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1. We have that E[Z] = 0 and Var(Z) = 1. Using Chebyshev’s Inequality, we have that

P{|Z| > δ} ≤ Var(Z)

δ2

so when δ =
√
20 ≈ 4.47, P{|Z| > δ} ≤ 0.05. In constrast, when Z ∼ N (0, 1), we have that

P{|Z| > δ} = 0.05 when δ = 1.96. This number is lower because we have a bound on the tail
probabilities in a normal distribution – we know that they decay exponentially. We don’t know that
with an arbitrary distribution.

2. We have X ∼ N (µ,σ2), draw a random sample and construct a sample mean statistic X̄n = 1
n

󰁓n
i=1 Xi.

(a) From Markov’s Inequality, we have that P{|Z| > δ} ≤ E[|Z|r]
δr . From the properties of normal

distributions, we have that X̄n ∼ N
󰀓
µ, σ2

n

󰀔
, meaning that X̄n − µ ∼ N

󰀓
0, σ2

n

󰀔
. Thus, taking

r = 2, we get that

P
󰀋
|X̄n − µ| > δ

󰀌
≤ E[|X̄n − µ|2]

δ2
=

σ2

nδ2

(b) Recall that the fourth moment of a normal distribution, the kurtosis, is 3σ4. Thus, taking r = 4,
we get that

P
󰀋
|X̄n − µ| > δ

󰀌
≤ E[|X̄n − µ|4]

δ4
=

3σ4

n2δ4

(c) Assuming that δ = σ and n > 2, we get that

σ2

nδ2
=

1

n
and

3σ4

n2δ4
=

3

n2

Where we have that 1
n ≥ 3

n2 for all n ≥ 3. Thus, Markov’s Inequality with r = 4 provides a
tighter bound.

(d) Again, we have that X̄n − µ ∼ N
󰀓
0, σ2

n

󰀔
. This means that

P
󰀋
|X̄n − µ| > δ

󰀌
= P

󰀋
X̄n − µ > δ

󰀌
+ P

󰀋
X̄n − µ < −δ

󰀌
= 2P

󰀋
X̄n − µ > δ

󰀌

So we have that

P
󰀋
|X̄n − µ| > δ

󰀌
= 2

󰀕
1− Φ

󰀕√
nδ

σ

󰀖󰀖
= 2Φ

󰀕
−
√
nδ

σ

󰀖

(e) We have that for Z ∼ N (µ,σ2),

P{|Z − µ| > δ} ≤ 2 exp

󰀕
− δ2

2σ2

󰀖

and recalling that
P{|X̄ − µ| ≤ c} > 0.95 ⇐⇒ P{|X̄ − µ| > c} ≤ 0.05
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we have that

P{|X̄ − µ| > c} ≤ 2 exp

󰀕
−nc2

2σ2

󰀖
≤ 0.05

So for any c1 where 2 exp
󰀓
−nc2

2σ2

󰀔
≤ 0.05, P{|X̄ − µ| ≤ c} > 0.95. So

c =

󰁶

−2σ2

n
log

󰀕
1

40

󰀖
=

σ√
n

󰁳
2 log 40

Using Chebyshev’s Inequality, we get that

P{|X̄ − µ| > c} ≤ Var(X̄)

c2
=

σ2

nc2
< 0.05

so we get that c2 =
󰁴

20σ2

n = σ√
n

√
20.

(f) These are equal when

σ
√
n1

󰁳
2 log 40 =

σ
√
n2

√
20

2σ2

n1
log 40 =

20σ2

n2

n2 =
10

log 40
n1

So n2 ≈ 2.7n1. We need to collect approximately 1.71 times more data.

3. Consider a sample Xi, where Xi = µ+ σiei for some constants {σi} and µ, and ei i.i.d. with mean 0
and variance 1.

(a) We have that µ̂1 is consistent if µ̂1
p→ µ. This is true if, for all δ > 0,

P{|µ̂1 − µ| > δ} → 0 as n → ∞

This becomes

P{|µ̂1 − µ| > δ} = P

󰀫󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

σiei

󰀏󰀏󰀏󰀏󰀏> δ

󰀬
≤ P

󰁱
|max

i
σiei| > δ

󰁲
= P

󰀝
|max

i
ei| >

δ

maxi σi

󰀞
→ 0

Note that as n → ∞, maxi ei
p→ µe = 0 by the weak law of large numbers. Thus, this holds as

long as maxi σi < ∞ as n → ∞ and maxi σi > 0 for all n.

First, note that µ̂1 is unbiased, since E[µ̂1] =
1
n (nµ+

󰁓n
i=1 σi E[ei]) = µ.

We have that µ̂1 − µ = Op

󰀓󰁳
MSE(µ̂1)

󰀔
, and we have that since µ̂1 is unbiased

MSE(µ̂1) = Var(µ̂1) =
1

n2

n󰁛

i=1

Var(Xi) =
1

n

n󰁛

i=1

σ2
i

Thus, for µ̂1 − µ to equal Op

󰀓
1√
n

󰀔
, it must be the case that

󰁓n
i=1 σ

2
i = 1.
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(b) Note first that this is a continuous function of µ̂1, because considering σ2 ∈ Rn (i.e., considering
σ2 to be a vector), we have that µ̂2 = σ2 · µ̂1/󰀂σ2󰀂, so µ̂2

p→ σ2 · µ/󰀂σ2󰀂 = µ. Thus, µ̂2 is
consistent.

Note also that µ̂2 is unbiased, since E[µ̂2] = µ. To see:

E

󰀥󰁓n
i=1

Xi

σ2
i󰁓n

i=1
1
σ2
i

󰀦
=

󰁓n
i=1

E[Xi]
σ2
i󰁓n

i=1
1
σ2
i

=

󰁓n
i=1

µ
σ2
i󰁓n

i=1
1
σ2
i

= µ

󰁓n
i=1

1
σ2
i󰁓n

i=1
1
σ2
i

= µ

Then we have that µ̂2 − µ = Op

󰀓󰁳
MSE(µ̂2)

󰀔
. Since µ̂2 is unbiased, we have that

MSE(µ̂2) = Var(µ̂2)) =

󰁓n
i=1

Var(Xi)
σ4
i󰀓󰁓n

i=1
1
σ2
i

󰀔2 =

󰁓n
i=1

1
σ2
i󰀓󰁓n

i=1
1
σ2
i

󰀔2 =
1󰁓n

i=1
1
σ2
i

Thus, for it to be true that µ̂2 − µ = Op

󰀓
1√
n

󰀔
, we need that

󰁓n
i=1

1
σ2
i
= n.

(c) We have that

MSE(µ̂1) =
1

n

n󰁛

i=1

σ2
i and MSE(µ̂2) =

1󰁓n
i=1

1
σ2
i

Thus,
MSE(µ̂1)

MSE(µ̂2)
=

1
n

󰁓n
i=1 σ

2
i

1󰁓n
i=1

1

σ2
i

=
1

n

n󰁛

i=1

σ2
i

1󰁓n
i=1

1
σ2
i

≥ 1

n

n󰁛

i=1

σ2
i

1

σ2
= 1

Thus, MSE(µ̂1) ≥ MSE(µ̂2), and µ̂2 is more efficient.

4. We have that, from the definition of derivatives,

f(Yn)− f(0)

Yn

p→ f ′(0)

Thus, we have that

Xn(f(Yn)− f(0)) = XnYn
f(Yn)− f(0)

Yn

p→ XnYnf
′(0)

and since f ′(0) is a constant, we have that

Xn(f(Yn)− f(0))
d→ XnYnf

′(0)
d→ f ′(0)Y

Thus, Xn(f(Yn)− f(0))
d→ f ′(0)Y .

5. Assume that Xi are iid with mean µ and variance σ2. Let X̄ = 1
n

󰁓n
i=1 Xi

(a) Note that the continuous mapping theorem is not directly applicable here, as (X̄)2 is a function
of X̄, not

√
n(X̄ − µ). Instead, we will use the delta method. Define h(x) = x2. Since we have

that
√
n(X̄ − µ)

d→ N (0, 1) from the Lindéberg-Levy Central Limit Theorem, we have from the
Delta Theorem that since h(·) is continuously differentiable in a neighborhood around µ, that

√
n((X̄)2 − µ2)

d→ N (0, (2µσ)2)
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(b) If we were to use the Delta method, we would get that this converges to N (0, 0), which is a
degenerate distribution (and gives us no information about the asymptotic distribution). We
know by the Central Limit Theorem that

√
n(X̄ − µ)

d→ N (0,σ2) =⇒
√
nX̄

σ

d→ N (0, 1)

Thus, from the Continuous Mapping Theorem, we have that

h

󰀕√
nX̄

σ

󰀖
d→ χ2

n
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