Vf(x*) = 0 and f is not concave, then x* may not be a maximum.



PS 9 Additional Exercises

Exercise 1.

(i) If problem (1) attains a global maximum at x* and the constraint qualification holds, then by
the Theorem of Lagrange, there exists u* € RX such that

K
VF() + Y Vis(xt) =0
k=1

But the left-hand side is just VL (x*, u*). Moreover, the constraints imply V,L(x*, u*) =
h(x*) = 0. Taken together, we have

VL(x*,u*)=0

So (x*,u*) € S and x* € Sx. It follows that f(x°) > f(x*). Moreover, x° € Sx implies that
there exists ° such that V.L(x°, u°) = 0. But V,L(x°, u°) = 0 implies that x° satisfies the
constraints. Therefore, x° is also a global maximiser for problem (1).

(ii) (Note: This problem should have had the the additional hypothesis: “Suppose (4) has a solution.” ) Let
(x', ') solve (4). Then Proposition 1 on unconstrained optimisation implies that (x/, u’) € S,
so x" € Sx. Moreover, by definition of (x/, i’),

L) = f(x) + o (x') > f(2°) + Y opgha(x°) = L(x°, %)
where x° maximises (3). But 1/, x° € Sx implies h(x") = h(x°) = 0.It follows that
f(x) = f(x°)
so x’ is also a solution to (3). Conversely, x” € Sx and the definition of x° imply
f(x°) = f(x')
Moreover, we know that h(x°) = h(x') =0 so
L(x% 1) = f(x°) + Yo puche(x®) > f(x) + Y pihe(x') = L(x', 1)
for any p°. It follows that (x°, u°) solves (4).

If problem (1) attains a global maximum at x* and the constraint qualification holds, then by
the Theorem of Lagrange, there exists u* € RX such that

K
VF(x*)+ kz pi - Vhe(x*) =0
=

But the left-hand side is just V,L(x*, u*). Moreover, the constraints imply VuL(x*, u*) =
h(x*) = 0. Taken together, we have

VL(x*,u*)=0

So (x*,u*) € S and x* € Sx. It follows that f(x°) > f(x*). Moreover, x° € Sx implies that
there exists y° such that VL(x°,u°) = 0. But V,,£(x°,u°) = 0 implies that x° satisfies the
constraints. Therefore, x° is also a global maximiser for problem (1).
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(iii) Let («, #’) solve (4). Then Proposition 1 on unconstrained optimisation implies that (x, u’) €
S, so x’ € Sx. Moreover,

fO) + 3 mihi(x') = f(x%) + 3 pghi(x?)

where x° maximises (3). But part (i) tells us that #(x°) = 0 and Proposition 1 tells us that
h(x") = 0. it follows that

f) = f(x%)
so x’ is also a solution to (3). Conversely, suppose x° is a solution to (3). Then, the previous
direction implies

f(x°) = f(x)

for any x” such that (x’, i) solves (4). Moreover, we know that h(x°) = h(x") = 0 so

L(x% 1) = f(x°) + Yo puche(x®) > f(x) + Y pihe(x') = L(x', 1)
for some p°. It follows that (x°, u°) solves (4).

Exercise 2. y°> — x2 = 0 is equivalent to y> = x2. In particular, this implies that y > 0. Maximising
—y is equivalent to minimising y, which is achieved by choosing y = 0. The constraint then implies
that x = \/y = 0.

Dh(0,0) = |20 200 — 2.0 3-0?| = [0 0]

and the constraint qualification is that rank Dh(x,y) = 1. The rank of a matrix is the maximal
number of its rows (or columns) that can comprise a linearly independent set. Here, we have one
row, which is a zero vector, and the set {0} is not linearly independent. Therefore rank Dh(x,y) = 0,
violating the constraint qualification.

Note also that for any u € R,
V£(0,0)+uVh(0,0)= [0 —1]+ulo o] =0 1] # [0 0]

Exercise 3. The solution to (1) can be obtained by plugging the constraint y = x into the objective
function to get %x3 — %xz + 2x. This function does not attain a maximum, as lim,_,« %xg’ — %x2 +
2x:limx_>oox3-(%—%+%):oo-%:oo,

Dh(x,y) = {1 —1} which has rank 1, as required by the constraint qualification.

The Lagrangian is

1, 3
Loy, p) =320 = Sy + 20+ - (x —y)

Again, by choosing x = y — oo, we can make this expression arbitrarily large, so (4) doesn’t have a
solution.

Exercise 4. Exercise 2 tells us that the constraint qualification is necessary in the Theorem of
Lagrange. Exercise 3 tells us that the constraint qualification and V£(x, i) = 0 are not sufficient
conditions for the existence of an equality-constrained maximum.
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