
ECON 6170 Section 3

TA: Patrick Ferguson

September 20, 2024

Summary of Rd

Definition 1.
Rd := {(x1, . . . , xd) | xi ∈ R for all i}

We call elements of Rd vectors. When d ≥ 2, we call elements of R scalars.

Definition 2. We define two operations on Rd:

(i) Vector addition:
x + y = (x1 + y1, . . . , xd + yd)

(ii) Scalar multiplication:
αx = (αx1, . . . , αxd)

where α ∈ R.

These reduce to ordinary addition and multiplication when d = 1.

Definition 3. The (Euclidean) norm of a vector x ∈ Rd is defined by

∥x∥ :=
√

x2
1 + x2

2 + · · ·+ x2
d

Remark 1. The norm reduces to absolute value when d = 1.

Proposition 1. The norm satisfies the following properties

(i) ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.

(ii) For α ∈ R, ∥αx∥ = |α| · ∥x∥.

(iii) ∥x + y∥ ≤ ∥x∥+ ∥y∥.

Definition 4. The (Euclidean) distance between two vectors, x and y is defined by

d(x, y) := ∥x − y∥ =
√
(x1 − y1)2 + · · ·+ (xd − yd)2

Remark 2. We can generalise boundedness, convergence and continuity to Rd by replacing absolute
values | · | with Euclidean norms ∥ · ∥.
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Definition 5. A set X ∈ Rd is bounded if there exists M ∈ R such that such that ∥x∥ ≤ M for all
x ∈ X.

Remark 3. Note that for d ≥ 2, the natural order on R can be extended in several ways, none of
which have all the desirable properties of their restriction to R. Hence, we won’t often see terms
like maximum, minimum, supremum, infimum, monotone, et cetera, for sets and sequences in Rd.1

Definition 6. A sequence (xn) converges in Rd if

For all ϵ > 0 there exists N ∈ N such that n ≥ N implies ∥xn − x∥ < ϵ.

Proposition 2. Suppose that (xn) and (yn) are sequences in Rd that converge to x and y, respectively.
Suppose also that (αn) is a sequence in R that converges to α. Then

(i) xn,j → xj where xn,j is the j-th entry of xn and xj is the j-th entry of x.2

(ii) ∥xn∥ → ∥x∥

(iii) xn + yn → x + y

(iv) αnxn → αx

(v) 1
αn

→ 1
α if αn, α ̸= 0 for all n.

Open, Closed and Compact Sets
Definition 7. A set U ⊆ Rk is open if for every x ∈ U there exists some ϵ > 0 such that Bϵ(x) ⊆ U.

Definition 8. A set C ⊆ Rd is closed if its complement CC := Rd \ C is an open set.

closed not closed

open clopen: Rd, ∅ nontrivial open sets
not open nontrivial closed sets “most” sets

Note: Nontrivial here simply means neither the empty set nor Rn.

Remark 4. To show a set U is open, do one of:

1. Take an arbitrary x ∈ U and find some ϵ > 0 such that Bϵ(x) ⊆ U.

2. Show UC is closed.

3. Show U is the union of sets we know to be open (e.g., open intervals).

4. Show U is the finite intersection of sets we know to be open.

To show C is closed, do one of:
1Keep in mind that norms take values in R, so we can order norms in a natural way.
2The use of xj and xn here is an abuse of notation. Hopefully the distinction is clear from the context.
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1. Take an arbitrary convergent sequence of points in C, and show that the sequence converges
to a point in C.

2. Show CC is open.

3. Show C is the intersection of sets we know to be closed (e.g., closed intervals).

4. Show C is the finite union of sets we know to be closed.

Section Exercise 1. Are the following sets open or closed or neither (as subsets of R unless
otherwise specified)?

(i) The set of irrational numbers, QC

(ii) Q

(iii) A cofinite set; that is, a set having a finite complement.

(iv)
⋂

n∈N[−1/n, 1/n]

(v)
⋂

n∈N(−1/n, 1/n)

(vi) N

(vii) {1/n | n ∈ N}

(viii) A line in R2

(ix) The finite Cartesian product of open subsets of R,×N
n=1 Un

(x) The finite Cartesian product of closed subsets of R,×N
n=1 Cn

(i) Neither. Every nonempty open interval contains some q ∈ Q, so QC is not open. Consider
the sequence (

√
2

n )∞
n=1. This is a sequence of irrational numbers3 that converges to the rational

number 0, so QC is not closed.

(ii) Neither. It follows that Q = QCC is neither closed nor open.

(iii) Open. We saw in the lectures that a finite set is closed, so its complement must be open.

(iv) Closed. The intersection of closed intervals is closed. In this case, the set of all points
satisfying −1/n ≤ x ≤ 1/n for all n ∈ N is just {0}. For if |x| > 0 then |x| > |1/n| for
sufficiently large n.

(v) Closed. Even though the constituent intervals are open, this is an infinite intersection, so
we cannot infer openness of the intersection. In fact, this intersection is again {0}, as
−1/n < 0 < 1/n for all n ∈ N and |x| > 0 implies |x| ≥ |1/n| for large n.

(vi) Closed. If (xn) is a convergent sequence of natural numbers, then |xn − x| < 1 for some
x and sufficiently large n. It follows that (xn) is eventually constant with tail (x, x, . . . ).
Since the sequence is in N, it must be that x ∈ N. Alternatively, observe that NC =

(−∞, 1) ∪ (1, 2) ∪ (2, 3) ∪ . . . , a union of open intervals.

3If i is an irrational number, such as
√

2, and r is a rational number, such as 1/n, n ∈ N, then i · r is irrational. For
otherwise we could write ir = p/q and r = s/t for integers p, q, s, t, and thus i = pt/qs would be rational.
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(vii) Neither. { 1
n | n ∈ N} contains a sequence ( 1

n )n converging to 0, which is outside the set, so it
is not closed. The sequence (1 + 1/n) lies outside the set but converges to 1, which is inside
the set, so the complement of the set is not closed, so the set itself isn’t open.

(viii) Closed. We define a line in R2 as a set ℓ = {(x, y) ∈ R2 | ax + by = c}, where a, b and
c are specified real numbers with a and b not both zero. If ((xn, yn))∞

n=1 is a sequence on
the line such that xn → x, yn → y, and for all n, axn + byn = c, then limn(axn + byn) =

a limn xn + b limn yn = limn c, so ax + by = c. In other words, (x, y) ∈ ℓ.

(ix) Open. Suppose x ∈×n Un then xn ∈ Un for all n. It follows that there exists ϵn such that
(xn − ϵn, xn + ϵn) ⊆ Un. It follows that×n(xn − ϵn, xn + ϵn) ⊆×n Un. Let ϵ = minn ϵn.
Suppose ∥y − x∥ < ϵ. Then, in particular, |yn − xn| ≤ ∥y − x∥ < ϵ ≤ ϵn. Since y is just an
arbitrary element of Bϵ(x), it must be the case that Bϵ(x) ⊆×n(xn − ϵn, xn + ϵn) ⊆×n Un.

(x) Closed. Let (xk) be a sequence of terms in×N
n=1 Cn with limit x. Each term in (xk) is a

length-N vector, so (xk) induces N scalar sequences, (xk,n) consisting of, e.g., the sequence of
n-th entries of (xk). For each n, xk,n → xn, the n-th entry of x. Because Cn is closed, xn ∈ Cn.
It follows that x ∈×n Cn, as required.

Definition 9. A set A is compact if every open cover has a finite subcover. That is, if for any
collection U of open sets such that A ⊆ ⋃

U∈U U, there is a finite subset {U1, U2, . . . , Um} that still
covers A: A ⊆ ⋃m

i=1 Ui.

The collection of six coloured sets form a cover of the set inside the black border. If all the coloured sets are
open, then this is an open cover. Note that the brown set is redundant, in that the parts of the underlying set

it covers are also covered by the blue, green, or pink sets. Thus, the subcollection consisting of the
remaining five coloured sets is a subcover of the original cover.

Theorem 17 (Heine-Borel). A set A ⊆ Rk is compact if and only if it is closed and bounded.

Remark 5. If we want to identify if a subset of Rk is compact, identifying if it is closed and
bounded is often the easiest way to do so. In the context of Euclidean space, therefore, Definition
16 is best thought of as a useful property of compact sets. Heine-Borel does not generalize to
metric spaces, however.

Section Exercise 2. Which of the sets in Section Exercise 1 are compact?
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The bounded, closed sets, which will be (iv) and (v). (x) will be compact if and only if the Cn are
all bounded.
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