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Dynamic Programming
Through this section, we will be interested in problems of the form

v(x) = max
y∈Γ(x)

{F (x , y) + βv(y)}

where

▶ x is the set of state variables

▶ y is the set of controls

▶ F is the period return function

▶ Γ is the constraint set

For the neoclassical growth model

▶ x corresponds to k

▶ y corresponds to k ′

▶ F (k , k ′) = U(f (k)− k ′)

▶ Γ(k) = {k ′ ∈ R : 0 ≤ k ′ ≤ f (k)}
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Dynamic Programming

Define operator T :
(Tv)(x) ≡ max

y∈Γ(x)
{F (x , y) + βv(y)}

T takes a function v as input and spits out a new function Tv

Using this notation, a solution v∗ to our original functional equation is a fixed point of
the operator T :

v∗ = Tv∗

Questions:

1. Under what conditions does T have a fixed point v∗?

2. Under what conditions is v∗ unique?

3. Under what conditions does the sequence {vn}∞n=0 defined recursively by
vn+1 = Tvn and v0 is a guess converges to v∗.

Answer: Contraction mapping theorem
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Metric space

Definition 1
A metric space is a set S and a function, called distance, d : S × S → R such that for
all x , y , z ∈ S

1. d(x , y) ≥ 0

2. d(x , y) = 0 if and only if x = y

3. d(x , y) = d(y , x)

4. d(x , z) ≤ d(x , y) + d(y , z)

Definition 2
A sequence {xn}∞n=0 with xn ∈ S for all n is said to converge to x ∈ S if for every
ϵ > 0 there exists a Nϵ ∈ N such that d(xn, x) < ϵ for all n ≥ Nϵ. In this case we write
limn→∞ xn = x.
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Metric space

Definition 3
A sequence {xn}∞n=0 with xn ∈ S for all n is said to be a Cauchy sequence if for every
ϵ > 0 there exists a Nϵ ∈ N such that d(xn, xm) < ϵ for all n,m ≥ Nϵ.

Definition 4
A metric space (S,d) is complete if every Cauchy sequence {xn}∞n=0 with xn ∈ S for all
n converges to some x ∈ S.

Example: Lex X ⊆ Rl and S = C (X ) be the set of all continuous and bounded
functions f : X → R. Define the distance d : C (X )× C (X ) → R as
d(f , g) = supx∈X |f (x)− g(x)|. This distance is called the sup-norm. Then (S , d) is a
complete metric space. (The proof is in SLP)
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Contraction mapping theorem

Definition 5
Let (S , d) be a metric space and T : S → S. The function T is a contraction mapping
if there exists a number β ∈ (0, 1) satisfying

d(Tx ,Ty) ≤ βd(x , y) for all x , y ∈ S

β is called the modulus of the contraction.

Theorem 1 (Contraction Mapping Theorem)

Let (S , d) be a complete metric space and suppose that T : S → S is a contraction
mapping with modulus β. Then

1. the operator T has exactly one fixed point v∗ ∈ S

2. for any v0 ∈ S and any n ∈ N we have

d(T nv0, v
∗) ≤ βnd(v0, v

∗)
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Proof of the first part of CMT (lemma)

Lemma 1
Let (S,d) be a metric space and T : S → S. If T is a contraction mapping, then T is
continuous.

Proof.
We need to show: for all s0 ∈ S and all ϵ > 0 there exists a δ(ϵ, s0) such that if s ∈ S
and d(s, s0) < δ(ϵ, s0), then d(Ts,Ts0) < ϵ. Fix arbitrary s0 ∈ S and ϵ > 0 and pick
δ(ϵ, s0) = ϵ. Then

d(Ts,Ts0) ≤ βd(s, s0) < βδ(ϵ, s0).
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Proof of contraction mapping theorem (part 1)

Proof of the first part of CMT:
Start with an arbitrary v0 ∈ S an consider the sequence vn = T nv0. Our candidate for
a fixed point is v∗ = limn→∞ vn.
Step 1: Show that vn → v∗ ∈ S .
Since T is a contraction:

d(vn+1, vn) = d(Tvn,Tvn−1) ≤ βd(vn, vn−1)

≤ βd(Tvn−1,Tvn−2) ≤ β2d(vn−1, vn−2)

≤ · · · ≤ βnd(v1, v0)
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Proof of contraction mapping theorem (part 1)

We now use the triangle inequality. For any m > n:

d(vm, vn) ≤ d(vm, vm−1) + d(vm−1, vn)

≤ d(vm, vm−1) + d(vm−1, vm−2) + . . . d(vn+1, vn)

≤ βm−1d(v1, v0) + βm−2d(v1, v0) + . . . βnd(v1, v0)

= βn(βm−n−1 + · · ·+ β + 1)d(v1, v0)

≤ βn

1− β
d(v1, v0)

Therefore, the sequence {vn}∞n=0 is a Cauchy sequence. Since (S , d) is a complete
metric space, {vn}∞n=0 converges in S . We have shown that

vn → v∗ ∈ S
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Proof of contraction mapping theorem (part 1)

Step 2: We now establish that v∗ is a fixed point of T :

Tv∗ = T ( lim
n→∞

vn) = lim
n→∞

T (vn) = lim
n→∞

vn+1 = v∗

Step 3: We now prove that the fixed point is unique. Suppose there is another v̂ ∈ S
such that v̂ = Tv̂ and v̂ ̸= v∗. Then there exists a > 0 such that d(v̂ , v∗) = a. But
then

0 < a = d(v̂ , v∗) = d(Tv̂ ,Tv∗) ≤ βd(v̂ , v∗) = βa

which is a contradiction.
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Proof of contraction mapping theorem (part 2)

We proceed by induction. For n = 0, the claim holds. Now suppose that

d(T kv0, v
∗) ≤ βkd(v0, v

∗)

We need to show that
d(T k+1v0, v

∗) ≤ βk+1d(v0, v
∗)

But
d(T k+1v0, v

∗) = d(T (T kv0),Tv
∗) ≤ βd(T kv0, v

∗) ≤ βk+1d(v0, v
∗)

which complete the proof of the contraction mapping theorem. □
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Blackwell’s theorem

The CMT is extremely powerful. However, it is sometimes hard to show that an
operator is a contraction.

Theorem 2 (Blackwell)

Let X ⊆ RL and B(X ) be the space of bounded functions f : X → R with the distance
being the sup-norm. Let T : B(X ) → B(X ) be an operator satisfying:

1. Monotonicity: If f , g ∈ B(X ) are such that f (x) ≤ g(x) for all x ∈ X, then
(Tf )(x) ≤ (Tg)(x) for all x ∈ X

2. Discounting: Let the function f + a, for f ∈ B(X ) and a ∈ R+ be defined by
(f + a)(x) = f (x) + a. There exists β ∈ (0, 1) such that for all f ∈ B(X ), a ≥ 0
and all x ∈ X

[T (f + a)](x) ≤ [Tf ](x) + βa

then T is a contraction mapping with modulus β.
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Blackwell’s theorem

Proof.
If f (x) ≤ g(x) for all x ∈ X we write f ≤ g . For any f , g ∈ B(X ), f ≤ g + d(f , g),
where d is the sup-norm. The monotonicity and discounting imply that

Tf ≤ T (g + d(f , g)) ≤ Tg + βd(f , g)

Reversing the roles of f and g gives, by the same logic,

Tg ≤ Tf + βd(f , g)

Combining these inequalities, we find d(Tf ,Tg) ≤ βd(f , g) so T is a contraction.
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Application to the neoclassical growth model

Can these theorems help with the growth model?

▶ Metric space (B[0,∞), d) the space of bounded function with d being the
sup-norm.

▶ Define an operator

(Tv)(k) = max
0≤k ′≤f (k)

{U(f (k)− k ′) + βv(k ′)}

▶ Verify that T maps B[0,∞) into itself: Take v to be bounded, since U is
bounded by assumption, then Tv is also bounded.
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Application to the neoclassical growth model
▶ Monotonicity: Suppose v ≤ w . Let gv (k) denote an optimal policy (need not be

unique) corresponding to v . Then for all k ∈ [0,∞)

Tv(k) = U(f (k)− gv (k)) + βv(gv (k))

≤ U(f (k)− gv (k)) + βw(gv (k))

≤ max
0≤k ′≤f (k)

{U(f (k)− k ′) + βw(k ′)}

= Tw(k)

▶ Discounting:

T (v + a)(k) = max
0≤k ′≤f (k)

{U(f (k)− k ′) + β(v(k ′) + a)}

= max
0≤k ′≤f (k)

{U(f (k)− k ′) + β(v(k ′)}+ βa

= Tv(k) + βa
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Application to the neoclassical growth model

We have shown that the neoclassical model with bounded utility satisfies Blackwell’s
conditions and is therefore a contraction mapping with modulus β. Hence there is a
unique fixed point to the functional equation that can be computed from any starting
guess v0 by repeated application of the operator T .
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Theorem of the maximum - Preliminaries

We’re interested in problem of the form

h(x) = max
y∈Γ(x)

f (x , y)

Define
G (x) = {y ∈ Γ(x) : f (x , y) = h(x)}

Intuitively, what is G (x)?

Question: What can we say about the properties of h and G?

Definition 6
Let X ,Y be arbitrary sets. A correspondence Γ : X → Y maps each element x ∈ X
into a subset Γ(x) of Y .
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Theorem of the maximum - Preliminaries

Definition 7
A correspondence Γ : X → Y is lower-hemicontinuous at a point x if Γ(x) ̸= ∅ and if
for every y ∈ Γ(x) and every sequence {xn} in X converging to x ∈ X there exists
N ≥ 1 and a sequence {yn} ∈ Y converging to y such that yn ∈ Γ(xn) for all n ≥ N.

Definition 8
A compact-valued correspondence Γ : X → Y is upper-hemicontinuous at a point x if
Γ(x) ̸= ∅ and if for all sequences {xn} in X converging to x ∈ X and all sequences
{yn} in Y such that yn ∈ Γ(xn) for all n, there exists a convergent subsequence of {yn}
that converges to some y ∈ Γ(x).

Note: a single-valued correspondence (i.e. a function) that is upper-hemicontinuous is
continuous.
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Theorem of the maximum

Definition 9
A correspondence Γ : X → Y is continuous if it is both upper-hemicontinuous and
lower-hemicontinuous.

h(x) = max
y∈Γ(x)

f (x , y)

G (x) = {y ∈ Γ(x) : f (x , y) = h(x)}

Theorem 3 (Theorem of the maximum)

Let X ⊆ RL an Y ⊆ RM , let f : X × Y → R be a continuous function, and let
Γ : X → Y be a compact-valued and continuous correspondence. Then h : X → R is
continuous and G : X → Y is nonempty, compact-valued and upper-hemicontinuous.

The proof is in SLP.
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Application to the neoclassical growth model

(Tv)(k) = max
0≤k ′≤f (k)

{U(f (k)− k ′) + βv(k ′)}

▶ x = k, y = k ′,X = Y = R+

▶ f (x , y) = U(f (x)− y) + βv(y)

▶ Γ : X → Y is given by Γ(x) = {y ∈ R+|0 ≤ y ≤ f (x)}
Suppose that v is continuous, then the theorem of the maximum implies that Tv(·) is
a continuous function and that optimal policy g(·) is an uhc correspondence. If g(·) is
a function, then it is continuous.
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Principle of optimality
Functional equation (FE)

v(x) = sup
y∈Γ(x)

{F (x , y) + βv(y)}

has a unique solution v∗ which is approached from any initial guess v0.

Sequential problem (SP)

w(x0) = sup
{xt+1}∞t=0

∞∑
t=0

βtF (xt , xt+1)

subject to

xt+1 ∈ Γ(xt)

x0 ∈ X given

Questions:

1. When do v = w?

2. When is {xt+1}∞t=0 the same as y = g(x)?
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Principle of optimality - Preliminaries

Define some notation

▶ Let X be the set of possible values that the state x can take

▶ Correspondence Γ : X → X describes the feasible set of next period’s state y ,
given that today’s state is x

▶ Graph of Γ, A is defined as

A = {(x , y) ∈ X × X : y ∈ Γ(x)}

▶ Period return function F : A → R
▶ Fundamentals of the analysis are (X ,F , β, Γ). For neoclassical growth model F

and β describe preferences and X , Γ describe technology.

▶ Any sequence of states {xt}∞t=0 is a plan

▶ For a given x0, the set of feasible plans Π(x0) is Π(x0) = {{xt}∞t=1 : xt+1 ∈ Γ(xt)}
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Principle of optimality - Preliminaries

We need some assumptions for the Principle of Optimality

Assumption 1 (1)

Γ(x) is nonempty for all x ∈ X

Assumption 2 (2)

For all initial x0 and all feasible plans x̄ ∈ Π(x0)

lim
n→∞

n∑
t=0

βtF (xt , xt+1)

exists (although it may be +∞ or −∞)
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Principle of optimality

Theorem 4 (Principle of optimality)

Suppose that (X , Γ,F , β) satisfy the two previous assumptions. Then

1. the function w satisfies the functional equation (FE)

2. if for all x0 ∈ X and all x ∈ Π(x0) a solution v to the functional equation (FE)
satisfies

lim
n→∞

βnv(xn) = 0

then v = w.

In words

▶ Supremum function from SP solves the functional equation

▶ Result 2 is key. It states a condition under which a solution to FE is a solution to
SP which is what we are looking for.
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Principle of optimality

Equivalence of policies:

Theorem 5 (Principle of optimality)

Suppose that (X , Γ,F , β) satisfy the two previous assumptions.

1. Let x̄ ∈ Π(x0) be a feasible plan that attains the supremum in SP. Then for all
t ≥ 0

w(x̄t) = F (x̄t , x̄t+1) + βw(x̄t+1)

2. Let x̂ ∈ Π(x0) be a feasible plan satisfying, for all t ≥ 0

w(x̂t) = F (x̂t , x̂t+1) + βw(x̂t+1)

and
lim
t→∞

supβtw(x̂t) ≤ 0

then x̂ attains the supremum in SP for x0.
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Dynamic Programming with Bounded Returns

Functional equation:
v(x) = sup

y∈Γ(x)
{F (x , y) + βv(y)}

with associated operator T : C (X ) → C (X )

(Tv)(x) = max
y∈Γ(x)

{F (x , y) + βv(y)}

We will make a number of stronger assumptions on (X ,F , β, Γ) to be able to
characterize v and g where:

g(x) = {y ∈ Γ(x) : v(x) = F (x , y) + βv(y)}

is the policy correspondence associated with v .
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DP with Bounded Returns - Uniqueness of solution

Assumption 3 (3)

X is a convex subset of RL and the correspondence Γ : X → X is nonempty,
compact-valued and continuous.

Assumption 4 (4)

The function F : A → R is continuous and bounded, and β ∈ (0, 1).

Note that these Assumptions imply Assumptions 1 and 2.

Theorem 6
Under Assumptions 3 and 4 the operator T maps C (X ) into itself. T has a unique
fixed point v and for all v0 ∈ C (X )

(.T
nv0, v) ≤ βnd(v0, v)

Furthermore, the policy correspondence g is compact-valued and
upper-hemicontinuous.

28 / 49



DP with Bounded Returns - Monotonicity of value function

Assumption 5 (5)

For fixed y, F (·, y) is strictly increasing in each of its L components.

Assumption 6 (6)

Γ is monotone in the sense that x ≤ x ′ implies Γ(x) ⊆ Γ(x ′).

Theorem 7
Under Assumptions 3 to 6 the unique fixed point v of T is strictly increasing.
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DP with BR - Strict concavity of v and unique policy

Assumption 7 (7)

F is strictly concave: for all (x , y), (x ′, y ′) ∈ A and θ ∈ (0, 1)

F [θ(x , y) + (1− θ)(x ′, y ′)] ≥ θF (x , y) + (1− θ)F (x ′, y ′)

Assumption 8 (8)

Γ is convex in the sense that for θ ∈ [0, 1], x , x ′ ∈ X, y ∈ Γ(x), y ′ ∈ Γ(x ′) then

θy + (1− θ)y ′ ∈ Γ(θx + (1− θ)x ′)

Theorem 8
Under Assumption 3-4 and 7-8 the unique fixed point v is strictly concave and the
optimal policy g is a single-valued continuous function.
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DP with BR - Differentiability of value function

Assumption 9 (9)

F is continuously differentiable.

Theorem 9 (Benveniste-Scheinkman or Envelope Theorem)

Under assumption 3-4 and 7-9 if x0 ∈ int(X ) and g(x0) ∈ int(Γ(x0)), then the unique
fixed point v is continuously differentiable at x0 with

∂v(x0)

∂x0
=

∂F (x0, g(x0))

∂x0

All the proofs are in SLP.
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Solving Bellman equations with Benveniste-Scheinkman

We have the functional equation

v(k) = max
0≤k ′≤f (k)

U(f (k)− k ′) + βv(k ′)

Taking the FOC with respect to k ′ gives:

U ′(f (k)− k ′) = βv ′(k ′)

Then with Benveniste-Scheinkman

v ′(k) = U ′(f (k)− g(k))f ′(k)

and hence
U ′(f (k)− g(k)) = βf ′(g(k))U ′(f (g(k))− g(g(k)))

which is the Euler equation we found earlier.
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Stochastic growth model - Markov process

Most of what we’ve done works in a stochastic environment as long as we can
summarize the state of the world in a simple way.

Here we specify a specific structure to uncertainty that makes our models tractable:
discrete time, discrete state, time homogeneous Markov processes.

▶ Let
π(j |i) = prob(st+1 = j |st = i)

Conditional probabilities of st+1 only depend on realization of st not st−1 or other
past realization.

▶ Time homogeneity means that π is not indexed by time
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Stochastic growth model - Markov process

Given that st+1 ∈ S and st ∈ S and S is a finite set, the distribution π(·, ·) is an
N × N-matrix of the form

π =


π11 . . . π1j . . . π1N
...

...
...

πi1 . . . πij . . . πiN
...

...
...

πN1 . . . πNj . . . πNN


▶ Generic element: πij = π(j |i) = prob(st+1 = j |st = i).

▶ Since πij ≥ 0 and
∑

j πij = 1 for all i , matrix π is called a stochastic matrix
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Stochastic growth model - Markov process

Dynamics of the probability distribution

▶ Suppose probability distribution over states today is given by the N-dimensional
column vector Pt = (p1t , . . . , p

N
t )

T with
∑

i p
i
t = 1.

▶ Probability of being in state j tomorrow is

pjt+1 =
∑
i

πijp
i
t

or, in compact form
Pt+1 = πTPt

35 / 49



Stochastic growth model - Markov process

Stationary distribution

▶ A stationary distribution Π of the Markov chain π is

Π = πTΠ

▶ A Markov process π has at least one stationary Π: the eigenvector (normalized to
1) associated with the eigenvalue λ = 1 of πT .

▶ If only one such eigenvalue exists, then unique stationary distribution. If more
than one unit eigenvalue, then there are multiple stationary distributions.

▶ If st is a Markov chain, we have

π(st+1) = π(st+1|st)× π(st |st−1)× . . . π(s1|s0)× Π(s0)
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Stochastic growth model - Markov process

Suppose

π =

(
p 1− p

1− p p

)
for some p ∈ (0, 1). Unique invariant distribution is Π(s) = 1/2 for both s.

Suppose

π =

(
1 0
0 1

)
then any distribution over the two states is an invariant distribution.
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Stochastic growth model

▶ Technology
yt = eztF (kt , nt)

where zt is a technology shock that has unconditional mean 0 and follows a
N-state Markov chain with state space Z = {z1, z2, . . . , zN} and transition matrix
π = (πij). Let Π denote stationary distribution.

▶ Evolution of capital stock kt+1 = (1− δ)kt + it
▶ Resource constraint yt = ct + it
▶ Preferences

E0

∞∑
t=0

βtU(ct) =
∞∑
t=0

∑
z t∈Z t

βtπ(z t)U(ct(z
t))

▶ Endowment: initial capital k0 and one unit of time.

▶ Information: zt is publicly observable. z0 ∼ Π.
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Stochastic growth model

We can use our new cool tools to solve this model.

▶ State variables (k , z)

▶ Control variable k ′

▶ Bellman equation

v(k, z) = max
k ′

{
U(ezF (k , 1) + (1− δ)k − k ′) + β

∑
z ′

π(z ′|z)v(k ′, z ′)

}

subject to:
0 ≤ k ′ ≤ ezF (k, 1) + (1− δ)k
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Stochastic growth model

An important part of output fluctuations is coming from labor.

▶ Add labor-leisure choice: U(ct , 1− nt)

▶ New Bellman equation

v(k , z) = max
k ′,n

{U(ezF (k , n) + (1− δ)k − k ′, 1− n)

+ β
∑
z ′

π(z ′|z)v(k ′, z ′)}

subject to:
0 ≤ k ′ ≤ ezF (k , n) + (1− δ)k, 0 ≤ n ≤ 1

▶ This is the benchmark model of modern business cycle research. See: Cooley and
Prescott: Economic Growth and Business Cycles, in Frontiers of Business Cycle
Research, edited by Thomas F. Cooley (1995).
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Stochastic growth model
Solving the model

▶ Intratemporal optimality condition

ezFn(k , n) =
Ul(c , 1− n)

Uc(c , 1− n)

▶ Intertemporal optimality condition

Uc(c , 1− n) = β
∑
z ′

π(z ′|z)v ′(k ′, z ′)

▶ Envelope condition

v ′(k, z) = (ezFk(k, n) + 1− δ)Uc(c , 1− n)

Combining:

Uc(c, 1− n) = β
∑
z ′

π(z ′|z)(ez ′Fk(k ′, n′) + 1− δ)Uc(c
′, 1− n′)
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Calibration

Purpose: choose (or estimate) parameters of the model so that it can be used for
quantitative analysis of real world and counterfactual analysis.

Idea of calibration

1. Choose a set of empirical facts that the model should match

2. Choose parameters so that equilibrium of model matches the facts

Note: fact that model fits these facts can not be used as claim of success. Evaluation
of success has to be on other dimensions.

We will calibrate a simple version of the deterministic neoclassical model with
population and technology growth.
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Calibration

▶ Functional forms

U(c) =
c1−σ − 1

1− σ

F (K ,N) = Kα
(
(1 + g)tN

)1−α

▶ Parameters: Technology (α, δ, g), Demographics n, Preferences (β, σ)

▶ Empirical targets: Choose parameters such that balanced growth path (BGP) of
model matches long-run average facts for the U.S. economy.

▶ Need to decide on period length. Take period to be one year.
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Main facts about long-run growth

Kaldor (1959) popularized the following six stylized facts concerning long run economic
growth

1. Output per capita, Y /N, grows at a constant rate

2. The capital to labor ratio, K/N, grows at constant rate

3. The interest rate, R, is fairly constant

4. The output to capital ratio, Y /K , is fairly constant

5. The share of value added going to labor and capital are fairly constant

6. There are wide dispersion in Yi/Ni across countries
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Calibration

Parameters directly taken from long run averages in the data

▶ Population growth rate in model is n, in data n = 1.1%

▶ Growth rate of per capita GDP in model is g , in data g = 1.8%

Exploiting BCG relationships

wt = (1− α)Kα
t N

−α
t

(
(1 + g)t

)1−α

wtNt

Yt
= 1− α

In the U.S. the labor share of income has averaged about 2/3, so α = 1/3.
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Calibration

To calibrate the depreciation rate δ start with the resource constraint at the BGP
(remember that x̃t = xt/(1 + g)t and xt = Xt/(1 + n)t)

c̃ + (1− n)(1 + g)k̃ = F (k̃ , 1) + (1− δ)k̃

c̃ + [(1− n)(1 + g)− (1− δ)]k̃ = F (k̃ , 1)

In the BGP, investment is given by

ĩ = [(1 + n)(1 + g)− (1− δ)]k̃

I/Y

K/Y
=

I

K
=

ĩ

k̃
= (1 + n)(1 + g)− (1− δ)

In the data, I/Y ≈ 0.2 and K/Y ≈ 3, using our previous parameters, we find δ ≈ 4%.
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Calibration

We need to pick parameters for the utility function. From the Euler equation with
CRRA utility function:

(1 + n)(1 + g)(c̃t)
−σ = (1 + rt+1 − δ)β̃(c̃t+1)

−σ

In the BGP

(1 + n)(1 + g) = (1 + r − δ)β(1 + g)1−σ

β(1 + g)−σ =
1 + n

1 + r − δ

We need to find r . The rental rate of capital is:

rt+1 = αKα−1
t

[
(1 + g)tNt

]1−α
= α

Yt

Kt

with K/Y ≈ 3 and α ≈ 1/3 we find r ≈ 0.11.
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Calibration

Plugging back these values in the FOC:

β(1.018)−σ = 0.944

Note that without growth (g = 0) this relationship pins down β but doesn’t inform us
about σ. With growth, the typical approach is to pick σ from information outside the
model.

One can estimate σ by taking the log of

(1 + n)(1 + g)(c̃t)
−σ = (1 + rt+1 − δ)β̃(c̃t+1)

−σ

and do the estimation using consumption data:

▶ with macro data (Hall 1982): 1
σ = 0.1

▶ with micro data (Attanasio et al, 1993, 1995) 1
σ ∈ [0.3, 0.8]

▶ We pick σ = 1.
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Calibration

Summarizing the parameters:

Param. Value Target

g 1.8% g in data
n 1.1% n in data
α 0.33 labor share

δ 4% I/Y
K/Y

σ 1 Outside evidence
β 0.961 K/Y

How does the model fare on other moments?
We will come back to the growth model (in continuous time) later.
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