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1. Maximum Likelihood Estimation
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Motivation

• Parameter estimation in complete probability models

• Structural economic modeling

• Maximum likelihood estimation is very popular for these
parametric models

• Advantage: wide applicability (many different data types); can
handle complicated data and models

• Disadvantage: strong distributional assumption
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Parametric model

• A parametric model for X is the assumption that X has a
density or probability mass function f (x |θ) with known form
of f but with unknown parameter vector θ ∈ Θ

• Example: Assume X ∼ N(µ, σ2), which has density

f (x |µ, σ2) = 1√
2πσ

e−
1
2
( x−µ

σ
)2 . The parameters are

µ ∈ R, σ2 > 0

• In this course we focus on unconditional distributions: f (x |θ)
does not depend on conditioning variables

• In many economic modeling, we focus on conditional
distributions (next semester)
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Correct specification

• Definition: A model is correctly specified when there is a
unique parameter value θ0 ∈ Θ such that f (x |θ0) coincides
with the true density or pmf of X

This parameter value θ0 is called the true parameter value

The parameter θ0 is unique if there is no other θ such that
f (x |θ0) = f (x |θ)

• A model is mis-specified if there is no parameter value θ ∈ Θ
such that f (x |θ) coincides with the true density or pmf of X
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Example

• Suppose true model is f (x) = 1√
2π
e−

1
2
x2

• The model is

f (x |p, µ1, σ
2
1 , µ2, σ

2
2) = p

1√
2πσ1

e
− 1

2
(
x−µ1
σ1

)2

+ (1− p)
1√
2πσ2

e
− 1

2
(
x−µ2
σ2

)2

• The model is “correct” since it includes f (x) as a special case

• However the“true”parameter is not unique, as they include

(p, 0, 1, 0, 1) for any p(
1, 0, 1, µ2, σ

2
2

)
for any µ2,σ

2
2(

0, µ1, σ
2
1, 0, 1

)
for any µ1,σ

2
1

• Hence the model is not correctly specified
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Likelihood

• The joint pdf or pmf of i.i.d {X1, . . .Xn} given θ is a function

f (x1, x2, . . . xn|θ) =
n∏

i=1

f (xi |θ)

• Definition: The likelihood function is

Ln(θ) = f (X1,X2, . . . ,Xn|θ) =
n∏

i=1

f (Xi |θ)

• The likelihood function

• is the joint pdf or pmf evaluated at the observed data

• is viewed as function of θ

• describes the compatibility of different values of θ with
observed data
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Maximum Likelihood Estimator (MLE)

• Definition: An maximum likelihood estimator θ̂ is the value
that maximizes Ln(θ)

θ̂ = argmax
θ∈Θ

Ln(θ)

or equivalently,
θ̂ = argmax

θ∈Θ
ℓn(θ)

where

ℓn(θ) = log Ln(θ) =
n∑

i=1

log f (Xi |θ)

is called the log likelihood function
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Example: exponential distribution

• Suppose f (x |λ) = 1
λ exp(− x

λ), x ≥ 0, λ > 0

• The log likelihood is

ℓn(λ) =
n∑

i=1

(
− log λ− Xi

λ

)
= −n log λ− n

X̄n

λ

• FOC is
∂

∂λ
ℓn(λ) = −n

1

λ
+ n

X̄n

λ2

• Setting ∂
∂λℓn(λ) equal to zero yields λ̂ = X̄n

• λ̂ is indeed a maximizer since

∂2

∂λ2
ℓn(λ̂) = n

1

λ̂2
− 2n

X̄n

λ̂3
= − n

X̄ 2
n

< 0
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Likelihood analog principle

• Why does MLE make sense?

• Define expected log likelihood function

ℓ(θ) = E[log f (X |θ)]

• Theorem: When the model is correctly specified, the true
parameter θ0 maximizes ℓ(θ)
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• Proof: For each θ ̸= θ0

ℓ(θ)− ℓ(θ0) = E
[
log

(
f (X |θ)
f (X |θ0)

)]
< logE

[
f (X |θ)
f (X |θ0)

]
(1)

where the inequality follows from Jensen’s inequality and strict
inequality holds since log is strictly concave and f (X |θ)

f (X |θ0) is not
a constant

• Let the true density of the data be f (x)

• Since f (x |θ0) = f (x) and f (x |θ) is a valid density

E
[
f (X |θ)
f (X |θ0)

]
=

∫
f (x |θ)
f (x |θ0)

f (x)dx =

∫
f (x |θ)dx = 1 (2)

• Conclusion follows by combining (1) and (2)
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Evaluation of estimators

• Likelihood function of parametric models provides a way of
evaluating their estimators

• Recall ℓ(θ) = E[log f (X |θ)] is the expected log likelihood

• Introduce some terminology

• log-likelihood at single observation X and true parameter θ0:

log f (X |θ0)

• Efficient Score:

S =
∂

∂θ
log f (X |θ0)

• Fisher Information
Fθ0 = ESS ′
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Property of efficient score

• Theorem: Assume model is correctly specified, the support of
X does not depend on θ, and θ0 lies in the interior of Θ.
Then ES = 0 and var(S) = Fθ0

• Proof: By Leibniz rule

ES = E
[
∂

∂θ
log f (X |θ0)

]
=

∂

∂θ
E [log f (X |θ0)]

=
∂

∂θ
ℓ(θ0)

= 0

where the last equality holds as θ0 maximizes ℓ(θ) and θ0 is in
the interior of Θ

• Then var(S) = E
[
(S − E[S ]) (S − E[S ])′

]
= E [SS ′] = Fθ0
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Property of Fisher information

• Theorem [Information Matrix Equality]

E
[
∂ log f (X |θ0)

∂θ

∂ log f (X |θ0)
∂θ′

]
︸ ︷︷ ︸

Fisher information

= −E
[

∂2

∂θ∂θ′
log f (X |θ0)

]
︸ ︷︷ ︸

curvature of ℓ(θ0)

.

That is,
Fθ0 = Hθ0

where

Hθ0 = −E
[

∂2

∂θ∂θ′
log f (X |θ0)

]
= − ∂2

∂θ∂θ′
E[log f (X |θ0)] = − ∂2

∂θ∂θ′
ℓ(θ0)

is called the Expected Hessian
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Remarks

• Fisher information is identical to the the curvature of expected
log likelihood

• useful for simplifying formula for the asymptotic variance of
MLE

• Proof left for homework
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Cramér-Rao Lower Bound

• Theorem: Assume model is correctly specified, the support of
X does not depend on θ, and θ0 lies in the interior of Θ. If θ̃
is an unbiased estimator of θ then

var(θ̃) ≥ (nFθ0)
−1

(nFθ)
−1 is called Cramér-Rao Lower Bound (CRL)

An estimator θ̃ is Cramér-Rao efficient if it is unbiased and
var(θ̃) = (nFθ0)

−1

• If var(θ̃) is a matrix, var(θ̃) ≥ (nFθ0)
−1 means

var(θ̃)− (nFθ0)
−1 is positive semidefinite

• Intuition: More curvature of the expected log likelihood ⇒
more information ⇒ smaller variance bound
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Proof

• Write x = (x1, . . . xn)
′, X = (X1, . . .Xn)

′

• Write the joint density of X as f (x|θ)

• Since θ̃ is an estimator, θ̃ = θ̃(X)

• Since θ̃ is unbiased, it must hold that

θ = Eθ[θ̃(X)] =

∫
θ̃(x)f (x|θ)dx

for any θ. By taking derivative on both sides

I =

∫
θ̃(x)

∂

∂θ′
f (x|θ)dx

=

∫
θ̃(x)

(
∂

∂θ′
log f (x|θ)

)
f (x|θ)dx

where I is identity matrix
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• Evaluated at true value θ0

I =

∫
θ̃(x)

(
∂

∂θ′
log f (x|θ0)

)
f (x|θ0)dx

= E
[
θ̃(X)

(
∂

∂θ′
log f (X|θ0)

)]
= E

[
θ̃(X)

(
∂

∂θ′
log f (X|θ0)

)]
− E

[
θ̃(X)

]
︸ ︷︷ ︸

θ0

E
[

∂

∂θ′
log f (X|θ0)

]
︸ ︷︷ ︸

0

= cov

(
θ̃(X),

∂

∂θ
log f (X|θ0)

)
where the third equality follows from

E
[(

∂

∂θ′
log f (X|θ0)

)]
= E

[(
n∑

i=1

∂

∂θ′
log f (Xi |θ0)

)]
= nE[S ′] = 0
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• Thus (showing var( ∂
∂θ log f (X|θ0)) = nFθ left for homework)

var

(
θ̃

∂
∂θ log f (X|θ0)

)
=

(
var(θ̃) I

I nFθ0

)
• Since this matrix is positive semidefinite

A′var

(
θ̃

∂
∂θ log f (X|θ0)

)
A ≥ 0

for any matrix A

• Picking A =

{
I

−(nFθ0)
−1

}
yields

var(θ̃)− (nFθ0)
−1 ≥ 0
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Asymptotic property of MLE

• If θ0 uniquely maximizes ℓ(θ) = E log f (X |θ) and some
technical conditions hold so that

1

n

n∑
i=1

log f (Xi |θ)
p→ E log f (X |θ)

uniformly for all θ ∈ Θ, then

θ̂
p→ θ0

• With more technical conditions, we can also show

√
n(θ̂ − θ0)

d→ N(0,F−1
θ0

)

• Thus MLE estimator is: consistent, converging at rate n−
1
2 ,

asymptotically normal and asymptotically Cramér-Rao
efficient
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Variance estimation

• The asymptotic variance of
√
n(θ̂ − θ0) is F−1

θ0
, which is

unknown

• Since

Fθ = E
[
∂ log f (X |θ0)

∂θ

∂ log f (X |θ0)
∂θ′

]
= −E

[
∂2

∂θ∂θ′
log f (X |θ0)

]
we can estimate F−1

θ by either{
−1

n

n∑
i=1

∂2

∂θ∂θ′
log f (Xi |θ̂)

}−1

or {
1

n

n∑
i=1

∂

∂θ
log f (Xi |θ̂)

∂

∂θ′
log f (Xi |θ̂)

}−1



24

2. Method of Moments
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Introduction

• MLE is used for parametric models

• Method of Moments (MM) allows semi-parametric models:
estimation of finite dimensional parameter when distribution is
non-parametric

• A distribution is called non-parametric if it cannot be
described by a finite list of parameters

• Example: Estimation of the mean θ = E[X ] when the
distribution of X is unspecified
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Multivariate means

• To start with, for random vector X , its mean µ = EX can be
estimated by MME

µ̂ =
1

n

n∑
i=1

Xi

• By CLT, if E ∥X∥2 < ∞

√
n(µ̂− µ)

d→ N(0,Σ)

where Σ = var[X ]

• Σ can be consistently estimated by sample covariance matrix

Σ̂ =
1

n − 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)′
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Mean of transformed variable

• The mean of any transformation g(X ) is θ = E[g(X )]

• MME for θ is

θ̂ =
1

n

n∑
i=1

g(Xi )

• By CLT, if E ∥g(X )∥2 < ∞

√
n(θ̂ − θ)

d→ N(0,Vθ)

where Vθ = var[g(X )]

• Vθ can be consistently estimated by

V̂ =
1

n − 1

n∑
i=1

(g(Xi )− θ̂)(g(Xi )− θ̂)′
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Example: moments

• The m−th moment of random variable X is µ′
m = EXm

• Similarly, MME for µm is

µ̂′
m =

1

n

n∑
i=1

Xm
i

• CLT yields its asymptotic distribution
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Example: empirical distribution function

• The cdf of X is

F (x) = P{X ≤ x} = E[1{X ≤ x}]

• The MME for F (x) is

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x}

• Fn(x) is called the empirical distribution function

• We can show (homework)

√
n(Fn(x)− F (x))

d→ N (0,F (x)(1− F (x)))
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Smooth functions of moments

• Now let’s be a bit general

• Suppose the parameter is

β = h(θ), where θ = E[g(X )]

and X , g and h can all be vectors

• By plugging in MME θ̂ = 1
n

∑n
i=1 g(Xi ), β can be estimated

by
β̂ = h(θ̂)
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• When h is continuously differentiable we call it smooth

• By applying delta method

β̂ − β
d→ N(0,Vβ)

where Vβ = H′VθH, H′ = ∂
∂θ′ h(θ), Vθ = var(g(X ))

• Vβ can be consistently estimated by V̂β = Ĥ′V̂θĤ where

Ĥ′ =
∂

∂θ′
h(θ̂)

V̂θ =
1

n − 1

n∑
i=1

(g(Xi )− θ̂)(g(Xi )− θ̂)′
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Example: variance

• The variance of random variable X is

σ2 = E
[
(X − E[X ])2

]
= E

[
X 2
]
− (E [X ])2

a smooth function of uncentered first and second moment

• MME for σ2 is

σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2 =
1

n

n∑
i=1

X 2
i −

(
1

n

n∑
i=1

Xi

)2

• The asymptotic distribution of σ̂2 can be found by delta
method
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Moment equations

• In many problems, we can write moments as explicit functions
of parameters

E[m(X , β)] = 0

where parameter β ∈ Rk and m(x , β) is a k × 1 function

• For each β, the sample moment of E[m(X , β)] is

1

n

n∑
i=1

m(Xi , β)

• The MME β̂ solves a system of k nonlinear equations

1

n

n∑
i=1

m(Xi , β̂) = 0
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Example: parametric models

• Classical way of defining MME

• Let f (x |β) be a parametric density with parameter β ∈ Rm

• The k−th moment of the model is

µk(β) =

∫
xk f (x |β)dx

a mapping from parameter space to R

• Hence β satisfy

E


X − µ1(β)
X 2 − µ2(β)

...
Xm − µm(β)

 = 0,
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• We can set

m(x , β) =


x − µ1(β)
x2 − µ2(β)

...
xm − µm(β)


• MME β̂ solves

1

n

n∑
i=1


Xi − µ1(β̂)

X 2
i − µ2(β̂)

...

Xm
i − µm(β̂)

 = 0
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Example: Euler equation in macro

• Consumer’s utility function

U(Ct ,Ct+1) = u(Ct) +
1

β
u(Ct+1)

• Consumer’s budget

Ct +
Ct+1

Rt+1
≤ Wt

• Consumer chooses Ct to maximize expected utility

E
[
u(Ct) +

1

β
u((Wt − Ct)Rt+1)

]
• FOC is

0 = u′(Ct)− E
[
Rt+1

β
u′(Ct+1)

]
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• Assuming u(c) = c1−α

1−α , the Euler equation is

E

[
Rt+1

(
Ct+1

Ct

)−α

− β

]
= 0

• Suppose β is known and we are interested in estimating α

• Then α satisfies E [m(Rt+1,Ct+1,Ct , α)] = 0, where

m(Rt+1,Ct+1,Ct , α) = Rt+1

(
Ct+1

Ct

)−α

− β

• The MME for α solves

1

n

n∑
t=1

[m(Rt+1,Ct+1,Ct , α̂)] = 0



38

Asymptotic property of MME

• If there is a unique β0 that solves

E[m(X , β)] = 0

and further technical conditions hold so that

1

n

n∑
i=1

[m(Xi , β)]
p→ E[m(X , β)]

uniformly for all β in some set B, then MME β̂
p→ β0

• With more technical conditions, we can also show

√
n(β̂ − β0)

d→ (0,V )

where V = (Q ′)−1ΩQ−1, Ω = var(m(X , β0)),

Q ′ = E
[

∂
∂β′m(X , β0)

]
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Efficiency of MME Estimator
• We know sample mean µ̂ is BLUE for population mean µ,

which might justify use of MME

• Restriction to linear models is not convincing

• In fact, we can show µ̂ has the lowest variance among all
unbiased estimators

• Theorem: Let X be a random vector and F be a set of
distributions such such that E ∥X∥2 < ∞. If µ̃ is an unbiased
estimator for µ = EX for all distributions in F , then

var(µ̃) ≥ 1

n
Σ

where Σ = var(X )

• Since sample mean µ̂ is unbiased and var(µ̂) = 1
nΣ, we

conclude µ̂ has the lowest variance among all unbiased
estimators
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Proof (non-examinable)

• Basic Idea

• If X has a parametric pdf f (x |θ), we can apply Cramér-Rao
theory to find lower bound

• However, the distribution of X is left unspecified (the space of
possible distributions is too big)

• Construct a smaller class of correctly specified parametric
distributions f (x |α) so that when α = 0, f (x |0) = f (x)

• Since µ̃ is unbiased for all distributions, it is also unbiased for
f (x |α)

• The variance lower bound among all distributions must at least
as large as the Cramér-Rao bound for the subclass of
distributions f (x |α)
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• Focus on the case when X continuous with f (x). Wlog,
assume µ = 0 and X is bounded so that ∥X∥ ≤ C for some
0 < C < ∞

• Extending to cases with µ ̸= 0 and unbounded X only involves
some more technicality

• Now let F be the set of distributions such that EX = 0 and
∥X∥ ≤ C with probability 1

• Note ∥X∥ ≤ C with probability 1 implies E ∥X∥2 < ∞ is
automatically satisfied
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• Step 1: construct a parametric subclass of distributions

f (x |α) = f (x)
{
1 + α′Σ−1x

}
where α ∈

{
α :
∥∥Σ−1α

∥∥ ≤ 1
C

}
,

Σ = var(X ) = E[XX ′]

Note EX = 0, |x | ≤ C
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• Let Eα[· ] denote expectation under f (x |α)

• Step 2: verify that f (x |α) ∈ F
• f (x |α) is a valid pdf sharing same support with f (x)

f (x |α) ≥ 0 since |α′Σ−1x | ≤
∥∥Σ−1α

∥∥ ∥x∥ ≤ 1 (3)∫
f (x |α)dx =

∫
f (x)dx +

∫
f (x)α′Σ−1xdx

= 1 + α′Σ−1EX = 1

• f (x |α) is correctly specified: when α = 0, f (x |α) = f (x)

• Variance of X under f (x |α) is finite:
(3) implies f (x |α) ≤ 2f (x). Thus Eα ∥X∥2 ≤ 2E ∥X∥ < ∞

• Expectation of X under f (x |α) is∫
xf (x |α)dx =

∫
f (x)xdx +

(∫
xx ′f (x)dx

)
Σ−1α

= 0 + Σ−1Σ−1α = α
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• Step 3: apply Cramér-Rao Theorem for model f (x |α)
• Unbiasedness of µ̃ means it is unbiased for all f (x) ∈ F . Since

f (x |α) ∈ F , it must hold that µ̃ is unbiased for model f (x |α)
• By Cramér-Rao Theorem,

var(µ̃) ≥ n−1Fα

where

Fα = E
[
∂

∂α
log f (X |0) ∂

∂α′ log f (X |0)
]

• Note
∂

∂α
log f (X |α) = Σ−1X

{1 + α′Σ−1X}
• Hence Fα = Σ−1E [XX ′] Σ−1 = Σ−1 as desired


