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Overview of next four lectures

So far, you’ve covered choice theory and consumer theory. Now we turn our attention to the
theory of producers (i.e., firms).

1. Basics of producer theory à laMWG.

→ In consumer theory, we think of the consumer’s objective as utility maximization. How will we
think about the firm’s objective in producer theory?

→ Can you guess the key assumption we’ll maintain here about firms’ relation to the market?

2. A brief discussion of the theory of the firm

3. Intro to theory of non-price-taking firms

→ In other words, intro to the theory of industrial organization.

→ “Core IO” is the study of what happens when firms have some ability to affect prices.

1/55
□



Overview of next four lectures

So far, you’ve covered choice theory and consumer theory. Now we turn our attention to the
theory of producers (i.e., firms).

1. Basics of producer theory à laMWG.

→ In consumer theory, we think of the consumer’s objective as utility maximization. How will we
think about the firm’s objective in producer theory?

→ Can you guess the key assumption we’ll maintain here about firms’ relation to the market?

2. A brief discussion of the theory of the firm

3. Intro to theory of non-price-taking firms

→ In other words, intro to the theory of industrial organization.

→ “Core IO” is the study of what happens when firms have some ability to affect prices.

1/55
□



Overview of next four lectures

So far, you’ve covered choice theory and consumer theory. Now we turn our attention to the
theory of producers (i.e., firms).

1. Basics of producer theory à laMWG.

→ In consumer theory, we think of the consumer’s objective as utility maximization. How will we
think about the firm’s objective in producer theory?

→ Can you guess the key assumption we’ll maintain here about firms’ relation to the market?

2. A brief discussion of the theory of the firm

3. Intro to theory of non-price-taking firms

→ In other words, intro to the theory of industrial organization.

→ “Core IO” is the study of what happens when firms have some ability to affect prices.

1/55
□



Overview of next four lectures

So far, you’ve covered choice theory and consumer theory. Now we turn our attention to the
theory of producers (i.e., firms).

1. Basics of producer theory à laMWG.

→ In consumer theory, we think of the consumer’s objective as utility maximization. How will we
think about the firm’s objective in producer theory?

→ Can you guess the key assumption we’ll maintain here about firms’ relation to the market?

2. A brief discussion of the theory of the firm

3. Intro to theory of non-price-taking firms

→ In other words, intro to the theory of industrial organization.

→ “Core IO” is the study of what happens when firms have some ability to affect prices.

1/55
□



Overview of next four lectures

So far, you’ve covered choice theory and consumer theory. Now we turn our attention to the
theory of producers (i.e., firms).

1. Basics of producer theory à laMWG.

→ In consumer theory, we think of the consumer’s objective as utility maximization. How will we
think about the firm’s objective in producer theory?

→ Can you guess the key assumption we’ll maintain here about firms’ relation to the market?

2. A brief discussion of the theory of the firm

3. Intro to theory of non-price-taking firms

→ In other words, intro to the theory of industrial organization.

→ “Core IO” is the study of what happens when firms have some ability to affect prices.

1/55
□



Overview of next four lectures

So far, you’ve covered choice theory and consumer theory. Now we turn our attention to the
theory of producers (i.e., firms).

1. Basics of producer theory à laMWG.

→ In consumer theory, we think of the consumer’s objective as utility maximization. How will we
think about the firm’s objective in producer theory?

→ Can you guess the key assumption we’ll maintain here about firms’ relation to the market?

2. A brief discussion of the theory of the firm

3. Intro to theory of non-price-taking firms

→ In other words, intro to the theory of industrial organization.

→ “Core IO” is the study of what happens when firms have some ability to affect prices.

1/55
□



Overview of next four lectures

So far, you’ve covered choice theory and consumer theory. Now we turn our attention to the
theory of producers (i.e., firms).

1. Basics of producer theory à laMWG.

→ In consumer theory, we think of the consumer’s objective as utility maximization. How will we
think about the firm’s objective in producer theory?

→ Can you guess the key assumption we’ll maintain here about firms’ relation to the market?

2. A brief discussion of the theory of the firm

3. Intro to theory of non-price-taking firms

→ In other words, intro to the theory of industrial organization.

→ “Core IO” is the study of what happens when firms have some ability to affect prices.

1/55
□



Lecture 1: Producer theory
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Technological feasibility

Assumptions 3.1:

(i) L commodities

(ii) Production plan y ∈ RL

− Net input: good i such that yi < 0
− Net output: good j such that yj > 0

(iii) Production possibility set, Y ⊆ RL of feasible production plans

(iv) Prices, p ⩾ 0, are unaffected by the activity of the firm.

Assumptions 3.2:

(i) Y is nonempty, closed and (strictly) convex.

(ii) Free disposal: If y ∈ Y and y ′ ⩽ y , then y ′ ∈ Y .
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Efficiency

Definition: A production plan y ∈ Y is efficient if there does not exist a y ′ ∈ Y such that y ′ ⩾ y
and y ′

i > yi for some i .

Consider the case where there’s only one output, i.e., y = (q,−z) where q ∈ R+ and z ∈ RL−1
+ .

Definition: The production function f : RL−1 → R+ is defined by

f (z) = max
q

q subject to (q,−z) ∈ Y
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Related definitions

Definition: The input requirement set

V (q) ≡ {z ∈ RL−1
+ | (q,−z) ∈ Y }

gives all the input vectors that can be used to produce output q.

Definition: The isoquant

Q(q) ≡ {z ∈ RL−1
+ | z ∈ V (q) and z /∈ V (q ′) for any q ′ > q}

gives all the input vectors that can be used to produce at most q units of output.
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Cost minimization

Assumptions 3.7:

(i) L− 1 inputs in z

(ii) One output q = f (z)

(iii) f ∈ C 2

(iv) Input price w ∈ RL−1
+

Definitions: The firm’s cost minimization problem (CMP) is

C (w , q) = min
z∈RL−1

w · z s.t. f (z) = q

and the associated value function C (w , q) is the cost function.
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Cost minimization

Definitions: The firm’s cost minimization problem (CMP) is

C (w , q) = min
z∈RL−1

w · z s.t. f (z) = q

and the associated value function C (w , q) is the cost function.

Proposition 3.10 (Properties of the cost function)

(i) C is homogeneous degree 1 in w .

(ii) C is concave in w .

(iii) If we assume free disposal, then C is nondecreasing in q.

(iv) If f is homogeneous of degree k in z , the C is homogeneous of degree 1/k in q.
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Properties of homogeneous functions

Proposition 3.12 If f is homogeneous degree k , then for i = 1, . . . , n, ∂f
∂xi

is homogeneous of
degree k − 1.

Proposition 3.13 (Euler’s formula) If f is homogeneous degree k and differentiable, then at any x ,∑
i

∂f (x)

∂xi
xi = kf (x)

Proposition 3.14 If the production function f is homogeneous of degree k , then

MRTSij(z) ≡
∂f (z)
∂zi

∂f (z)
∂zj

=

∂f (αz)
∂zi

∂f (αz)
∂zj

= MRTSij(αz)
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Profit maximization

The firm’s profit maximization problem (PMP) is

π(p) ≡ max
y

p · y subject to y ∈ Y

and the associated value function π(p) is the profit function.

Single-output case:

π(p,w) ≡ max
z∈RL−1

pf (z) − w · z
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Profit maximization

Proposition 3.16 (Properties of the profit function)

(i) Homogeneous of degree 1

(ii) Nondecreasing in output price p

(iii) Nonincreasing in input prices w

(iv) Convex in (p,w)

(v) Continuous

9/55
□



Profit maximization

Definitions: The unconditional input demand function

x(p,w) ≡ arg max
z∈RL−1

pf (z) − w · z

is the solution to the PMP. The output supply function

q(p,w) ≡ f (x(p,w))

is the output level when profit is maximized.
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Profit maximization

Proposition 3.19 (Hotelling’s lemma) If π is differentiable, then for (p,w) ∈ RL
++,

q(p,w) =
∂π(p,w)

∂p

xj(p,w) = −
∂π(p,w)

∂wj
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Profit maximization

Definition The conditional input demand function

z(w , q) ≡ arg min
z∈RL−1

+

w · z s.t. f (z) = q

is the solution to the CMP.

Proposition 3.21 (Shephard’s lemma). If C is differentiable, then for w ∈ RL−1
++

zi (w , q) =
∂C (w , q)

∂wi

12/55
□



Profit maximization

Definition The conditional input demand function

z(w , q) ≡ arg min
z∈RL−1

+

w · z s.t. f (z) = q

is the solution to the CMP.

Proposition 3.21 (Shephard’s lemma). If C is differentiable, then for w ∈ RL−1
++

zi (w , q) =
∂C (w , q)

∂wi

12/55
□



Profit maximization

Proposition 3.22 Suppose that the profit function is twice continuously differentiable. Then,

(i) ∂q(p,w)
∂p ⩾ 0

(ii) ∂xj(p,w)
∂wj

⩽ 0

(iii) ∂xj(p,w)
∂wi

= ∂xi(p,w)
∂wj
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Profit maximization

Proposition 3.23 Suppose that the cost function is twice continuously differentiable. Then,

(i) ∂zi(w ,q)
∂wi

⩾ 0

(ii) ∂zj(w ,q)
∂wi

= ∂zi(w ,q)
∂wj

(iii) ∂
∂wi

∂C(w ,q)
∂q = ∂zi(w ,q)

∂q ⇒

{
> 0 Normal input
< 0 Inferior input
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Comparative statics

Assumptions 3.24

(i) Two inputs (x1, x2)

(ii) One output q = f (x)

(iii) f ∈ C 2 and the Hessian Hf is negative definite.

(iv) f (0, x2) = f (x1, 0) = 0, i.e., both inputs are necessary.

(v) Inada conditions on x1, x2

(vi) Output price p > 0

(vii) Input prices w >> 0.
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Comparative statics
Consider the profit maximization problem

max
x∈R2

++

pf (x) − w · x

Exercise 1: Prove that ∂x1(p,w)/∂w1 < 0.

First order conditions

pf1(x) − w1 = 0
pf2(x) − w2 = 0

Hessian of profit is

H(x) = pHf (x)

which is invertible, so by Implicit Function Theorem, FOCs implicitly define
x(p,w) = (x1(p,w), x2(p,w)), which is C 1 near (x , p,w).
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Comparative statics

Then, we can rewrite FOCs as

pf1(x(p,w)) − w1 = 0
pf2(x(p,w)) − w2 = 0

Taking derivatives with respect to w1:

pf11
∂x1

∂w1
+ pf12

∂x2

∂w1
= 1

pf21
∂x1

∂w1
+ pf22

∂x2

∂w1
= 0
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Comparative statics
In matrix form:

pHf

[
∂x1
∂w1
∂x2
∂w1

]
=

[
1
0

]

Inverting gives [
∂x1
∂w1
∂x2
∂w1

]
=

1
p

1
f11f22 − f12f21

[
f22 −f12
−f21 f11

] [
1
0

]
=

1
p

1
f11f22 − f12f21

[
f22
−f21

]
Note:
− f11f22 − f12f21 > 0.Why?

− f22 < 0

− Therefore, ∂x1
∂w1

< 0
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Comparative statics
Exercise 2: Prove that ∂q/∂w1 > 0.

Write output as

q(p,w) = f (x(p,w))

Taking derivative with respect to w1:

∂q

∂w1
= f1

∂x1

∂w1
+ f2

∂x2

∂w1

=
1
p

f1f22 − f2f21

f11f22 − f12f21

So

sign
(

∂q

∂w1

)
= sign (f1f22 − f2f21)
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Comparative statics

To find sign (f1f22 − f2f21), we return to the cost minimization problem

min
x∈R2

++

w · x s.t. f (x) = q

Take FOCs of the Lagrangian

−w1 + λf1(x) = 0
−w2 + λf2(x) = 0

q − f (x) = 0

where λ = λ(w , q) is the Lagrange multiplier.
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Comparative statics

Taking derivatives of these FOCs with respect to q

∂λ

∂q
f1 + λ

∂f1
∂x1

∂x1

∂q
+ λ

∂f1
∂x2

∂x2

∂q
= 0

∂λ

∂q
f2 + λ

∂f2
∂x1

∂x1

∂q
+ λ

∂f2
∂x2

∂x2

∂q
= 0

1 −
∂f

∂x1

∂x1

∂q
−

∂f

∂x2

∂x2

∂q
= 0

In matrix form λf11 λf12 f1
λf21 λf22 f2
f1 f2 0




∂x1
∂q
∂x2
∂q
∂λ
∂q

 =

0
0
1


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Comparative statics

And then by Cramer’s rule,

∂x1

∂q
=

det

0 λf12 f1
0 λf22 f2
1 f2 0


det

λf11 λf12 f1
λf21 λf22 f2
f1 f2 0

 =
λ (f12f2 − f22f1)

det

λf11 λf12 f1
λf21 λf22 f2
f1 f2 0



Note:

− The denominator is positive because the matrix is the Hessian of a convex function.

− We know that ∂x1/∂q is positive for “normal inputs”. So in this case, f12f2 − f22f1 > 0.

− Recall that sign
(

∂q
∂w1

)
= sign (f1f22 − f2f21), so if input 1 is normal, ∂q

∂w1
> 0.
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= sign (f1f22 − f2f21), so if input 1 is normal, ∂q

∂w1
> 0.

22/55
□



Lecture 2: Producer theory review
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Review of notation and definitions

Notation:

− Production plan y ∈ RL

− Net input: good i such that yi < 0
− Net output: good j such that yj > 0

− Production possibility set, Y ⊆ RL of feasible production plans

Definitions: Suppose there’s one output, i.e., y = (q,−z) where q ∈ R+ and z ∈ RL−1
+ .

− The production function f : RL−1 → R+ is defined by

f (z) = max
q

q subject to (q,−z) ∈ Y

− y ∈ Y is efficient if y = (f (z),−z) for some z ∈ RL−1
+ . (This definition assumes that f is strictly

increasing in every zi .)
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Two assumptions on firm behavior

The firm’s cost minimization problem (CMP) is

min
z∈RL−1

w · z s.t. f (z) = q

− Optimum: z(w , q) is the conditional input
demand function

− Value function: C (w , q) is the cost function.

The firm’s profit maximization problem (PMP) is

max
z∈RL−1

pf (z) − w · z

− Optimum: x(p,w) is the unconditional input
demand function

− Value function: π(p,w) is the profit function

− q(p,w) = f (x(p,w)) is the output supply
function

Questions:

− What is the relationship between these two problems?

Profit maximization implies cost minimization:

z(w , q(p,w)) = x(p,w)

That is, assuming a firm minimizes cost is strictly weaker than assuming firm maximizes profit.
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Profit maximization implies cost minimization

π(p,w) ≡ max
z∈RL−1

pf (z) − w · z

= max
q

[
max

z∈RL−1
pq − w · z s.t. f (z) = q

]

= max
q

pq −

 min
z∈RL−1

w · z s.t. f (z) = q︸ ︷︷ ︸
CMP


= max

q
pq − C (w , q)
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Why is it worth studying CMP and PMP separately?

There are some settings where we might think profit maximization is an unreasonable assumption.
For example,

− Dynamics. For example, if there is learning by doing, this gives firm incentive to choose q > q(p,w)
today in order to decrease tomorrow’s costs (i.e., expand tomorrow’s prod. possibilities set).

− Managerial utility maximization. If larger firm gives more prestige/political influence, may have
q > q(p,w).

In these cases, we may assume that choices of inputs are z(w , q) for some q, but not necessarily
x(p,w).
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Properties of CMP and PMP: Homogeneity

The firm’s cost minimization problem (CMP) is

min
z∈RL−1

w · z s.t. f (z) = q

− Optimum: z(w , q) is the unconditional input
demand function

− Value function: C (w , q) is the cost function.

The firm’s profit maximization problem (PMP) is

max
z∈RL−1

pf (z) − w · z

− Optimum: x(p,w) is the unconditional input
demand function

− Value function: π(p,w) is the profit function

− q(p,w) = f (x(p,w)) is the output supply
function

Properties:

− C is homogeneous of degree 1 in w

⇔ z(w , q) = z(αw , q)

− If f is homogeneous of degree k , then C is
homogeneous degree 1/k in q.

− π is homogeneous of degree 1 in (p,w)

⇔ x(p,w) = x(αp,αw)
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Properties of CMP and PMP: Convexity/concavity

The firm’s cost minimization problem (CMP) is

min
z∈RL−1

w · z s.t. f (z) = q

− Optimum: z(w , q) is the unconditional input
demand function

− Value function: C (w , q) is the cost function.

The firm’s profit maximization problem (PMP) is

max
z∈RL−1

pf (z) − w · z

− Optimum: x(p,w) is the unconditional input
demand function

− Value function: π(p,w) is the profit function

− q(p,w) = f (x(p,w)) is the output supply
function

Properties:

− C is concave in w .

− π is convex in (p,w).

Proofs are symmetric. Only difference is that min versus max yields concavity versus convexity.
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Math review
Envelope Theorem

Suppose

x∗(α) = argmax
x

h(x ,α)

and the value function is

V (α) = h(x∗(α),α).

Differentiating with respect to α gives

V ′(α) = hx(x
∗(α),α)x∗

′
(α) + hα(x

∗(α),α)

= hα(x
∗(α),α)
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Math review
Envelope Theorem with constraint

Suppose

x∗(α) = argmax
x

h(x ,α) s.t. g(x) = 0

and the value function is

V (α) = h(x∗(α),α).

Differentiating with respect to α gives

V ′(α) = hα(x
∗(α),α) + λgα(x

∗(α))

= hα(x
∗(α),α)
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Hotelling’s Lemma
Statement

Proposition 3.19 (Hotelling’s lemma) If π is differentiable, then for (p,w) ∈ RL
++,

q(p,w) =
∂π(p,w)

∂p

xj(p,w) = −
∂π(p,w)

∂wj

Both are simply applications of the Envelope Theorem!
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Hotelling’s Lemma
Proof
The firm’s profit maximization problem (PMP) is

max
z∈RL−1

pf (z) − w · z

− Optimum: x(p,w) is the unconditional input
demand function

− Value function: π(p,w) is the profit function

− q(p,w) = f (x(p,w)) is the output supply
function

Envelope Theorem:

V ′(α) = hα(x
∗(α),α)

Part 2: Here, V = π and α = wj .

∂

∂wj
π(p,w) = −xj(p,w)

Part 1: Here, V = π and α = p.

∂

∂p
π(p,w) = f (x(p,w))

≡ q(p,w)
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Hotelling’s Lemma
Theoretical implications

Proposition 3.19 (Hotelling’s lemma) If π is differentiable, then for (p,w) ∈ RL
++,

q(p,w) =
∂π(p,w)

∂p

xj(p,w) = −
∂π(p,w)

∂wj

Theoretical implications:

− Symmetry of derivatives of unconditional input demand function:

∂

∂wi
xj(p,w) = −

∂2π(p,w)

∂wi∂wj
= −

∂2π(p,w)

∂wj∂wi
=

∂

∂wj
xi (p,w)
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Theoretical implications:

− Signs of derivatives of unconditional input demand function:

∂

∂wj
xj(p,w) = −

∂2π(p,w)

∂w 2
j

⩽ 0

because π is convex, so its Hessian is positive definite, and positive definite matrices have
non-negative diagonal entries.

Likewise,

∂

∂p
q(p,w) =

∂2π(p,w)

∂p2 ⩾ 0
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Hotelling’s Lemma
Empirical implications

Proposition 3.19 (Hotelling’s lemma) If π is differentiable, then for (p,w) ∈ RL
++,

q(p,w) =
∂π(p,w)

∂p

xj(p,w) = −
∂π(p,w)

∂wj

Empirical implications:

− Suppose you observe the response of profits to exogenous variation in input/output prices. Then,
assuming profit maximization, you know the firm’s input/quantity policy function.

− Or, vice versa.

− Suppose there are two inputs and you observe how input choices respond to exogenous variation in
w1. You know how input choices respond to w2.
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Shephard’s Lemma
Statement

Proposition 3.21 (Shephard’s lemma) If C is differentiable, then for w ∈ RL−1
++ ,

zi (w , q) =
∂

∂wi
C (w , q)

Again, simply an application of the Envelope Theorem!
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Shephard’s Lemma
Proof

The firm’s cost minimization problem (CMP) is

min
z∈RL−1

w · z s.t. f (z) = q

− Optimum: z(w , q) is the conditional input
demand function

− Value function: C (w , q) is the cost function

Envelope Theorem:

V ′(α) = hα(x
∗(α),α)

Here, V = C and α = wi .

∂

∂wi
C (w , q) = zi (w , q)
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Shephard’s Lemma
Theoretical implications

Proposition 3.21 (Shephard’s lemma) If C is differentiable, then for w ∈ RL−1
++ ,

zi (w , q) =
∂

∂wi
C (w , q)

Theoretical implications:

− Symmetry of derivatives of conditional input demand function:

∂

∂wi
zj(p,w) =

∂

∂wj
zi (p,w)

− Sign of derivatives of conditional input demand function:

∂

∂wi
zi (w , q) ⩽ 0

because C is concave so its Hessian is negative definite, and negative definite matrices have
non-positive diagonal entries.
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Shephard’s Lemma
Theoretical implications

Proposition 3.21 (Shephard’s lemma) If C is differentiable, then for w ∈ RL−1
++ ,

zi (w , q) =
∂

∂wi
C (w , q)

Theoretical implications:

− Sign of derivative of marginal cost with respect to input prices:

∂

∂wi

∂C (w , q)
∂q

=
∂zi (w , q)

∂q

If ∂zi(w ,q)
∂q > 0, we call it a normal input; if ∂zi(w ,q)

∂q < 0, we call it an inferior input.

39/55
□



Shephard’s Lemma
Theoretical implications

Proposition 3.21 (Shephard’s lemma) If C is differentiable, then for w ∈ RL−1
++ ,

zi (w , q) =
∂

∂wi
C (w , q)

Theoretical implications:

− Sign of derivative of marginal cost with respect to input prices:

∂

∂wi

∂C (w , q)
∂q

=
∂

∂q

∂C (w , q)
∂wi

=
∂zi (w , q)

∂q

If ∂zi(w ,q)
∂q > 0, we call it a normal input; if ∂zi(w ,q)

∂q < 0, we call it an inferior input.

39/55
□



Shephard’s Lemma
Empirical implications

Proposition 3.21 (Shephard’s lemma) If C is differentiable, then for w ∈ RL−1
++ ,

zi (w , q) =
∂

∂wi
C (w , q)

Empirical implications:

− If you observe how total costs respond to exogenous changes in input prices, then you know the input
policy function (and under a weaker assumption than before!)
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A broader view
Utility maximization

max
x∈RL

++

u(x) s.t. p · x ⩽ w

Cost minimization

min
z∈RL−1

w · z s.t. f (z) = q

− They are both constrained optimization problems, so why don’t the properties of utility maximization
map directly onto cost minimization?

− It matters whether it’s the objective or the constraint that’s linear and whether prices appear in the
objective or in the constraint.

− But there are some direct analogs....
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A broader view
Expenditure minimization

e(p, ū) = min
x∈RL

+

p · x s.t. u(x) ⩾ ū

Proposition 2.55

(i) e is homogeneous degree 1 in p.

(ii) e is concave in p.

(iii) e is increasing in ū.

Cost minimization

C (w , q) = min
z∈RL−1

w · z s.t. f (z) = q

Proposition 3.10

(i) C is homogeneous degree 1 in w .

(ii) C is concave in w .

(iii) C is nondecreasing in q.

(iv) If f is homogeneous of degree k in z , the C is
homogeneous of degree 1/k in q.

− There’s something called Shephard’s Lemma for EMP and something called Shephard’s Lemma for CMP.
The two are exactly the same.
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Non-price-taking firms

42/55



Profit maximization without and with market power

− No market power:

max
z∈RL−1

pf (z) − w · z

FOC: p∇f (z) = w

− Output market power:

max
z∈RL−1

p(f(z))f (z) − w · z

FOC: [p(f(z)) + p ′(f(z)f(z))]∇f (z) = w

Assume that p ′(q) < 0 for all q.

− Input market power:

max
z∈RL−1

pf (z) −w(z) · z

FOC: pfi (z) = w ′
i (zi)zi +wi(zi)

Assume that ∂wi(z)
∂zi

> 0 and ∂wi(z)
∂zj

= 0 for all i ̸= j .
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MRTS with and without market power
− No market power:

p∇f (z) = w ⇒ fi (z)

fi ′(z)︸ ︷︷ ︸
MRTS

=
wi

wi ′

− Output market power:

[p(f (z)) + p ′(f (z))f (z)]∇f (z) = w ⇒ fi (z)

fi ′(z)︸ ︷︷ ︸
MRTS

=
wi

wi ′

− Input market power:

pfi (z) = w ′
i (zi )zi + wi (zi ) ⇒ fi (z)

fi ′(z)︸ ︷︷ ︸
MRTS

=
w ′
i (zi )zi + wi (zi )

w ′
i ′(zi ′)zi ′ + wi ′(zi ′)
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Profit maximization implies cost minimization

π(p,w) ≡ max
z∈RL−1

pf (z) − w · z

= max
q

[
max

z∈RL−1
pq − w · z s.t. f (z) = q

]

= max
q

pq −

 min
z∈RL−1

w · z s.t. f (z) = q︸ ︷︷ ︸
CMP


= max

q
pq − C (w , q)
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Profit maximization implies cost minimization (with output market power)

π(w) ≡ max
z∈RL−1

p (f(z))f (z) − w · z

= max
q

[
max

z∈RL−1
p (q)q − w · z s.t. f (z) = q

]

= max
q

p (q)q −

 min
z∈RL−1

w · z s.t. f (z) = q︸ ︷︷ ︸
CMP


= max

q
p (q)q − C (w , q)
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Profit maximization implies cost minimization* (with input market power)

π(p,w) ≡ max
z∈RL−1

pf (z) −w(z) · z

= max
q

[
max

z∈RL−1
pq −w(z) · z s.t. f (z) = q

]

= max
q

pq −

 min
z∈RL−1

w(z) · z s.t. f (z) = q︸ ︷︷ ︸
CMP*


= max

q
pq − C(q)
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Quantity choice under perfect competition

π(p,w) ≡ max
q

pq − C (w , q)

FOC:

p =
∂

∂q
C (w , q)

Price equals marginal cost. Zero profit on the marginal unit.
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Quantity choice with output market power
Quantity choice:

π(w) ≡ max
q

p(q)q − C (w , q)

FOC: [
p(qm) + p ′(qm)qm

]
=

∂

∂q
C (w , qm)

Marginal revenue equals marginal cost.

⇒ p(qm) =
∂

∂q
C (w , qm) − p ′(qm)︸ ︷︷ ︸

<0

qm

>
∂

∂q
C (w , qm)

Positive profit on the marginal unit. How much profit?
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Price choice with output market power

Equivalently, price choice:

max
p

pD(p) − C (w ,D(p))

FOC: [
pmD ′(pm) + D(pm)

]
=

∂

∂q
C (w ,D(pm))D ′(pm)

pm −
∂

∂q
C (w , qm) = −

D(pm)

D ′(pm)

pm − ∂
∂qC (w ,D(pm))

pm
= −

D(pm)

D ′(pm)pm

“Lerner Index”: L = −
1
ϵ

pm =

(
ϵ

1 + ϵ

)
∂

∂q
C (w ,D(pm))

Question: What happens in the limiting cases
(perfectly elastic and perfectly inelastic
demand)?
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FOC: [
pmD ′(pm) + D(pm)

]
=

∂

∂q
C (w ,D(pm))D ′(pm)

pm −
∂

∂q
C (w , qm) = −

D(pm)

D ′(pm)

pm − ∂
∂qC (w ,D(pm))

pm
= −

D(pm)

D ′(pm)pm

“Lerner Index”: L = −
1
ϵ

pm =

(
ϵ

1 + ϵ

)
∂

∂q
C (w ,D(pm))

Question: What happens in the limiting cases
(perfectly elastic and perfectly inelastic
demand)?
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Input choice with input market power
Let’s make our lives easier by simplifying the problem: Suppose there’s only one input (or at least,
there’s only one input market in which the firm has market power).

max
z

pf (z) − w(z)z

Since w(z) is increasing, we can define its inverse z(w) and rewrite the problem as

max
w

pf (z(w)) − w · z(w)

FOC:
pf ′(z(w))z ′(w) = z ′(w)w + z(w)

p
f ′(z(w))

w
=

z(w)

z ′(w)w
+ 1

p
f ′(z(w))

w
=

1
ϵz ,w

+ 1 =
1 + ϵz ,w

ϵz ,w

w =

(
ϵz ,w

1 + ϵz ,w

)
pf ′(z(w)) < pf ′(z(w))

where ϵz ,w > 0 is the elasticity of input supply.
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Taking a step back

− Most markets don’t actually have a monopolist or monopsonist.

− Only Ford can make the F-150, but many other firms sell trucks that are good substitutes for F-150.

− In that case, is knowing how monopolists sets price against demand curve D(p) actually any use?

− It depends on the interpretation of D(p).

− If D(p) is the demand for pickup trucks, then no.

− But it is useful for thinking about oligopoly ifD(p) is the residual demand for pickup trucks taking
other products’ prices as fixed.

− In this case, we can use monopoly pricing to derive Ford’s best-response pricing of F-150 taking all
other trucks’ prices as given.
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Oligopolist as monopolist facing residual demand curve

Suppose the only two pickup trucks available are Ford F-150 and Chevy Silverado. Demand curve is

Dk(pk , p−k) = 1 − pk + 0.5p−k

for each k ∈ {F ,C }.

Assuming constant marginal costs, Ford’s choice taking pC as given is

max
pF

(pF − cF )DF (pF ; pC )

FOC is

1 − pF + 0.5pC − (pF − cF ) = 0

pF =
1 + cF

2
+

pC
4

This is Ford’s best response to Chevy’s choice of price.
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Properties of monopoly pricing

− What point on the demand curve does monopolist choose?

pm =

(
1 + ϵ

ϵ

)
c ′

pm > 0 ⇔ 1 + ϵ

ϵ
> 0

⇔ ϵ < −1

Elastic part of the demand curve.

→ As long as demand is inelastic, ∂π
∂p > 0, so increase price (i.e., decrease quantity) until you get

to an elastic part of the demand curve.

− Inefficiency? Yes, any deviation from p = ∂
∂qC (w ,D(pm))means quantity is inefficient.

− pm is weakly increasing in marginal cost.
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Proof: pm is weakly increasing in marginal cost.
− Suppose c ′

2(q) > c ′
1 (q) for all q > 0.

− Let (p1, q1) and (p2, q2) denote the corresponding monopoly prices and quantities.

− Key idea: Both (p1, q1) and (p2, q2) are points on the demand curve, so both feasible for both
monopolists.

p1q1 − c1(q1) ⩾ p2q2 − c1(q2)

p2q2 − c2(q2) ⩾ p1q1 − c2(q1)

− Combining the two:

[c2(q1) − c1(q1)] − [c2(q2) − c1(q2)] ⩾ 0

which implies ∫q1

q2

[c ′
2(x) − c ′

1 (x)]︸ ︷︷ ︸
>0 ∀x

dx ⩾ 0

so q1 ⩾ q2, which means p1 ⩽ p2.
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