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1. Basic Concepts
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Set-up

• A random vector X has distribution F (x)

• We are interested in (scalar) parameter θ determined by
F ∈ F

• The parameter space is θ ∈ Θ

• We have a random sample {X1,X2 . . .Xn} from distribution F

• In previous sections, we talked abut estimation of θ

• In this section, we are interested in testing some hypothesis
about θ
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Hypotheses

• A hypothesis is a statement about population parameter θ

• We call the hypothesis to be tested the null hypothesis

• Definition: The null hypothesis H0, is the restriction θ = θ0
for some specific value θ0, or θ ∈ Θ0 for some subset Θ0 of Θ.
The null hypothesis is often written as

H0 = {θ ∈ Θ : θ = θ0} or H0 = {θ ∈ Θ : θ ∈ Θ0}

• The complement of null hypothesis is alternative hypothesis

• Definition: The alternative hypothesis is the set

H1 = {θ ∈ Θ : θ ̸= θ0} or H0 = {θ ∈ Θ : θ /∈ Θ0}
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Point hypotheses

• In this note, we focus on point hypothesis

H0 = {θ ∈ Θ : θ = θ0}

• The alternative hypothesis could be

• one sided: H1 : θ > θ0 or H1 : θ < θ0

• two sided: H1 : θ ̸= θ0

• One sided alternative arises if the null lies on the boundary of
the parameter space Θ = {θ : θ ≥ θ0}

• Example: some policy with non-negative effect
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• A hypothesis is a restriction on the underlying distribution F

• Define the null distribution as a set F0 such that

F0 = {F ∈ F : H0 is true}

• F0 can be a singleton (a single distribution), a parametric
family, or a nonparametric family

• Suppose H0 = {µ = µ0}. Examples of F0

• singleton: X ∼ N(µ, σ2) with known σ2

• parametric: X ∼ N(µ, σ2) with unknown σ2

• nonparametric: X has finite mean
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Simple vs. composite hypothesis

• Definition: A hypothesis H (could be null or alternative) is
simple if the set {F ∈ F : H is true} is a singleton.

A hypothesis H is composite if the set {F ∈ F : H is true}
contains multiple distributions

• Suppose H0 = {µ = µ0}. Examples of F0

• singleton: X ∼ N(µ, σ2) with known σ2

⇒ simple

• parametric: X ∼ N(µ, σ2) with unknown σ2

⇒ composite

• nonparametric: X has finite mean
⇒ composite
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Hypothesis test
• Hypothesis test is a decision based on data

• The decision either accepts H0 or rejects H0 in favor of H1

• Procedures of hypothesis testing

• Construct a real valued function of the data called test
statistic

T = T (X1,X2 . . .Xn) ∈ R

which is a random variable

• Pick a critical region C

• One sided test: C = {x : x > c} for critical value c

• Two sided test: C = {x : |x | > c} for critical value c

• State hypothesis test as the decision rule

accept H0 if T /∈ C
reject H0 if T ∈ C
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Figure: Acceptance and Rejection Regions for Test Statistic
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Evaluation of hypothesis test

• A decision could be correct or incorrect

• We evaluate hypothesis tests through their probability of
making mistakes

• Two types of errors in hypothesis testing

Decision
Accept H0 Reject H0

Truth

H0 Correct Type I
decision Error

H1 Type II Correct
Error decision
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Power function
• Power function characterizes probability of making mistakes

• Definition: The power function of a hypothesis test is the
probability of rejection

π(F ) = P{reject H0|F} = P{T ∈ C |F}

• Definition: The size of a hypothesis test is the probability of
a Type I error

P{reject H0|F0} = π(F0)

for F0 satisfying H0

• Definition: The power of a hypothesis test is the
complement of the probability of a Type II error

P{reject H0|F1} = π(F1) = 1− P{accept H0|H1}

for F1 satisfying H1

• Size is power function evaluated at null; Power is power
function evaluated at alternative
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Type I and II errors can’t be reduced simultaneously

• Let G (x |F ) = P{T ≤ x |F} be the sampling distribution of T

• G (x |F0) is called null sampling distribution

• G (x |F1) is called alternative sampling distribution

• Consider a one sided test with rejection rule T > c

• Type I error is size π(F0) = P{T > c|F0} = 1− G (c|F0)

• Type II error is 1− π(F1) = P{T ≤ c|F1} = G (c|F1)

• Since any distribution function G (x |F ) is increasing in x

• Type I error is decreasing in c

• Type II error is increasing in c



15

Figure: Left: Null Sampling Distribution for One-Sided Test; Right:
Alternative Sampling Distribution for One-Sided Test
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2. Classical Approach
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Classical approach

• Control size and then pick the test to maximize the power
subject to this size constraint

• Definition: The significance level α ∈ (0, 1) is the
probability selected by the researcher to be the maximal
acceptable size of the hypothesis test
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Classical approach for one sided test
• Consider one sided test

H0 : θ = θ0, H1 : θ > θ0

• Given test statistic T , consider the test taking form

accept H0 if T ≤ c
reject H0 if T > c

• Choose c to control size at α

π(F0) = P{T > c|F0} = 1− G (c|F0) = α (1)

• Solving (1) yields

c = G−1(1− α|F0),

the (1− α)−th quantile of the null sampling distribution

• The test rule

accept H0 if T ≤ G−1(1− α|F0)
reject H0 if T > G−1(1− α|F0)

has a size equal to α
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Classical approach for two sided test

• Consider two sided test

H0 : θ = θ0, H1 : θ ̸= θ0

with test taking form

accept H0 if |T | ≤ c
reject H0 if |T | > c

• Choose c to control size at α

π(F0) = P{|T | > c|F0} = 1− G (c|F0) + G (−c|F0) = α

• Suppose G (x |F0) is symmetric around 0

1− G (c|F0) + G (−c|F0) = 2 (1− G (c|F0)) = α (2)
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• Solving (2) yields

c = G−1(1− α

2
|F0),

the (1− α
2 )−th quantile of the null sampling distribution

• The test rule

accept H0 if |T | ≤ G−1(1− α
2 |F0)

reject H0 if |T | > G−1(1− α
2 |F0)

has a size equal to α
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Example: T Test with normal sampling

• Suppose X ∼ N(µ, σ2) and we wish to test

H0 : µ = µ0, H1 : µ > µ0

• Form test statistic

T =
X̄n − µ0√

s2

n

where X̄n is sample mean and s2 = 1
n−1

n∑
i=1

(Xi − X̄n)
2

• Under H0

T =
X̄n − µ0√

s2

n

∼ tn−1

• Given α, set
c = q1−α

where q1−α is the 1− α-th quantile of tn−1 distribution
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• A one sided t test with size α is

accept H0 if T ≤ q1−α

reject H0 if T > q1−α

• If σ2 is known, replacing s2 with σ2

T =
X̄n − µ0√

σ2

n

yields a z test that uses the quantile of a standard normal

• Analysis of a two sided test is similar
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• Theorem: In the normal sampling model X ∼ N(µ, σ2), let

T =
X̄n − µ0√

s2

n

1 The t test of H0 : µ = µ0 against H1 : µ > µ0 rejects if

T > q1−α

where q1−α is the 1− α quantile of the tn−1 distribution

2 The t test of H0 : µ = µ0 against H1 : µ < µ0 rejects if

T < qα

3 The t test of H0 : µ = µ0 against H1 : µ ̸= µ0 rejects if

|T | > q1−α/2

These tests have exact size α
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Example: Asymptotic T test
• Again suppose X has mean µ and finite variance

• We wish to test

H0 : µ = µ0, H1 : µ > µ0

• The t-statistic is

T =
X̄n − µ0√

s2

n

where s2 could be replaced by σ̂2 = 1
n

n∑
i=1

(Xi − X̄n)
2

• Under H0, T is not exactly normal but asymptotically normal
by CLT

T
d→ N(0, 1)

• Thus as n → ∞

π(F0) = P{T > c|F0} → P{N(0, 1) > c} = 1− Φ(c)
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• Theorem: If X has finite mean µ and variance σ2

1 The asymptotic t test of H0 : µ = µ0 against H1 : µ > µ0

rejects if
T > Z1−α

where Z1−α is the 1− α quantile of the standard normal
distribution

2 The asymptotic t test of H0 : µ = µ0 against H1 : µ < µ0

rejects if
T < Zα

3 The asymptotic t test of H0 : µ = µ0 against H1 : µ ̸= µ0

rejects if
|T | > Z1−α/2

These tests have asymptotic size α
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P-value

• Again consider a one sided test

accept H0 if T ≤ c
reject H0 if T > c

where c is chosen to control size at α

P{T > c|F0} = 1− G (c|F0) = α

• How should we report the results of the test?

• Method 1: report size α, and decision“Reject H0”or“Accept
H0”

• Method 2: report critical value c and value T at sample points

• Another method: report the value of a certain kind of statistic
called p-value
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• Define p-value as

p = 1− G (T |F0)

• Since G (· |F0) is increasing, p is a decreasing function of T

• Also note
α = 1− G (c|F0)

• Therefore, the decision

reject H0 if T > c

is equivalent to
reject H0 if p < α
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Method 3: report the value of p
• For each α ∈ (0, 1)

accept H0 if p > α
reject H0 if p ≤ α

is a size α test

P{p ≤ α|F0} = P{1− G (T |F0) ≤ α|F0}
= P{G−1(1− α|F0) ≤ T |F0}
= 1− G

(
G−1(1− α|F0)|F0

)
= α

• p is “degree of evidence against H0”

• the smaller the p-value, the stronger the evidence against the
null

• p is “marginal significance level”

• the lower bound of the range of size α at which we would
reject the null
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Further remarks about p-value

• p is a transformation of a statistic rather than a probability

• It transforms the T statistic to an easily interpretable universal
scale between [0, 1]

• p allows inference to be continuous rather than dichotomous
(more informative)

• Suppose one statistic has p-value of 0.049 (mildly significant)
and the second statistic has the p-value 0.051(mildly
insignificant)

• From their p value we know these two statistics are essentially
the same

• Reporting“Reject”or“Accept”would not be able to give us
such information
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2. Power Analysis
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Introduction

• So far we focus on the size of the tests

• We know how to construct a test of (asymptotic) size α for
mean

• A good test should also have a good power

• It is important to know the power of the test we constructed
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Power of T test with known σ2

• Suppose X ∼ N(µ, σ2) with known σ2

• Consider statistic

T =
X̄n − µ0√

σ2

n

for tests
H0 : µ = µ0, H1 : µ > µ0

• We reject if

T =
X̄n − µ0√

σ2

n

> c

where c is chosen to control size at level α
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• Whether H0 is true or not, X̄n−µ√
σ2

n

∼ N(0, 1) since X̄n is

centered around true mean µ

• The power function of the test is

π(F ) = P{T > c|F} = P

 X̄n − µ0√
σ2

n

> c|F



= P


X̄n − µ√

σ2

n︸ ︷︷ ︸
Z∼N(0,1)

+
µ− µ0√

σ2

n

> c|F


= 1− Φ

c +
µ0 − µ√

σ2

n


• Size is π(F0) = 1−Φ (c), since F0 = {F ∼ N(µ, σ2) : µ = µ0}

• Power is π(µ|F1) = 1− Φ

(
c + µ0−µ√

σ2

n

)
where µ > µ0

• Note π(µ|F1) is increasing in n, µ and decreasing in σ2 and c
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Example: Selection of c and n for power targets
• Suppose now we want to select n and c to achieve size 0.1 and

power at least 0.8 if µ ≥ µ0 + σ

• How should we proceed?

• Step 1: selecting c such that

π(F0) = 1− Φ (c) = 0.1 (3)

ensures size α = 0.1. Solving (3) yields c = 1.28

• Step 2: since power is increasing in µ, selecting n such that

1− Φ

1.28 +
µ0 − µ√

σ2

n

|µ = µ0 + σ

 ≥ 0.8

Solving above inequality yields n ≥ 4.49

• Conclusion: choosing c = 1.28 and n = 5 yields the desired
size and power balance
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3. Likelihood Ratio Test
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Motivation

• Recall classical approach to testing

• Control size and then pick the test to maximize power subject
to this size constraint

• So far we focus on t test

• Another important class of tests is likelihood ratio test

• We show it maximizes power subject to size constraint for
testing simple hypotheses
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Likelihood ratio test for simple hypotheses

• Consider a parametric model f (x |θ) with likelihood
Ln(θ) =

∏n
i=1 f (Xi |θ)

• We want to test simple hypotheses

H0 : θ = θ0, H1 : θ = θ1

for some hypothetical values θ0 and θ1

• The ratio Ln(θ1)
Ln(θ0)

compares the likelihood function under two
hypotheses

• A decision rule could be

accept H0 if Ln(θ1)
Ln(θ0)

≤ c

reject H0 if Ln(θ1)
Ln(θ0)

> c

for some critical value c
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• For convenience, define the likelihood ratio statistic as

LRn = 2 (ℓn(θ1)− ℓn(θ0))

where ℓn(θ) = log Ln(θ)

• A likelihood ratio test is

accept H0 if LRn ≤ c
reject H0 if LRn > c

for some critical value c
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Example: normal sampling with known variance
• For X ∼ N(µ, σ2) with known σ2

ℓn(µ) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2

• Suppose
H0 : µ = µ0, H1 : µ = µ1 > µ0

LRn =
1

σ2

n∑
i=1

(
(Xi − µ0)

2 − (Xi − µ1)
2
)

=
n

σ2
[
2X̄n(µ1 − µ0) + (µ20 − µ21)

]
• Rejecting H0 for some LRn > c is equivalent to rejecting if

T =
X̄n − µ0

σ√
n

> some constant
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Neyman-Pearson Lemma

• Theorem: Suppose random variable X has a parametric
pdf/pmf f (X |θ). Among all tests of a simple null hypothesis
against a simple alternative hypothesis

H0 : θ = θ0, H1 : θ = θ1

with size α, the likelihood ratio test has the greatest power.

• In the normal sampling model with known variance, the
likelihood ratio test of simple hypotheses is identical to a t
test using a known variance

• By Neyman-Pearson Lemma, t test using a known variance is
the most powerful test for this hypothesis in this model
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Proof

• Consider likelihood ratio test

accept H0 if Ln(θ1)
Ln(θ0)

≤ c

reject H0 if Ln(θ1)
Ln(θ0)

> c

where c is chosen such that

P

{
Ln(θ1)

Ln(θ0)
> c|θ = θ0

}
= α

• Let the joint density of observations be f (x|θ) for some
x = (x1, . . . xn)

′

• Then Ln(θ) = f (X|θ), where X = (X1, . . .Xn)
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• Since test is binary decision (accept/reject), it can be
represented by binary function (called test function)

• The likelihood ratio test function is

ψLR = 1 {f (X|θ1) > cf (X|θ0)}

that is, ψLR = 1 if likelihood ratio rejects H0 and ψLR = 0
otherwise

• Let ψa be any alternative test function with same size α

• Since both tests have same size

P {ψLR = 1|θ = θ0} = P {ψa = 1|θ = θ0} = α

or equivalently∫
ψLR f (x|θ0)dx =

∫
ψaf (x|θ0)dx = α
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• The power of likelihood ratio test is

P

{
Ln(θ1)

Ln(θ0)
> c|θ = θ1

}
=P {ψLR = 1|θ = θ1}

=

∫
ψLR f (x|θ1)dx

=

∫
ψLR f (x|θ1)dx − c

{∫
ψLR f (x|θ0)dx−

∫
ψaf (x|θ0)dx

}
=

∫
ψLR (f (x|θ1)− cf (x|θ0)) dx + c

∫
ψaf (x|θ0)dx

≥
∫
ψa (f (x|θ1)− cf (x|θ0)) dx + c

∫
ψaf (x|θ0)dx

=

∫
ψaf (x|θ1)dx

=power of ψa
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• The inequality holds since
• if (f (x|θ1)− cf (x|θ0)) > 0, ψLR = 1, and

ψLR (f (x|θ1)− cf (x|θ0)) ≥ ψa (f (x|θ1)− cf (x|θ0))

• if (f (x|θ1)− cf (x|θ0)) ≤ 0, ψLR = 0

ψLR (f (x|θ1)− cf (x|θ0)) = 0 ≥ ψa (f (x|θ1)− cf (x|θ0))

• Hence the power of the likelihood ratio test is greater than the
power of the test ψa

• By the arbitrariness of ψa, we conclude likelihood ratio test
has higher power than any other test with the same size
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Likelihood Ratio Test against composite alternatives

• Consider two sided test

H0 : θ = θ0, H1 : θ ̸= θ0

• The log likelihood under H1 is the unrestricted maximum of
the likelihood

• Let θ̂ be the MLE that maximizes Ln(θ)

• The likelihood ratio statistic is

LRn = 2
(
ℓn(θ̂)− ℓn(θ0)

)
• The likelihood ratio test is

accept H0 if LRn ≤ c
reject H0 if LRn > c

for some critical value c
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Figure: Likelihood Ratio
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• Consider one sided test

H0 : θ = θ0, H1 : θ > θ0

• The log likelihood under H1 is the maximum of the log
likelihood in the restricted set

{θ : θ ≥ θ0} ,

that is, ℓn(θ̂
+), where θ̂+ = argmaxθ≥θ0 ℓn(θ)

• The likelihood ratio statistic is

LR+
n = 2

(
ℓn(θ̂

+)− ℓn(θ0)
)

• The likelihood ratio test is

accept H0 if LR+
n ≤ c

reject H0 if LR+
n > c

for some critical value c
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Example: Normal sampling with known variance

• Again suppose X ∼ N(µ, σ2) with σ2 known

• Consider testing

H0 : µ = µ0, H1 : µ > µ0

• We’ve shown that for simple hypothesis

H0 : µ = µ0, H1 : µ = µ1 > µ0

likelihood ratio test is equivalent to a t test

rejecting H0 if
X̄n − µ0

σ√
n

> b, for some b

• Such analysis does not depend on specific value of µ1

• Thus this t test is also the likelihood ratio test for one-sided
alternative
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Asymptotic size control for Likelihood Ratio Test

• Theorem: For simple null hypotheses, under H0 : θ = θ0

LRn
d→ χ2

dim(θ)

Let q1−α be the 1− α-th quantile of χ2
dim(θ). The test

accept H0 if LRn ≤ q1−α

reject H0 if LRn > q1−α

has asymptotic size α

• Moreover, likelihood ratio and t tests are asymptotically
equivalent tests
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Sketch proof

• Note LRn = 2
(
ℓn(θ̂)− ℓn(θ0)

)
• Second order Taylor expansion yields

ℓn(θ0) ≃ ℓn(θ̂)+
∂

∂θ
ℓn(θ̂︸ ︷︷ ︸
0

)′(θ̂−θ0)+
1

2
(θ̂−θ0)′

∂2

∂θ∂θ
ℓn(θ̂)︸ ︷︷ ︸

−V̂−1

(θ̂−θ0)

• Note where V̂ =
{
− ∂2

∂θ∂θ ℓn(θ̂)
}−1

is the Hessian estimator of

the asymptotic variance of θ̂ estimated Hessian

• Hence

2
(
ℓn(θ̂)− ℓn(θ0)

)
≃ (θ̂ − θ0)

′V̂−1(θ̂ − θ0)

• As n → ∞, the RHS converges to χ2
dim(θ)


