
About TA sections:

TAs: Ekaterina Zubova (ez268@cornell.edu), Zheyang Zhu (zz792@cornell.edu)

Section time and location: 8:40am - 9:55am Uris Hall 262 (section 201), Goldwin
Smith Hall 236 (section 202)

Office hours: Tuesdays 5-7 pm in Uris Hall 451 (Ekaterina), Thursdays 5-7 pm
in Uris Hall 429 (Zheyang). Other times available by appointment (just send us
an email!)

Our plan for today:1
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1Materials adapted from notes provided by a previous Teaching Assistant, Gautier Lenfant.
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1 RBC model

For your reference, we provide a description of the Real Business Cycle (RBC) model,
which is used in the sample code available on Canvas.

Representative household

The representative household (RH) solves the following problem:

max
(Ct)t≥0,(Ht)t≥0,(It)t≥0,(Kt+1)t≥0

E0

∞∑
t=0

βt [log(Ct)− χHt]

such that
Ct + It = RtKt +WtHt

Kt+1 = (1− δ)Kt + It

The RH takes (Rt)t≥0, (Wt)t≥0 and K0 as given.

Remark : Note the difference in notation. Here, labor is denoted by H, whereas in
our class model, it is represented as N . The RH has a disutility for labor, as seen
from the structure of the utility function. This feature will influence the labor supply
decision.

Firm

The firm solves a static profit maximization problem:

max
Kt,Ht

Kα
t (XtHt)

1−α −WtHt −RtKt

where the production function is represented by a Cobb-Douglas function with con-
stant returns to scale and labor-augmenting technology.
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2 Solving Our Log-linearized Model

Let us recall our model from class. We can rewrite it by moving all variables to the
left-hand side:

Yt − AtK
α
t N

1−α
t = 0 (1)

Kt+1 − (1− δ)Kt − It = 0 (2)

Nt − (1− δn)Nt−1 − χV ε
t = 0 (3)

Yt − Ct − It − ϕVt = 0 (4)

1− βEt

[(
Ct+1

Ct

)−σ
(
At+1α

(
Kt+1

Nt+1

)α−1

+ 1− δ

)]
= 0 (5)

ϕn

εχ
V 1−ε
t − At(1− α)

(
Kt

Nt

)α

− βEt

[(
Ct+1

Ct

)−σ
ϕn

εχ
V 1−ε
t+1 (1− δn)

]
= 0 (6)

We can express this system synthetically as:

Et[F (Xt, Yt, Xt+1, Yt+1)] = 0 (7)

Our goal is to formulate a linear state-space model where our variables (xt, yt) rep-
resent log deviations from the steady state. Specifically, we want the system to take
the following form:

xt+1 = hxxt + εt+1

yt = gxxt

Recall the notations from the last section:

log(Zt) = ẑt

log(Zt)− log(Zss) = zt ⇐⇒ ẑt = zt + zss

Using these notations, the system of (potentially nonlinear) equilibrium equations (7)
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can be re-written and Taylor approximated at the first order as follows:

Et[F (Xt, Yt, Xt+1, Yt+1)] = Et[F (exp(x̂t), exp(ŷt), exp(x̂t+1), exp(ŷt+1))] = 0

⇐⇒ Et[F (Xt, Yt, Xt+1, Yt+1)] = Et[F ◦ exp︸ ︷︷ ︸
=f

(xt + xss, yt + yss, xt+1 + xss, yt+1 + yss)]

≈ Et[f(x
ss, yss, xss, yss)]︸ ︷︷ ︸

=0

+Et[fx(x
ss)xt + fy(y

ss)yt + fxp(x
ss)xt+1 + fyp(y

ss)yt+1]

Simplifying the notation, we have:

Et[F (Xt, Yt, Xt+1, Yt+1)] ≈ Et[fxxt + fyyt + fxpxt+1 + fypyt+1]

In the next step, we need to define the terms fx, fy, fxp, and fyp. Recall that the
system of equations, once log-linearized, is given by:

Y yt = Y at + Y αkt + (1− α)Y nt

Kkt+1 = (1− δ)Kkt + δKit

Nnt = (1− δn)Nnt−1 + χεV εvt

Y yt = Cct + Iit + ϕV vt

0 = Et

[
σ

(
α

(
K

N

)α−1

+ 1− δ

)
(ct − ct+1) + α

(
K

N

)α−1

(at+1 + (α− 1)kt+1 − (α− 1)nt+1)

]
ϕn

εχ
(1−ε)V 1−εvt = (1−α)

(
K

N

)α

(at+α(kt−nt))+βEt

(
ϕn

εχ
V 1−ε(1− δn)(σ(ct − ct+1) + (1− ε)vt+1)

)

Writing f as:

f : (at, kt, nt−1︸ ︷︷ ︸
xt

, yt, ct, it, nt, vt︸ ︷︷ ︸
yt

, at+1, kt+1, nt︸ ︷︷ ︸
xt+1

, yt+1, ct+1, it+1, nt+1, vt+1︸ ︷︷ ︸
yt+1

) →
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

σ(ct+1 − ct)− βα
(
K
N

)α−1
(at+1 + (α− 1)kt+1 − (α− 1)nt+1)

Nnt −Nnt

ϕn

εχ
(1− ε)V 1−εvt − (1− α)

(
K
N

)α
(at + α(kt − nt))− β ϕn

εχ
V 1−ε(1− δn)(σ(ct − ct+1) + (1− ε)vt+1)

Kkt+1 −K(1− δ)kt −Kδit

Nnt − (1− δn)Nnt−1 − χεV εvt

Y yt − Cct − Iit − ϕV vt

Y yt − Y at − Y αkt − (1− α)Y nt

Aat+1 − ρAat
(1)

Setting the above linear mapping to 0, you do get Et[fxxt+fyyt+fxpxt+1+fypyt+1] = 0.

In matrix form, one can thus write:

fx =
[
fat fkt fnt−1

]

⇒ fx =



0 0 0

0 0 0

−(1− α)
(
K
N

)α −(1− α)α
(
K
N

)α
0

0 −(1− δ)K 0

0 0 −(1− δn)N

0 0 0

−Y −αY 0

−ρ 0 0



fy =
[
fyt fct fit fnt fvt

]
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⇒ fy =



0 −σ 0 0 0

0 0 0 −N 0

0 −β ϕn

εχ
V 1−ε 0 α(1− α)

(
K
N

)α
(1− ε)ϕn

εχ
V 1−ε

0 0 −Kδ 0 0

0 0 0 N −χεV ε

Y −C −I 0 −ϕV

−Y 0 0 −Y (1− α) 0

0 0 0 0 0



fxp =
[
fat+1 fkt+1 fnt

]

⇒ fxp =



−βα
(
K
N

)α−1
βα(1− α)

(
K
N

)α−1
0

0 0 N

0 0 0

0 K 0

0 0 0

0 0 0

0 0 0

1 0 0



fyp =
[
fyt+1 fct+1 fit+1 fnt+1 fvt+1

]

⇒ fyp =



0 σ 0 −βα(1− α)
(
K
N

)α−1
0

0 0 0 0 0

0 σβ ϕn

χε
(1− δn)V

1−ε 0 0 −β ϕn

χε
(1− δn)(1− ε)V 1−ε

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


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3 Solution Algorithm 1: Log-Linearization

Let’s talk about what our sample code is doing. The sample code on canvas is based
on the RBC model. The setup of the RBC model can be found in the first part of this
section note.

• parameters.m: This code creates a set of parameters for a model by storing
specific values (like numbers that the model will use) into a structure called
param. Think of it like a mini-database.

• model_ss.m: This code calculates the steady state of the model.

– function [ss, param] = model_ss(param) means this function is called
model_ss, and it takes in one input (param) and gives two outputs (ss and
param).

– The first few lines take values from the param structure (created in the last
function) and store them in simpler names like bet, gam, chi, etc.

– Each steady-state variable is calculated with a formula that uses these pa-
rameters.

– The yy vector collects jump variables and the xx vector collects the state
variables. Finally, ss = [yy xx] puts these values into one steady-state
vector which is the output.

• model.m: This code creates a linearized version of the RBC model.

– function [fyn, fxn, fypn, fxpn, fn] = model(param) defines a function
called model, which takes in param structure and outputs five different
matrices related to the model.

– The line [ss, param] = model_ss(param) computes the steady state of
the model using the function model_ss, which we’ve seen before. This
returns the steady-state values for later calculations.

– We then retrieve the parameters from param, like bet, gam, chi, etc.,
which were defined in parameters.m.
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– Using syms, the code creates symbolic variables (e.g., C, K, W, R) to
represent the main model variables both in the current period and in the
future period (denoted with _p for “prime”).

– X and XP are vectors of state variables in terms of symbolic variables,
with XP representing the next period’s variables. Y and YP are vectors
of jump variables in terms of symbolic variables, with YP representing the
next period’s variables.

– Then we set up equations in f that define the relationships among variables
in the model.

– We substitute the steady-state values into the equations to ensure everything
balances out as expected in steady state.

– f is redefined using exponential functions for the variables in var_list.

– We take derivatives (jacobians) of the model equations with respect to X,
Y, XP, and YP. These derivatives form matrices in terms of symbolic
variables.

– Finally, the function evaluates the symbolic derivatives at the steady-state
values and stores them as fxn, fyn, fxpn, fypn, and fn, representing the
linearized model matrices with numerical values.

• gx_hx_alt.m: This function finds the policy matrices (gx and hx).

– The function gx_hx_alt takes inputs fy, fx, fyp, fxp (matrices of deriva-
tives from linearizing the model equations) and outputs gx and hx (policy
matrices).
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4 Matching the Data

When dealing with macro models, we often want to calibrate them to match real-
world data. There are several strategies to ensure the model reflects key economic
features. Any ideas?
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