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Problem 1: X; are i.d.i.d with E[X;] = u; and var[X;] = o2.
1. We have that
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Problem 2: From Bayes’ Rule, we have that
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Since we have that X; ~ N (u,0?), we have that (X; — u)/o ~ N(0,1). Thus, defining ® as the cdf of the
standard normal, we get that this equation is equivalent to
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Problem 3 We have that the standard normal density is given by

which means that
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Then to find E[Z?], we can use the definition and get that

E[Z?] = /zqu(z)dz

Setting u = z, du = dz, dv = z¢(2)dz, and v = —¢(z) = [ dv we get that

E[Z?] = /udv =uv — /vdu = z/ng(z)dz + /¢(z)dz =1

where the last equality follows from the fact that the mean of a standard normal is 0, and the integral over
R of any pdf is 1.

Problem 4
(a) We have from the definition that the marginal distribution of Y is
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This simplifies as follows:
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(b) Recall that the conditional density of a random variable is the joint density divided by the marginal
density of the other random variable. We have that
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Thus,
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(¢) We have that Z is a linear combination of two jointly normal random variables, so it is jointly normal
with Y. It thus suffices to show that cov(Z,Y) = 0, because with jointly normal random variables
uncorrelatedness implies independence. Then

cov(Z,Y) = E|ZY] - E[Z] E[Y]
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Thus, Z and Y are independent.

Problem 5
(a) We have that E[u] = E[H'e] = H'E[e] = H'0 = 0. We also have that var(u) = var(H'e) =
H'var(e)H = H'I,,0°H = I,,0%. Thus, u = H'e ~ N(0, I,,0?).
(b) We have that E[u] = E[A7e] = A" E[e] = A710 = 0. We also have that var(u) = var(A='e)
A war(e)A™Y = A7ISATY = ATTANATY = (ATTA)A'AY) = I,0, = I,,. Thus, u = A~ e ~
N(0,1,).

Problem 6 We have that

There are a number of sufficient conditions. One would be if the sample mean X is equal to the population
mean .



