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6.C.9

(a) Proof. Define the objective function with uncertainty:

V (x) = u(w − x) + E[v(x + y)]

Since u(⋅) and v(⋅) are both concave functions, the objective function is also a concave function,

V
′(x) > 0 and V

′′(x) < 0.

Given x
∗
solves the maximization problem,

V
′(x∗) = E[v′(x∗

+ y)] − u
′(w − x

∗) = 0

Since x0 solves the optimization problem without uncertainty, x0 satisfies the FOC:

u
′(w − x0) = v

′(x0)

Therefore,

V
′(x0) = E[v′(x0 + y)] − u

′(w − x0)

= E[v′(x0 + y)] − v
′(x0)

> 0

= V
′(x∗)

we have x0 > x
∗
.

(b) Define µ1(x) = −v′1(x) and µ2(x) = −v′2(x). Therefore, µ1(⋅) and µ2(⋅) are increasing and

concave. Therefore, µ1(⋅) and µ2(⋅) are valid utility functions. By Proposition 6.C.2,

E[µ1(x0 + y)] < µ1(x0) ⇒ E[µ2(x0 + y)] < µ2(x0)

which means

E[v′2(x0 + y)] ≥ v
′
2(x0)

The implications of this fact in the context of part (a) is that if the coefficient of absolute prudence
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of person 1 is not larger than that of person 2, and a risk y makes person 1 save more, it will

also make person 2 save more. In fact, the coefficient of absolute prudence measure how much

more money the person is willing to save when facing possible future risk.

(c) If v
′′′(⋅) > 0, µ

′′(x) = −v′′′(x) < 0. Therefore, µ(⋅) is risk averse, which implies

E[µ(x + y)] < µ(x)

which means

E[v′(x + y)] > v
′(x)

(d) Since the coefficient of absolute risk aversion of v(⋅) is decreasing with wealth,

∂(−v
′′(x)
v′(x) )/∂x

= −
v
′′′(x)v′(x) − (v′′(x))2

(v′(x)2)

=(−v
′′′(x)
v′′(x) +

v
′′(x)
v′(x) )(

v
′(x)

v′′(x))

< 0

Since v
′(x) > 0 and v

′′(x) < 0,

−
v
′′′(x)
v′′(x) +

v
′′(x)
v′(x) > 0

for all x and v
′′′(x) > 0.

6.C.14

(a) By definition, if u
∗(⋅) is strongly more risk averse than u(⋅), then there exists a k > 0 and

non-decreasing concave function v(⋅), such that u
∗(x) = ku(x) + v(x) for all x.

−
u
∗′′(x)
u∗′(x) = −

ku
′′(x) + v

′′(x)
ku′(x) + v′(x)

≥ −
ku

′′(x)
ku′(x) + v′(x) by u

∗′
> 0

≥ −
ku

′′(x)
ku′(x) by u

′′
< 0, v

′
< 0 and u

′
> 0

= −
u
′′(x)
u′(x)

Therefore, u
∗(⋅) is more risk averse than u(⋅) in the usual Arrow-Pratt sense.

(b) For a strictly decreasing, concave v(⋅), v(x + 1) − v(x) < 0 and decreasing in x. Since u(⋅) is
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increasing, concave and bound, u(x + 1) − u(x) > 0, decreasing with limit 0. Since

u
∗(x + 1) − u

∗(x) = k(u(x + 1) − u(x)) + v(x + 1) − v(x)

for x large enough, u
∗(x + 1) − u

∗(x) is negative, which contradicts to the fact that u
∗(⋅) is a

Bernoulli utility function, which should be increasing in x.

(c) To argue that the concept of a strongly more risk-averse utility function is stronger than the

Arrow-Pratt concept of a more risk-averse utility function is equivalent to argue the following

two statements are true:

(1) if u
∗(⋅) is strongly more risk-averse than u(⋅), u∗(⋅) is more risk averse in AP sense;

(2) u
∗(⋅) being more risk averse in AP sense than u(⋅) doesn’t necessarily mean that u

∗(⋅) is

strongly more risk-averse than u(⋅).

Statement (1) has been proved in part (a). For statement (2), define u(x) = − exp(−αx) and

u(x) = − exp(−βx) where 0 < α < β. u
∗(⋅) and u(⋅) have constant absolute risk aversion β and

α. Therefore, u
∗(⋅) is more risk averse in AP sense than u(⋅). However, given the conclusion

in part (b), u(⋅) is upper bounded, it’s not true that for any x, u
∗(⋅) is strongly more risk-

averse than u(⋅). This concludes the proof that the concept of a strongly more risk-averse utility

function is stronger than the Arrow-Pratt concept of a more risk-averse utility function.

6.C.15

(a) A simple necessary condition for the demand for the riskless asset to be strictly positive is

min a, b < 1

(b) A simple necessary condition for the demand for the risky asset to be strictly positive is

πa + (1 − π)b > 1

(c) The maximization problem can be written as

max
x1,x2

EU(x1, x2) s.t. x1 + x2 = 1

=max
x1,x2

πu(x1 + ax2) + (1 − π)u(x1 + bx2) s.t. x1 + x2 = 1

=max
x1

πu((1 − a)x1 + a) + (1 − π)u((1 − b)x1 + b)
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FOC can be written as:

∂EU

∂x1
= π(1 − a)u′((1 − a)x1 + a) + (1 − π)(1 − b)u′((1 − b)x1 + b) = 0

(d) Apply Implicit function theorem to the FOC, we get:

∂x1

∂a
=

πu
′(A) − πu

′′(A)(1 − x1)(1 − a)
π(1 − a)2u′′(A) + (1 − π)(1 − b)2u′′(B)

where A = (1 − a)x1 + a and B = (1 − b)x1 + b. Given the conditions a < 1, u
′(⋅) ≥ 0 and

u
′′(⋅) ≤ 0, we have

∂x1

∂a
≤ 0

(e) The sign of dx1/dπ should be positive. When the probability of having a bad outcome (π)

increases, the expected payoff of the risky assets decreases. The decision maker should invest

less in the risky assets and invest more in the riskless assets, which means x1 increases.

(f) Apply Implicit function theorem to the FOC, we get:

∂x1

∂π
=

u
′(B)(1 − b) − u

′(A)(1 − a)
πu′′(A)(1 − a)2 + (1 − π)u′′(B)(1 − b)2 > 0

6.C.16

(a) Assume that the individual owns the lottery and the price for the lottery is x. If he sells the

lottery, his utility is u(w + x). If he doesn’t sell the lottery, his expected utility is pu(w +G) +
(1 − p)u(w +B). Therefore, the individual will only sell the lottery when

u(w + x) ≥ pu(w +G) + (1 − p)u(w +B)

(b) Assume that the individual doesn’t own the lottery and the price for the lottery is y. If he

doesn’t buy the lottery, his utility is u(w). If he buys the lottery, his expected utility is pu(w −

y +G) + (1 − p)u(w − y +B). Therefore, the individual will only buy the lottery when

pu(w − y +G) + (1 − p)u(w − y +B) ≥ u(w)

(c) Generally, x and y are different. However, if the Bernoulli utility function u(⋅) is CARA, which

means ω u
′′(ω)

u′(ω) = c for any ω, x = y.

(d) Plug the parameters into the function of x and y, we have:

x = (
√
20p +

√
15(1 − p))2 − 10
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and y is a solution to the function

p
√
20 − y + (1 − p)

√
15 − y =

√
10

6.C.17

(1) First consider if his utility function exhibits constant relative risk aversion. The utility function

is in the form u(x) = x
1−γ1

. First show the individual’s optimal choice of α1 is independent of

the wealth level.

Assume the realization of return x1 is fixed and the corresponding wealth is w1. The individual

solves the maximization problem:

max
α1

∫ u[((1 − α1)R + α1x2)w1]dF (x2)

The FOC is:

∫ u
′[((1 − α1)R + α1x2)w1](x2 −R)w1dF (x2) = 0

Apply implicit function theorem and denote A = (1 − α1)R + α1x2,

∂α1

∂w1
= −

∫ (u′′[Aw1]Aw1 + u
′[Aw1])(x2 −R)dF (x2)

∫ u′′[Aw1](x2 −R)2w2
1dF (x2)

= −
∫ (1 − γ)u′[Aw1](x2 −R)dF (x2)
∫ u′′[Aw1](x2 −R)2w2

1dF (x2)
by CRRA: −

u
′′(w)
u′(w)w = γ

= −(1 − γ)
∫ u

′[Aw1](x2 −R)dF (x2)
∫ u′′[Aw1](x2 −R)2w2

1dF (x2)

= 0 by FOC, the numerator is 0

Therefore, α1 is independent of the wealth level of w1.

Then consider the optimal choice of α0. The maximization problem at the first stage is:

max
α0

∬ u[((1 − α1)R + α1x2)((1 − α0)R + α0x1)w0]dF (x1)dF (x2)

Given the function form of the utility function, the objective function can be re-written as:

[∫ ((1 − α1)R + α1x2)1−γdF (x2)][∫ u(((1 − α0)R + α0x1)w0)dF (x1)]

Since α1 is a constant, the item in the first bracket is a constant. Note that the item in the second

bracket is the same as the individual’s maximization problem at the second stage. Therefore,

1
In general, the function form of a constant relative risk aversion utility function is u(x) = βx

1−γ + c or u(x) =

β ln(x) + c. The argument for these cases are similar to the simplified case.
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the optimal α0 should satisfy:

α
∗
0 = α

∗
1

(2) Consider the case for constant absolute risk aversion case. The function form of a CARA utility

is u(x) = − exp(−ρx). Still consider the second stage problem first. The FOC condition given

by the maximization problem is the same as the previous case except the specific functional form

of utility functions are different. Plug in the functional form of CARA utility function, the FOC

condition is:

∫ ρ exp[−ρ((1 − α1)R + α1x2)w1](x2 −R)w1dF (x2) = 0

which means that the optimal choice of α1 depends on the realization of x2. For any given α0,

the optimal choice of α1 can be different in different states. Therefore, the individual will not

always set α0 = α1.

6.C.18

(a) By definition,

CARA(x) = −
u
′′(x)
u′(x) =

1

2x

and

CRRA(x) = −x
u
′′(x)
u′(x) =

1

2

Therefore, the Arrow-Pratt coefficients of absolute and relative risk aversion at the level of wealth

w = 5 are 0.1 and 0.5 respectively.

(b) The CE in this case satisfies:

u(CE) = 1

2
u(16) + 1

2
u(4)

Therefore, the certainty equivalent is 9.

The probability premium ρ satisfies

(1
2
+ ρ) ∗ u(16) + (1

2
− ρ) ∗ u(4) = u(10)

and

ρ = (
√
10 − 3)/2

(c) The CE in this case satisfies:

u(CE) = 1

2
u(36) + 1

2
u(16)

Therefore, the certainty equivalent is 25.
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The probability premium ρ satisfies

(1
2
+ ρ) ∗ u(36) + (1

2
− ρ) ∗ u(16) = u(26)

and

ρ = (
√
26 − 5)/2

In both cases, the difference between the expected outcome and certainty equivalent is 1. How-

ever, for (b), the probability premium is higher. This is because the absolute risk aversion of the

utility function is decreasing.

6.C.19

For each n, define βn to be the wealth invested in the risky asset n. Therefore, the wealth invested in

risk free asset is w −∑n βn.

For β = (β1, ..., βn) ∈ RN
, the random return will be

x = (w −∑
n

βn)r +∑
n

βnzn

when zn is the random return of risky asset n. Since z = (z1, .., zn) ∼ N(µ, V ), x ∼ N((w−∑n βn)r+
β ⋅ µ, β ′

V β). Therefore,

E[− exp(−αx)] = − exp[(w −∑
n

βn)r + β ⋅ µ(−α) − (β ′
V β)α

2

2
]

Solving the FOC,

β
∗
=

1
αV

−1(µ − re)

where e ∈ RN
and ei = 1 for all i = 1, .., N .
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