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1 Exercises from class notes

Exercise 8. Prove the following: Suppose f : X C R? — R™ is differentiable at zo € int(X). Then
9Ji (1) exists for any (i,7), and
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Proof. We have that f is differentiable, meaning that there exists a linear transformation D : R¢ — R™

such that
o7 Go+ B) = (f(0) + DBl
im
h=0 [1]q

=0

Fix some (4,75) € {1,...,m} x {1,...,d}. Take h = ne; for some 7 € R and e; the standard jth basis vector
in R™. Then we have

o 1o + 1) = (£(20) + D)l _ £ (0 + 1) = (F(z0) + D)l
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where d; is the jth column of D. This implies that, expanding the norm, we have that

e 1 @0 me) = (F(0) + Dnej)lm _ VI (filao + ney) = filwo) = ndsy)?
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which implies that

fi(wo +mne;) — fi(zo) — ndi; fi(zo +ne;) — fi(xo)
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Thus, by definition 7+ (z0) exists, and D f(zo) = |52 (70)| - O
Exercise 9. Let f(z,y) = %, if (z,y) # (0,0), and let f(0,0) = 0. Show that the partial derivatives

of f exist at (0,0), but that f is not differentiable at (0,0).
Proof. Consider first %(0, 0). From the definition of the partial derivative, we have that

Of vy [0 = F(0,0) 0
g (0-0) = lim 7 = lim > = lim 0.=0



Similarly, we have that

970, 0) = tim LM =100 _ lim%: lim 0 = 0
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So the two partial derivatives do exist. However, f is not differentiable at (0,0). To see why, note that the
limit from two directions is:

lim f(h,h) =1l bl
nmo? V0T = oR2 T 2
and 0
Py 0 = 3 =0
So f is not continuous at (0,0) and thus is not differentiable. O

Exercise 10. Let f: (a,b) CR — Y C R? be differentiable, and let g : Y — R be differentiable at f(z¢)
for zg € (a,b). Express D(go f) as a function of the partial derivatives of f and g.

Proof. We have that from the Chain rule:

D(g o f)(wo) = Dg(f(x))Df (o)

From Exercise 8, we have that

Dy(f(2) = [z @] and  Df(ao) = |52 (a0)]
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for j = {1,...,d}. Thus, we have that

Exercise 11. Prove the following:
Theorem 1. (Young’s Theorem with d — 2) Suppose f : X CR? = R™ and f € C? at x¢ € int(X). Then,
when they both exist,
o f B 0% f
81‘18562 (‘TO) - 89028351 (.’Eo)

Proof. We have that f is twice continuously differentiable. Consider the rectangle formed by xg + h, where
the points are xg, (20,1 + h1,%0,2), (Z0,1, 0,2 + h2), and (zo1 + h1, 0,2 + ha). Define the distance functions

r(h) = f(zo1 + hi,20,2 + h2) — f(zo1 + h1,20,2)

and
t(h) = f(zo1 + h1,x0,2 + h2) — f(x0,1,%0,2 + h2)

Then we define
d(h) = f(xo,1 + hi,z02 + h2) — f(xo,1 + h1,z0,2) — f(20,1,20,2 + h2) + f(z0)

and note that
d(h) = r(hy,he) — (0, ha) = t(hi, hy) — t(h1,0)



Since these are all additive functions of f, which is twice continuously differentiable, all of these functions
are continuous and differentiable on their domains, so the Mean Value Theorem applies. We have that there
exists y € (0,h1),y" € (0, h2) such that

d(h) = r(h1,ha) = 7(0, hg) = 7'(y, ha) - (h1,0)
and
d(h) = t(hl, hg) - t(h170) = t/(hhyl) . (O7 h2)

SO
7' (y, ha) - (h1,0) = t'(h1,y') - (0, ha)

Thus, we have that

0
= [f(xo1 + Y, w02 + h2) — f(zo,1 +y,20,2)] (h1,0) f(xo1+ hi, 02 +y') — flwo,1, o2 +4)](0, ha)

oh
which implies that
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hy (a—i(xm +y, T2+ ha) — a—jl(xo,l + y@o,z)) = hy <3—Ji(x0’1 +hi,202+y') — a—i(fﬂo,lawo,z + y'))

Since f € C2, we have that each of the parts inside the parentheses are continuous and differentiable. Thus,
using the Mean Value Theorem again, we get that there exists z € (0, hy), 2’ € (0, he) such that this becomes

hi (%g—gfl(mo +z2)- (0, hz)) = ha <%g—£($o +2')- (h1,0)>

Recalling that y,y', z, 2" € (0, h), we have that as h — 0, y,v’, 2,2 — h, and this becomes

h <%§T£(m° +h)- (o,hg)) = hy (%g—x’;(wo +h)- (h1,0)>

Simplifying the partial derivatives, we get that this is

0*f 0*f
hl <h2 —3.'1728.’131 (CL'() + h)) = h2 (hl 731’18.’1}2 (JJ() + h))

So we have that

0% f 0% f
8:628:171 (:EO + h) n 8%183)2 (1:0 + h)
As h — 0, since f € C?, we can conclude that
0% f 0*f

63328331 T0) = 82316332 ($0)

O

Exercise 14. Let f: X C RY — R, where X is nonempty, open, and convex. For any z,v € R?, let
Sew ={t € R:z+tv e X} and define g, : Sy = R s g0 (t) == f(xr + tv). Then f is (resp. strictly)
concave on X if and only if g, , is (resp. strictly) concave for all z,v € R? with v # 0.

Proof. (=): We have that f is concave on X, meaning that f”(z) < 0 for all z € X. We also have that
from the chain rule,
Tow(t) = [z +10) -0 = g7 ,(t) = [ (z + tv) - v?

Thus, when v # 0, g ,(t) < 0. A similar proof holds when f is strictly concave, replacing < with <.



(«<): We have that g is concave for all z,v € R? where v # 0. Again from the chain rule, we have that

9 G0 (t)
o) = (@ + to)v” = [z + tv) = =73

and since v # 0 and = + tv € X by definition, we have that f”(z + tv) is concave whenever the argument is
in X. A similar proof holds when f is strictly concave. O

Exercise 17. Let f : RZ, — R be defined by f(z,y) := x®y” for some o, 3 > 0. Compute the Hessian
of f at (z,y) € R:,. Find conditions on a and § such that f is (i) strictly concave, (ii) concave but not
strictly concave, and (iii) neither concave nor convex. How do your answers change if the domain of f was
R2?

Solution. We have that

9%f 9% f

)2 (z,y) a0y (z,y) ala— 1Dz 2yf  apre—lyf-!
Hy = =
2 2 —_ —_ —
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From Proposition 15, we have that H; being negative definite implies that f is strictly concave. We have
that the determinant of Hy is

det(Hy) = (a(a — 1) 2y")(B(B — 1)ay""?) — (afz*" 1y 1)

so simplifying, we get that
det(Hy) = afz®*2y**~2(1 — a — B)

Additionally, the trace of Hy is

tr(Hy) = a(a — D)z 2y’ + (8 — a"y’? = 2%y’ <a2 o 2 B)

2 y2

A matrix is negative definite if its Eigenvalues are all negative. Equivalently, since this is a 2 X 2 matrix, it
is negative definite if the determinant is positive and the trace is negative. This condition is satisfied when
1 —a— >0 and when a® — a and 32 — 8 are both negative. This implies that o, 3 € (0,1) and a+ 3 < 1.

Similarly, this function is concave but not strictly concave if the Hessian is negative semi-definite but not
negative definite. This happens when the determinant is non-negative and the trace is non-positive, which
happens when 1 —a — 3 < 0 and a® — o, 32 — 8 < 0. Since we also need that the function not be strictly
concave, this implies that «, 8 € {0,1}, and a # .

Finally, this function is neither concave nor convex when the determinant is negative, which implies that
1 —a— <0, with the condition that a + 5 > 1.

If the domain of f were instead Ri, none of these conditions would be sufficient. Specifically, since we can
have that (z,y) = (0,0), it is possible that the Hessian takes indeterminate values depending on the values
of a and .

2 Additional Exercises

Theorem 2. Euler’s Theorem If f : X CR"™ — R is differentiable at x € int(X) and homogenous of degree
k, then
Vf(z)z =kf(z)



Proof. We have that f is homogeneous of degree k, which means that f(\z) = \*f(z) for all A € R, . We
will differentiate both sides with respect to A, using the chain rule. We get that

Vioz) -z =N f(x)

Then, choosing A = 1, we get that
Vi(z)z =kf(z)



