
5. Differentiation

Takuma Habu∗

takumahabu@cornell.edu

26th August 2024

1 Univariate functions

Definition 1. Suppose X is a linear space. A function f : X → R is univariate if dimX = 1 and
multivariate if dimX > 1.

Definition 2. A function f : X ⊆ R → R is differentiable at x0 ∈ int(X) if the following limit
exists:

lim
x→x0

f (x)− f (x0)

x− x0
.

When the limit exists, it is called the derivative of f at x0, and we denote it by f ′(x0) or Df(x0).
Moreover, the function f is differentiable on int(S) ⊆ X if it is differentiable at all x ∈ int(S), and
f is differentiable if it is differentiable on int(X).

Remark 1. We can think of the derivative of f at x0, f ′(x0), as an affine approximation of the
function f at x0. To see this, let’s agree that the value of the approximating affine function,
f̂(x) = ax+ b for some a, b ∈ R, should coincide with the value of f at x0; i.e.,

f̂ (x0) = ax0 + b = f (x0) ⇔ b = f (x0)− ax0.

Hence, we can rewrite f̂ as
f̂ (x) = a (x− x0) + f (x0) .

It remains to finding the value of a such that f̂(x0) “best” approximates f around x0. One way is
to find the slope of the line between x0 and x0 + h for some h > 0 small. The slope is given by:

f (x0 + h)− f (x0)

(x0 + h)− x0
=

f (x0 + h)− f (x0)

h.
.

If f is continuous from the “right” at x0 (so that small increases from x0 leads to small changes in
f(·)), the approximation should become better as h → 0. This leads us to set a equal to

a+ := lim
h↘0

f (x0 + h)− f (x0)

h
,

∗Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes
are heavily based.
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where h ↘ 0 means for any decreasing sequence that converges to 0. Alternatively, thinking of f
as being continuous from the “left” at x0(so that small decreases from x0 leads to small changes in
f(·)), we might set a equal to

a− := lim
h↗0

f (x0 − h)− f (x0)

h
,

where h ↗ 0 means any increasing sequence that converges to 0. Of course, without any assumption
on f , these limits might not exist. However, when they exist, we call a+ the right-derivative of f
at x0, and a− the left-derivative of f at x0. For these limits to exist, it must be the case that there
is an open ball around x0; i.e., x0 must be contained in an open set. Moreover, if they both exist,
then uniqueness of limit means that a+ = a−.

Now suppose that f has a derivative at x0 then,

f̂ (x) = f ′ (x0) (x− x0) + f (x0) .

Define the approximation error rate as

ϵ (h) :=
f (x0 + h)− f̂ (x0 + h)

h
.

Then,

lim
h→0

ϵ (h) = lim
h→0

f (x0 + h)− f ′ (x0)h− f (x0)

h
= lim

h→0

f (x0 + h)− f (x0)

h
− f ′ (x0) = 0.

In words, above says that the error rate, ϵ(h)
h , between f and the approximating affine function f̂

vanishes in the limit h = 0.

Recalling the various definition of limits gives the following.

Proposition 1. Suppose f : X ⊆ R → R. The following are equivalent.

(i) f is differentiable at x0 ∈ int(X).

(ii) for some x ∈ R, x = limh→0
f(x0+h)−f(x0)

h .

(iii) for some x ∈ R, x = limn→∞
f(xn)−f(x)

xn−x for all sequences (xn)n in X such that xn → x0.

(iv) for some x ∈ R, for any ϵ > 0, there exists δ > 0 such that | f(x0+h)−f(x0)
h − a| < ϵ for all

h ∈ R such that x+ h ∈ X and |h| < δ.

Proposition 2. If f : X ⊆ R → R is differentiable at x0 ∈ X, then f is continuous at x0.

Proof. Observe that

0 = f ′ (x0) · 0 = lim
x→x0

f (x)− f (x0)

x− x0
· lim
x→x0

(x− x0) = lim
x→x0

f (x)− f (x0)

x− x0
(x− x0)

= lim
x→x0

f (x)− f (x0) .

Hence, limx→x0 f(x) = f(x0). ■
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Exercise 1 (PS7). TFU: If f : X ⊆ R → R is continuous at x0 ∈ int(X), then f is differentiable
at x0.

Proposition 3. Suppose f, g : X ⊆ R → R and that f and g are differentiable at x0 ∈ X. Then,

(i) (f + g)′(x0) = f ′(x0) + g′(x0);

(ii) (αf)′(x0) = αf ′(x0) for all α ∈ R;

(iii) (product rule) (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0);

(iv) (quotient rule) ( fg )
′(x0) =

f ′(x0)g(x0)−f(x0)g
′(x0)

g(x0)2
if g(x0) ̸= 0.

Exercise 2. Prove Proposition 3.

Example 1. Suppose f : X ⊆ R → R.

� f is a constant function if f(·) = c for some c ∈ R. Then, f ′(x) = 0 for all x ∈ X.

� f is a monomial if f(·) = (·)n for some n ∈ N for all x ∈ X. Then, f ′(x) = nxn−1 because

xn − xn
0 = (x− x0)

(
xn−1 + xn−2x0 + · · ·+ xxn−2

0 + xn−1
0

)
.

(In fact, this formula holds for any n ∈ R\{0} but this is more difficult to show!)

� f is a absolute value function if f(·) = | · |. Then, f ′(x) = 1 when x > 0 and f ′(x) = −1 when
x < 0. However, f ′(0) does not exist.

Proposition 4 (Chain Rule). Suppose f : X ⊆ R → R is differentiable at x0 ∈ int(X) and that
g : Y → R, where f(X) ⊆ Y , and g is differentiable at f(x0). Then, g ◦ f is differentiable at x0

and
(g ◦ f)′ (x0) = (g′ ◦ f) (x0) · f ′ (x0) .

Exercise 3 (PS7). Prove Proposition 4.

Theorem 1 (L’Hôpital’s rule). Let −∞ ≤ a < b ≤ +∞ and f : (a, b) → R and g : (a, b) → R\{0}
are differentiable on (a, b). If limx→a f(x) and limx→a g(x) are both 0 or ±∞, and limx→a

f ′(x)
g′(x) is

finite value or is ±∞, then

lim
x→a

f (x)

g (x)
= lim

x→a

f ′ (x)

g′ (x)
.

The statement also holds for x → b.

Example 2. Consider the constant relative risk aversion (CRRA) utility function, u : R → R such
that

u (x, γ) :=
x1−γ − 1

1− γ
.

Consider the limit of u(x, γ) as γ → 1. Note that u(x, 1) = ”0/0” and so we can apply L’Hôpital’s
rule to obtain

lim
γ→1

x1−γ − 1

1− γ
= lim

γ→1

e(1−γ) ln(x) − 1

1− γ
= lim

γ→1

− ln (x) e(1−γ) ln x

−1
= lnx.

Hence, CRRA is a generalisation of log utility!
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Proposition 5. Suppose f : (a, b) ⊆ R → R and f is strictly increasing and differentiable on (a, b).
Then, (

f−1
)′
(f (x)) =

1

f ′ (x)
∀x ∈ (a, b) .

Exercise 4 (PS7). Prove Proposition 5.1

Proposition 6. Suppose f : S ⊆ R → R. If x0 ∈ S is a local maximum or minimum of f and
f ′(x) exists, then f ′(x) = 0.

Proof. Suppose x0 is a local maximum of f (the other case when x0 is a local minimum is analogous)
and that f ′(x0) = limx→x0

f(x0)−f(x0)
x−x0

exists. Let ϵ > 0 be such that f(x0) ≥ f(x) for all x ∈ Bϵ(x0).
If |x − x0| < ϵ, then f(x) − f(x0) ≤ 0 is nonpositive. This implies that for x sufficiently close to
x0,

f(x)−f(x0)
x−x0

≥ 0 if x < x0 and f(x)−f(x0)
x−x0

≤ 0 if x > x0. Then, because f ′(x0) exists, the limit of
f(x)−f(x0)

x−x0
as x ↘ 0 and x ↗ 0 must agree; i.e., f ′(x0) = 0. ■

Theorem 2 (Rolle’s Theorem). Let [a, b] be a closed and bounded interval in R and suppose f :

[a, b] → R is continuous. If f is differentiable on (a, b) and f(a) = f(b), then f ′(c) = 0 for some
c ∈ (a, b).

Proof. Since f is continuous and [a, b] is compact, Weierstrass Extreme Value Theorem tells us that
there exists u, ℓ ∈ [a, b] such that

f (ℓ) ≤ f (x) ≤ f (u) ∀x ∈ [a, b] .

Suppose f is differentiable on (a, b) and f(a) = f(b). If {ℓ, u} ⊆ {a, b} , then f must be a constant
function (why?), and so f ′(x) = 0 for all x ∈ (a, b). If this is not the case, then either ℓ ∈ (a, b) or
u ∈ (a, b). In the former case, because f has a minimum at ℓ, we must have f ′(ℓ) = 0 by Proposition
6. In the latter case, f has a maximum at u, and so f ′(u) = 0 by Proposition 6 again. ■

Corollary 1 (Mean Value theorem). Let [a, b] be a closed and bounded interval in R and suppose
f : [a, b] → R is continuous and differentiable on (a, b). Then, there exists x ∈ (a, b) such that

f (b)− f (a) = f ′ (x) (b− a) .

Proof. Define
g (t) := f (t)− f (a) +

a− t

b− a
(f (b)− f (a)) .

Observe that g : [a, b] → R is continuous, g(a) = 0 = g(b). Hence, by Rolle’s Theorem, there exists
x ∈ (a, b) such that

g′ (x) = f ′ (x)− f (b)− f (a)

b− a
= 0 ⇔ f (b)− f (a) = f ′ (x) (b− a) . ■

Remark 2. Let a = x0 and b = x0 + h. The mean value theorem tells us that, for some x ∈
(x0, x0 + h),

f (x0 + h) = f (x0) + f ′ (x)h.

1A heuristic proof is to differentiate the following identity while using chain rule:

f−1 (f (x)) ≡ x ⇒
(
f−1

)′
f (x) f ′ (x) = 1 ⇒

(
f−1

)′
f (x) =

1

f ′ (x)
.
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Thus, the theorem gives us a way of approximating f around x0 via an affine function f(x0)+f ′(x)h.

Corollary 2. Let [a, b] be an a closed and bounded interval in R and suppose f : [a, b] → R is
continuous and differentiable on (a, b).

(i) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing.

(ii) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

(iii) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotonically decreasing.

Exercise 5 (PS7). Prove part Corollary 2.

2 Taylor expansions

Suppose f has a derivative f ′ on some interval (a, b) ⊆ R and that f ′ is itself differentiable on (a, b).
Then, the derivative of f ′ is denoted f ′′ or D2f . Similarly, if f ′′ is differentiable on f ′((a, b)), then
the derivative of f ′′ is denoted f ′′′ or D3f (and so on).

Given an interval [a, b] ⊆ R, let C[a, b] denote the set of all continuous, real-valued function
defined on [a, b]. A function f ∈ C[a, b] is continuously differentiable if f ′ is a continuous function
on [a, b]; i.e., f ′ ∈ C[a, b]. The set of all such functions is denoted C1[a, b]; i.e.,

C1 [a, b] := {f ∈ C [a, b] : f ′ ∈ C [a, b]} .

More generally, for any k ∈ N, the set of all k-times continuously differentiable functions is defined
inductively as

Ck [a, b] :=
{
f ∈ C [a, b] : f ′ ∈ Ck−1 [a, b]

}
,

where C0 := C. Thus, if f ∈ Ck[a, b], then f has up to and including the kth derivative, and f

and all its derivatives up to and including the kth derivative are all continuous on [a, b]. Finally, f
is smooth if f ∈ Ck[a, b] for all k ∈ N and C∞[a, b] denotes the set of smooth functions.

Theorem 3 (Taylor Theorem). Suppose f ∈ Ck[a, b] and let α and β be two distinct points in
[a, b]. Define

Pk−1 (x) :=

k∑
n=1

f (n−1) (α)

(n− 1)!
(x− α)

n−1

= f (α) + f ′ (α) (x− α) +
1

2
f ′′ (α) (x− α)

2
+ · · ·+ f (k−1) (α)

(k − 1)!
(x− α)

k−1
.

Then, there exists x between α and β such that

f (β) = Pk−1 (β) +
f (k) (x)

k!
(β − α)

k
.

Proof. Define E as the error rate of approximating f(β) via just Pk−1(β); i.e.,

E :=
f (β)− Pk−1 (β)

(β − α)
k

⇔ f (β) = Pk−1 (β) + E (β − α)
k
.
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Define g as
g (x) := f (x)− Pk−1 (x)− E (x− α)

k
.

Because P
(n)
k−1(α) = f (n)(α) for all n ∈ {1, . . . , k}, we have g(n)(α) = 0 for all n ∈ {1, . . . , k}. We

also have
g (α) = 0 = g (β) .

By Rolle’s theorem, there exists x1 between α and β such that g′(x1) = 0. Since g′(α) = 0 = g′(x1),
by Rolle’s theorem again, there exists x2 between α and x1 such that g′′(x2) = 0. Because x1 lies
between α and β, x2 must also lie between α and β. Continuing in this way, there exists xk between
α and β such that g(k)(xk) = 0. Since

P
(k)
k−1 (x) = 0, Dk (x− α)

k
= k!,

we have

g(k) (x) = f (k) (x)− P
(k)
k−1 (x)− E ·Dk (x− α)

k
= f (k) (x)− E (k!)

so that

g(k) (xk) = 0 = f (k) (xk)− E (k!) ⇒ E =
f (k) (xk)

k!
.

Since

0 = g (β) = f (β)− Pk−1 (β)− E (β − α)
k

⇒ f (β) = Pk−1 (β) + E (β − α)
k
= Pk−1 (β) +

f (k) (xk)

k!
(β − α)

k
. ■

Remark 3. If k = 1, above says that P0(x) = P (α) and so f(β) = f(α) + f ′(x)(β − α) for some
x ∈ (α, β); i.e., above reduces to the Mean Value theorem. Taylor theorem generalises the affine
approximation of f : it tells us that we can approximate f using polynomials of degree k− 1, where
Pk−1(β) is the approximating function and the term fk(x)(β−α)k

k! is the error term.
The reason why we obtain polynomial can be seen as follows: we know that f(x0 + h) =

f(x0)+f ′(x1)h for some x1 ∈ (x0, x0+h). Say we approximate f(x0+h) as f(x0)+f ′(x0+h)h. Since
f ′ is also continuous and differentiable, we can similarly approximate f ′(x0+h) = f ′(x0)+f ′′(x0)h.
If we combine them, we obtain

f (x0 + h) ≈ f (x0) + (f ′ (x0) + f ′′ (x0)h)h = f (x0) + f ′ (x0)h+ f ′′ (x0)h
2,

which gives us a polynomial of degree 2.

Remark 4. Suppose we define α := x0 and β := α+ h, then we can rewrite above as

f (α+ h) = Pk−1 (α+ h) +
fk (x)

k!
hk,

Pk−1 (α+ h) = f (h) + f ′ (α)h+
1

2
f ′′ (α)h2 + · · ·+ f (k−1) (α)

(k − 1)!
hk−1
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for some x ∈ (α, α+ h). If we further have that f ∈ Ck[a, b] so that f (k) is continuous at α, then

lim
h→0

f(k)(x)
k! hk

hk−1
= lim

h→0

f (k) (x)

k!
h =

f (k) (α)

k!
lim
h→0

h = 0;

i.e., this means that the error term fk(x)
k! hk converges to zero at a rate faster than hk−1; i.e., the error

term, which is the kth power of h, is small relative to the k − 1-degree polynomial approximation
of f(β), Pk−1. We therefore often approximate functions using polynomials using (k − 1)th-order
Taylor expansion; i.e.,

f̃ (α+ h) ≈ Pk−1 (α+ h) =

k−1∑
n=0

f (n) (α)

(n− 1)!
hn,

where f (0) := f .

Remark 5. Maclaurin series is an infinite Taylor expansion of functions around 0. Here are some
useful ones to know:

ex = 1 + x+
x2

2!
+ · · · =

∞∑
n=0

xn

n!
, (1)

ln (1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)
n−1

xn

n
∀x ∈ (−1, 1]

ln (1− x) = −x− x2

2
− x3

3
− · · · =

∞∑
n=1

−xn

n
∀x ∈ (−1, 1] .

Corollary 3. Suppose f : (a, b) ⊆ R → R, f ∈ Ck and that f ′(x0) = f ′′(x0) = . . . = f (k−1)(x0) = 0

and f (k)(x0) ̸= 0. Then,

(i) if k is even and f (k)(x0) > 0, then f has a local minimum at x0;

(ii) if k is even and f (k)(x0) < 0, then f has a local maximum at x0;

(iii) if k is odd, then f has neither a local minima or a local minima (i.e., x0 is an inflection point).

Exercise 6 (PS7). Prove Corollary 3. Hint: If g is continuous and g(x0) > 0, then g > 0 in some
neighbourhood of x0.

3 Multivariate functions

Definition 3. Let V ⊆ Rd and W ⊆ Rm be two linear spaces. A function f : V → W is a linear
transformation if

f (αx+ y) = αf (x) + f (y) ∀x,y ∈ V, ∀α ∈ R.

Remark 6. A linear transformation preserves linear combinations in one space to another.

Definition 4. The function f : X ⊆ Rd → Rm is differentiable at x0 ∈ int(X), if there exists some
linear transformation A : Rd → Rm such that

lim
h→0

∥f (x0 + h)− (f (x0) +A (h))∥m
∥h∥d

= 0.
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When it exists, the linear transformation A is called the derivative of f at x0, and we denote it as
f ′(x0) or Df(x0). Moreover, the function f is differentiable on int(S) ⊆ X if it is differentiable at
all x ∈ int(S), and f is differentiable if it is differentiable on int(X).

Remark 7. To see how this relates to the case when d = m = 1, recall that, if f : R → R has a
derivative a ∈ R at x0, then

a = lim
h→0

f (x+ h)− f (x)

h
⇔ 0 = lim

h→0

f (x+ h)− (f (x) + ah)

h
.

Above means that, for any ϵ > 0, there exists δ > 0 such that∣∣∣∣f (x+ h)− (f (x) + ah)

h

∣∣∣∣ = |f (x+ h)− (f (x) + ah)|
|h|

< ϵ ∀h > 0 : |h| < δ;

i.e., the derivative of f at x0, a, satisfies

lim
h→0

|f (x+ h)− (f (x) + ah)|
|h|

= 0.

Thinking of ah as a linear transformation between the domain of f and the codomain of f gives
the definition of total derivative above.

Proposition 7. The derivative of f : Rd → Rm is unique whenever it exists.

Proof. Suppose that A1 and A2 both satisfy the definition of a derivative at some point x0. By
linearity, for any h ∈ Rm,

∥A1 (h)−A2 (h)∥

= ∥[f (x0 + h)− (f (x0) +A2 (h))]− [f (x0 + h)− (f (x0) +A1 (h))]∥

≤ ∥[f (x0 + h)− (f (x0) +A2 (h))]∥+ ∥[f (x0 + h)− (f (x0) +A1 (h))]∥ .

Since ∥ · ∥ ≥ 0 and by the definition of A1 and A2 as derivatives of f at x0:

lim
h→0

∥A1 (h)−A2 (h)∥
∥h∥

= 0.

So in particular, for any nonzero h′ ∈ Rd (i.e., ∥h′∥ > 0),

0 = lim
t→0

∥A1 (th
′)−A2 (th

′)∥
∥th′∥

= lim
t→0

|t| ∥A1 (h
′)−A2 (h

′)∥
|t| ∥h′∥

= lim
t→0

∥A1 (h
′)−A2 (h

′)∥
∥h′∥

=
∥A1 (h

′)−A2 (h
′)∥

∥h′∥
.

Hence, ∥A1(h
′)−A2(h

′)∥ = 0 for any nonzero h′, which implies that A1 and A2 are equivalent. ■

Remark 8. Any linear transformation from Rd to Rm corresponds to an m×d matrix.2 We therefore
write a A(h) ≡ Ah, where h is treated as a d × 1 column vector. The derivative of f : Rd → Rm

2Formally, this follows from the fact that the space of linear transformation between finite-dimensional linear
spaces are isomorphic to matrices and we obtain the unique matrix that corresponds to a linear transformation using
the standard bases for the linear spaces Rd and Rm.
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at x0, Df(x0), is an m × d matrix that we often refer to as the total derivative of f at x0. When
m = 1, Df is a 1×d row vector and the derivative is called the gradient of f at x0, denoted ∇f(x0),
where

∇f (x0) ≡
[

df
dx1

(x0) · · · df
dxd

(x0)
]
1×d

.

Since a multivariate vector function f : Rd → Rm can be written as an ordered collection of
real-valued functions (fi : Rn → R)mi=1, in particular, we can write f(x) as a column vector:

f (x) =


f1 (x)

...
fm (x)


m×1

.

Since the derivatives are just limits, the following result that allows us to extend many of the results
for multivariate functions (i.e., f : Rn → R) into functions from multivariate vector functions (i.e.,
f : Rn → Rm) is immediate.

Proposition 8. Suppose f : X ⊆ Rd → Rm. Then, f is differentiable at x0 ∈ int(X) if and only
if each corresponding fi is differentiable at x0. Moreover,

Df (x0) =


∇f1 (x0)

...
∇fm (x0)


m×d

≡


df1
dx1

(x0) · · · df1
dxd

(x0)
...

. . .
...

dfm
dx1

(x0) · · · dfm
dxd

(x0)

 .

Remark 9. We can still view derivatives as an approximation by an affine function of the form
f(x) +Dfh, where

f (x+ h) = f (x) +Dfh+ ϵ (∥h∥) ,

where ϵ(∥h∥) is an error term such that

lim
h→0

ϵ (∥h∥)
∥h∥

= 0.

Uniqueness of Df implies that, Df is the bear linear approximation of f near x0.

Exercise 7. Prove that if f : X ⊆ Rd → Rm is differentiable at x0 ∈ int(X), then it is continuous
at x0.

Proposition 9. Suppose f, g : X ⊆ Rd → Rm are both differentiable on int(X).

(i) D(f + g) = Df +Dg.

(ii) D(λf) = λDf ∀λ ∈ R.

(iii) (product rule) if m = 1, ∇(f · g) = ∇f · g + f · ∇g (· is a scalar multiplication).

(iv) (quotient rule) if m = 1,∇
(

f
g

)
= ∇f ·g−f ·∇g

g2 (at x ∈ int(X) such that g(x) ̸= 0).

Proposition 10 (Chain Rule). Let X ⊆ Rd be open and suppose f : X → Rm. Let Y ⊆ f(S) be
open and suppose g : Y → Rk. If f is differentiable at x0 ∈ X and g is differentiable at f(x), then
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g ◦ f : X → Rk is differentiable at x0, and

D (g ◦ f) (x0) = Dg (f (x))Df (x0) ,

where Dg(f(x0)) ∈ Rk×m, Df(x0) ∈ Rm×d and D(g ◦ f)(x0) ∈ Rk×d.

Theorem 4 (Mean Value Theorem). Suppose f : X ⊆ Rd → R is differentiable on int(X) and
ℓ(x,y) ⊆ int(X), where ℓ(x,y) is a line segment from x to y.3 Then, there exists z ∈ ℓ(x,y) such
that

f (x)− f (y) = ∇f (z) (x− y) .

Remark 10. For functions whose codomain is Rm, applying the theorem above gives us z1, . . . , zm ∈
ℓ(x,y) such that

fi (y)− fi (x) = Dfi (zi) (y − x) ∀i ∈ {1, . . . ,m} .

However, this does not guarantee that there is a single z that works for every component.

Looking at the definition of a total derivative, we see that it is the limit as h → 0; i.e., it is the
limit of any sequence (xn)n in Rd that converges to 0. If n = 3, all sequences below are permissible:((

1

k
,
1

k
,
1

k

))
k∈N

,

((
0,

1

k
, 0

))
k∈N

,

((
0, 0,

1

k

))
k∈N

.

In the second sequence, only the second coordinate is converging while the other coordinates are
always zero. In contrast, in the third sequence, only the last coordinate is converging while the
other coordinates are always zero. You might wonder if the function f might behave differently
across these different sequences. In other words, if we perturb only one coordinate at a time, how
does the function f behave?

Definition 5. Given f : X ⊆ Rd → Rm, the jth partial derivative of fi at x0 ∈ int(X), if it exists,
is defined as

∂fi
∂xj

(x0) := lim
h→0

fi (x0 + hej)− fi (x0)

h
∀ (i, j) ∈ {1, . . . ,m} × {1, . . . , d} ,

where ej ∈ Rd is the jth standard basis of Rd. Observe that ith partial derivatives of fi considers
how the value of fi changes when x moves in the direction of the ith coordinate.

Remark 11. The partial derivative (∂fi/∂xj)(x0) is equivalent to computing the derivative of the
univariate function, f̃i(h) := fi(x0 + hej), and evaluating this at h = 0; i.e.,

∂fi
∂xj

(x0) = Df̃i (0) .

The following establishes the connection between total and partial derivatives.

Proposition 11. Suppose f : X ⊆ Rd → Rm is differentiable at x0 ∈ int(X). Then, ∂fi
∂xj

(x0) exists

3That is, ℓ(x,y) := {αx+ (1− α)y : α ∈ [0, 1]}.
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for any (i, j) ∈ {1, . . . ,m} × {1, . . . , d} and

Df (x0) =

[
∂fi
∂xj

(x0)

]
ij

=


∂f1
∂x1

(x0) · · · ∂f1
∂xn

(x0)

· · ·
. . .

...
∂fm
∂x1

(x0) · · · ∂fm
∂xn

(x0)


m×d

.

Exercise 8 (PS8). Prove Proposition 11.

Remark 12. The matrix corresponding of partial derivatives is called Jacobian matrix at x0. Thus,
the result above tells us that the when f is differentiable, then its total derivative is given by the
Jacobian matrix. It also tells us that with m = 1,

df

dxi
(x0) =

∂f

∂xi
(x0) ∀i ∈ {1, . . . , n} . (2)

Exercise 9 (PS8). Let f(x, y) = xy
x2+y2 , if (x, y) ̸= (0, 0), and let f(0, 0) = 0. Show that the partial

derivatives of f exist at (0, 0), but that f is not differentiable at (0, 0).

Remark 13. Proposition 11 says that if a function is differentiable, its partial derivatives exist.
Moreover, Exercise Exercise 9 shows the converse is not necessarily true. The following says that
the converse holds if the partial derivatives exist and are continuous.

Proposition 12. Suppose f : X ⊆ Rd → Rm. Then, f is differentiable at x0 ∈ int(X) and Df is
continuous at x0 if and only if ∂fi

∂xj
(x0) exists on an open ball around x0 and is continuous at x0

for all (i, j) ∈ {1, . . . ,m} × {1, . . . , d}.

Proof. Fix f : X ⊆ Rd → Rm and x ∈ int(X). Suppose that all partial derivatives exists on an
open ball around x0 and that they are also continuous at x0. We will prove the result for the case
when d = 2 and m = 1. We will show first that A = ( ∂f

∂x1
(x0),

∂f
∂x2

(x0)) ∈ R1×2 is the derivative of
f at x0 meaning that f is differentiable at x0. That is, we wish to show that, for any ϵ > 0, there
exists δ > 0 such that

|f (x0,1 + h1, x0,2 + h2)− (f (x0) +Ah)|
∥h∥

< ϵ ∀h ∈ R2\ {0} : ∥h∥ < δ.

Fix some ϵ > 0 and any h = (h1, h2) ∈ R2\{0}, letting [x0,1, x0,1+h1] and applying the mean value
theorem to f(·, x0,2) gives

f (x0,1 + h1, x0,2)− f (x0) =
∂f

∂x1
(x1, x0,2)h1

for some x1 ∈ (x0,1, x0,1 + h1). Mean value theorem also gives that, for some x2 ∈ (x0,2, x0,2 + h2),

f (x0,1 + h1, x0,2 + h2)− f (x0,1 + h1, x0,2) =
∂f

∂x2
(x0,1 + h1, x2)h2.
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Then,

|f (x0,1 + h1, x0,2 + h2)− (f (x0) +Ah)|

=

∣∣∣∣f (x0,1 + h1, x0,2 + h2)−
(
f (x0) +

∂f

∂x1
(x0)h1 +

∂f

∂x2
(x0)h2

)∣∣∣∣
=

∣∣∣∣∣∣∣∣f (x0,1 + h1, x0,2 + h2)− f (x0,1 + h1, x0,2)︸ ︷︷ ︸
= ∂f

∂x2
(x0,1+h1,x2)h2

+ f (x0,1 + h1, x0,2)− f (x0)︸ ︷︷ ︸
= ∂f

∂x1
(x1,x0,2)h1

− ∂f

∂x1
(x0)h1 −

∂f

∂x2
(x0)h2

∣∣∣∣∣∣∣∣
=

∣∣∣∣[ ∂f

∂x2
(x0,1 + h1, x2)−

∂f

∂x2
(x0)

]
h2 +

[
∂f

∂x1
(x1, x0,2)−

∂f

∂x1
(x0)

]
h1

∣∣∣∣
≤

∣∣∣∣[ ∂f

∂x2
(x0,1 + h1, x2)−

∂f

∂x2
(x0)

]
h2

∣∣∣∣+ ∣∣∣∣[ ∂f

∂x1
(x1, x0,2)−

∂f

∂x1
(x0)

]
h1

∣∣∣∣
≤

∣∣∣∣ ∂f∂x2
(x0,1 + h1, x2)−

∂f

∂x2
(x0)

∣∣∣∣ |h2|+
∣∣∣∣ ∂f∂x1

(x1, x0,2)−
∂f

∂x1
(x0)

∣∣∣∣ |h1|

(check that you know where the inequality come from). Since the partial derivatives are continuous
at x0, there is a δ > 0 such that if ∥h∥ < δ, then∣∣∣∣ ∂f∂x2

(x0,1 + h1, x2)−
∂f

∂x2
(x0)

∣∣∣∣ , ∣∣∣∣ ∂f∂x1
(x1, x0,2)−

∂f

∂x1
(x0)

∣∣∣∣ < ϵ

2
.

Thus, for ∥h∥ < δ,
|f (x0,1 + h1, x0,2 + h2)− (f (x0) +Ah)| ≤ ϵ∥h∥.

Hence, Df = A. That Df is continuous at x0 follows from the fact that the partial derivatives are
all continuous at x0. ■

Exercise 10 (PS8). Let f be a differentiable function from (a, b) ⊂ R into an open subset Y ⊂ Rd.
Let g : Y → R be differentiable at f(x0) for x0 ∈ (a, b). Express D(g ◦ f) in terms of the partial
derivatives of f and g.

Definition 6. Let X ⊆ R be open and consider f : X → Rm. If f is differentiable on open subset
X1 ⊆ X, then Df : X1 → Rm×d. In turn, if Df is differentiable on open subset X2 ⊆ X1, then
D2f : X2 → Rmn2

. If D2f exists, f is said to be twice differentiable. More generally, the kth-order
derivative of f at x0 ∈ int(X) is an mnk−1 × n real matrix and is denoted Dk(x0).

Definition 7. Let X ⊆ R be open. The function f : X → Rm is kth continuously differentiable
at x0, denoted f ∈ Ck at x0, if x0 ∈ X and Dkf(x0) is continuous at x0 (where Xk is the
set of points at which Dk−1f is differentiable). The function f : X → Rm is kth continuously
differentiable, denoted f ∈ Ck, if f is kth continuously differentiable at all x0 ∈ X.

The second derivative of a real-valued function f : X ⊆ Rd → R at x0 ∈ int(X) is called the
Hessian matrix of f at x0:

Hf (x0) := D2 (x0) =


(
∇ ∂f

∂x1

)
(x0)

...(
∇ ∂f

∂xd

)
(x0)

 =


∂
(

∂f
∂x1

)
∂x1

(x0) · · ·
∂
(

∂f
∂x1

)
∂xd

(x0)
...

. . .
...

∂( ∂f
∂xn

)
∂x1

(x0) · · ·
∂
(

∂f
∂xd

)
∂xd

(x0)


d×d

,
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where (∇ ∂f
∂xi

)(x0) is the gradient of the function ∂f
∂xi

at x0 and the
∂(

∂f
∂xi

)

∂xj
(x0) is the jth partial

derivative of the function ∂f
∂xi

at x0. We refer to the latter as a cross partial of f at x0 and write

∂2f

∂xj∂xi
(x0) :=

∂
(

∂f
∂xi

)
∂xj

(x0) .

The following tells us that when f is twice-differentiable at x0, then the Hessian matrix at x0 is
symmetric.

Theorem 5 (Young Theorem). Suppose f : X ⊆ Rd → R is C2 at x0 ∈ int(X). Then,

∂2f

∂xi∂xj
(x0) =

∂2f

∂xj∂xi
(x0)

whenever the cross partials exist.

Exercise 11 (PS8). Prove Theorem 5 for the case when d = 2. Hint: Consider a rectangle formed
with vertices at x0, (x0,1 + h1, x0,2), (x0,1, x0,2 + h2), (x0,1 + h1, x0,2 + h2). Let

r (h) := f (x0,1 + h1, x0,2 + h2)− f (x0,1 + h1, x0,2) ,

t (h) := f (x0,1 + h1, x0,2 + h2)− f (x0,1, x0,2 + h2)

so that r(·) is the difference in f along the “right edge” of the rectangle and t(·) is the difference in
f along the “top edge” of the rectangle. Let

d (h) := [f (x0,1 + h1, x0,2 + h2)− f (x0,1 + h1, x0,2)]− [f (x0,1, x0,2 + h2)− f (x0)] ,

which is the difference in f along the right edge minus the difference along the left edge. Note that

d (h) = r (h1, h2)− r (0, h2) = t (h1, h2)− t (h1, 0) .

To proceed, apply the mean value theorem, re-express everything in terms of partials of f rather
than partials of r and t, and then apply mean value theorem again. Divide both sides by h1h2 to
get almost what you want. Now take the limit of h1 and h2 to 0 and use continuity of the cross
partials at x0 to conclude the result.

Exercise 12. Verify that below is an example of a function whose cross partials do not equal to
one another. Why?

f (x, y) :=


xy(x2−y2)

x2+y2 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)
.

Definition 8. Let v ∈ Rd be a unit-norm vector (i.e., ∥v∥ = 1).4 The directional derivative of
4We are interested in the direction of a vector only and thus its “length” measured by the norm is irrelevant. Put

differently, we want to make sure that directional derivative in the direction 2v and v to be the same at x.
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f : X ⊆ Rd → Rm in the direction v at x0 is defined as

Dvf (x0) :=


limh→0

f1(x0+hv)−f1(x0)
h

...
limh→0

fm(x0+hv)−fm(x0)
h

 .

Remark 14. Fix some x0,v ∈ Rd with v ̸= 0 and define g : R → Rd as g(t) := x0 + tv. Then,
g(0) = x0 and g(t) gives a vector in the direction of v. Suppose f : X ⊆ Rd → R is differentiable
on int(X). Define h := f ◦ g and observe that

Dvf (x0) = lim
t→0

f (x0 + tv)− f (x0)

t
= lim

t→0

f (g (t))− f (g (0))

t

= lim
t→0

h (t)− h (0)

t
= Dh (0) = D (f ◦ g) (0) .

Then, the chain rule gives us that

Dvf (x0) = (Df ◦ g) (0)Dg (0) = Df (g (0))Dg (0) = ∇f (x0)v.

Since f is differentiable, by Proposition 11,

Dvf (x0) =
[

∂f
∂x1

(x0) · · · ∂f
∂xd

(x0)
]

v1
...
v2

 =

d∑
i=1

(
∂f

∂xi
(x0)

)
vi.

Observe that, for any i ∈ {1, . . . , d},

Deif (x0) =
∂f

∂xi
(x0) .

Recall that the ith partial derivatives of f considers how the value of f changes when x0 moves
in the direction of the ith coordinate. It follows that a directional derivative is a generalisation of
the partial derivative when x0 is allowed to move in any arbitrary direction (specified by v). You
may now wonder if there is anything special about choosing v = ei.

Proposition 13. Suppose f : X ⊆ Rd → R is differentiable at x0 ∈ int(X) and that ∇f(x0) ̸= 0.
Then, the directional derivative Dvf(x0) is maximised when v = ∇f(x0)/∥∇f(x0)∥; i.e.,

∇f (x0)

∥∇f (x0)∥
= argmax

v∈Rd:∥v∥=1

∥Dvf (x0)∥

and the maximised directional derivative is ∥∇f(x0)∥; i.e.,

∥∇f (x0)∥ = max
v∈Rd:∥v∥=1

∥Dvf (x0)∥ .

Proof. We have
Dvf (x0) = ∇f (x0)v = ∇f (x0) · v.
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By Cauchy-Schwarz inequality, for any v ∈ Rd with ∥v∥ = 1, we have

|Dvf (x0)| = |∇f (x0) · v| ≤ ∥v∥ ∥∇f (x0)∥ = ∥∇f (x0)∥ .

Since ∥x∥ =
√
x · x, the inequality above holds with equality if and only if v = ∇f(x0)/∥∇f(x0)∥

because ∣∣∣∣∇f (x0) ·
∇f (x0)

∥∇f (x0)∥

∣∣∣∣ = |∇f (x0) · ∇f (x0)|
∥∇f (x0)∥

=
∥∇f (x0)∥2

∥∇f (x0)∥
= ∥∇f (x0)∥ .

Finally, observe that

D
∇f(x0)

∥∇f(x0)∥ f (x0) = ∇f (x0) ·
∇f (x0)

∥∇f (x0)∥
= ∥∇f (x0)∥ . ■

Remark 15. If f is differentiable at x0 ∈ int(X), then ∇f(x0) is equal to the vector of partial
derivatives. Thus, proposition above tells us that directional derivative is largest (where size is
measured by Euclidean norm ∥ · ∥) when moving in the direction of ∇f(x0).

4 Convexity

The following tells us something about the relationship between the derivative of a concave function
at x and the slope between x and y.

Proposition 14. Let f : X ⊆ Rd → R be concave and differentiable on X and suppose int(X) is
a convex set. Then, f is concave on int(X) if and only if

∇f (x) (y − x) ≥ f (y)− f (x) ∀x,y ∈ int (X) .

Similarly, f is convex on int(X) if and only if

∇f (x) (y − x) ≤ f (y)− f (x) ∀x,y ∈ int (X) .

Proof. Suppose first that f is concave. Fix some x,y ∈ int(X). Define g : R → Rd via g(t) :=

x+ t(y − x). Since g′(t) = y − x, chain rule gives us that

(f ◦ g)′ (0) = ∇f (x) (y − x) .

Moreover, by definition of the derivative,

(f ◦ g)′ (0) = lim
t→0

f (x+ t (y − x))− f (x)

t
= lim

t↘0

f (x+ t (y − x))− f (x)

t
.

Since x+ t(y − x) = ty + (1− t)x, when t ∈ (0, 1), concavity of f of gives

∇f (x) (y − x) = lim
t↘0

f (ty + (1− t)x)− f (x)

t
≥ lim

t↘0

tf (y) + (1− t) f (x)− f (x)

t

= lim
t↘0

(f (y)− f (x)) = f (y)− f (x) .
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To prove the converse, fix x,y ∈ int(X) and any α ∈ (0, 1). Define

z := αx+ (1− α)y, w := x− z = (1− α) (x− y) .

Note that y = z− α
1−αw. By hypothesis,

f (x)− f (z) ≤ Df (z) (x− z) = Df (z)w,

f (y)− f (z) ≤ Df (z) (y − z) = − α

1− α
Df (z)w.

Multiplying the first inequality by α
1−α and adding to the second gives[

α

1− α
f (x)− α

1− α
f (z)

]
+ [f (y)− f (z)] ≤ α

1− α
Df (z)w − α

1− α
Df (z)w

⇔ α

1− α
f (x) + f (y)− 1

1− α
f (z) ≤ 0

⇔ αf (x) + (1− α) f (y) ≤ f (z) = f (αx+ (1− α)y) ;

i.e., f is concave. Finally, the case for when f is convex follows by noting that D(−f) = −Df and
recalling that f is concave if and only if −f is convex. ■

If a function is C2 (so that the Hessian f is symmetric), then concavity (or convexity) of
functions can be characterised via the Hessian matrix (i.e., the second derivative). Recall that the
Hessian of f at x is defined Hf (x) := D2f(x).

Proposition 15. Let f : X ⊆ Rd → R be C2 on X and suppose int(X) is a convex set.

(i) f is concave on int(X) if and only if Hf (x) is negative semidefinite for all x ∈ int(X).5

(ii) f is convex on int(X) if and only if Hf (x) is positive semidefinite for all x ∈ int(X).

(iii) If Hf (x) is negative definite for all x ∈ int(X), then f is strictly concave on int(X).

(iv) If Hf (x) is positive definite for all x ∈ int(X), then f is strictly convex on int(X).

Remark 16. Parts (iii) and (iv) implies that “strict” definiteness of the Hessian is only a sufficient
condition for concavity/convexity.

We first prove Proposition 15 for the case when d = 1. Then, we prove a lemma that allows us
to extend the d = 1 case to when d > 1.

Proposition 16. Let f : X ⊆ R → R be C2 on int(X) and suppose int(X) is a convex set. Then,
f is (resp. strictly) concave on int(X) if and only if f ′′(x) ≤ 0 (resp. f ′′(x) < 0) for all x ∈ int(X).

Proof. Let x, y ∈ int(X) with x < y. Pick sequences (xn)n and (yn)n in X such that x < xn <

yn < y for all n ∈ N, xn → x and yn → y. Concavity of f means that, for all n ∈ N,

f (x)− f (xn)

x− xn
≥ f (xn)− f (yn)

xn − yn
≥ f (yn)− f (y)

yn − y
. (3)

5Recall that a symmetric matrix M ∈ Rd×d is negative (resp. positive) semidefinite if v⊤Mv ≤ 0 (resp.
v⊤Mv ≥ 0) for all v ∈ Rd. The matrix M is negative (resp. positive) definite if the inequality holds strictly for all
v ∈ Rd\{0}.
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Observe that the left-most expression converges to f ′(x) while the right-most expression converges
to f ′(y). Hence, f ′(x) ≥ f ′(y). Since x and y with x < y were other chosen arbitrarily, it follows
that f ′ is a nonincreasing function; i.e., its derivative, f ′′(x), must be nonpositive for all x ∈ int(X).

Conversely, suppose f ′′(x) ≤ 0 for all x ∈ int(X). Fix x, y ∈ int(X) with x < y. Pick any
α ∈ (0, 1) and let z = αx + (1 − α)y. By the Mean Value theorem, there exists w1 ∈ (x, z) and
w2 ∈ (z, y) such that

f (x)− f (z)

x− z
= f ′ (w1)

f (z)− f (y)

z − y
= f ′ (w2) .

Since w1 < w2 and f ′′(·) ≤ 0, we must have f ′(w1) ≥ f ′(w2); i.e.,

f (x)− f (z)

x− z
≥ f (z)− f (y)

z − y
⇔ f (z) ≥ y − z

y − x
f (x) +

z − x

y − x
f (y)

= αf (x) + (1− α) f (y) ;

i.e., f is concave. The proof for strict concavity is analogous. ■

Exercise 13. Prove 3.

Exercise 14 (PS8). Let f : X ⊆ Rd → R, where X is nonempty, open and convex. For any
x,v ∈ Rd, let Sx,v := {t ∈ R : x + tv ∈ X} and define gx,v : Sx,v → R as gx,v(t) := f(x + tv).
Then, f is (resp. strictly) concave on X if and only if gx,v(·) is (resp. strictly) concave for all
x,v ∈ Rd with v ̸= 0.

Proof of Proposition ??. For simplicity assume that X is open so that X = int(X). We will prove
part (i). Suppose f is concave and fix any x,v ∈ X. We wish to show that v⊤Hf (x)v ≤ 0.
Define gx,v(t) = f(x+ tv) for all t ∈ Sx,v as in Exercise 14. Since f is C2, gx,v is also C2 and so
g′x,v(t) = ∇f(x+ tv)v and g′′x,v(t) = v⊤Hf (x+ tv)v. By Exercise 14, gx,v(·) is concave and so by
Proposition 16, g′′x,v(t) ≤ 0 for all t ∈ Sx,v. Therefore, v⊤Hf (x+ tv)v ≤ 0 for all t ∈ Sx,v. Because
0 ∈ Sx,v, we have v⊤Hf (x)v ≤ 0.

Conversely, suppose that Hf (x) is negative semidefinite for all x ∈ X . By Exercise 14, to show
hat f is concave, it suffices to show that, for any x,v ∈ X with v ̸= 0, the function gx,v(·) is concave
on Sx,v. Since f is C2, we again have that g′x,v(t) = ∇f(x + tv)v and g′′x,v(t) = v⊤Hf (x + tv)v.
Since v⊤Hf (z)v ≤ 0 for all z ∈ X (why?), in particular, v⊤Hf (x + tv)v ≤ 0 for all t ∈ Sx,v.
Therefore, g′′x,v(·) ≤ 0 and by Proposition 16, gx,v is concave. ■

Exercise 15. Modify the proof for Proposition 15 (i) above to prove parts (ii), (iii) and (iv) of
Proposition 15.

Exercise 16. Consider f : R → R such that f(x) := −x4. Show that f is strictly concave on R
but that its Hessian is not positive definite.

Exercise 17 (PS8). Let f : R2
++ → R be defined by f(x, y) := xαyβ for some α, β > 0. Compute

the Hessian of f at (x, y) ∈ R2
++. Find conditions on α and β such that f is (i) strictly concave,

(ii) f is concave but not strictly concave, (iii) f is neither concave nor convex.
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Proof. Suppose first that f : R2
++ → R. Note that

∇f (x, y) =
[
αxα−1yβ βxαyβ−1

]
Hf (x, y) =

[
α (α− 1)xα−2yβ αβxα−1yβ−1

αβxα−1yβ−1 β (β − 1)xαyβ−2

]
=

[
−α (1− α) f(x,y)

x2 αβ f(x,y)
xy

αβ f(x,y)
xy −β (1− β) f(x,y)

y2

]
.

Then,

det (Hf (x, y)) =

[
α (α− 1)

f (x, y)

x2
β (β − 1)

f (x, y)

y2

]
−

[
αβ

f (x, y)

xy

]2
= αβ [1− (α+ β)]

(
f (x, y)

xy

)2

.

Hence, the determinant is strictly positive if α + β < 1, zero if α + β = 1, and strictly negative if
α+β > 1. Recall that a 2× 2 matrix is M = [xij ]i,j∈{1,2} is negative positive if and only if x11 > 0

and det(X) > 0, and M is negative definite if and only if x11 < 0 and det(X) > 0. Hence, if
α+β ≤ 1 (which implies α, β < 1), Hf (x, y) is positive semidefinite so that f is concave. Moreover,
if α + β < 1, Hf (x, y) is in fact positive definite so that f is strictly concave. However, observe
that if α+ β > 1, then Hf (x, y) is not positive/negative semi/definite. Hence, f is not concave nor
convex. If the domain of f is R2

+, then Hf (0, 0) is not positive definite; however, f is still strictly
concave. ■

Remark 17. The argument Exercise 13 gives the Cordal Slope lemma: if f : X ⊆ R → R is concave,
int(X) is convex, then, for any x1, x2, x3 ∈ int(X) such that x1 < x2 < x3,6

f (x2)− f (x1)

x2 − x1
≥ f (x3)− f (x1)

x3 − x1
≥ f (x3)− f (x2)

x3 − x2
.

You might see this again in the proof of Jensen’s inequality.

5 Implicit Function Theorem

We have so far worked with functions f : Rd → Rk. We can think of x ∈ Rd as the input, or
exogenous variables, and y = f(x) as the output, or endogenous variables. However, we cannot
always separate these two types of variables and they could be be related through the function
g : Rd × Rm → Rk:

g (x,y) = 0.

In such cases, we still want to ask how y varies as we change x. In short, implicit function theorem
tells us that, under some assumptions, if we can solve a system at a point, then we can solve the
system in a neighbourhood of that point and that we can have expressions for the derivatives of
the endogenous variables around that point.

Given a function f : X × Y ⊆ Rd × Rm → Rk, let the Jacobian of f with respect to x ∈ X at
6If f is strictly concave, then the inequalities hold strictly. If f is convex, then the inequalities in (??) are reversed.
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(x0,y0) ∈ int(X × Y ) be given by

Dxf (x0,y0) =


∂f1
∂x1

(x0,y0) · · · ∂f1
∂xd

(x0,y0)
...

. . .
...

∂fk
∂x1

(x0,y0) · · · ∂fk
∂xd

(x0,y0)


k×d

.

Similarly, let the Jacobian of f with respect to y ∈ Y at (x0,y0) ∈ int(X × Y ) be given by

Dyf (x0,y0) =


∂f1
∂y1

(x0,y0) · · · ∂f1
∂ym

(x0,y0)
...

. . .
...

∂fk
∂y1

(x0,y0) · · · ∂fk
∂ym

(x0,y0)


k×m

.

In the following theorem, think of it as there being d unknowns, k = m equations and m parameters.

Theorem 6 (Implicit function theorem). Suppose f : X × Y ⊆ Rd × Rm → Rm is C1 and that
X × Y is open. Let (x0,y0) ∈ X × Y be a point such that f(x0,y0) = 0 and Dyf(x0,y0) is
invertible. Then, there exists an open ball BϵX (x0) ⊆ X around x0 and an open ball BϵY (y0) ⊆ Y

around y0 such that, for all x ∈ BϵX (x0), there exists a unique y ∈ BϵY (y0) such that f(x,y) = 0.
Therefore, the equation f(x,y) = 0 implicitly defines a function g : BϵX (x0) → BϵY (y0) with the
property

f (x, g (x)) = 0 ∀x ∈ BϵX (x0) .

Moreover, g is differentiable at any x ∈ BϵX (x0) and

Dg (x) = − (Dyf (x, g (x)))
−1

Dxf (x, g (x)) .

Proof. The proof for the general case is beyond the scope of this class. However, let us prove the
case for when d = m = k = 1. So let (x0, y0) ∈ int(X × Y ) such that f(x0, y0) = 0. The hypothesis
that Dyf(x0,y0) is invertible is equivalent to ∂f

∂y (x0, y0) ̸= 0. We will assume that ∂f
∂y (x0, y0) > 0

while noting that the case in which ∂f
∂y (x0, y0) > 0 can be proved analogously. We wish to show

that there exists an open balls B(x0) and B(y0) such that, for all x ∈ B(x0), there is a unique
y ∈ B(y0) such that f(x, y) = 0. We will then show that g : B(x0) → B(y0) defined by f(·, g(·)) = 0

is differentiable on B(x0) and that

g′ (·) = −
∂f(·,g(·))

∂x
∂f(·,g(·))

∂y

.

Lemma 1. Suppose h : Z → R is continuous and h(z0) > 0 for some z0 ∈ int(Z). Then, there
exists δ > 0 such that h(z) > 0 for all z ∈ Bδ(z0).

Proof. Fix ϵ := f(z0)
2 . By continuity, there exists δ > 0 such that |h(z) − h(z0)| < ϵ = f(z0)

2 for
all z ∈ Bδ(z0). If h(z) < h(z0), then this implies h(z0) − h(z) < h(z0)

2 ⇔ h(z) > h(z0)
2 > 0. If

h(z) ≥ h(z0), then h(z) > 0 and so the result follows. ■

Since f is C1, ∂f
∂y is continuous. By Lemma 6, there exists an open ball Bδ(x0, y0) for some δ > 0

such that ∂f
∂y (x, y) > 0 for all (x, y) ∈ Bδ(x0, y0). Let δX , δY > 0 be such that BδX (x0)×BδY (y0) ⊆
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Bδ(x0, y0). Since f(x0, y0) = 0 and f(x0, ·) is strictly increasing on BδY (y0), we have

f

(
x0, y0 +

δY
2

)
> 0 > f

(
x0, y0 −

δY
2

)
.

Letting ϵY := δY
2 , using Lemma 6 (twice—check this), we can find ϵX ∈ (0, δX ] so that f(x, y0 +

ϵY ) > 0 > f(x, y0−ϵY ) for all x ∈ BϵX (x0). For any x ∈ BϵX (x0), since f(x, y0−ϵY ) > 0 > f(x, y0−
ϵY ), intermediate value theorem implies that there exists yx ∈ BϵY (y0) such that f(x, yx) = 0.
Moreover, yx is unique because f(x, ·) is strictly increasing on BϵY (y0). Let g : BϵX (x0) → BϵY (y0)

be defined as g(x) := yx .
We now prove that g is continuous at x0. Observe that the argument above implies that

|yx − y0| = |g (x)− g (x0)| < 2ϵY = δY ∀x ∈ BϵX (x0) .

Fix ϵ > 0 and suppose we had chosen ϵY = ϵ
2 instead in the argument above. Then, we would have

that for some d ∈ (0, ϵX ], |yx − y0| = |g(x)− g(x0)| < ϵ for all x ∈ Bd(x0). Hence, g is continuous
at x0. In fact, since for any x ∈ BϵX (x0), f(x, g(x)) = 0 and f(x, ·) is strictly increasing, we can
repeat the same argument to conclude that g is continuous at any x ∈ BϵX (x0).

To show that g is differentiable, note that, by construction, f(x, g(x)) = 0 for all x ∈ BϵX (x0).
Fix some x ∈ BϵX (x0) and ϵ′X = ϵX − |x− x0| > 0. Since x+ ϵ ∈ BϵX (x0),

0 = f (x+ ϵ′X , g (x+ ϵ′X))︸ ︷︷ ︸
=0

+ f (x, g (x+ ϵ′X))− f (x, g (x+ ϵ′X))︸ ︷︷ ︸
=0

− f (x, g (x))︸ ︷︷ ︸
=0

= [f (x+ ϵ′X , g (x+ ϵ′X))− f (x, g (x+ ϵ′X))] + [f (x, g (x+ ϵ′X))− f (x, g (x))] .

Since f is differentiable, applying the mean value theorem to the terms in square brackets separately
yields

f (x+ ϵ′X , g (x+ ϵ′X))− f (x, g (x+ ϵ′X)) =
∂f

∂x
(x1, g (x+ ϵ′X)) ϵ′X ,

f (x, g (x+ ϵ′X))− f (x, g (x)) =
∂f

∂y
(x, y1) (g (x+ ϵ′X)− g (x))

for some x1 ∈ (x, x+ ϵ′X) and y1 between g(x) and g(x+ ϵ′X). Thus, we have

0 =
∂f

∂x
(x1, g (x+ ϵ′X)) ϵ′X +

∂f

∂y
(x, y1) (g (x+ ϵ′X)− g (x))

⇔ g (x+ ϵ′X)− g (x)

ϵ′X
= −

∂f
∂x (x1, g (x+ ϵ′X))

∂f
∂y (x, y1)

.

Taking limit as ϵ′X → 0, we have x1 → x, y1 → g(x) so that

g′ (x) = lim
ϵ′x→0

g (x+ ϵ′X)− g (x)

ϵ′X
= −

∂f
∂x (x, g (x))
∂f
∂y (x, g (x))

. ■

Remark 18. Suppose f : R2 → R is differentiable and that y is implicitly defined by x as follows:

f (x, y) = 0.
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Let (x0, y0) ∈ R2 such that f(x0, y0) = 0. We want to ask how y0 changes with x around x0.
Implicit function theorem tells us that we can find g : (x0 − ϵX , x0 + ϵX) → (y0 − ϵY , y0 + ϵY ) for
some ϵX , ϵY > 0 such that

f (x, g (x)) = 0 ∀x ∈ (x0 − ϵX , x0 + ϵX) .

Moreover, the theorem tells us that g is differentiable on (x0 − ϵX , x0 + ϵX). If we define h :

(x0 − ϵX , x0 + ϵX) → R as
h (x) := f (x, g (x)) ,

we can use the chain rule to to obtain

h′ (x) = Dxf (x, g (x)) +Dyf (x, g (x)) g′ (x) ,

By construction, h(x) = 0 for all x ∈ (x0 − ϵX , x0 + ϵX) so that h is a constant function; i.e.,
h′(x) = 0 for all x ∈ (x0 − ϵX , x0 + ϵX). Since Dyf(x, g(x)) ̸= 0 by assumption, we have

g′ (x) = −Dxf (x, g (x))

Dyf (x, g (x))
= −

∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

∀x ∈ (x0 − ϵX , x0 + ϵX) .

Remark 19. Given f : Rd × R → R , the set

C =
{
(x, y) ∈ Rd × R : f (x, y) = 0

}
defines a “curve” in Rd × R. Suppose f is C1 and let (x0, y0) ∈ Rd × R be a point on the curve;
i.e., f(x0, y0) = 0. If ∂f

∂y (x0, y0) ̸= 0, the implicit function theorem gives us open sets BX ⊆ Rd and
BY ⊆ R, and a function g : BX ⊆ Rd → BY ⊆ R such that g(x0) = y0 and f(x, g(x)) = 0 for all
x ∈ BX . Then, C contains the graph of the function g;

gr (g) = {(x, y) ∈ BX ×BY : g (x) = y} ⊆ C.

Moreover, Dg(x0) gives the derivative of the tangent hyperplane to the curve at (x0, y0). The
tangent hyperplane is given by

{
(x, y) ∈ Rd × R : y − y0 = Dg (x0) (x− x0)

}
= (−x0,−y0) +

{
(v, ỹ) ∈ Rd × R : ỹ = Dg (x0)v

}
,

Because Dg(x0) is a vector of partial derivatives, given any v ∈ Rd\{0}, Dg(x0)v is the directional
derivative of g at x0 in the direction of v. Observe that

∇f (x0, y0)

[
v

Dg (x0)v

]
=

[
Dxf (x0, y0)

∂f
∂y (x0, y0)

] [ v

−Dxf(x0,y0)
∂
∂y f(x0,y0)

v

]

= Dxf (x0, y0)v − ∂f

∂y
(x0, y0)

Dxf (x0, y0)
∂
∂yf (x0, y0)

v

= 0;

- 21 -



ECON 6170 Fall 2024 5. Differentiation

i.e., the gradient vector is orthogonal to the tangent hyperplane to the curve at (x0, y0).

Exercise 18 (PS9). Let F : R4 → R2. Suppose the conditions for the implicit function theorem
are satisfied at all points and that F (x∗

1, x
∗
2, y

∗
1 , y

∗
2) = 0. Let h = (h1, h2) denote the implicitly

defined function of (x1, x2) for the relation F (x1, x2, y1, y2) = (0, 0) near (x∗
1, x

∗
2, y

∗
1 , y

∗
2). Given

explicit formulas for ∂hi

∂xj
for i, j ∈ {1, 2}.

Corollary 4 (Inverse function theorem). Suppose f : X ⊆ Rd → Y ⊆ Rd. Let x0 ∈ int(X) and
define y0 := f(x0). If f is C1 and Df(x0) is invertible, then there exists an open ball BϵX (x0) ⊆ X

around x0 and an open ball BϵY (y0) ⊆ Y around y0 such that, for all y ∈ BϵY (y0), there exists
a unique x ∈ BϵX (x0) such that f(x) = y. Therefore, the equation f(x) = y implicitly defines a
function g : BϵY (y0) → BϵX (x0) with the property

f (g (y)) = y ∀y ∈ BϵY (y0) .

Moreover, g is differentiable at any y ∈ BϵY (y0) and

Dg (y) = (Df (g (y)))
−1

.

Exercise 19 (PS9). Prove Corollary 4. Hint: An inverse function of f : X → Y , f−1, satisfies
following equation:

y − f
(
f−1 (y)

)
≡ 0..

Thus, we can think of x = f−1(z) as being implicitly defined (by z) via the expression above.

Remark 20. Given f : R → R that is C1 with f(x) = y. The inverse function theorem tells us that
for some x0 ∈ R such that f ′(x0) ̸= 0,

(
f−1

)′
(y0) =

1

f ′ (x0)
=

1

f ′ (f−1 (y0))
,

where y0 := f(x0). Hence, we do not need the explicit expression of f−1 to compute the derivative
of f−1.
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