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1 Convex sets

Loosely speaking convexity is the idea that sets (in linear spaces) do not have “holes”.

Definition 1. A convex combination of elements x,y ∈ Rd is an element z = αx + (1 − α)y for
some α ∈ [0, 1].

Definition 2. A subset S ⊆ Rd is convex if it contains all convex combinations of pairs of elements
of S; i.e., αx+ (1− α)y ∈ S for any x,y ∈ S and any α ∈ [0, 1].

Proposition 1. Let S ⊆ Rd be convex, {α1, . . . , αk} be a set of k ∈ N numbers in [0, 1] such that∑k
i=1 αi = 1, and {x1, . . . ,xk} ⊆ S. Then,

∑k
i=1 αixi ∈ S.

Exercise 1. Prove this.1

Corollary 1. S is convex if and only if S contains all (finite) convex combinations of elements in
S.

Proposition 2. Let C be an arbitrary collection of convex sets. Then
⋂

S∈C S is convex.

Exercise 2. Prove Proposition 2.

Definition 3. The convex hull of a set S ⊆ Rd, denoted co(S), is the smallest convex set containing
S; i.e.,

co (S) :=
⋂{

T ⊆ Rd : S ⊆ T, T is convex
}
.

Remark 1. Both of these definitions are well posed because: Rd itself is convex (and closed) and
contains S; hence the intersection of all convex (and closed) sets that contain S is well-defined.
This intersection clearly contains S and is convex [and closed] because arbitrary intersections of
convex [closed] sets are convex [closed]. And this intersection must be the smallest convex [and
closed] set containing S.

Proposition 3. Let S be a subset of Rd. Then, co(S) is the collection of all finite convex combin-
ations of elements in S; i.e.,

co (S) =

{
x ∈ Rd : ∃n ∈ N, (yi, αi)

n
i=1 ∈ Sn × [0, 1]n,

n∑
i=1

αi = 1, x =

n∑
i=1

αiyi

}
.

∗Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes
are heavily based.

1Hint: Use induction on m.
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Exercise 3 (PS5). Prove Proposition 3.2

Theorem 1 (Carathéodory). Let S be a subset of Rd, then any point in co(S) can be expressed as
a convex combination of no more than d+ 1 elements of S.

Proof. Let S be a subset of Rd. Take any point y ∈ co(S). From Proposition 3, we know that y can
be expressed as a convex combination of some finite elements in S. There might be different ways
to do this, so fix a convex combination with the least number of elements from S, say, k elements.
That is, we have that y =

∑k
i=1 αixi with αi > 0 for each i = 1, . . . , k (why?).

Towards a contradiction, suppose that k > d + 1 (remember that d is a dimension of our
underlying space). Observe that the set

{x1 − xk, . . . ,xk−1 − xk}

is linearly dependent because there are at least d + 1 elements in the set but S is a subset of Rd.
This means that there exists (β1, . . . , βk−1) ̸= 0 such that

k−1∑
i=1

βi (xi − xk) = 0.

Define βk = −
∑k−1

i=1 βi. Observe that

k∑
i=1

βixi = βkxk +

k−1∑
i=1

βixi = βkxk +

k−1∑
i=1

βi (xi − xk)︸ ︷︷ ︸
=0

+

k−1∑
i=1

βixk = xk

(
k∑

i=1

βi

)
︸ ︷︷ ︸

=0

= 0.

Hence, for any t > 0, we can write

y =

k∑
i=1

αixi + t

k∑
i=1

βixi =

k∑
i=1

(αi − tβi)xi.

Since k is finite and there exists at least one βi > 0, the following is well defined:

t := min

{
αi

βi
: βi > 0, i ∈ {1, . . . , k}

}
.

Let j ∈ {1, . . . , k} be such that αj

βj
= t and define λi := αi − tβi for all i ∈ {1, . . . , k}. Since t ≤ αi

βi

for all i ∈ {1 . . . , k} with βi > 0,

λi = αi − tβi ≥ 0 ∀i ∈ {1, . . . , k} .

We also have that
∑k

i=1 λi =
∑k

i=1 αi − t
∑k

i=1 βi = 1 and λj = αj − tβj = 0. Therefore,

y =

k∑
i=1

λixi =
∑

i∈{1,...k}\{j}

λixi.

2Hint: One way to prove Proposition 3 is to show that (a) the set on the right-hand side is a subset of co(S) and
that (b) co(S) is a subset of the set on the right-hand side, and, hence, it has to be that the two are equal.)
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But this means that y can be expressed as a convex combination of k− 1 vectors which contradicts
our choice of k. ■

Exercise 4. TFU: If S ⊆ Rd is open, then co(S) is open.

Exercise 5. TFU: If S ⊆ Rd is closed, co(S) is closed.

Proposition 4. If S ⊆ Rd is a compact set, then co(S) is compact.

Exercise 6. Prove Proposition 4 using Carathéodory theorem.

Definition 4. The closure of a set S ⊆ Rd, denoted cl(S), is the smallest closed set that contains
S; i.e.,

cl (S) :=
⋂{

T ⊆ Rd : S ⊆ T, T is closed
}
.

Remark 2. In the example above, we saw that S = {(x, y) ∈ R2 : yx2 = 1} is closed. Since S is
closed, its closure is S itself. However, we saw that the convex hull of S is not closed. Hence, we
realise that the closure of a convex hull of X (which must be closed) need not be the convex hull
of its closure. So what is the closure of the convex hull of S?

Definition 5. The closed convex hull of a set S ⊆ Rd, denoted co(S), is the smallest closed and
convex set containing S; i.e.,

co (S) :=
⋂{

T ⊆ Rd : S ⊆ T, T is convex and closed
}
.

Proposition 5. The closed convex hull of a set S is the closure of the convex hull of S; i.e.,
co(S) = cl(co(S)).

Exercise 7 (PS5). Prove Proposition 5.

Definition 6. Suppose S ⊆ Rd is convex. Then, x ∈ S is an extreme point of S if x cannot be
written as a convex combination of two distinct points in S.

Theorem 2 (Krein-Milman). Suppose S ⊆ Rd is nonempty, convex and compact. Then, S is the
closed convex hull of its extreme points.

Remark 3. Thus, Krein-Milman tells us that convex and compact sets in Rd can be (almost)
characterised by the extreme points of the set. Together with Carathéodory theorem, we realised
that any point in a convex and compact subset in Rd can be written as a convex combination of at
most d+ 1 of its extreme points.

Remark 4. Extreme points are also useful in characterising solutions of some optimisation problems
(e.g., Bauer’s Maximum Principle tells us sufficient conditions that ensures that optimum is attained
at extreme points of the set of maximisers).

2 Hyperplanes

Definition 7. A hyperplane in Rd is given by

H (p, a) :=
{
x ∈ Rd : p · x = a

}
- 3 -
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for some (p, a) ∈ Rd × R. A closed half-space above and below the hyperplane H(p, a) are given,
respectively, by

H
+
(p, a) :=

{
x ∈ Rd : p · x ≥ a

}
,

H
−
(p, a) :=

{
x ∈ Rd : p · x ≤ a

}
.

The sets H
+
(p, a) and H

−
(p, a) are the two closed half-spaces generated by the hyperplane H(p, a).

Open half-space above and below the hyperplane H(p, a) is defined by replacing the weak inequal-
ities with strict inequalities.

In R2, any line can be characterised by two points that lie on the line: say v = (v1, v2) and
w = (w1, w2). We can describe a line that connects these two points as

{(v1, v2) + t (w1 − v1, w2 − v2) : t ∈ R} .

That is, we start from the point (v1, v2) ∈ R2 and move in the direction of (w1 − v1, w2 − v2) ∈ R2.
Notice that above is almost equivalent to the usual formula for a line:

{
(z1, z2) ∈ R2 : z1 − v1 = t (w1 − v1) , z2 − v2 = t (w2 − v2)

}
=

{
(z1, z2) ∈ R2 : z1 − v1 = t (w1 − v1) , z2 − v2 =

w2 − v2
w1 − v1

t (w1 − v1)

}
=

{
(z1, z2) ∈ R2 : z2 = v2 +

w2 − v2
w1 − v1

(z1 − v1)

}
.

We say almost because using the expression above would not allow us to consider direction along
the first coordinate (we would be dividing by zero!). In an analogous way, we can think of a line in
the linear space Rd as being described by a point v ∈ Rd and a direction w ∈ Rd:

{
v + tw ∈ Rd : t ∈ R

}
=
{
x ∈ Rd : ∃t ∈ R, x = v + tw

}
.

Now let us think about a plane in R3. A point in R3 is described by (x, y, z), where each
component corresponds to the coordinate on the x-, y- and z-axes. The easiest plane to think
about is the plane that “runs” along two axes, say the x-axis and z-axis. Any points along this
plane has y-coordinate of zero; however, the x and z coordinates can be anything; i.e.,

{
(x, y, z) ∈ R3 : y = 0

}
.

Another way to describe this plane is to take any point on the plane, say the origin, and allow the
points to move in the direction of the x- and z-axes but not in the direction of y-axis. Now, take
any point on this plane, (x, 0, z) for some x, z ∈ R and the standard basis representing the y-axis
e2 = (0, 1, 0), and notice that (x, 0, z) · e2 = 0. That is, any point on this plane can be described
using the dot/inner product.3 Thus, we can now describe the plane that runs along the x-axis and
z-axis as {

0+w ∈ R3 : w · e2 = 0, w ∈ R3
}
=
{
x ∈ R3 : x · e2 = 0

}
.

3Formally, we are using the fact that R3 is an inner product space so that x,y ∈ R3 are orthogonal to one another
if x · y = 0.

- 4 -



ECON 6170 Fall 2024 3. Convexity

Of course, we can think about shifting the plane up and down the y-axis, which is the same
as altering the starting point from 0. In this manner, we can think of a plane in Rd, called a
hyperplane, as being described by a starting point v ∈ Rd and a direction p ∈ Rd\{0}:

{
v +w ∈ Rd : w · p = 0, w ∈ Rd

}
=
{
x ∈ Rd : p · (x− v) = 0

}
.

Since p · v is a constant, letting a := p · v gives the definition of hyperplanes above.

Remark 5. A plane may not always contain the origin. Similarly, a line may not contain the origin.
Thus, in general, lines and hyperplanes are not subspaces of Rd. But, we can make them into
subspaces by translation; i.e., by adding a constant vector to all its elements. We call such sets
linear manifolds. Formally, a linear manifold of Rd is a set X ⊆ Rd such that there is a subspace
S ⊆ Rd and x0 ∈ Rd such that

X = S + {x0} ≡ {x+ x0 : x ∈ S} .

Lines and hyperplanes are linear manifolds. To see this, consider a hyperplane described by a pair
(p,x0): {

z ∈ Rd : p · z = p · x0

}
=
{
z ∈ Rd : p · (z− x0) = 0

}
=
{
x+ x0 ∈ Rd : p · x = 0

}
=
{
x ∈ Rd : p · x = 0

}
+ {x0}

where we used change of variable with x := z− x0.

Remark 6. Observe that {x ∈ Rd : p·x = 0} is the null space of fp : V → R defined as fp(x) := p·x
and, as such, is a subspace of Rn. One can define hyperspace in more general linear spaces using
this notion.

2.1 Separating hyperplane theorems

Separating hyperplane theorems essentially are extensions of the fact that two disjoint convex sets
in R2 can be separated by a line.

Remark 7. Separating hyperplane theorems are one of the most important results for economic
theorists. They allow us to prove a lot of results in classical demand/supply theory and also are
very useful in general equilibrium theory. Moreover, they are very important in statistics and lots
of other fields. Here we just talk about the simplest versions of these theorems (without proofs)
but you should know that far more general results are available (you can check out Hahn-Banach
theorem in your free time).

Definition 8. Let X,Y ⊆ Rd. The sets X and Y are separated by the hyperplane H(p, a) in Rd if
X and Y lie in different closed half spaces generated by H(p, a).

Remark 8. For example, X and Y are separated by the hyperplane H(p, a) if

Y ⊆ H
+
(p, a) and X ⊆ H

−
(p, a) .

- 5 -



ECON 6170 Fall 2024 3. Convexity

The condition above is equivalent to requiring

p · y ≥ a ∀y ∈ Y and p · x ≤ a ∀x ∈ X. (1)

Definition 9. Suppose X and Y are separated by the hyperplane H(p, a). The separation is said
to be: (i) proper if at least one of the set is not contained in the hyperplane (i.e., there exists x ∈ X

and y ∈ Y such that p · x ̸= p · y); (ii) strict if (1) holds with strict inequalities;4 and (iii) strong
if X and Y are in disjoint closed half spaces.

Remark 9. Proper separation ensures that that X∪Y are not subsets of the hyperplane. Strict and
strong separation mean that none of the elements in X and Y are in the separating hyperplane.
Strong separation means that there is “gap” between the sets; i.e.,

inf
y∈Y

p · y > sup
x∈X

p · x.

Theorem 3 (Strong separating hyperplane theorem). Suppose X and Y are two nonempty, disjoint
and convex subsets of Rd. If X is compact and Y is closed, then there exists a hyperplane that
strongly separates them.

Proof. Define f : X → R by f(x) = inf{∥x− y∥ : y ∈ Y }; i.e., f(x) is the “distance” from a point
x to the set X. The function is continuous.5 Since X is compact, by the Extreme Value Theorem,
f achieves a minimum on X at some point x∗; i.e., f(x∗) = inf f(X). Since f(x∗) = inf{∥x∗ −y∥ :

y ∈ Y }, there exists a sequence (yn)n in Y such that ∥x∗ − yn∥ → f(x∗). And since Y is closed,
yn converges to some y∗ ∈ Y . Hence, f(x∗) = ∥x∗ − y∗∥. Now define p = x∗ − y∗ . Since X and
Y are disjoint, p ̸= 0. Then,

0 < ∥p∥2 = p · p = p · (x∗ − y∗) ⇒ p · x∗ > p · y∗.

What remains to show is that p·y∗ ≥ p·y for all y ∈ Y and p·x∗ ≤ p·x for all x ∈ X. So fix y ∈ Y .
Since y∗ minimises the distance to x∗ over Y , for any point z = λy + (1− λ)y∗ = y∗ + λ(y − y∗)

with λ ∈ (0, 1] on the line segment between y and y∗,

(x∗ − z) · (x∗ − z) ≥ (x∗ − y∗) · (x∗ − y∗)

⇔ 0 ≥ (x∗ − y∗) · (x∗ − y∗)− (x∗ − z) · (x∗ − z)

= (x∗ − y∗) · (x∗ − y∗)− (x∗ − (y∗ + λ (y − y∗))) · (x∗ − (y∗ + λ (y − y∗)))

= (x∗ − y∗) · (x∗ − y∗)− (x∗ − y∗) · (x∗ − y∗) + 2λ (x∗ − y∗) · (y − y∗)

− λ2 (y − y∗) · (y − y∗)

⇔ 0 ≥ 2p · (y − y∗)− λ (y − y∗) · (y − y∗) .

Letting λ → 0 from above, we conclude p ·y∗ ≥ p ·y. A similar argument for x ∈ X completes the
proof. ■

4Some people define strict separation as meaning that X and Y are in disjoint open half-spaces generated by a
hyperplane. Although this implies that (1) holds with strict inequalities, the converse is not true.

5To see this, for any y, the Triangle inequality gives ∥x′−y∥ ≤ ∥x′−x∥+∥x−y∥ and ∥x−y∥ ≤ ∥x−x′∥+∥x′−y∥.
Hence, |∥x− y∥ − ∥x′ − y∥| ≤ ∥x− x′∥ so ||f(x)− f(x′)| ≤ ∥x− x′∥. Hence, f is actually Lipschitz continuous.
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Exercise 8. Show by example that it is not enough for both sets to be closed for a strongly
separating hyperplane to exist.

Corollary 2. Suppose Y is a nonempty, closed and convex subset of Rd. If x ∈ Rd\Y , then {x}
and Y are strongly separated by a hyperplane.

Exercise 9. Prove the Corollary above.

Corollary 3. Suppose Y is nonempty, closed and convex subset of Rd. Then, exactly one of the
following is true.

(i) either, x ∈ Y ;

(ii) or, {x} and Y are strongly separated by a hyperplane; i.e., there exists p ∈ Rd\{0} such that
p · x > supy∈X p · y.

Theorem 4 (Separating hyperplane theorem). Suppose X and Y are two nonempty, disjoint and
convex subsets of Rd. Then, X and Y are separated by a hyperplane.

Remark 10. Theorem 4 does not guarantee proper, strict or strong separation.

Remark 11. If both sets are open, then there exists a hyperplane that strictly separates them.

Exercise 10. Show by example that, for general nonempty convex disjoint sets X and Y , it may
be necessary that both inequalities are allowed to be weak.

2.2 Supporting hyperplane theorems

From a separating hyperplane theorem, we can establish that, given a convex set and a point on
its “border”, there exists a hyperplane that is tangent to the set at that point. This latter result,
called the supporting hyperplane theorem is useful in thinking about the idea of domination and it
also pays a crucial role in many mathematical results (including the KKT theorem).

Definition 10. Given a set S ⊆ Rd, a point x ∈ S is an interior point if there exists an open ball
centred at x that is completely contained in S. Let int(S) denote the set of all interior points of S.
A point x ∈ S is a boundary point if x ∈ cl(S)\int(S).

Definition 11. A set X ⊆ Rd is bounded by a hyperplane H(p, a) if X is entirely contained in one
of the closed half spaces generated by H(p, a). A hyperplane H(p, a) is a supporting hyperplane
for X if X is bounded by H(p, a) and X ∩H(p, a) ̸= ∅. A supporting hyperplane H(p, a) for X

is proper if p · x ̸= a for some x ∈ X.

Remark 12. If H(p, a) is a supporting hyperplane for X ⊆ Rd , then

p · x ≤ a ∀x ∈ X

and there exists x0 ∈ X such that
p · x0 = a.

Theorem 5 (Supporting hyperplane theorem). Suppose X is a nonempty, convex subset of Rd,
and let x0 ∈ X be a boundary point of X; i.e., x0 ∈ X\int(X). Then, there exists a supporting
hyperplane at x0. If, in addition, X has a nonempty interior, then the supporting hyperplane is
proper.

- 7 -



ECON 6170 Fall 2024 3. Convexity

Proof. See Minkowski Supporting Hyperplane Theorem in Ok section G.3.2. ■

Corollary 4. Suppose X ⊆ Rd is a nonempty, convex subset of Rd with a nonempty interior.
Suppose that y ∈ Rd. Then exactly one of the following is true.

(i) either, y ∈ int(X);

(ii) or, we can find a supporting hyperplane; i.e., there exists p ∈ Rd\{0} such that p · y ≥
supx∈X p · x.

Proposition 6. A closed and convex set S ⊆ Rd is the intersection of all closed half-spaces that
contain it.

Proof. Suppose X ⊆ Rd is closed and convex. Let H be the collection of closed half-spaces that
contain X. We want to show that X =

⋂
H∈H H.

We first show that X ⊆
⋂

H∈H H. For any x ∈ X, using the supporting hyperplane theorem, we
can find a hyperplane that generates a closed half space that contains x by picking any boundary
point x0 ∈ X and apply the supporting hyperplane theorem.

It remains to show that
⋂

H∈H H ⊆ X. We will prove the contrapositive statement; i.e., we will
show that if x /∈ X, then x /∈

⋂
H∈H H. Fix some x /∈ X. Since X is closed and convex, there

is a hyperplane that strongly separates x from X. This hyperplane defines a closed half space H

containing X. Hence, x /∈ H implying that x /∈
⋂

H∈H H. ■

Remark 13. The notion of domination captures the idea that one alternative is better than another
under all circumstances. It turns out that separation by hyperplane is a useful way to mathemat-
ically capture the idea of domination. One example relates to the idea of dominant strategies in
games. Here, we focus on a single decision-maker. Let A ⊆ Rd be a finite set of actions and Θ

be a finite set of states. Let u : A × Θ → R denote the decision-maker’s utility. The goal is to
show that a “pure” action is not dominated by some randomised decision rule if and only if it is
optimal for some belief over state. Let ∆Θ denote the set of all probability distributions over Θ;
i.e., ∆Θ := {p ∈ [0, 1]Θ :

∑
θ∈Θ p(θ) = 1}. Let ∆A denote the set of all probability distribution

over A. Note that ∆A represents the set of all randomised decision rules. We now let X be the set
of payoffs for each state that yields weakly lower payoffs than some randomisation of decision rules.

X :=

{
w ∈ RΘ : ∃σ ∈ ∆A w (θ) ≤

∑
a∈A

σ (a)u (a, θ) ∀θ ∈ Θ

}
.

In other words, X is the set of dominated payoffs. Note that X is nonempty and convex. Moreover,
if a ∈ A is dominated by some randomised decision rule, then

∃σ ∈ ∆A u (a, θ) <
∑
a∈A

σ (a)u (a, θ) ∀θ ∈ Θ.

Observe that a ∈ A being dominated means that the vector u(a) = (u(a, θ))θ∈Θ lies in the interior
of X. Thus, by Corollary 4, a is not dominated if and only if there is a supporting hyperplane at
u(a); i.e., there exists v ∈ Rd\{0} such that

v · u (a) ≥ max {v ·w : w ∈ X} ⇔
∑
θ∈Θ

v (θ)u (a, θ) ≥ max
w∈X

∑
θ∈Θ

v (θ)w (θ) .
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Because X is not bounded below and v is a nonzero vector,
∑

θ∈Θ v(θ) > 0. So we can define
p(θ) := v(θ)∑

θ∈Θ v(θ) for all θ ∈ Θ so that p = (p(θ))θ∈Θ ∈ ∆Θ. The maximum of the linear function
p ·w over w ∈ X is achieved at one of the extreme points in A, and the extreme points are all the
vectors u(a) = (u(a, θ))θ∈Θ for all a ∈ A. Hence,∑

θ∈Θ

p (θ)u (x, θ) ≥ max
w∈X

∑
θ∈Θ

v (θ)w (θ) = max
a∈A

∑
θ∈Θ

p (θ)u (a, θ) .

What we have now argued is that action a∗ ∈ A is not dominated if and only if there exists p ∈ ∆Θ

such that ∑
θ∈Θ

p (θ)u (a∗, θ) ≥
∑
θ∈Θ

p (θ)u (a, θ) ∀a ∈ A;

i.e., a∗ is optimal for some belief p over Θ.

3 Convex and quasiconvex functions

Definition 12. Let X ⊆ Rd be convex. A function f : X → R is...

� concave if f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) for any x,y ∈ X and α ∈ [0, 1].

� convex if f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for any x,y ∈ X and α ∈ [0, 1].

� strictly concave if f(αx+ (1−α)y) > αf(x) + (1−α)f(y) for any two distinct x,y ∈ X and
α ∈ (0, 1).

� strictly convex if f(αx + (1 − α)y) < Mαf(x) + (1 − α)f(y) for any two distinct x,y ∈ X

and α ∈ (0, 1).

Remark 14. A function is convex (resp. strictly convex ) if and only if −f is concave (resp. strictly
concave).

Define an epigraph and subgraph of a function f : X ⊆ Rd → R respectively as

epi (f) := {(x, y) ∈ X × R : f (x) ≤ y} ,

sub (f) := {(x, y) ∈ X × R : f (x) ≥ y} .

Proposition 7. A function is concave (resp. convex) if and only if its subgraph (resp. epigraph)
is convex.

Exercise 11 (PS5). Prove Proposition 7.

Corollary 5. If f : X → R is concave (resp. convex), then the set {x ∈ X : f(x) ≥ r} (resp.
{x ∈ X : f(x) ≤ r}) is convex for any r ∈ R.

Proof. By Proposition 7, if f : X → R is concave, then we know that sub(f) is convex. Fix r ∈ R
and take any x,x′ ∈ {x ∈ X : f(x) ≥ r}. Then, (x, r), (x′, r) ∈ sub(f). Since sub(f) is convex,

(αx+ (1− α)x′, r) ∈ sub (f) ∀α ∈ [0, 1] .
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That is,
f (αx+ (1− α)x′) ≥ r ∀α ∈ [0, 1] .

Hence, αx+ (1− α)x′ ∈ {x ∈ X : f(x) ≥ r} for all α ∈ [0, 1]. ■

Definition. Let X ⊆ Rd be convex. A function f : X → R is affine if f(x) = a · x + b for some
a ∈ Rd and b ∈ R.

Exercise 12 (PS5). Prove that an affine function is both convex and concave.

Proposition 8. Let X ⊆ Rd be convex. If f : X → R is concave or convex, then f is continuous
on the interior of its domain.

Proof. It suffices to prove the case for when X is open (because interior of X is always open and
concavity of f on X implies concavity on the interior of X too). So suppose X is open and take
x0 ∈ X. Consider a sequence (xn)n in X that converges to x0. Since X is open, we can find an
open ball centred at x0 with radius ϵ > 0; i.e., there exists Bϵ(x0) ⊆ X. Pick α ∈ (0, ϵ) and let
A ⊆ Bϵ(x0) be defined by

A :=
{
x ∈ Rd : ∥x− x0∥ = α

}
.

There exists N ∈ N large enough (why?) so that ∥xn−x0∥ < α for all n > N . Then, for all n > N ,
there is zn ∈ A such that xn = αnx0 + (1 − αn)zn for some αn ∈ (0, 1). Because xn → x0 and
∥zn − x0∥ = α > 0 for all n ∈ N, it must be that αn → 1. Therefore, by concavity of f ,

f (xn) = f (αnx0 + (1− αn) zn) ≥ αnf (x0) + (1− αn) f (zn) ∀n > N.

Taking limits, we have
lim inf
n→∞

f (xn) ≥ f (x0) .

Now, it is also true that, for all n > N, there is wn ∈ A and βn ∈ (0, 1) such that x0 = βnxn +(1−
βn)wn. Then, by concavity of f ,

f (x0) = f (βnxn + (1− βn)wn) ≥ βnf (xn) + (1− βn) f (wn)

⇔ 1

βn
f (x0)−

1− βn

βn
f (wn) ≥ f (xn)

Because βn → 1, by taking limits, we obtain

f (x0) ≥ lim sup
n→∞

f (xn) .

Hence, we have shown that

lim inf
n→∞

f (xn) ≥ f (x0) ≥ lim sup
n→∞

f (xn) .

Recalling that lim supn→∞ f(xn) ≥ lim infn→∞ f(xn), above implies that above inequalities must
in fact be equalities. Hence, limn→∞ f(xn) = f(x0). ■

Definition 13. Given a function f : X ⊆ Rd → R, an element x ∈ X is a global maximum of f if

f (x) ≥ f (y) ∀y ∈ X\ {x} .
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The element x ∈ X is a strict global maximum if the inequality holds strictly above (and if it exists,
it must be unique). An element x ∈ X is a local maximum of f if, for some ϵ > 0,

f (x) ≥ f (y) ∀y ∈ Bϵ (x) \ {x} .

The element x ∈ X is a strict local maximum if the inequality holds strictly above. Local minima
are defined analogously with the inequalities reversed.

Proposition 9. Let X ⊆ Rd be convex. If f : X → R is concave, then any local maximum of f is
a global maximum of f . Moreover, the set of maximisers

{x ∈ X : f(x) = sup f (X)}

is convex.

Proof. Suppose f admits a local maximum at x ∈ X that is not a global maximum. By definition
of a local maximum, there is ϵ > 0 such that f(x) ≥ f(y) for all y ∈ Bϵ(x) ∩X. Since x is not a
global maximum, there is z ∈ X such that f(z) > f(x). Since X ix convex, αx+ (1− α)z ∈ X for
all α ∈ [0, 1]. We may pick α sufficiently close to one (but not one) so that αx+ (1− α)z ∈ Bϵ(x).
By concavity of f ,

f (αx+ (1− α) z) ≥ αf (x) + (1− α) f (z) > f (x) .

But this is a contradiction because αx+ (1− α)z ∈ Bϵ(x) so that f(x) ≥ f(αx+ (1− α)z).
To see the second part, suppose x1 and x2 are both maximisers of f on X. It must be that

f(x1) = f(x2) and concavity of f implies that, for any α ∈ [0, 1],

f (αx1 + (1− α)x2) ≥ αf (x1) + (1− α) f (x2) = f (x1) .

Above must hold with equality because x1 and x2 are maximisers. It follows that the set of
maximisers must be convex. Note also that an empty set is trivially convex so that the statement
is true even if the set of maximisers is empty. ■

Remark 15. Analogous result hold when f is convex with respect to minimisers.

Definition 14. Let X ⊆ Rd be convex. A function f : X → R is...

� quasi-concave if f(αx+ (1− α)y) ≥ min{f(x), f(y)} for any x, y ∈ X and α ∈ [0, 1].

� quasi-convex if f(αx+ (1− α)y) ≤ max{f(x), f(y)} for any x, y ∈ X and α ∈ [0, 1].

� strictly quasi-concave if f(αx + (1 − α)y) > min{f(x), f(y)} for all distinct x, y ∈ X and
α ∈ (0, 1).

� strictly quasi-convex if f(αx + (1 − α)y) < max{f(x), f(y)} for all distinct x, y ∈ X and
α ∈ (0, 1).

Remark 16. A function f is (strictly) quasi-convex if −f is (strictly) quasi-concave.

Exercise 13 (PS5). Prove the following: Let X ⊆ Rd be convex and let f : X → R. Then, f is
quasiconcave (resp. quasi-convex) if and only if the upper (resp. lower) contour sets are convex;
i.e., {x ∈ X : f(x) ≥ r} (resp. {x ∈ X : f(x) ≤ r}) are convex for any r ∈ R.
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Exercise 14 (PS5). TFU: If f is a quasi-concave function and h : R → R is nondecreasing function
then h ◦ f is quasi-concave. Do the same replacing quasi-concave with concave (in both places).

Proposition 10. Let X ⊆ Rd be convex, If f : X → R is quasi-concave, the set of maximisers

{x ∈ X : f(x) = sup f (X)}

is convex. If f is strictly quasi-concave, any local maximum f is a global maximum of f on X and
the set of maximisers contains at most one element.

Proof. Suppose x1 and x2 are both maximisers of f on X. It must be that f(x1) = f(x2) and
quasi-concavity of f implies that, for any α ∈ [0, 1],

f (αx1 + (1− α)x2) ≥ min {f (x1) , f (x2)} = f (x1) .

Above must hold with equality because x1 and x2 are maximisers. It follows that the set of
maximisers must be convex. Note also that an empty set is trivially convex so that the statement
is true even if the set of maximisers is empty.

Now suppose f is strictly quasiconcave and the x ∈ X is a local maximum of f on X. Thus,
there exists ϵ > 0 such that f(x) ≥ f(y) for all y ∈ Bϵ(x). Toward a contradiction, suppose that
x is not a global maximum; i.e., there exists z ∈ X such that f(z) > f(x) . But then since X is
convex, for any α ∈ [0, 1], αx+ (1− α)z ∈ X and by the quasiconcavity of f , we have

f (αx+ (1− α) z) > min {f (x) , f (z)} = f (x) ∀α ∈ (0, 1) .

In particular, for sufficiently large α > 0, αx + (1 − α)z ∈ Br(x) and hence we must have f(x) ≥
f(αx+ (1− α)z); a contradiction.

Suppose that there are two global maximisers, x,y ∈ X. Pick any α ∈ (0, 1) and define
z := αx+ (1− α)y ∈ X. By strict quasiconcavity,

f (z) > min {f (x) , f (y)} = f (x) = f (y) .

But this contradicts the fact that x and y were global maximisers. ■

Exercise 15. TFU: Let X ⊆ Rd be convex, If f : X → R is quasi-concave, then any local maximum
f is a global maximum of f on X .
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