ECON 6170 Module 7 and Problem Set 11 Answers

Patrick Ferguson®

Exercise 1. The Lagrangian of this problem is

K

L(x,p1,0) = f(x,0) + kZ pihi(x,0)
=1

Because the constraint qualification is satisfied and all function are continuously differentiable, the
hypotheses for the theorem of Lagrange are satisfied. Fix 0 = 0.

V(x,y),C(X*, }1*, 90) =0

at any solution x* for some y*. Define a new function, .Z : R" x R¥K — R*K defined by

. oL(x, y,@))

aL(x,1,0) oL (x, 1, 0) oL (x,u,0) N
7 a]/lK

axl Y axd Byl

Z(Q, X, ]’l) = V(x,‘u)ﬁ(x/ M 9) = < ’
If we define y := (x, ), then we can write .Z(6p, y*) = 0. Suppose we know that D,.Z (6o, y*) is
invertible (which is the case when each equation that defines the critical point of the Lagrangian has
content), we can then appeal to the IFT to conclude that there exists a continuously differentiable
function g : Be,(60) € R™ — B, (y*) € R such that

g(0) =y < V,L(y,0) =0

And

1
Dg(8) = [Djﬁ(x, y,@)} DyDyL(x, 1,6)

This tells us how the critical points, (x*, u*) change locally with the parameter 6. If these critical
points define solutions to the maximisation problem, then Dg(f) tells us how those solutions

change locally with 6.
Exercise 2. EIThe Kuhn-Tucker theorem tells us that for any given value of 8, x*(0) and A*(0) must
satisfy
Vif(x*(0),0) +A*(0) - Vih(x*(0),0) =0 (1)
h(x*(6),0) =0 2)

The latter implies
f1(6) = f(x7(6),60) = f(x7(0),0) + A7(6) - h(x"(6),6)

“Based on solutions provided by Professor Takuma Habu.
15olution modified from that written by Peter Ireland.




Differentiating both sides with respect to 6 yields

VfH(0) = Vaf(x*(0),0) - V™ (0) + Vof (x7(6),0)
FAY(0) - [Vah(x*(6),0) - V' (8) + Veh(x*(8),0)] + VA*(8) - h(x*(),0)

Applying (1)), we get
V5 (0) = Vof(x*(0),0) + A*(0) - Voh(x*(0),0) + VA*(0) - h(x*(0),0)
And then applying (2), we get

Vf7(0) = Vof(x7(0),0) +A"(6) - Voh(x"(6),6)

Exercise 3. A maximum of S is a supremum of S that lies in S. Suppose x’, x”/ are maxima of S.

Then both are upper bounds for S. In particular, x’ > x” and x” > x/, so by antisymmetry, x’ = x”.

Exercise 4.

xVy
= x>x&x>y&(z>x&z>y = z>x)
— x>y

XAY
— y<x&x<y&(z<x&z<y = z<x)
— x<y

~(x2y)

= xVy#x

= xVy#Fx&xVy>x
<~ xVy>x

~(x<y)

= xA\yFx

= xANyFx&xNy<x
— xNYy<Xx

Exercise 5.
{(0,1),(1,0)}
We will use the following Lemma in Exercise 6:

Lemma 6. f has increasing differences in (x,0) if and only if f has increasing differences in (x;,0;x_;,0_;)
forallie {1,...,dyandall j € {1,...,m}.



Proof. Suppose f has increasing differences in (x,6). In particular, suppose x; > x;, 6; > 6;, x" is x

with x; replaced by x;, and 6" is 6 with 6; replaced by ;. Then x" > x and ¢’ > 6, so

f(,0") = f(x,0') = f(x,0) - f(x,0)

or equivalently

fxi, 05x4,0-7) — f(x1,0x5,0-) > f(x;,05x4,0-;) — f(xi,0;x5,0)

Conversely, suppose f has increasing differences in (x;,0;;x_;,0_;) foralli € {1,...,d} and all
j €{1,...,m}. Suppose ' > x and 6’ > 6. Then x/ > x; for all i and 9]/- > 0, for all j. Let

ie{l,...,d} and x' := (x1,...,%i—1,%,...,%). Then

x,0) — f(x,0)

(x',61,05,...,00,) — f(x'1,0,,65,...,00)
(x',601,0,05,...,0,) — f(x',01,6,,65,...,0,)

=
~

AV AVAR AVARR VS

f(ad,8) — f(x'1,8)

Each step j follows from increasing differences in (x;, 0j;x i, 9,]-). We can rewrite:

F(0) = f(x,0) > fF(x*1,0') — fF(x"*1,0)
Applying this iteratively toi = 1,2,...,d, we have

fOL0) = f(x,0) > f(x*,0') — f(x%,0)
> f(x°,0") = f(x*,0)
>
> f(x,0') — f(x,0)

Therefore, f has increasing differences in (x, 6).

O

Exercise 6. By the lemma above, f has increasing differences in (x, 6) if and only if, for all distinct

i,jand all e,6 > 0,

f(x,‘ + €, 9]‘ +9;x_;, 9,]‘) — f(Xi + ¢, 9]‘,' X_i, 9,]‘) > f(xi, 9]‘ +5; x,i,G,]‘) — f(x,‘, Gj;x,,‘, 9,]‘)

Dividing both sides by é and taking limits as § “\, 0, we have that

d d
E%gj(xi +e0;x_,0_;) > aé;(xi,@j;xi,@j)

Rewrite @) as

of of
T%(xi +¢, 9], X_i, 9_]) — afgj(xi, 9], X_;, 9_]) Z 0

Dividing both sides of (5) by ¢ and taking limits as € \, 0, we get

azf
>
8xi89j (x, 9) >0

)

(4)

©)

(6)



Conversely, (6) implies that
7 (0)
is increasing in x;, which implies (5). Then (5) implies
fxi+e0;x,0_;) — f(x;,0;x_,0_;)
is increasing in ¢;, implying
fxi+e0;+06;x_;,0_;) — f(x;,0; +8x_;,0_;) > f(xi +¢&60;x_;,0_;) — f(x;,0;;x_;,0_;)
which is just a rearrangement of (3).

Exercise 7. Suppose f : X x ® — R has single-crossing differences so that, for any 6’ > 6,
F(0) > F(x,0) = f(",0) > f(+,6)
F(x",6) > f (x,8) = f(x".0) > f(x,6).

Because ¢ is strictly increasing in f(x, ), each inequality continues to hold when we take ¢(-,0)
of both sides. Therefore,
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as required.

Additional Exercises

Exercise 2. We assume f > 0 (this is necessary for log f to exist). If f is log-supermodular, then
log f is supermodular, so

log f(z) +log f(z') <log f(zVZz') +log f(zNZ)
or equivalently
f@f(E) < flzV)f(z A7)
Suppose z,z’ satisfy f(z) > f(z A z’). Then
fev)f(znZ) = f(2)f(2) = fzn2)f(Z)

from which it follows that f(zV z') > f(z’). Similarly, if f(z) > f(z A Z), then the same argument
yields f(zVz') > f(z'). Therefore, f is quasi-supermodular.

Exercise 3. Write 7(y, p, —q) := pf(y) —q-y. Then 7 has increasing differences in y, (p, —q):
giveny' >y, p' > p,and q' <g,

PIY)—ad - y=pfy)+qd-y=vlf)—fW > plf) - fW =pfy)—a-y—prfly) +q-y



And 7t is supermodular in y for each (p, —q):

pfy)—q-y+pefy)—aqa-v =plfW+f )] —q y+y)
=plfW)+fW)]—q9- vy +yAy)<P[f(yvy)+f<yAy)]—q'(y\/y’ww’)
=Pf(yvy)—q-(y\/y’)+Pf(yAy’)—q-(yM/)

Supermodularity implies quasi-supermodularity and increasing differences implies single-crossing
differences, so we can apply the Theorem of Milgrom and Shannon to obtain that X*(p, —¢q) :=
arg max, 7t(y, p, —q) is nondecreasing in the strong set order.

Exercise 4. Let (x',p') > (x,p). Then
P — () — px' o) = (o — )X’ = (' — p)x = p'x — e(x) — px + c(x)

so px — c(x) has increasing differences in (x, p). It is also supermodular in x for any p: assume
WLOG that x' > x

px —c(x) +px' —c(x) =p(x V) —c(xVx)+px Ax") —c(x Ax")
Therefore, we can again apply the Theorem of Milgrom and Shannon.
Exercise 5. By the Theorem of Milgrom and Shannon,
Z**(0) := argmax{F(x,y,0) | x € ]Rﬁirﬂr and y € lR‘iﬁ}
is nondecreasing in the strong set order. Then by Proposition 6, given ” > ¢,
sup Z**(0") > sup Z**(¢')

Z**(0") is a nonempty and compact sublattice of lRi1 X IR‘i2 ., 50 by Proposition 1, it is a subcom-
plete sublattice. By Corollary 1, it contains its supremum, so we can define

Then
(x5 = sup 27 (0) = ()

Note that F(-,0) being supermodular implies that F(-,y,6) is supermodular for any y € R%, .
Moreover, Lemma 6 above implies that F having increasing differences in ((x,y),6) implies f has
increasing differences in (x,6;y). Furthermore, Lemma 6 above in combination with Lemma 1
from the lecture notes implies that if F(-,#) is supermodular then F has increasing differences in
(x,y;0). Applying Lemma 6 a final time, we obtain that F has increasing differences in (x, (y,0)).
The Theorem of Milgrom and Shannon then implies that

Z*(y,0) := argmax{F(x,y,0) | x € R}
is nondecreasing in the strong set order. Therefore, 6" > 6 implies

x*:=maxZ*(y,0") > sup Z*(y/,0') > '
Because y** > i/, we also have that

x** — Sup Z*(y**lel/) 2 maxZ*(y’,G”) — x*



