
Final

ECON 6170

December 9, 2022

Instructions: You have the full final exam time to complete the following problems. You are to
work alone. This test is not open book. In your answers, you are free to cite results that you can
recall from class or previous homeworks unless explicitly stated otherwise. The exam is out of 20
points, and there are extra credit questions. The highest possible score is 24/20.
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1. (5pts) Let f , g : [0, 1] → R. Let h = max{ f , g}. Let k = f + g.

(a) Define quasiconvexity and quasiconcavity.

(b) Prove or disprove: If f and g are quasiconcave, h is quasiconcave

False. For example, f (x) := x and g(x) := −x are quasiconcave, but h(x) = |x| is not.

(c) Prove or disprove: If f and g are quasiconvex, h is quasiconvex.

True.

h(αx + (1 − α)y) = max{ f (αx + (1 − α)y), g(αx + (1 − α)y)}
≤ max{max{ f (x), f (y)}, max{g(x), g(y)}}
= max{ f (x), f (y), g(x), g(y)}
= max{max{ f (x), g(x)}, max{ f (y), g(y)}}
= max{h(x), h(y)}

(d) Prove or disprove: If f and g are quasiconvex, k is quasiconvex

False. For example, f (x) := −ex and g(x) := −e−x are both monotone (and hence
quasiconvex). But k(x) = −ex − e−x is not quasiconvex, as for x = log 2, for example,

k
(

1
2

x +
1
2
(−x)

)
= k(0) = −2 > −2 − 1

2
= −elog 2 − 1

elog 2 = k(log 2) = k(x)

= max{k(x), k(−x)}
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2. (5pts)

(a) State the intermediate value theorem.

(b) State the mean value theorem.

(c) State Taylor’s theorem.

(d) Let f : (0, 1) → R be differentiable with f ′(x) > 0 for all x ∈ (0, 1). Prove that f is
strictly increasing.

Let 0 < x < y < 1. We want to show that f (x) < f (y). Because f is differentiable on
(0, 1), it is continuous on (0, 1), and hence on [x, y], and it is differentiable on (x, y).
Therefore, we can apply the mean-value theorem to obtain

f (y)− f (x) = f ′(p)(y − x)

for some p ∈ (x, y). But f ′(p) > 0 and y > x, so f (y) > f (x).
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3. (5pts) Implicit function theorem.

(a) Let F(x1, x2, y) = x1 + x2 + y − ex1x2y and (x0
1, x0

2, y0) = (0, 0.5, 0.5). Show that the set
of (x1, x2, y) that solve F(x1, x2, y) = 0 near (x0

1, x0
2, y0) is the graph of some function

y = h(x1, x2). Compute Dh.
Note: If g(x) = ex, d

dx g(x) = g(x).
F is the sum of compositions of continuously differentiable functions, so F itself is
continuously differentiable. We also have ∂F

∂y = 1 − ex1x2yx1x2, which evaluated at
(0, 0.5, 0.5) is 1 − e0 · 0 · 0.5 = 1 ̸= 0. Therefore, the hypotheses of the implicit function
theorem are satisfied, and so the level set F(x1, x2, y) = 0 near (0, 0.5, 0.5) is the graph
of some function y = h(x1, x2). The implicit function theorem also gives us the formula

Dh = −∂F
∂y

−1

·
[

∂F
∂x1

∂F
∂x2

]
= − 1

1 − ex1x2yx1x2
·
[
1 − ex1x2yx2y 1 − ex1x2yx1y

]
(b) Let F : R4 → R2 be defined as

F(x1, x2, y1, y2) = (x2
1 − x2

2 − y3
1 + y2

2 + 4, 2x1x2 + x2
2 − 2y2

1 + 3y4
2 + 8).

Let (x0
1, x0

2, y0
1, y0

2) = (2,−1, 2, 1). Show that the set of (x1, x2, y1, y2) that solve F(x1, x2, y1, y2) =

0 near (x0
1, x0

2, y0
1, y0

2) is the graph of some function (y1, y2) = h(x1, x2). Compute Dh.
Again, F is continuously differentiable, as it is the sum and product of continuously
differentiable functions. In addition,

DyF =

[
−3y2

1 2y2

−4y1 12y3
2

]

which evaluated at (2,−1, 2, 1) is

DyF(2,−1, 2, 1) =

[
−3 · 22 2 · 1
−4 · 2 12 · 13

]

=

[
−12 2
−8 12

]

This matrix has determinant −144 − (−16) = −128 ̸= 0, so the matrix is invertible. The
conditions for IFT are then satisfied, and Dh is given by

Dh = −DyF−1DxF

= −
[
−3y2

1 2y2

−4y1 12y3
2

]−1 [
2x1 −2x2

2x2 2x1 + 2x2

]

=
1

36y2
1y3

2 − 8y1y2

[
12y3

2 −2y2

4y1 −3y2
1

] [
2x1 −2x2

2x2 2x1 + 2x2

]
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4. (5pts) Suppose that f : Rn × Rm → R is continuously differentiable. Then f has increasing
differences in (x, t) ∈ Rn × Rm if and only if ∂2 f

∂xi∂tj
≥ 0 for all i ∈ {1, . . . n}, j ∈ {1, . . . m}.

Prove only one direction—that f having increasing differences implies ∂2 f
∂xi∂tj

≥ 0 for all
i ∈ {1, . . . n}, j ∈ {1, . . . m}.

Note: The other direction is also simple to prove and involves using the fundamental theorem
of calculus. But you need not prove it for this problem.

Increasing differences means that for all x′ > x and t′ > t,

f (x′, t′)− f (x, t′) ≥ f (x′, t)− f (x, t)

In particular, if h, k > 0

f (x + hei, t + kej)− f (x, t + kej) ≥ f (x + hei, t)− f (x, t)

so
1
hk

(
f (x + hei, t + kej)− f (x, t + kej)

)
≥ 1

hk
( f (x + hei, t)− f (x, t))

Taking limits of both sides as h → 0,

1
k
·

∂ f (x, t + kej)

∂xi
≥ 1

k
· ∂ f (x, t)

∂xi

or
1
k

(
∂ f (x, t + kej)

∂xi
− ∂ f (x, t)

∂xi

)
≥ 0

Taking limits as k → 0,
∂2 f (x, t)

∂tj∂xi
≥ 0

5



5. (Extra Credit: 4 pts)

(a) Just as in the last question, state a characterization for the supermodularity of f in x ∈ Rn

in terms of conditions on the partials of f .

Note: State this for the case of general m and n. Be careful about which partials you
place conditions on.

∂2 f
∂xi∂xj

≥ 0

for all i ̸= j.

(b) State the KKT theorem, precisely defining the constraint qualification, first-order condi-
tions and complementary-slackness conditions.

(c) A function f : E ⊂ R → R is uniformly continuous if for all ϵ > 0, there exists δ > 0
such that for any x, y ∈ E, if |x − y| < δ, then | f (x)− f (y)| < ϵ. Give an example of a
function which is continuous but not uniformly continuous.

Define f : R++ → R by f (x) := 1/x.

(d) Prove your example in (c) works.

We know from the lectures that 1/x is continuous. Fix ϵ > 0 and choose an arbitrary
δ > 0. Without loss of generality, we can let δ < 1

2ϵ . Then let 0 < x < y < δ, so that
|x − y| < δ. Let y = 2x. Then

| f (x)− f (y)| =
∣∣∣∣1
x
− 1

y

∣∣∣∣ = ∣∣∣∣1
x
− 1

2x

∣∣∣∣ = 1
2x

>
1

2 1
2ϵ

= ϵ

Since δ is arbitrary, this is true for some x and y, for all possible δ’s we could choose, so
1/x is not uniformly continuous.
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