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Why Study Decision Theory?

What is, then, the use of setting up the above propositions of arithmetic and
logic? The use is twofold: to describe approximately the behavior of men who,
it is believed, cannot be “all fools all the time,” and to give advice on how to
reach “correct” conclusions. These two aspects of the rules of logic and
arithmetic can be called, respectively, the descriptive [positive] and the
recommendatory [normative] aspect.

Marschak (1950)
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Models of Preferences



Models of Preferences

▶ Specialize the general choice model to the case of modeling uncertain
prospects.

▶ Tasks:
▶ Define representations of the object of choice.

▶ Take advantage of these representations to define special classes of
preferences that express considerations about uncertainty.
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Models of Uncertainty

▶ von Neumann and Morgenstern (1947)
Objects of choice are probability distributions on outcomes.

▶ Savage (1954)
Objects of choice are outcome-valued random variables; functions from
states to outcomes.

▶ Anscombe and Aumann (1963)
Objects of choice are functions from states to probability distributions
over outcomes.
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Expected Utility Preferences on Simple Lotteries

X is a set of outcomes or prizes.

P is the set of probability distributions on X, lotteries.

suppp is the support of p, the set of x ∈ X such that p(x) > 0.

A preference relation ≻ on P has an expected utility representation if there is a
real-valued function on X, u : X→ R, such that

p ≻ q iff
∑

x∈suppp

u(x)p(x) >
∑

y∈suppq

u(y)q(y)
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Expected Utility for Lotteries — Finite X

x3

x2 x1

For fixed prizes, indifference curves are linear in probabilities.
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Expected Utility Preferences in Savage Models

X is a set of outcomes or prizes.

S is a set of states of the world.

F is the set of acts, functions from S→ X.

A preference relation ≻ on F has an expected utility representation if there is a
probability distribution p on S and a real-valued function on X, u : X→ R, such
that

f ≻ g iff
∑

s∈S
u
�

f (s)
�

p(s) >
∑

s∈S
u
�

g(s)
�

p(s)
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Expected Utility Preferences in Anscombe-Aumann Models

S is a set of states of the world.

X is the set of outcomes.

P is the set of probability distributions on X,

A is the set of Anscombe-Aumann acts, functions from S to P.

A preference relation ≻ on F has an expected utility representation if there is a
probability distribution p on S and a real-valued function on X, u : X→ R, such
that

a ≻ b iff
∑

s∈S

∑

x∈X
u(x)a(s)(x)p(s) >

∑

s∈S

∑

x∈X
u(x)b(s)(x)p(s)
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von Neumann-Morgenstern Preferences



Origins

Blaise Pascal, 1623 – 1662

▶ Early inventor of the mechanical calculator

▶ Invented Pascal’s Triangle

▶ Invented expected utility, hedging strategies, and
a cynic’s argument for faith in God all at once.

God exists God does not exist
live as if he does −C+∞ −C

live for yourself U−∞ U

Pascal’s Wager
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Origins

Daniel Bernoulli

▶ Mechanics

▶ Hydrodynamics — Kinetic Theory of Gases

▶ Bernoulli’s Principle

The St. Petersburg Paradox

A coin is tossed until a tails comes up. How much would you pay for a lottery
ticket that paid off 2n dollars if the first tails appears on the n’th flip?
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The St. Petersburg Paradox

This doesn’t solve the problem. Suppose wealth brows exponentially. Average
payoff from paying c when initial wealth is w:

E =
1

2
· log+(w+ 20 − c) +

1

4
· log+(w+ 21 − c)

+
1

8
· log+(w+ 22 − c) + · · ·

=∞
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Finite X Axioms

A1. ⪰ is complete and transitive.

A2. (Independence axiom) For all 0 < α ≤ 1 and all r ∈ P,

p ⪰ q iff αp+ (1− α)r ⪰ αq+ (1− α)r.

A.3. (Archimedean axiom) If p ≻ q ≻ r then there exists 0 < α,β < 1 such that

αp+ (1− α)r ≻ q ≻ βp+ (1− β)r.
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Finite X Representation Theorem

Theorem. If ⪰ satisfies A.1− 3, then ⪰ has an EU representation; there is a
function u : X→ R such that

p ⪰ q iff
∑

x∈X
u(x)p(x) ≥
∑

x∈X
u(x)q(x).

Furthermore, if v : X→ R is another EU representation, then there are constants
a > 0 and b such that v(x) ≡ au(x) + b.

Proofs of everything can be found in Fishburn (1970) except where noted
otherwise.
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The Meaning of u

Suppose ⪰ on P is represented by the
utility function

V(ρ) =
∑

x

u(x)ρ(x)

Theorem. If W(ρ) =
∑

x w(x)ρ(x) also
represents ⪰, then w( · ) = αv( · ) + β
with α > 0.

Preferences on P have ordinal representations. A cardinal measure is a
representation of a relation that is unique up to positive affine transformations.
It is often said that the theorem states that u is a cardinal utility on X. This
reasoning is false. Cardinality is a property of the relation being measured. Any
increasing transformations of u represent ⪰ restricted to X just as u does. For
instance, V(ρ)3 also represents ⪰.
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Simple Lotteries on Countable X

A simple lottery is p = (p1 : x1, . . . , pK : xK) where x1, . . . , xK are prizes in R and
p1, . . . , pK are probabilities. Let L denote the set of simple lotteries. Let

u : X→ R

and V(p) =
∑

k

u(xk)pk.

This is the expectation of the random variable u(x) when the the random
variable x is described by the probability distribution p.
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How do we see that this is “linear” in lotteries? How do we “mix” lotteries?

▶ For lotteries with common support, mixing is just the convex combination
of the probabilities.

▶ What about lotteries with different support?

Consider the lotteries p = (p1 : x1, p2 : x2) and q = (q1 : y1, q2 : y2, q3 : y3).

p⊕α q = (αp1 : x1, αp2 : x2, (1− α)q1 : y1, (1− α)q2 : y2, (1− α)q3 : y3)

This is not a convex combination. It combines objects of different sizes.
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Expected utility is linear:

U(p⊕α q) =
2
∑

k=1

αpku(xk) +
3
∑

k=1

(1− α)qku(yk)

= α
2
∑

k=1

pku(xk) + (1− α)
3
∑

k=1

qku(yk)

= αU(p) + (1− α)U(q)
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Herstein and Milnor (1953) provide a general definition of mixing that enables
the development of representation theorems.

Definition. A mixture space is a set of objects Π, with typical elements π, ρ, μ, ν
and a family of functions for 0 ≤ α ≤ 1 ⊕α : Π× Π→ Π such that

i) π ⊕1 ρ = π,

ii) π ⊕α ρ = ρ ⊕1−α π, and

iii)
�

π ⊕β ρ)⊕α ρ = π ⊕αβ ρ.

Example 1: Convex sets with the operations of convex combination.

Example 2: Simple probability distributions on a convex sets.

Example 3. S and X are sets, and let M denote the set of functions from S to
probability distributions on X. The ⊕α are the (pointwise) convex combinations
of these functions.
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Suppose that Π is a mixture space and ⪰ is a preference relation on Π. Suppose
that A.1 holds, and the mixture-space versions of A.2 and A.3:

A.2. (Independence axiom) For all 0 < α ≤ 1 and all r ∈ P,

p ⪰ q iff p⊕α r ⪰ q⊕α r.

A.3. (Archimedean axiom) If p ≻ q ≻ r then there exists 0 < α,β < 1 such that

p⊕α r ≻ q ≻ p⊕β r.
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vNM Theorem. If ⪰ satisfies A.1–3, the ⪰ has an EU representation; there is a a
function u : X→ R such that

p ⪰ q iff
∑

x∈X
u(x)p(x) ≥
∑

x∈X
u(x)q(x).

Furthermore, if v : X→ R is another EU representation, then there are constants
a > 0 and b such that v(x) ≡ au(x) + b.

What the theorem really says is: If M is a mixture space and ⪰ satisfies A.1–3
then there is a linear function U : M→ R. Any other linear representation V is a
positive affine transformation of U.

This specializes to the vNM Theorem when M is the set of probability
distributions.
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Archimedes?

Suppose that there are three outcomes x, y, and z occurring with probabilities
ρx, ρy, and ρz, respectively. Suppose that x is infinitely better than y and z.
Suppose that (ρx, ρy, ρz) ≻ (ρ′

x
, ρ′

y
, ρ′

z
) if ρx > ρ′

x
or if ρx = ρ′

x
and ρy > ρ′

y
.

These preferences fail the Archimedean assumption. Let p = (1,0,0),
q = (0,3/4,1/4), and r = (0,1/4,3/4). Then p ≻ q ≻ r. For all 0 < α < 1,

αp+ (1− α)r = (α, (1− α)/4,3(1− α)/4) ≻ q

since α > 0.

A.1 and A.2 alone imply that ⪰ has a lexicographic expected utility
representation. See Fishburn (1982).

The property of having no infinitely large or infinitely small elements first
appears as Axiom V of Archimedes On the Sphere and Cylinder.
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Independence?

Are preferences linear in probabilities?

A

C

$1M

$1M

$0

B

$5M

$1M

$0

D
$5M

$0

1

0.11

0.89

0.1

0.01

0.89

0.9

0.1

▶ Compare A to B.

▶ Compare C to D.

Many people prefer A to B and D to C.
This violates the independence axiom.

Why?

This example is called the Allais
Paradox after Maurice Allais (1953).
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Redrawing the gambles makes it clear that the preference reversal, A ≻ B but
D ≻ C, violates independence.

A

C

$1M

$1M

$1M

$0

B

$5M

$0

$1M

D

$5M

$0

$0
0.11

0.89

0.1

0.89

0.01
0.11

0.89

0.89

0.1
0.01
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Lotteries on R

Dealing with general probability distributions on the real line requires
topological considerations beyond this course. Basically, one has to strengthen
the Archimedean Axiom. The conclusion is:

Theorem.Assume A.1, A.2, and a new Archimedean Axiom A.3’. Then ⪰ has an
EU representation; there is a a bounded and continuous function u : X→ R such
that

p ⪰ q iff
∑

x∈X
u(x)p(x) ≥
∑

x∈X
u(x)q(x).

Furthermore, if v : X→ R is another EU representation, then there are constants
a > 0 and b such that v(x) ≡ au(x) + b.
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Resolutions of the St. Petersburg Paradox

Nikolaus Bernoulli suggests a resolution to the St. Petersburg Paradox:

From all this I conclude that the just value of a certain expectation is not always the
average that one finds by dividing by the sum of all the possible cases the sum of the
products of each expectation by the number of the case which gives it; that which is
against our fundamental rule. The reason for this is that the cases which have a very
small probability must be neglected and counted for nulls, although they can give a
very great expectation. For this reason one is able yet to doubt if the value of the
expectation of B in the case of the 4th problem such as I have found above, is not too
great. Similarly in Lotteries where there are one or two quite great Lots, the just value
of a single ticket is smaller than the sum of all the money of the Lottery divided by the
sum of all the tickets, supposing that the number of those here is also very great. This
is a remark which merits to be well examined.

Letter from N. Bernoulli to Montmort, 20 Feb. 1714

In the hands of Kahneman and Tversky, this idea becomes prospect theory.
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Gabriel Cramer suggests Expected Utility! The first use of a utility function!!

. . . the mathematicians value money in proportion to its quantity, and men of good sense in
proportion to the usage that they may make of it. That which renders the mathematical
expectation infinite, is the prodigious sum that I am able to receive, if the side of Heads falls only
very late, the 100th or 1000th toss. Now this sum, if I reason as a sensible man, is not more for
me, does not make more pleasure for me, does not engage me more to accept the game, than if
it would be only 10 or 20 million coins. Let us suppose therefore that the total sum beyond 20
millions or (for more ease) beyond 224 = 16777216 coins, is equal to him or rather that I am
never able to receive more than 224 coins, however late comes the side of Heads. And my
expectation will be

[. . . Calculations. . . ]

Therefore speaking morally my expectation is reduced to 13 coins, and my equivalent to as
much, which would seem much more reasonable than to make it infinite.

If one wishes to suppose that the moral value of goods was as the square root of the
mathematical quantities,. . . .

Letter from G. Cramer to N. Bernoulli, 21 May. 1728
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But there’s a hole. For any unbounded utility function u, define xk = u−1(2k)

Then the expected utility of p = (2−1 : x1,2−2 : x2, . . .) is

U(p) =
1

2
u(x1) +

1

4
u(x2) + · · ·

=
1

2
u
�

u−1(2)
�

+
1

4
u
�

u−1(4)
�

+ · · ·

= 1+ 1+ · · ·

Which lottery is better: p or q = (2−1 : u−1(3),2−2 : u−1(9), . . ..

Only in 1934 does Karl Menger observe this and note that a St. Petersburg
gamble will fail to exist if and only if u is bounded.
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What Have We Accomplished?

Why Axioms?

By an axiom system we understand the representation of a theory
in such a way that certain sentences of this theory (the axioms) are
placed at the beginning, and from then further sentences (the theo-
rems) are derived by means of logical deduction.

Carnap (1954, p. 171)

But in EU theory we will have a sentence of the form:

P1 and P2 and P3 iff ⪰ has an EU representation.

Which is a more fundamental description? Red or Blue?
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In contrast, the point of view of the Moderns is hypothetico-deductive; . . . .
According to this conception, which has since imposed itself, it is not
necessary for the principles and derived propositions to be true for a
deductive relationship to be established between the former and the latter.
At the same time as the idea of truth, that of the superior certainty of the
principles falls, and ultimately, to justify the privileged role of the
principles, only internal considerations to the deductive strategy remain:
thus, the axioms must be coherent, simple to formulate, and relatively few
compared to the mass of propositions they generate.

Mongin (2003, pp. 102–3)
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▶ Axioms capture our intuitions about some subject matter.

▶ Axioms offer an explanation. Axiomatic explanations are not causal;
rather they are intuitions.

▶ Axioms facilitate classification, and thus organization, of an epistemic
field.
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Subjective Probability



Where Do Probabilities Come From?

▶ “The measure of the probability of an event is the ratio of the number of
cases favourable to that event, to the total number of cases favourable or
contrary, and all equally possible, or all of which have the same chance.”

▶ “The probability of an event is the reason we have to believe that it has
taken place, or that it will take place.”

Both quotes from Poisson (1837), who recognizes objective and subjective
sources of probability.

▶ Frequentist probability is defined through a thought experiment.
Repeatedly flip a fair coin and the fraction of heads realized converges to
1/2. Probabilities are limit frequencies of infinite sequences of trials.

▶ Subjective probability is an individual person’s measure of belief that an
event will occur.
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Qualitative Probability

Keynes (1921), not a subjectivist, was nonetheless the
first to introduce a measurement framework for
discussing subjective probability. O and I are,
respectively, the empty element and the universal
element, and receive numerical probabilities 0 and 1.
The element on any path from O to I can be ordered by
likelihood, increasing from left to right, but they cannot
be compared to elements on other paths. They do not
have numerical probabilities. A, on the other hand,
although comparable only to O and I, does have a
numerical assignment.

Keynes’ figure is the graph of a partial order.

Keynes (1921, p. 30)
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Numerical Representations for Qualitative Probability

Suppose S is finite. Suppose that S is a collection of subsets of S such that

i) ∅ ∈ S,

ii) if A ∈ S, then Ac ∈ S,

iii) if A,B ∈ S, then A ∩ B ∈ S.

S is a (Boolean) algebra of events.

When S is finite, we can take S = 2S. When S = R more care is needed.

Definition. A probability on S is a function p : S → [0,1] such that

i) p(S) = 1,

ii) if A ∩ B =∅ then p(A ∪ B) = p(A) + p(B).
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Definition. A qualitative probability is a binary relation ⊒ on S such that

i) ⊒ is complete and transitive,

ii) S ⊐∅,

iii) for all A ∈ S, ∅ ⊑ A ⊑ S,

iv) if A,B,C ∈ S and A ∩C = B ∩C =∅, then A ⊒ B iff A ∩C ⊒ B ∩C.

Check that if p is a probability on S and A ⊐ B iff p(A) ≥ p(B), then ⊐ is a
qualitative probability.

If ⊐ is a qualitative probability, is there a probability p that represents ⊒? No!
i)–iv) are necessary but not sufficient for ⪰ to have a probability
representation. See Kraft, Pratt and Seidenberg (1959).

Why should a qualitative probability have a probability representation? i)
implies that it has a numerical representation q, and it can always be scaled so
that q(∅) = 0 and q(S) = 1. It may fail disjoint additivity.
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Let A = {A1, . . . , Ak} and B = {B1, . . . , Bk} be lists of events, allowing
repetitions. The lists A and B are balanced if for each state s ∈ S the number of
events containing s in A equals that in B.

A.1. ⪰ on S is complete.

A.2. (Positivity) For all A ∈ S, A ⪰ ∅.

A.3. (Non-triviality) S ≻ ∅.

A.4. (Finite Cancellation) For all pairs of balanced lists A and B, if for all
1 ≤ j ≤ k − 1, Aj ⪰ Bj, then Bk ⪰ Ak.

FC implies that ⪰ is transitive. Consider the lists A = {A,B,C} and
B = {B,C,A}, where A ⪰ B and B ⪰ C.

Theorem. ⪰ satisfies A.1–4 iff there is a probability ρ on S such that A ⪰ B iff
ρ(A) ≥ ρ(B).
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Sources of Probability

▶ Frequentist

Probability is something physical, and can be in principle measured my
repeated experiments.

[I]f we constitute a fraction whereof the numerator be the number of
chances whereby an event may happen, and the denominator the
number of all the chances whereby it may either happen or fail, that
fraction will be a proper designation of the probability of happening.

de Moivre (1718, p. 1-2)
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▶ Logical Probability

Probability measures the weight of objective support for a proposition. It
captures the support evidence E lends to hypothesis H. It is intended to
generalize deductive logic with 0-1 truth values to a more graded
measure of support.

Part of our knowledge we obtain direct; and part by argument. The
Theory of Probability is concerned with the part which we obtain by
argument, and it treats of the different degrees in which the results so
obtained are conclusive or inconclusive.

Keynes (1921, p. 3)
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▶ Bayesian Probability

Bayesian probabilists interpret probability as degree of belief.

One can, however, also give a direct, quantitative, numerical
definition of the degree of probability attributed by a given individual
to a given event, . . . . it is a question simply of making mathematically
precise the trivial and obvious idea that the degree of probability
attributed by an individual to a given event is revealed by the
conditions under which he would be disposed to bet on it.

de Finetti (1937, p. 62)
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What does Probability Mean?

The first generation of probabilistic works, from Huygens through Jakob Bernoulli, already
interpreted probability in a variety of distinct senses that pertained to different kinds of subjects.
Degrees of certainty (or degrees of probative weight) were states of mind - or rather, states of
minds, for they were intersubjective, if not objective. The probative weight of this witness’
testimony or that piece of circumstantial evidence was assumed to be the same for all competent
judges, and therefore has closer affinities in the twentieth century to John Maynard Keynes’ logical
probabilities than to Leonard Savage’s personal probabilities. These latter should also be
distinguished from the psychological probabilities of real (as opposed to ideal) subjects, which may
not be internally consistent, or even numerically continuous.

The early probabilists also spoke of degrees of facility, predicated of physical objects: physically
symmetric gambling devices are the classic but not the sole example; Jakob Bernoulli sometimes
writes as if human bodies had such facilities or propensities with respect to susceptibility to various
mortal diseases. Quetelet’s "penchants" toward crime or marriage resemble these physical
facilities, but apply to averages of collectives, "I’homme moyeri rather than to single physical
objects. Karl Popper’s propensity interpretation of the probability that an atomic nucleus will decay
comes quite close to the original facility notion. Probabilities were also early and long understood
as frequencies applied to individual objects insofar as they are members of collectives; the original
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instances were predictions of individual longevity on the basis of mortality statistics. During the
heyday of descriptive statistics in the nineteenth century, this frequentist interpretation drove all
others from the field, and is still strongly represented in current philosophy and applications of
probability, such as in the theory of random genetic drift.

. . .

There were also "practical probabilities" in which the probabilities were in effect invisible, since the
situation called for a combined judgment of probabilities and outcome value. These sorts of
expectations, which concern the preferences of agents, were the backbone of the first formulations
of mathematical probability, and are familiar to today’s probabilists from de Finetti’s and Savage’s
system of personal probabilities. True to their name, practical probabilities surface only in cases
that call for concrete action, like betting. They are subjective in that they express an individual’s
conviction that an event will or will not come to pass, but unlike degrees of certainty, they are
neither intersubjective, nor do they stand alone. They are an indissoluble part of the expectation in
which they arise.

Gigerenzer et al. (1989, Sec. 8.2)
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Savage’s Subjective Expected Utility



The Savage Framework

Savage observes that if certain properties of preferences hold, than the
decision-maker chooses as if he is maximizing expected utility with respect to
some belief. Probabilities emerge from choices among bets on events.

X is the set of outcomes.

S is the set of states of the world.
A state s is description of particular realizations of all the things the
decisionmaker is uncertain about, and which together determine
the outcome of every possible choice the DM is considering.

A is the algebra of all subsets of S.

F is the set of acts, functions f : S→ X. Acts are the objects of choice.

⪰ A preference order on F.

The key idea is that probabilities are revealed by choices. People choose as if
their choice is informed by probabilities.
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Some of Savage’s Axioms

For an act h, define f |Ah — get f (s) for s ∈ A, else h(s). Let xAy denote the bet
that pays off x on A and y otherwise.

P2. If f |Ah ≻ g|Ah then for all k f |Ak ≻ g|Ak

Definition. f ⪰ g given A (f ⪰A g) if f ′ and g′ are actions such that f ′ agrees with
f on B, g′ agrees with g on B, and f ′ and g′ agree with each other outside of A.

Definition. An event A is null if for all f and g, f ⪰A g.

P3. For outcomes x, y and non-null A, x ⪰A y iff x ⪰ y. (x|Af ⪰ y|Af iff x ⪰ y.)

P4. For outcomes x ≻ y and x′ ≻ y′, and sets A, B, xAy ⪰ xBy iff x′Ay′ ⪰ x′By′.

P5. There exist outcomes x ≻ y.
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Definition. Sets are ordered A ⪰ B iff there are outcomes x ≻ y such that
xAy ⪰ xBy.

P6. (small-event continuity) If f ≻ g then for any consequence x there is a
partition of S such that on each Si f |Sih ≻ g and f ≻ g|Sih.

P7. If f and g are acts and A is an event such that f (s) ⪰A g for every s ∈ A,
then f ⪰A g; and if f ⪰A g(s) for every s ∈ A, then f ⪰B g.

For a discursive discussion of how these work, read this blog.
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Savage Implies Bayes

f ≻A g iff for any act h f |Ah ≻ g|Ah.

Eμ{u(f |Ah} > Eμ{u(gAh} iff
∫

S
u
�

f |Ah(s)
�

dμ >

∫

S
u
�

g|Ah(s)
�

dμ iff
∫

A
u
�

f (s)
�

dμ+

∫

Ac
u
�

h(s)
�

dμ >

∫

A
u
�

g(s)
�

dμ+

∫

Ac
u
�

h(s)
�

dμ iff
∫

A
u
�

f (s)
�

dμ >

∫

A
u
�

g(s)
�

dμ iff
∫

A
u
�

f (s)
�

dμ/μ(A) >

∫

A
u
�

g(s)
�

dμ/μ(A)

Eμ{u(f )|A} > Eμ{u(g)|A}
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Anscombe-Aumann Expected Utility



Anscombe-Aumann Expected Utility

Start with some probabilities, use bets on them to get more probabilities.

X outcomes,

P probability distributions on outcomes, roulette wheels,

S states of the world,

H functions f : S→ P, horse races.

An AA representation of ⪰ is a function u : X→ R and a probability distribution μ
on S such that

f ⪰ g iff
∑

S

∑

X

u(x)f (s)(x)μ(s) ≥
∑

S

∑

X

u(x)f (s)(x)μ(s).
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A.1. ⪰ on H is transitive and complete.

A.2. (Independence.) f ⪰ g and 0 < α < 1 imply that
αf + (1− α)h ⪰ αg+ (1− α)g.

A.3. (Archimedean.) f ≻ g ≻ h implies that there are 0 < α,β < 1 such
that αf + (1− α)h ≻ g ≻ βf + (1− β)h.

Theorem. If ⪰ satisfies A.1–3 then there are functions us : X→ R such that

f ⪰ g iff
∑

s

∑

x

us(x)f (s)(x) ≥
∑

s

∑

x

us(x)g(s)(x). (∗)

Furthermore, if (vs)s∈S is another such representation, then there are constants
a > 0 and bs such that each vs = aus + bs.
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Getting to an expected utility representation theorem requires additional
assumptions.

A.4. (non-triviality) For some f , g ∈ H f ≻ g.

A state s is null if for all f , g, h ∈ H, f |sh ∼ g|sh. A.4 guarantees that some
non-null state exists. A state s is null iff us in (∗) is a constant function.

A.5. (state independence) If for some s ∈ S, h ∈ H, and p,q ∈ P,
h|{s}cp ≻ h|{s}cq, then for all non-null states t, h|{s}cp ≻ h|{s}cq.

Theorem. If ⪰ satisfies A.1–5, then there is a function u : X→ R and a
probability distribution ρ on S such that

f ⪰ g iff
∑

s

∑

x

u(x)f (s)(x)ρ(s) ≥
∑

s

∑

x

u(x)g(s)(x)ρ(s).
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Beyond Expected Utility



Issues

▶ Preferences on P need not be linear in probabilities.
▶ Allais paradox
▶ Decoupling of intertemporal preferences and risk aversion

Epstein-Zinn preferences

▶ Beliefs might not be representable by a probability distribution.
▶ partial orders
▶ Ellsberg paradox

non-additive probabilities
Gilboa Schmeidler
the smooth model
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Violations

P3, P4. I prefer a T-shirt when it’s hot and a flannel shirt when it’s cold. These
axioms are about the separation of tastes and beliefs.

Dreze (1961)Was the first to suggest state dependent expected utility:

U(f ) =
∑

s

u
�

f (s), s
�

μ(s).

Define v(x, s) = u(x, s)/αs, αs > 0 and ν(s) = αsμ(s)/λs. If (u, μ) represents
⪰, so does (v, ν).
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Allais (again)

Marschak triangle representation of the
allais paradox

The four gambles A,B,C,D,
respectively, are represented by the
four points a1, . . . , a4. Since the a1–a2

is parallel to the a3–a4 line, parallel
indifference curves would have to cut
the dotted lines the same way, so that
A ≻ B iff C ≻ D.
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Daniel Ellsberg’s (1961) Experiment

There is a single urn with three balls. One ball is red and the other two are blue
or green. one ball is drawn from the urn and the bettor bets on its color.
Winning bets pay $100. Available bets are red, blue, not red and not blue.

Typical preferences are inconsistent with probabilistic beliefs, e.g. both red
and not red are preferred.

red ≻ blue
not red ≻ not blue

Red blue green
red 100 0 0
blue 0 100 0
not blue 100 0 100
not red 0 100 100
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Weighted EU

How to generalize EU to account for Allais etc.? One idea is that individuals
overweight small-probability events. Thus imagine a weighting function
w : [0,1]→ [0,1] with w(p) > p for small p and w(p) < p for large p.

Problem: WEU will not respect FOSD. Suppose wlog both w(1) = 1 and there is
a 0 < p < 1 such that w(p) +w(1− p) < 1. Suppose x < y. The lottery
(x,p;y : 1− p) dominates x. But if y is sufficiently near to x and u is continuous,
then u(1)w(1) > u(x)w(p) + u(y)w(1− p).

The problem is that weights do not sum to 1. Constructing other similar
examples leads to the conclusion that one must have
w(p1 + p2) = w(p1) +w(p2). It is easily proved that this implies w(p) = cp for
some constant c.
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Rank-Dependent Expected Utility

Instead of weighing probabilities, apply probability weights to the CDF.

U(p) =
∑

n

wn(p)u(xn)

where x1 ≤ x2 ≤ · · · ≤ xn and

wn(p) = q

� n
∑

k=1

pk

�

− q

� n−1
∑

k=1

pk

�

where q : [0,1]→ [0,1] transforms probabilities, and q(0) = 0 = 1− q(1). If q is
strictly increasing, then ⪰ respects FOSD.

RDEU is an example of Choquet Expected Utility. See Karni, Maccheroni, and
Marinacci (2015) for more on Nonexpected Utility Theory.

60/77



Maxmin EU

Ambiguity is the idea that individuals may be uncertain about which probability
distribution they face. In the Ellsberg example 1/3 of the balls are red. Thus up
to 2/3 of the balls could be blue, and up to 2/3 could be green. The possible
probability distribution that could arise are

P = {(1/3, q,2/3− q) : 0 ≤ q ≤ 2/3}.

If one were a worst-case bettor, the bet on red with $99 stakes is $33 for a bet
on red, 0 for a bet on blue, $33 for not blue and $66 for non red. Thus red
beats blue and not red beats not blue. This is a kind of ambiguity aversion.

This too is a kind of Choquet Expected Utility.
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Capacities

Choquet Expected Utility is expected utility where the expectation is taken with
respect to a non-additive probability, also called a capacity.

Suppose S is finite and S is the collection of all subsets of S.

A function μ : S → [1,0] is a capacity if

1. μ{∅} = 0,

2. μ{Ω} = 1,

3. for all A ⊂ B ∈ S, μ{B} ≥ μ{A}.
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Suppose beliefs are not additive. e.g. state weights are

μ{red} = 1/3, μ{blue} = μ{green} = 1/4 μ{blue ∪ green} = 2/3.

Then μ-weighted expected utility generates the given preferences. Notice

μ{blue ∪ green} > μ{blue}+ μ{green}

How to integrate with non-additive beliefs?
∫

1dμ = μ{S} · 1 = μ(A) · 1+ μ(Ac) · 1

but perhaps μ{S} ̸= μ{A}+ μ{Ac}.
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Choquet Expected Utility for Anscombe-Aumann Acts

A.1. ⪰ is complete and transitive.

A.2. An Archimedean axiom.

A.3. The independence axioms for all acts f , g, h which are comonotonic.

A.4. There are f , g ∈ H such that f ≻ g.

A.5. If for all s ∈ S, f (s) ≻ g(s), then f ≻ g.

Theorem. If ⪰ on H satisfies A.1–5, then there is a function u : X→ R and a
capacity μ on S such that

f ≻ g iff
∫

∑

x

u(x)f (s)(x)dμ >

∫

∑

x

u(x)g(s)(x)dμ
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Ambiguity Aversion

A capacity μ is convex if for all A,B ∈ S,

μ{A ∪ B} − μ{A} ≥ μ{B} − μ{A ∩ B}.

The core of a capacity μ is C(μ) = {ρ ∈ P : ρ(A) ≥ μ(A)}.

Lemma. Every convex capacity has a core.

Example. If S = {0,1} and μ{0} = μ{1} = 0.3, then

C(μ) =
�

ρ : 0.3 ≤ ρ{0} ≤ 0.7
	

.

Fact: If P is a convex set of probability distributions, then

μ(A) = infρ∈Pρ(A)

is a capacity.
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Definition. Let ⪰ be binary relation on H . Then, ⪰ is said to be
uncertainty-averse if f , g ⪰ h and α ∈ [0,1] implies αf + (1− α)g ⪰ h.

Theorem. Suppose that ⪰ satisfies axioms A.1–5. Then the following are
equivalent.

1. ⪰ is uncertainty-averse,

2. μ is convex,

3.
∫

f dμ = infρ∈C(μ)
∫

f dρ.

So this is a characterization of maxmin expected utility. Gilboa and Schmeidler
(1989) explains how to get maxmin EU from preferences.
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Appendix



Proof of the Qualitative Probability Representation Theorem

Here is another Theorem of the Alternative.

Motzkin’s Theorem. One and only one of the following two inequality systems
has a solution.

Ax≫ 0

Bx ≥ 0

(I)

or uA+ vB = 0

u > 0

v ≥ 0

(II)

The proof of Motzkin’s theorem is a consequence of Farkas lemma.

73/77



To prove the representation theorem, consider the equation system

(1A − 1B)r ≫ 0
...

(1C − 1D)r ≥ 0
...

(1D − 1C)r ≥ 0
...

(∗∗)

where the A,B event pairs range over all those where A ≻ B, and C,D range
over all those where C ∼ D. Any solution r is non-negative since each {s} ⪰ ∅.
Since S ≻ ∅ w.l.o.g. the rs sum to 1. Any such solution is a probability
representation for ⪰ .
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If (∗∗) does not have a solution, then there are vectors qAB non-negative and
not all 0, and qCD, qDC ≥ 0 such that for all s,

∑

AB

qAB(1A(s) +
∑

CD

qCD1C(s) +
∑

DC

qDC1D(s) =

∑

AB

qAB(1B(s) +
∑

CD

qCD1D(s) +
∑

DC

qDC1C(s)
(†)

The indicator functions take on only the values 0 and 1, so this system has a
rational solution (e.g. by Fourier-Motzkin elimination). Therefore, w.l.o.g we can
take the q coefficients to be integers.

Enumerate the pairs (A1, B1), . . . (Ak, Bk) and (C1,D1), . . . , (CJ,DJ). Construct two
lists as follows:

A = {A1, . . . , A1
︸ ︷︷ ︸

qA1B1 times

. . . , C1, . . . , C1
︸ ︷︷ ︸

qC1D1 times

. . . ,D1, . . . ,D1
︸ ︷︷ ︸

qD1C1 times

. . .}

B = {B1, . . . , B1
︸ ︷︷ ︸

qA1B1 times

. . . ,D1, . . . ,D1
︸ ︷︷ ︸

qC1D1 times

. . . , C1, . . . , C1
︸ ︷︷ ︸

qD1C1 times

. . .}.
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Because q solves the equation system (†), this pair of lists is balanced. And for
each set E in the A list, the corresponding F element in the B list is ordered
E ⪰ F. The A and B together violate finite cancellation. ■
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Integrating with Capacities
Two Ways of Computing an Integral

E3 E1 E2

f

E3 E1 E2

f
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Integrating with Non-Additive Beliefs

Integrating with respect to a capacity does the computation on the right.
Suppose S is partitioned into sets E1, . . . , En such that f (s) = vi for s ∈ Ei, and
suppose v1 ≤ v2 ≤ · · · ≤ vn. Take vn+1 = 0.

∫

f dμ =
n
∑

i=1

vi
�

μ{∪i
j=1Ej} − (μ{∪i−1

j=1Ej}
�

=
n
∑

i=1

(vi − vi+1)μ{∪i
j=1Ej}

where ∪0
j=1Ej =∅.

This is the integral for non-negative step functions. It extends. . .
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This integral is linear in beliefs μ. It is not linear in f

but . . .

f and g are comonotonic if for all s, t ∈ S if f (s) > f (t) then g(s) ≥ g(t).

Theorem. If f and g are comonotonic, then
∫

αf + (1− α)gdμ = α

∫

f dμ+ (1− α)
∫

gdμ.
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