
ECON 6170 Section 5

TA: Patrick Ferguson

October 1, 2024

Midterm 1 Practice Questions
Exercise 1 (2023 Midterm 1 Q1). Prove either that the following statements are true or false.

(i) The set S = {(x, y) ∈ R2 | x > 0, y ≥ 1/x2} is open.

(ii) The set S = {(x, y) ∈ R2 | x > 0, y ≥ 1/x2} is closed.

(iii) A closed subset of a compact set S ⊆ Rd is compact.

(i) False.

Take (x, y) ∈ S such that y = 1/x2. Then (x, y) ∈ S. Consider the sequence in SC, (x, y − 1
n ).

Clearly this sequence converges to (x, y), so SC is not closed. It follows that S is not open.

(ii) True.

Let (xn, yn) be a sequence in S converging to some (x, y). Note that it cannot be that x = 0,
for then yn → ∞ and (xn, yn) doesn’t converge, a contradiction. Therefore, x > 0. Given
yn ≥ 1/x2

n → 1/x2, we must have y ≥ 1/x2. Thus, (x, y) ∈ S.

Note that proving S is closed also suffices to prove that it is not open, given that it is neither ∅ nor Rd.

(iii) True.

S is compact =⇒ S is bounded =⇒ every subset of S is bounded =⇒ every closed subset
of S is compact.

1



Exercise 2 (2023 Midterm 1 Q2). Let (xn)n be a sequence in R. A point s ∈ R is a limit point of
(xn)n if there exists a subsequence of (xn)n that converges to s. Let S be the set of limit points of
(xn)n.

(i) Prove that there is a subsequence (xnk)k that converges to lim supn→∞ xn.

(ii) Prove that lim supn→∞ xn = sup S.

To save on time, you may assume the sequence (xn)n is bounded. Hint: If you can’t prove (i),
assume it and use it to prove (ii).

(i) We know that (sm)∞
m=1 := (sup{xn | n ≥ m})∞

m=1 is a sequence converging to s := lim sup xn.
By definition of a supremum, because the sequence in the question is bounded, there exists
xn1 ∈ [s1 − 1, s1]. Similarly, there exists xn2 ∈ [sn1+1 − 1

2 , sn1+1] such that n2 > n1. Proceeding
similarly, we obtain a subsequence of (xn), (xnk) such that snk−1+1 − 1

k ≤ xnk ≤ snk−1+1 and
both bounding sequences converge to s, so xnk → s also.

(ii) By (i), we only need to prove that no subsequence (xnk) converges to a point greater than
s := lim sup xn. Suppose such a subsequence did exist. Suppose xnk → s + ε. Then infinitely
many terms of (xn) lie above s + ε/2. It follows that infinitely many sup{xn | n ≥ m} lie
above s + ε/2, so (sup{xn | n ≥ m})∞

m=1 doesn’t converge to s, a contradiction.
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Exercise 3 (2023 Midterm 1 Q3). A boundary point of a set S ⊆ Rd is a point x ∈ Rd such that every
open ball centred at x intersects both S and SC. Define

bd(S) := {x ∈ Rd | x is a boundary point of S}.

(i) Show that bd(S) = bd(SC).

(ii) Prove or disprove: If x ∈ S is an isolated point, then x is a boundary point of S.

(iii) Show that the set S ⊆ Rd is closed if and only if it contains all its boundary points.

Hint: Recall that a point x ∈ S is isolated if there exists ε > 0 such that Bε(x) ∩ S = {x}.

(i) x ∈ bd(S) ⇐⇒ every open ball centered at x intersects both S and SC ⇐⇒ x ∈ bd(SC).

(ii) True. Clearly every open ball centred at x contains an element of S, x itself. There is some
ε such that Bε(x) contains no other elements of S. But Bε(x) is not a singleton, so it must
contain elements of SC.

(iii) Suppose bd S ⊆ S. Suppose S is not closed. Then there exists a sequence of elements of S
that converges to x ∈ SC. Then every open ball centred at x contains elements of S, so x is a
boundary point of S that lies in SC, a contradiction.

Suppose S is closed. Then SC is open, so x ∈ SC implies that some Bε(x) ⊆ SC, meaning that
x is not a boundary point of SC. But this means that x is not a boundary point of S either.
Therefore, bd(S) ⊆ S.
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Exercise 4 (2023 Midterm 2 Q2).

(i) Suppose f : R → R is concave and g : R → R is a strictly increasing function. Prove that
g ◦ f is quasiconcave.

(ii) Define h : R+ → R by

h(x) :=

{
0 if x ∈ [0, 1]

(x − 1)2 if x > 1

Show that h is quasiconcave.

(iii) Show that h, defined above, is not a strictly increasing function of a concave function.

Hint: Prove by contradiction and use the fact that every local maximum of a concave function
is a global maximum.

(i) Because f is concave and thus quasiconcave,

f (αx + (1 − α)y) ≥ min{ f (x), f (y)}

Because g is increasing,

(g ◦ f )(αx + (1 − α)y) = g( f (αx + (1 − α)y))

≥ g(min{ f (x), f (y)}) = min{(g ◦ f )(x), (g ◦ f )(y)}

(ii) h is nondecreasing and thus quasiconcave.

(iii) BWOC, suppose h is a strictly increasing function of a concave function. Write h = g ◦ f .
Then the local maxima and global maxima of h are the same as those of f . h has a local
maximum at x = 1/2, so f must have a local maximum at x = 1/2. But f is concave, so f
has a global maximum at x = 1/2. It follows that h also has a global maximum at x = 1/2.
But h has no global maximum (limx→∞ h = ∞), so this is a contradiction.
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Exercise 5 (2023 Final Q6). Fix some Y ⊆ Rd that is nonempty and has a nonempty interior. We
say that a (production) vector y ∈ Y is efficient if there is no y′ ∈ Y such that y′ ≥ y and y′ ̸= y. A
production vector y ∈ Y is profit-maximising for some p ∈ Rd

++ if

p · y ≥ p · y′

for all y′ ∈ Y.

(i) Prove or disprove: (a) If y ∈ Y is efficient, then y is a boundary point of Y; (b) if y ∈ Y is a
boundary point of Y, then y is efficient.

(ii) Prove that: if y ∈ Y is profit-maximising for some p ∈ Rd
++, then y is efficient.

(iii) State a separating hyperplane theorem.

(iv) Suppose that Y is convex. Prove that every efficient production vector y ∈ Y is a profit-
maximising production vector for some p ∈ Rd

+ (i.e., p ̸= 0 and p ≥ 0). Hint: Apply
the separating hyperplane theorem to the set Y and Py := {y′ ∈ Y | y′ ≫ y}, where
(y′i)

d
i=1 = y′ ≫ y = (yi)

d
i=1 means that y′i > yi for all i = 1, . . . , d. Try drawing the case of

d = 2.

(i) (a) True. If y ∈ Y is efficient but not a boundary point of Y, then y + ε1 ∈ Y for some
sufficiently small positive ε. This contradicts efficiency of y.

(b) False. Let Y = [0, 1]2. Then (0, 0) is a boundary point of Y, but it is not efficient.

(ii) Suppose y is profit-maximising for p but is not efficient. Then there exists y′ ∈ Y such that
y′ ≥ y and y′ ̸= y. Because p is strictly positive, this means p · y′ > p · y, a contradiction.

(iii) Suppose X and Y are two nonempty, disjoint and convex subsets of Rd. Then, X and Y are
separated by a hyperplane.

(iv) We’re given that Y is nonempty and convex. Py contains y + 1 so it is nonempty. If y′ ≫ y
and y′′ ≫ y, then αy′ + (1 − α)y′′ ≫ y, so Py is convex. Because y is efficient, Y and Py must
be disjoint. It follows by the Separating Hyperplane Theorem that Y and Py are separated by
a hyperplane. That is, there exists p ̸= 0 such that

p · y′ ≥ p · y′′ (1)

for every y′ ∈ Py and every y′′ ∈ Y. In particular,

p ·
(

y +
1
n
1

)
≥ p · y′′

for every y′′ ∈ Y and every n ∈ N. Taking n → ∞,

p · y ≥ p · y′′

for every y′′ ∈ Y. All that remains is to show that p ≥ 0. Suppose pj < 0 for some j. Let
y′j > yj and y′i = yi for all i ̸= j. Then y′ ∈ Py and y ∈ Y, but p · y′ < p · y, contradicting (1).
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