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Exercise 3. Let S C R? Prove that co(S) is the collection of all finite convex combinations of elements
in S.

Proof. We have that co(S) = {7 CR%:S CT,T convex}. We wish to show that

{xGRd:x~Zaiyi,Zai =1,0 >0V1i,y; GSVy,} :ﬂ{Tng:SQT,T convex}

i=1 i=1
We will use set containment.
(C): Take some z € R?, such that 3 {y1,...,yn}, {1, ...,an} st.y; € SVie {l,...,n}, Yi o =1,
a; €[0,1]Vie{l,...,n} where z = Y ;"  a;y;. Sincey; € SVie{l,...,n}, y; € TV T since S CT.
Since each T is convex, by Proposition 1 in the Convexity notes, Zle a;y; € TY T where S CT and T
convex. Thus, since = = Y'_ i, * € TV T, meaning that « € ({T'C R?: S C T, T convex}.
(2): Take some = € ({T C RY : S C T,T convex}. Consider two cases. First, if z € S, then

choosing oy = 1, ag = 0, and some y € S where y # x, we have that * = a1x + asy, so © €
{:c ERY:z=Y" oy > o =10, >0V i,y € SVyi}.

Next, assume that = ¢ S. The fact that = € co(S) implies that 3 n € N, {y;, o;}; sit. . = Y- | y;a; for
y; € TV i,T. We also have that for at least one j, y; € S. If y; can be written as a finite convex combination
of elements of S, then writing it as such creates a finite convex combination of elements of S that equal x. If
y; cannot by written as a finite convex combination of elements of S, then there exists T} such that S C T}
and z,y; ¢ 1;, where T} convex. Thus, if x cannot be written as a finite convex combination of elements of
S, z & co(S). By contrapositive, z € {z € Rtz =3 | oy, >y = 1,04 >0V i,y € SV y; }. O

Exercise 7. Prove that ¢o(S) = cl(co(S5)).
Proof. We wish to show that

m {T CR%:SCT,T is convex and closed} = ﬂ {T CR?: co(S)CT, T closed}
(Q): If x € ©o(S), then x € TV T convex and closed, where S C T'. Since S C T and T convex, co(S) C T.

Since T is also closed, and these hold for all T, « € cl(co(S)).

(D): If z € cl(co(5)), then x € T for all co(S) C T where T is closed. Since S C co(S), S C T. Since not all
T > x are necessarily convex, the set of T' that are convex, closed, and contain S is a subset of the set of T’
that x are in. Thus, x € ¢o(S). O

Exercise 10. Prove that a function is concave (convex) if and only if its subgraph (epigraph) is convex.

Proof.



(=): Assume that a function f is concave. Take some (x,y), (z',y’) € sub(f), so we have that f(z) > y and
f(@") >y Fix a € (0,1). It suffices to show that (ax + (1 — a)z’,ay + (1 — a)y’) € sub(f). Since f is
concave, we have that

flaz+ (1 —a)a) > af(x)+ (1 —a)f@@) 2 ay+ (1 —-a)y
Where the second inequality follows from the assumption that (z,y), (z’,y") € sub(f). Thus, sub(f) is
convex.

(«<): We have that sub(f) is convex. FSOC, assume that f is not concave, meaning that there exist
z,2',a € (0,1) such that

floz + (1 - a)a’) <af(z) + (1 - a)f(2))
This implies that there is positive distance between the two quantities, so there exist 3,3’ € R such that
flaz+ (1 —-a)r)) < ay+ (1 —a)y < af(z)+ (1 —a)f(z'). However, that would imply that (z,y), (2/,y) €
sub(f), but (az+(1—a)x’,ay+(1—a)y’) € sub(f), which contradicts the assumption that sub(f) is convex.
Thus, f is concave.

The same proof applies for f being convex if and only if its epigraph is convex, flipping the respective
inequalities. O

Example 11. Prove that an affine function is both convex and concave.
Proof. We have that f : X — R is affine, meaning that f(x) = ax + b for some a,b € R? R. Consider
z,z’ € X. We have that

flaz+ (1 —a)2’) =alaz + (1 —a)z’) + b= alaxr + b) + (1 — a)(az’ +b) = af(x) + (1 — a)f(z')

Thus, f(azx + (1 — a)z’) > af(x) + (1 — «)f(2’) meaning that f is concave, and f(ax + (1 — a)z’) <
af(z) 4+ (1 — a)f(z'), meaning that f is convex. O

Exercise 12. Prove that a function is quasiconcave (resp. quasiconvex) if and only if the upper (resp.
lower) contour sets are convex.

Proof. (=): We have that f : X — R is quasiconcave. Take some x,y in the upper contour set r of f.
That means that for some r, f(x) > r and f(y) > r. Then, for some « € (0,1),

flax + (1 - a)y) > min{f(2), f(y)} > r

where the first inequality follows from quasiconcavity of f. Thus, ax + (1 — )y is in the upper contour set
r of f, and the upper contour sets of f are convex.

(«<=): We have that the upper contour sets of f are convex. Consider some z,y € X. Take r = min{ f(z), f(y)}-
Since f(z) > r and f(y) > r by construction, x and y are in the upper contour set r of f. Since the upper
contour sets are convex, ax + (1 — a)y for some « € (0,1) is also in the upper contour set r of f, which
means that f(az + (1 — a)y) > r = min{f(z), f(y)}. Thus, f is quasiconcave.

The same proof follows, reversing the inequalities, for quasiconvex and the lower contour sets. O

Exercise 13. True or false:If f is a (quasi)concave function and h : R — R is a nondecreasing function,
then h o f is (quasi)concave.



(i)

(i)

True!

Proof. Consider some z,y. Take r = min{f(x), f(y)}. Then z,y are each in the upper contour set r
of f, which is convex because f is quasiconcave. This means that f(az + (1 — a)y) > min{f(z), f(y)}-
WLOG, assume that f(z) < f(y). Since h is nondecreasing, we have that

flax+ (1= a)y) = f(z) = min{f(z), f(y)} = (ho f)lax + (1 - a)y) = (ho f)(z)
Thus, h o f is quasiconcave. O

False! Consider the example of f(z) = 1 and be any strictly increasing and strictly convex function.
f(z) is affine and thus concave, but h o f = h which is strictly convex (and thus not concave).

Exercise 1. Let X C R be convex. Prove or give a counterexample:

(i)

(i)

(iii)

True!

Proof. We have that f and g are convex. Consider for some z,y € X, a € (0,1):

(f+9)(az+ (1 - a)y) = flax+ (1 — a)y) + glaz + (1 — a)y)
<af(x)+ (1 -a)f(y) +ag@) + (1 —a)g(y)
=a(f+g)(@)+ 1 —a)(f+9)(y)

Where the inequality follows from the assumption that f and g are convex. O

||

False! Consider f(z) = —r and g(z) = v — 5. f is convex and thus quasiconvex, and g is monoton-

ically increasing and thus quasiconvex, but their sum is the function (f + g)(z) = —% which is not
quasiconvex because the lower contour set for, e.g., r = —1 is the disjoint intervals (—oo, —2] U [2, 00)
which is not convex by inspection.

True!

Proof. f is concave implies that for arbitrary z,y € X, a € (0,1),

flaz + (1= a)y) = af(z) + (1 — ) f(y) = min{f(z), f(y)}

where the second inequality follows from a direct property of minima. Thus, f is quasiconcave. O
True!

Proof. f is concave implies that for arbitrary distinct z,y € X, a € (0,1),

flaz + (1= a)y) > af(z) + (1 —a)f(y) = min{f(z), f(y)}

where the second inequality follows from a direct property of minima. Thus, f is strictly quasiconcave.
O



