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Exercise 2
1. Prove that the arbitrary union of open sets is open

Proof. Define a (not necessarily finite) collection of open sets O. We want to show that o, o Oi
is open. Take some x € UOieO O;. 3 ist. x € O;. Since O; is open, 3 € s.t. Be(x) € O;. Then
B.(z) € Up,co Oi- Thus, Up,co Oi is open. O

2. Prove that the intersection of finitely many open sets is open

Proof. Define a finite collection of open sets O, where |O| = n < co. We want to show that (), O;
is open. Take some z € (), O;,. We have that z € O; Vi = 1,...,n. Since each O; is open, for
each O; 3 ¢; s.it. Be,(z) € O;. Define ¢* = min{ey,e2,...,6,}. Then Bes(z) C B, (x) V i. Thus,
B.«(x) C 0; Vi, so Bex () € iy Os, and (), O; is open. O

3. What about arbitrary intersections of open sets? Nope!

Disproof. Consider as an example O, where O; € O is defined as the interval (—1, %), and O; is
defined as such for all i € N. Then (5 . O; = (—=1,0]. Taking x = 0, any ¢ admits B.(z) that
contains some element of the positive reals. Thus, B.(x) € (—1,0] for all € > 0, and [y, O; is not
open. [J

Exercise 3 Prove that the interval [a, b] is closed.

Proof. Note first that V = € [a,b], > a and « < b. This means that sup[a,b] = b, and inf[a,b] = q, i.e.,
the interval [a,b] contains its suprema. Towards a contradiction, assume that there exists some sequence
{zn} C [a,b] such that =, — x for some = & [a,b]. This admits two cases. First, assume that x > b, meaning
that 3¢’ > 0 s.t. # = b+ ¢’. Choosing € < €, we have that 3 N € N s.t. |z, —2| < eV n > N. This
means that 3 z,, € B:(z). However, since we assumed that z — b = &’ > ¢, this would mean that z, > b,
contradicting the fact that b = sup[a,b] > z,. The second case assumes that < a, which means that
Je’ > 0s.t. 2 =a—¢'. Choosing € < €/, we have that 3 N € N s.t. |z, — 2| < € Vn > N. This means that
3 z,, € B.(z). However, since we assumed that a — 2 = &’ > ¢, this would mean that z,, < a, contradicting
the fact that a = inf[a,b] < x,. Thus, we have found a contradiction, so [a,b] contains its limit points and
is closed. O

A second, topological proof:

Proof. Define an open cover of [a,b] as O, a (not necessarily finite) collection of open sets such that
[a,b] € Up,co Oi- Define S := {x | [a,z] is covered by finitely many elements of O}. Note that S is
nonempty because taking r = a, since a € Uoie(9 O, there exists at least one i such that a € O;, and {a} is
covered by finitely many (namely, one) elements of @. It remains to show that sup S = b. First, note that
b is an upper bound of S trivially, because < bV z € [a,b]. Define zy = sup S. Towards a contradiction,
assume that zo < b. First note that ¢y > a, because a € O;, so 3 & > 0 s.t. B-(a) C O;, which means that
a+ e > a can be covered by finitely many O; € O, so xg > a. Note that since x( is also in an open set (call
it Op), 3 & > 0s.t. Bo(xg) C Op. By the density of the reals, 3y € [a,b] s.t. xop < y < xg +&. Thus, [a,y]
can be covered by a finite union of open sets, taking the union of the finite collection of open sets that cover



[a,z0] and Uy. This contradicts the earlier assumption that zo = sup S, so b = supS. Thus, [a,b] can be
covered by a finite subcover of O, and is compact. By Heine-Borel, it is closed. O

Exercise 4
1. Prove that the arbitrary intersection of closed sets is closed

Proof. Define a (not necessarily finite) collection of closed sets C. We aim to show that (), .o C; is
closed. Take some sequence {x,} C ﬂciec C;, where x,, — x. We have that {z,} € C; V C; € C.
Since each C; is closed, by the limit definition of closed sets, x € C; V C; € C. Thus, z € ﬂci cc Cis
and (¢, ¢ Ci is closed. O

2. Prove that the finite union of closed sets is closed

Proof. Define a finite collection of closed sets C, where |C| = n < co. We aim to show that [J;_, C; is
closed. Take some sequence {z,} C (J;_, Ci, where z,, — z. We have that at least one C; € |J;_, C;
contains infinite elements of {z,}, as {z,,} is an infinite sequence so it cannot be the case that only
finite elements of it are contained in a finite union of sets. Define the subsequence {z,, }, where
ni € {n |z, € C;}. From Exercise 26 in Problem Set 2, {2, } — x. Since C} is closed, x € C;, which
means that z € |J;_; C;, so J;_; C; is closed. O

3. What about arbitrary unions of closed sets? Nope!

Disproof. Define an infinite collection of closed sets C as follows: C), € C is such that C,, = {1}, for
all n € N. Each set is closed because finite sets are closed. However, taking {z,} where z,, = %, we
have that x; € C; Vi € N. However, x,, — 0, and 0 ¢ Ucn cc Cn, so an infinite union of closed sets is
not necessarily closed. [

Additional Exercise 1 Extend Bolzano-Weierstrass into R?. The statement is:
Theorem 1. Every bounded sequence {x,}, € R? has a convergent subsequence {x,, }r € R%.

Proof. Induction on d. The base case R! is the exact statement of Bolzano-Weierstrass we had in class.
Assume that this theorem holds for each bounded sequence in R¥. It remains to show that it holds for bounded
sequences in R¥*!. Take some sequence {z,}, € R¥*! which is bounded, meaning that there exists b € R
such that |z; ;| < bV 4,;. Take the sequence {x, },\zr+1 € RF, i.e., the above bounded sequence less its final
element. Since this sequence is bounded, there exists a subsequence {z,, } € R* such that x,,, — = € R¥. This
means, from class, that z,, ; — z; V j = 1,..., k. Finally, consider the sequence {z,, j+1}, € R'. We have
that this sequence is bounded, so by Bolzano-Weierstrass it has a convergent subsequence, which we denote
as {Tn, k+1}1 € R, where o, 41 — k41 € R. Construct a subsequence of the (original) {z,}, € RF*! as
follows. {zy,, }m, where m € {m | Iz, € {zp,} s.t. m =n;, I x,, € {zy,} s.t. m = n;}. Since the two other
respective subsequences are infinite, {z,,, } has infinite elements, and since z,,,, ; = x; Vj€ 1,...,k+1 by
definition, x,,, — x. Thus, an arbitrary bounded sequence {x,}, € R¥*! has a convergent subsequence. [J

Additional Exercise 2 Prove the following:
Theorem 2. A set S C R is sequentially compact if and only if it is closed and bounded.

Proof. (closed and bounded = sequentially compact): We have that S is closed and bounded. Take some
sequence {z,}, € S. Since S is bounded, {z,}, is bounded and has a convergent subsequence {x,, }x — «
by Bolzano-Weierstrass. Since {zy, }r € S and S is closed, € S by the limit definition of closed sets. Thus,
S is sequentially compact.

(sequentially compact = closed): We have that S is sequentially compact. Take some convergent sequence
{zn}n € S where z,, — . Since S is sequentially compact, {z,}, has a convergent subsequence {z,, }r



where z,, — 2’ € S. Since all subsequences of a convergent sequence converge to the same limit, ' = x, so
x € §. Thus, S contains its limit points and is closed.

(sequentially compact = bounded): Towards a contradiction, assume that S is sequentially compact but not
bounded. WLOG, assume that it is not bounded above, meaning that Vb € R?, 3z € S s.t. 2 > b. We will
construct a sequence as follows. Take some x; € S. Since S is not bounded above, x5 € S's.t. o >y Vy €
Bi(x1), where Bj(x1) is the e-ball of length 1 about ;. If x5 did not exist in S, x5 would be an upper
bound for S. Thus, x5 € S. Define x3, where x3 € S where z3 > y V y € By(z2), and do so to construct
xn, V1 € N. {z,}, is a sequence in S. It remains to show that it has no convergent subsequence. Note that
{zn}n is not Cauchy, since taking € < 1, |x,, — | > 1 > ¢ V n,m € N. Thus, {z,}, is not convergent.
Additionally, this condition holds for every subsequence {z, }k, since Y ng,my € N, |x,, — zm,| > 1, so
every subsequence is not convergent, contradicting the definition of sequential compactness. Note that we
assumed S was not bounded above, but the same proof with signs flipped suffices if S is not bounded below.
Thus, S is bounded. O



