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In Section notes

Assumptions

1. u(.) represents ≿ and is continuous.

2. ≿ satisfies local non satiation. (LNS)

3. ≿ is strictly convex.

Expenditure minimization problem (EMP)

min
x

p · x such that u(x) ≥ ū

Hicksian demand: h(p, ū)

1. If inf u(x) ≤ ū ≤ supu(x) then there exist h∗ that solves the EMP. (Extreme Value Theorem)

2. h(p, ū) is homogeneous of degree 0 (HoD0) in price (p).

3. u(h(p, ū)) = ū. (LNS)

4. h(p, ū) is a well-defined function and it is continuous. (≿ strictly convex + Berge’s Theorem of the Maximum)

Expenditure function: e(p, ū)

1. Continuous in (p, ū).

2. Nondecreasing in p and strinctly increasing in ū.

3. HoD 1 in p.

4. Concave in p.

Roadmap

Figure 1: MWG chapter 3. Roadmap.
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Exercises

(2009 Prelim 1)

(a)

max
x1,x2,x3

x1x
1
2
2 x

1
2
3

Subject to
p1x1 + p2x2 + p3x3 ≤ w

(b) To find the consumer’s demand functions we first notice that u(.) is increasing in each good, so it satisfies
LNS and therefore the constraint must be binding. Since all monotonic transformations preserve the order of
≿, solving the problem in (a) is equivalent to,

max
x1,x2,x3

log(x1) +
1

2
log(x2) +

1

2
log(x3)

Subject to
p1x1 + p2x2 + p3x3 = w

Our Lagrangian is,

L(x, λ) = log(x1) +
1

2
log(x2) +

1

2
log(x3) + λ(w − p1x1 − p2x2 − p3x3)

And our first order conditions give,
∂L(x, λ)

∂x1
=

1

x1
− λp1 = 0

∂L(x, λ)
∂x2

=
1

2x2
− λp2 = 0

∂L(x, λ)
∂x3

=
1

2x3
− λp3 = 0

∂L(x, λ)
∂λ

= w − p1x1 − p2x2 − p3x3 = 0

From here we obtain,

x2 =
p1
p2

x1

2

x3 =
p1
p3

x1

2

Substituting in the budget constraint,

w = p1x1 +
p1x1

2
+

p1x1

2

Solving the system of equations we get,

=⇒ x1(p, w) =
w

2p1

=⇒ x2(p, w) =
w

4p2

=⇒ x1(p, w) =
w

4p3

To confirm that these are indeed our walrasian demand functions, we can check the corner solution or
compute the Hessian of u(x) and see if it is negative semidefinite.
Since neither of x1, x2, x3 equals 0, then the answer above is the Walrasian Demand.



(c) With the addition of the coupon component, the problem becomes,

max
x1,x2,x3

x1x
1
2
2 x

1
2
3

Subject to
p1x1 + p2x2 + p3x3 ≤ w (Budget constraint)

x1 + x2 + x3 ≤ c (Coupon constraint)

(d) Yes, for c big enough. Assume p = (1, 1, 1), and c > w, then the problem becomes

max
x1,x2,x3

x1x
1
2
2 x

1
2
3

Subject to
x1 + x2 + x3 ≤ w (Budget constraint)

x1 + x2 + x3 < c (Coupon constraint)

The leftover coupons will be c− w.

(e) Since the budget constraint and coupon constraint are ”parallel”, if c > w, then we only need to use the
budget constraint. Otherwise, if c ≤ w, we use the coupon constraint.
For example, if c > w, we just need to replace p = (1, 1, 1) in the Walrasian demand we found in (a).

(2023 Prelim 1)

(a) The problem is

V (T ) = max
e

B(e) subject to

n∑
i=1

ei = T

Let T2 > T1. Denote e(T1) as the maximizer under T1. Then there exist 0 < ϵ < T2−T1

n such that∑n
i=1(ei + ϵ) = T1 + nϵ < T2. Since B is strictly increasing,

B(e+ ϵ) > B(e(T1))

Also since
∑n

i=1(ei + ϵ) < T2,
V (T2) ≥ B(e+ ϵ) > B(e(T1)) = V (T1)

(b) The problem is

V (T ) = max
e

B(e) subject to
n∑

i=1

ei = T

Since all the conditions are met, we can use the lagrangian method to solve this problem. The lagrangian is,

L = B(e) + λ(T −
n∑

i=1

ei)

And the first order condition is,

∂L
∂ei

=
∂B(e)

∂ei
− λ = 0 =⇒ ∂B(e)

∂ei
= λ∗

In optimal, by the Envelope Theorem,

dV (T )

dT
=

dL(e∗(T ))
dT

= λ∗ =
∂B(e)

∂ei



(c) The problem is
V (T ) = max

e
b1(αe1) + b2(e2) subject to e1 + e2 = T

=⇒ max
e1≥0

b1(αe1) + b2(T − e1)

The first order condition gives,
αb′1(αe

∗
1(α))− b′2(T − e∗1(α)) = 0

We want to know how does e∗1 changes when a decrease from 1 to α happens. For this we compute the
derivative with respect to α on the FOC,

b′1(αe
∗
1(α)) + αb′′1(αe

∗
1(α))(e

∗
1(α) + αe∗

′

1 (α)) + b′′2(T − e∗1(α))e
∗′

1 (α) = 0

We group terms and get,
∂e∗1(α)

∂α
= −b′1(αe

∗
1(α)) + αb′′1(αe

∗
1(α))e

∗
1(α)

α2b′′1(αe
∗
1(α)) + b′′2(T − e∗1(α))

Since each bi is strictly increasing and strictly concave, we know b′(.) > 0 and b′′(.) < 0. From here we obtain

that the denominator of
∂e∗1(α)

∂α must be negative, but the sign of the numerator,

b′1(αe
∗
1(α)) + αb′′1(αe

∗
1(α))e

∗
1(α), remains undetermined. Therefore the sign of

∂e∗1(α)
∂α is undetermined.


