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1 Recap

A fixed point of a self-mapping function f : X → X is a point x ∈ X such that f(x) = x. For
example, if X = [0, 1], fixed points are all the points in the image of f that lie on the 45 degree
line. We have already seen a fixed point theorem when you covered Euclidean topology.

Proposition. Suppose f : [0, 1] → [0, 1] is continuous. Then, f has a fixed point.

We present a number of fixed point theory that are commonly used in economics; e.g., proving
existence of equilibrium in games. With a notable exception of the Contraction Mapping Theorem,
most fixed point theory tells us that there is a solution, but not how to obtain that solution.

2 Lattice1

Theorem 1 (Tarski’s fixed point thereom). Suppose (X,≥) is a compete lattice and a self-map
f : X → X is an increasing function; i.e., x > x′ ⇒ f(x) ≥ f(x′). Then, f has a fixed point; i.e.,
there exists x∗ ∈ X such that f(x∗) = x∗. Moreover, the set of fixed point is a complete lattice so
that it contains a smallest and largest fixed point.

Proof. We will only show that: (i) there is a largest fixed point, and (ii) any nonempty subset of
fixed points has an infimum in the set of all fixed points.

(i) Define Z := {x ∈ X : f(x) ≥ x}. Since X is complete, infX ∈ X and because f is a self-map
on X, f(x) ≥ infX for all x ∈ X. In particular, f(infX) ≥ infX so that infX ∈ Z; i.e., Z is
nonempty. Since Z ⊆ X, by completeness of X, supZ ∈ X and by definition, supZ ≥ z for all
z ∈ Z. Since f is increasing and by definition of Z, we must have

f (supZ) ≥ f (z) ≥ z ∀z ∈ Z.

Therefore, f(supZ) is an upper bound of Z. By definition, supZ is the least upper bound of Z and
so f(supZ) ≥ supZ. Since f is increasing, we also have f(f(supZ)) ≥ f(supZ); i.e., f(supZ) ∈ Z.
By definition supZ, it follows that supZ ≥ f(supZ). Hence, supZ is a fixed point. This must also
be the greatest fixed point because any fixed point must be contained in Z.

1The section is based on lecture notes by Federico Echenique and John Quah.

1

mailto:takumahabu@cornell.edu


ECON 6170 Fall 2024 8. Fixed Point Theorems

(ii) Let E ⊆ X be the set of fixed points of f , which is nonempty by part (i), and fix any
nonempty subset E ⊆ E . Define Y := {x ∈ X : inf E ≥ x} (set of lower bounds of E). We proceed
as follows: (1) show that Y is a complete lattice; (2) f restricted to Y , denoted f |Y , is a self-map
on Y ; (3) conclude from part (i) that f |Y has a greatest fixed point e ∈ E that that equals inf E so
that inf E ∈ E .

(1) We wish to show that for any nonempty subset S ⊆ Y , supS ∈ Y and inf S ∈ Y . Fix
a nonempty S ⊆ Y . Since S ⊆ X and X is a complete lattice, supS ∈ X and inf S ∈ X. By
definition of Y , inf E ≥ y for all y ∈ Y so that inf E is an upper bound of Y . Because supY is
the least upper bound, we must have inf E ≥ supY and so supY ∈ Y . Because S ⊆ Y , we must
have supY ≥ supS so that inf E ≥ supS; i.e., supS ∈ Y . Since supS ≥ inf S, we must also have
inf S ∈ Y .

(2) For any e ∈ E, we have e ≥ inf E so that e = f(e) ≥ f(inf E); i.e., f(inf E) is a lower
bound of E. Since inf E is the greatest lower bound of E, we must have inf E ≥ f(inf E) so
that f(inf E) ∈ Y . Moreover, for all y ∈ Y , inf E ≥ y so that inf E ≥ f(inf E) ≥ f(y). Hence,
f |Y : Y → Y ; i.e., f |Y is a self-map on Y .

(3) Since f |Y is an increasing self-map on a complete lattice Y , by (i), it has a greatest fixed
point e ∈ Y . Since e must be fixed point of f , we have e ∈ E . Moreover, if e ∈ E is a lower bound
on E, inf E ≥ e so that e ∈ Y . Then, e is a fixed point of f |Y and we must have e ≥ e. Hence, e is
the greatest lower bound of E in E ; i.e., e = inf E ∈ E . ■

Remark 1. The proof of the theorem tells us that the largest fixed point is given by sup{x ∈ X :

f(x) ≥ x} and the smallest fixed point is given by inf{x ∈ X : x ≥ f(x)}.

Exercise 1. Complete the proof of Theorem 1; i.e., show that there is a smallest fixed point and
any nonempty subset of fixed points has a supremum in the set of all fixed points.

Since (X = [0, 1],≥) is a complete lattice, the following is immediate.

Corollary 1. Every increasing self-map on [0, 1] has a fixed point.

The requirement that f is increasing is crucial. Try drawing functions f : [0, 1] → [0, 1] that is
decreasing and increasing and see how they can/cannot cross the 45 degree line (fixed point are the
points on the 45 degree line).

Proposition 1. Suppose (X,≥) is a complete lattice, (Θ,≥) is a partially ordered, and f : X×Θ →
X is such that f(x, θ) increasing in x for any given θ ∈ Θ and increasing in θ for any given x ∈ X.
Then, the largest and the smallest fixed points of f(·, θ) exist and they are increasing in θ.

Proof. We only show that the largest fixed point is increasing in θ. Fix θ′′ > θ′. Since f(x, θ) is
increasing in θ for any x ∈ X, f(x, θ′′) ≥ f(x, θ′), which, in turn, implies that

Z ′ := {x ∈ X : f (x, θ′) ≥ x} ⊆ {x ∈ X : f (x, θ′′) ≥ x} =: Z ′′.

By Tarski’s fixed point theorem, the largest fixed points in Z ′ and Z ′′ exist and, in fact, are given
by x(θ′) := supZ ′ and x(θ′′) := supZ ′′. Since Z ′ ⊆ Z ′′, we must have x(θ′′) ≥ x(θ′). ■

Exercise 2. Show that the smallest fixed point is also increasing in θ in the proposition above.
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2.1 Example: Pure-strategy Nash equilibria in quasi-supermodular games

Definition 1. A (complete information) game is a tuple (N, (Si, ui)i∈N ), where N := {1, . . . , n}
is the set of players, Si is the set of player i ∈ N ’s strategies, and ui : S → R is player i’s utility
when players choose strategy profile s ∈ S := ×i∈NSi. A game is quasi-supermodular if:

� each Si is a subcomplete sublattice of Rdi ;

� ui(si, s−i) is quasi-supermodular in si ∈ Si for any s−i ∈ S−i;2

� ui(si, s−i) has single-crossing differences in (si, s−i).

A strategy profile s∗ ∈ S is a pure-strategy Nash equilibrium of a game (N, (Si, ui)i∈N ) if, for all
i ∈ N ,

ui

(
s∗i , s

∗
−i

)
≥ ui

(
si, s

∗
−i

)
∀si ∈ Si.

Theorem 2. Fix a quasi-supermodular game (N, (Si, ui)i∈N ) and assume that, for all i ∈ N ,
ui(·, s−i) is continuous for all s−i ∈ S−i. Quasi-supermodular games have pure-strategy Nash
equilibria.

Proof. Denote player i ∈ N ’s best response to s−i ∈ S−i as

Bi (s−i) := argmax
si∈Si

ui (si, s−i) .

Since Si is compact (why?) and ui(·, s−i) is continuous, Bi(s−i) is nonempty by extreme value
theorem. The theorem of the maximum also gives that Bi(s−i) is compact. Moreover, the fact
that ui(, s−i) is quasi-supermodular means that Bi(s−i) is a sublattice (why?). Together, these
imply that Bi(s−i) is a subcomplete sublattice and thus contains its supremum and infimum. The
monotone comparative statics theorem implies that that if s′−i ≥ s−i, then

supBi

(
s′−i

)
≥ supBi (s−i) and inf Bi

(
s′−i

)
≥ inf Bi (s−i) .

Thus, supBi and inf Bi are both increasing. Define B,B : S 7→ S by B(s) := (supBi(s−i))i∈N and
B(s) := (inf Bi(s−i))i∈N . Since the product set of complete lattices is a complete lattice, that Si is
a complete lattice (by assumption), means that S :=

∏
i∈N Si is also a complete lattice. Since B(s)

and B(s) are both increasing functions, by Tarski’s fixed point theorem, there exist s∗, s∗ ∈ S such
that s∗ = B(s∗) and s∗ = B(s∗). Thus, not only there exists a Nash equilibrium, there also exists
the largest and the smallest Nash equilibria. ■

Remark 2. In fact, we know that s∗ = sup{s ∈ S : B(s) ≥ s} and s∗ = inf{s ∈ S : B(s) ≤ s}.

Proposition 2. Fix a quasi-supermodular game (N, (Si, ui)i∈N ) and assume that, for all i ∈ N ,
ui(·, s−i, , θi) is continuous for all s−i ∈ S−i and all θi ∈ Θi where (Θi,≥) is a partially ordered
set. Suppose ui(si, s−i, θi) obeys single-crossing differences in (si, (s−i, θi)) for all i ∈ N . Then,
the largest and the smallest Nash equilibria of the game are both increasing in (θi)i∈N .

2Recall that s−i refers to the strategy of all players other than i and so s−i ∈ S−i := ×j∈N\{i}Sj .
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Proof. Since ui(si, s−i, θi) obeys single-crossing differences in (si, (s−i, θi)), and ui is quasi-supermodular
in si, then, by the monotone comparative static theorem, we have that

Bi

(
s′′−i, θ

′′
i

)
≥S Bi

(
s′−i, θ

′
i

)
∀
(
s′′−i, θ

′′
i

)
≥

(
s′−i, θ

′
i

)
.

Hence, this implies that supBi(s−i, θi) and inf Bi(s−i, θi) are both increasing in θi. By the previous
result, the largest Nash equilibrium of the game parameterised by θ is sup{s ∈ S : B(s, θ) ≥ s},
where B(s, θ) ≡ (supBi(s−i, θi))i∈N . Since supBi is increasing in θi,

B (s, θ′′) ≥ B (s, θ′) ∀θ′′ > θ′,

Hence, {
s ∈ S : B (s, θ′) ≥ s

}
⊆

{
s ∈ S : B (s, θ′′) ≥ s

}
∀θ′′ > θ′,

which implies that

sup
{
s ∈ S : B (s, θ′′) ≥ s

}
≥ sup

{
s ∈ S : B (s, θ′) ≥ s

}
∀θ′′ > θ′.

Similarly for the smallest Nash equilibrium. ■

2.2 Example: Stable matching

Definition 2. A one-to-one matching market is a tuple (M,W, (≿m)m∈M , (≿w)w∈W ) where

(i) M and W are disjoint finite sets;

(ii) for each m ∈ M ≿m is a total order over W ∪{∅} such that for any distinct w,w′ ∈ W ∪{∅},
w ≿m w′ or w′ ≿m w but not both;

(iii) for each w ∈ W , ≿w is a total order over M ∪{∅} such that for any distinct m,m′ ∈ M ∪{∅},
m ≿m m′ or m′ ≿m m but not both.

For any m ∈ M , w ∈ W is acceptable to m if w ≿m ∅. Analogously, for any w ∈ W , m ∈ M is
acceptable to w if m ≿m ∅. A fantasy is a function ν : M ∪W → M ∪W such that

ν (m) ∈ W ∪ {∅} ∀m ∈ M and ν (w) ∈ M ∪ {∅} ∀w ∈ W.

Let V denote the set of all fantasies. For any two fantasies ν, ν′ ∈ V , we say that ν is less than ν′,
denoted ν ≤ ν′ if

ν′ (m) ≿m ν (m) ∀m ∈ M and ν (w) ≿w ν′ (w) ∀w ∈ W.

Lemma 1. (V,≤) is a lattice.

Proof. Take any ν, ν′ ∈ V . We want to show that ν ∨ ν′ ∈ V and ν ∧ ν′ ∈ V . We only show
the first. For any m ∈ M , since ≿m is a total order, there exists wm ∈ W ∪ {∅} such that
νm = sup{ν(m), ν′(m)}. Similarly, for any w ∈ W , there exists mm ∈ M ∪ {∅} such that mw =

sup{ν(w), ν′(w)}. Then, (ν ∨ ν′)(m) = wm and (ν ∨ ν′)(w) = mw for all m ∈ M and all w ∈ W

and clearly ν ∧ ν′ ∈ V . ■
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Definition 3. A matching is a fantasy µ with the property that

w = µ (m) ⇔ µ (w) = m ∀m ∈ M ∀w ∈ W.

A matching µ is individually rational if µ(a) ≿a ∅ for all a ∈ M ∪W . A pair (m,w) ∈ M ×W is a
blocking pair for µ if m ≻w µ(w) and w ≻m µ(m). A matching is stable if it is individually rational
and there are no blocking pairs.

Remark 3. The canonical example is the marriage market (M for men and W for women).3 We
will follow this example purely for historical reasons.

For any fantasy ν and any m ∈ M and w ∈ W ,

A (m, ν) := {w′ ∈ W : m ≿w′ ν (w′)} ,

A (w, ν) := {m′ ∈ M : w ≿m′ ν (m′)} .

For example, A(m, ν) is the set of women who would prefer to match with m over the man specified
by the fantasy ν. Define a function T : V → V by letting (Tν)(m) be the optimal choice according
to ≿m in A(m, ν) ∪ {∅} for any m ∈ M ; i.e., for all m ∈ M ,

(Tν) (m) ≿m w ∀w ∈ A (m, ν) .

Similarly, let (Tν)(w) being the optimal choice according to ≿w in A(w, ν) ∪ {∅} for any w ∈ W ;
i.e., for all w ∈ W ,

(Tν) (w) ≿w m ∀m ∈ A (w, ν) .

By construction, T is a self-map and so to apply Tarski’s fixed point theorem, we need to show that
T is increasing.

Lemma 2. T is monotone increasing; i.e., for any ν ≤ ν′, we have Tν ≤ Tν′.

Proof. Fix ν ≤ ν′ and some m ∈ M , and take any w ∈ A(m, ν). Then, m ≿w ν(w) ≿w ν′(w) so that
w ∈ A(m, ν′). Hence, A(m, ν) ⊆ A(m, ν′). Analogous argument shows that A(w, ν′) ⊆ A(w, ν).
Since the best element from a larger set cannot be worse than from a smaller set, (Tν′)(m) ≿m

(Tν)(m) and (Tν)(w) ≿w (Tν′)(w). Hence, Tν ≤ Tν′. ■

Lemma 3. Any fixed point of T is a stable matching. If µ is a stable matching, then it is a fixed
point of T .

Proof. Suppose that ν ∈ V is a fixed point of T ; i.e., ν = Tν. We first show that ν is a matching.
Toward a contradiction, suppose there exists (m,w) ∈ M ×W with w = ν(m) and m ̸= ν(w) (the
proof for the other case is analogous). By definition of A(m, ν), that w = ν(m) implies m ∈ A(w, ν).
So, m ̸= ν(w) = Tν(w) means that ν(w) ≻w m. But then m /∈ A(w, ν) which contradicts that
w = ν(m) = (Tν)(m). We now argue that ν is stable. By construction, ν is individually rational
as ν(a) = (Tν)(a) ≿a ∅ for any a ∈ M ∪ W . Fix some (m,w) ∈ M × W . If m ≻w ν(w), then
w ∈ A(m, ν). By definition of T , (Tν)(m) = ν(m) ≿m w and so w ̸≻m ν(m); i.e., (m,w) cannot be
a blocking pair.

3The seminar paper is Gale and Shapley (1962) which perhaps explains the labelling.
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Conversely, let µ be a stable matching. We wish to show that µ = Tµ. By way of contradiction,
suppose there exists an element of A(m,µ) ∪ {∅} that is strictly better than µ(m) for ≿w. By
individual rationality, µ(a) ≿a ∅ for all a ∈ M∪W so this element cannot be ∅. So let w ∈ A(m,µ)

be such that w ≻m µ(m). We obtain a contradiction if we can show that (m,w) forms a blocking
pair. To that end, note that, w ̸= µ(m) implies that m ̸= µ(w) as µ is a matching. Then,
w ∈ A(m,µ) implies that m ≻w µ(w) because m ≿w µ(w) and ≿w is a strict preference. Then,
(m,w) would form a blocking pair. ■

Theorem 3. The set S ⊆ V of stable matching is nonempty and (S,≤) is a lattice. Moreover,
there exists two stable matchings µM and µW such that, for any stable matching µ,

µM (m) ≿m µ (m) ≿m µW (m) and µW (w) ≿w µ (w) ≿w µM (w)

for all m ∈ M and all w ∈ W .

Proof. By Tarski’s fixed point theorem, we know that T , as an increasing self-map on V , has a fixed
point. By the previous lemma, this fixed point is a stable matching. Hence, S is nonempty. That
(S,≤) is a lattice also follows from the fact that set of fixed points of T forms a complete lattice.
It also follows that there is a largest and smallest fixed points, µM and µW with the properties
above. ■

Remark 4. Above establishes that there are men-preferred and women-preferred stable matchings.

Exercise 3. Prove that the set of stable matching is a sublattice of (V,≤) and that, for any two
stable matchings µ and µ′: (i) (µ ∨ µ′)(m) is preferred with respect to ≿m over µ(m) and µ′(m);
(ii) (µ ∧ µ′)(m) is the worse with respect to ≿m than µ(m) and µ(m′).

Remark 5. The “usual” proof of the theorem is a constructive one—by running a deferred acceptance
algorithm (DAA).

3 Continuity

Here are the two fixed point theorem that is commonly used in economics that exploits continuity
in functions.

Theorem 4 (Brouwer’s fixed point theorem). Let X ⊆ Rd be nonempty, compact and convex.
Suppose that f : X → X is continuous. Then, f has a fixed point; i.e., there exists x∗ ∈ X such
that x∗ = f(x∗).

While Brouwer’s fixed point theorem deals with functions, Kakutani’s fixed point theorem deals
with correspondences. We state the theorem without proof.

Theorem 5 (Kakutani’s fixed point theorem). Let X ⊆ Rd be nonempty, compact and convex.
Suppose that f : X ⇒ X is nonempty, closed-valued, convex-valued and upper hemicontinuous.
Then, F has a fixed point; i.e., there exists x∗ ∈ S such that x∗ ∈ F (x∗).
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3.1 Example: Mixed-strategy Nash equilibrium

We prove the existence of a mixed-strategy Nash equilibrium using Brouwer’s theorem and also
using Kakutani’s theorem.

Definition 4. A game G = (N, (Si, ui)i∈N ) is finite if Si is finite for all i ∈ N . A mixed extension
of G, denoted G, is a tuple (N, (∆Si, ūi)

N
i=1), where

∆Si :=

{
σi ∈ RSi

+ :
∑
si∈Si

σi (si) = 1

}

and ui : ×N
i=1∆Si → R is defined

ui (σi, σ−i) :=
∑

(si,s−i)∈S

 N∏
j=1

σj (sj)

σi (si)ui (si, s−i) .

A mixed-strategy Nash equilibrium of G is a Nash equilibrium of the mixed extension of G; i.e.,
σ∗ ∈ ∆S such that

ui

(
σ∗
i , σ

∗
−i

)
≥ ui (σi, σ

∗
i ) ∀σi ∈ ∆Si.

Remark 6. In the mixed extension of the game, players are allowed to randomise over pure strategies
and σi(si) specifies the probability with each player i plays si ∈ Si. Note that σi = (σi(si))si∈Si

;
i.e., each player’s mixed strategy is a vector of probabilities.

Theorem 6 (Existence of Nash equilibrium). Let G be a finite game, then there exists a mixed-
strategy Nash equilibrium.

We give two proofs of this result. The first relies on the Brouwer’s fixed point theorem. The
second relies on Kakutani’s fixed point theorem. Let us establish some intermediate results that
we need in both cases.

Lemma 4. For each i ∈ N , ∆Si is convex. Therefore, ∆S is convex.

Proof. Take any σi, σ
′
i ∈ ∆Si any λ ∈ (0, 1). Then,

λσi + (1− λ)σ′
i = (λσi (si) + (1− λ)σi (si))si∈Si

,

where
λσi (si) + (1− λ)σi (si) ∈ [0, 1]

and ∑
si∈Si

λσi (si) + (1− λ)σi (si) = λ
∑
si∈Si

σi (si) + (1− λ)
∑
si∈Si

σi (si) = 1.

Hence, λσi + (1 − λ)σ′
i ∈ ∆(Si); i.e., ∆Si is convex. Since ∆S is a product set of convex set, it is

also convex. ■

Lemma 5. For each i ∈ N , ∆Si is compact. Therefore, ∆S is compact.

Proof. By Balzano-Wierstrass Theorem, it suffices to show that ∆Si is closed and bounded. ∆Si

is clearly bounded (by a vector of zeros and ones). To show that ∆Si is closed, take any sequence
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(σi,k)k in ∆Si such that σi,k → σi. Since 0 ≤ σi,k(si) ≤ 1 for all si ∈ Si and k ∈ N, we must
have 0 ≤ σi(si) ≤ 1. Moreover, since

∑
si∈Si

σi,k(si) = 1 for all k ∈ N, we must also have∑
si∈Si

σi(si) = 1. That is, σi ∈ ∆Si so that ∆Si is closed. ■

Proof using Brouwer’s theorem. We first prove the result using Brouwer’s theorem.4 Define ∆S :=

×i∈NSi and f : ∆S → ∆S as follows: for any σ ∈ ∆S, for each player i ∈ N and each si ∈ Si,

fi (σ, si) :=
σi (sij) + max {0, ui (δsi , σ−i)− ui (σ)}

1 +
∑

s′i∈Si
max

{
0, ui

(
δs′i , σ−i

)
− ui (σ)

} ,
where δsi ∈ ∆Si is such that δ(s′i) = 1 if and only if s′i = si. For each i ∈ N , define fi(σ) :=

(fi(σ, si))si∈Si
and f(σ) := (fi(σ))i∈N . Observe that, for any i ∈ N ,∑

si∈Si

fi (σ, si) = 1 and fi (σ, si) ≥ 0 ∀si ∈ Si.

Hence, fi(σ) ∈ ∆Si for all i ∈ N and f(σ) ∈ ∆S. That is, f is a self-map on ∆S. Moreover, observe
that fi(·, si) is continuous for each si ∈ Si (numerator and the denominators are both continuous
and the denominator is bounded away from zero). Thus, f is a continuous self-map on ∆S that is
nonempty, compact and convex. The Brouwer’s fixed point theorem gives a point σ∗ that is a fixed
point of f ; i.e., f(σ∗) = σ∗ and fi(σ

∗, si) = σ∗
i (si) for all i ∈ N and all si ∈ Si. In other words,

σ∗
i (si)

∑
s′i∈Si

max
{
0, ui

(
δs′i , σ

∗
−i

)
− ui (σ

∗)
}
= max

{
0, ui

(
δsi , σ

∗
−i

)
− ui (σ

∗)
}
.

Multiplying both sides by ui(δsi , σ
∗
−i)− ui(σ

∗) and summing over si gives∑
si∈Si

σ∗
i (si)

[
ui

(
δsi , σ

∗
−i

)
− ui (σ

∗)
] ∑
s′i∈Si

max
{
0, ui

(
δs′i , σ

∗
−i

)
− ui (σ

∗)
}

=
∑
si∈Si

[
ui

(
δsi , σ

∗
−i

)
− ui (σ

∗)
]
max

{
0, ui

(
δsi , σ

∗
−i

)
− ui (σ

∗)
}
.

Observe that the left-hand side is zero because
∑

si∈Si
σ∗
i (si) = 1 and

∑
si∈Si

σ∗
i (si)ui(δsi , σ

∗
−i) =

ui(σ
∗). Hence,

0 =
∑
si∈Si

[
ui

(
δsi , σ

∗
−i

)
− ui (σ

∗)
]
max

{
0, ui

(
δsi , σ

∗
−i

)
− ui (σ

∗)
}
.

But the summation on the right-hand side can be zero only if ui(δsi , σ
∗
−i) ≤ ui(σ

∗) for all si ∈ Si

and all i ∈ N . But any σi ∈ ∆Si, ui(σi, σ
∗
−i) is a convex combination of {ui(δsi , σ

∗
−i)}si∈Si so we

must have ui(σ
∗) ≥ ui(σi, σ

∗
−i) for all σi ∈ ∆Si. Thus, σ∗ is a mixed-strategy Nash equilibrium. ■

Proof using Kakutani’s theorem. For any i ∈ N , define the best response correspondence by

Bi (σ−i) := argmax
σ′
i∈∆Si

ui (σ
′
i, σ−i) .

Notice that Bi implies the equilibrium condition for player i. Since ui is linear in σi by construction,
4The proof is from Jehle and Reny.
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it is continuous. Moreover, ∆Si is compact so that by the theorem of maximum, Bi is nonempty,
compact-valued and upper hemicontinuous on ∆S−i := ×j ̸=i∆Sj . Moreover, since ui is linear in σ,
Bi is convex-valued as well (i.e. Bi(σi, σ−i) is convex for all σi ∈ ∆Si). Define B : ∆S ⇒ ∆S by

B (σ) := (Bi (σ−i))i∈N .

Then B inherits the properties of Bi’s so that B is a nonempty-, compact-, convex-valued, upper-
hemicontinuous correspondence. Since ∆S is compact and convex, we can then appeal to Kakutani’s
fixed point theorem to conclude that there exists σ∗ ∈ ∆S such that σ∗ ∈ B(σ∗) and σ∗ is a mixed-
strategy Nash equilibrium. ■

4 Contraction

Definition 5. A metric on an nonempty set X is a function ρ : X2 → R that satisfies the following
conditions:

� (nonnegativity) ρ(x, y) ≥ 0 ∀x, y ∈ X;

� (identity of indiscernibles) ρ(x, y) = 0 ⇔ x = y;

� (symmetry) ρ(x, y) = ρ(y, x) ∀x, y ∈ X;

� (triangle inequality) ρ(x, y) ≤ ρ(x, z) + ρ(y, z) ∀x, y, z ∈ X.

A metric space is a pair (X, ρ) where X is a nonempty set and ρ is on X.

Example 1 (Examples of metric spaces). ‌

(i) Euclidean metric space. (Rd, ∥ · ∥d), where ∥ · ∥d is the Euclidean distance given by

∥x− y∥d =

√√√√ d∑
i=1

(xi − yi)
2
.

(ii) Discrete metric space. (X, ddiscrete), where X ̸= ∅ and

ddiscrete (x, y) = 1{x ̸=y}.

(iii) Product metric spaces. If (X, ρX) and (Y, ρY ) are metric spaces, then (X × Y, ρ) is a metric
space where

ρ ((x1, y1) , (x2, y2)) := [(ρX (x1, x2))
p
+ (ρY (y1, y2))

p
]
1/p (1)

for any p ≥ 1.

(iv) Space of continuous functions. Given a nonempty set X, let C(X) denote the set of continuous
real-valued functions on X. Then, (C(X), ∥ · ∥∞) is a metric space, where ∥ · ∥∞ is the sup-
norm given by

∥f∥∞ := sup {|f (x)| : x ∈ X} .
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Definition 6. Given a metric space (X, ρ), a sequence (xn)n in X is Cauchy if, for any ϵ > 0,
there exists N ∈ N such that ρ(xn, xm) < ϵ for all m,n > N. A metric space (X, ρ) is complete if
every Cauchy sequence is convergent; i.e., if X contains limit points of all Cauchy sequences in X.

Remark 7. Just as when X was a Euclidean space, one can show that (i) every convergent sequence
is Cauchy but not every Cauchy sequence is convergent; (ii) A sequence in product metric space is
Cauchy if and only if each component-wise sequence is Cauchy; (iii) Cauchy sequences are bounded
and has at most one limit point. However, not all metric spaces are complete (e.g., (Q, | · |) is a
metric space that is not complete).

Fact 1. (C(X), ∥ · ∥∞) is a complete metric space.

Let (X, ρ) be a metric space. A self-map f : X → X is a contraction (with modulus r) if there
exists r ∈ [0, 1) such that

ρ (f (x) , f (y)) ≤ rρ (x, y) ∀x, y ∈ X.

Intuitively, the distance between x and y contracts—i.e., shrinks—when we apply the function f

to both points. Note that r is a Lipchitz constant so that a if f if is contraction then f must
be continuous. The following establishes that this contraction property of a self-map is sufficient
to guarantee the existence of a unique fixed point. The result is called the contraction napping
theorem or the Banach contraction principle.

Theorem 7 (Contraction Mapping Theorem). Let (X, ρ) be a complete metric space and f : X →
X be a contraction. Then, f has a unique fixed point; i.e., there exists a unique x∗ ∈ X such that
x∗ = f(x∗).

Proof. Fix x0 ∈ X. Define recursively a sequence (xn)n in X by xn+1 := f(xn). Since f is a
contraction, for some r ∈ [0, 1), for each n ∈ N,

ρ (xn+1, xn) = ρ (f (xn) , xn)

= ρ (f (f (xn−1)) , f (xn−1))

≤ rρ (f (xn−1) , xn−1)

Note also that

ρ (f (xn−1) , xn−1) = ρ (f (f (xn−2)) , f (xn−2))

= rρ (f (xn−2) , xn−2)

⇒ ρ (xn+1, xn) ≤ r2ρ (f (xn−2) , xn−2) .

By induction, we may conclude that

ρ (xn+1, xn) ≤ rnρ (f (x0) , x0) . (2)

By Triangular Inequality, we have that

ρ (xn, xm) ≤ ρ (xn, z) + ρ (z, xm) ∀z ∈ X.
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Let m = n+ 2, then we can let z = xn+1 to obtain that:

ρ (xn, xn+2) ≤ ρ (xn, xn+1) + ρ (xn+1, xn+2)

Now suppose m = n+ 3, letting z = xn+1 again, we obtain

ρ (xn, xn+3) ≤ ρ (xn, xn+1) + ρ (xn+1, xn+3) .

Consider ρ(xn+1, xn+3), using the Triangular Inequality again with z = xn+2, we have

ρ (xn+1, xn+3) ≤ ρ (xn+1, xn+2) + ρ (xn+2, xn+3) .

Combining the two,

ρ (xn, xn+3) ≤ ρ (xn, xn+1) + ρ (xn+1, xn+2) + ρ (xn+2, xn+3) .

Thus, for any n,m ∈ N with m > n,

ρ (xn, xm) ≤
m−1∑
j=n

ρ (xn, xn+1) .

We can now use 2 to obtain that

ρ (xn, xm) ≤
m−1∑
j=n

rjρ (f (x0) , x0) .

Note that

m−1∑
j=n

rj ≤
m−1∑
j=n

rj +

∞∑
j=m

rj =

∞∑
j=n

rj

= rn + rn+1 + · · · = rn
(
1 + r + r2 + · · ·

)
= rn

∞∑
i=0

ri

=
rn

1− r
.

Hence, we can write

ρ (xn, xm) ≤ rn

1− r
ρ (f (x0) , x0) .

For any ϵ > 0, let N ∈ N be such that

rN

1− r
r (f (x0) , x0) = ϵ.

Then for any m,n > N , rn, rm < rN (assuming, without loss of generality, m > n) so that

ρ (xn, xm) ≤ rn

1− r
ρ (f (x0) , x0) <

rN

1− r
ρ (f (x0) , x0) .

Hence, (xn)n is a Cauchy sequence. Since (xn)n is a Cauchy sequence and (X, ρ) is complete, then
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xn → x∗ ∈ X so that:
lim

n→∞
ρ (f (xn) , xn) = ρ (f (x∗) , x∗) .

Now, because

0 ≤ ρ

f (xn)︸ ︷︷ ︸
=xn+1

, xn

 ≤ rn

1− r
ρ (f (x0) , x0) ,

as n → ∞, ρ(f(xn), xn) → 0. Therefore,

lim
n→∞

ρ (f (xn) , xn) = ρ (f (x∗) , x∗) = 0;

so that x∗ = f(x∗).
For uniqueness, suppose that x∗ = f(x∗) and y∗ = f(y∗) for some x∗, y∗ ∈ X. Then,

ρ (x∗, y∗) = ρ (f (x∗) , f (y∗)) ≤ rρ (x∗, f∗)

which implies that ρ (x∗, y∗) = 0 (since r ̸= 0) and hence x∗ = y∗. ■

Remark 8. Observe that the proof tells us that we can start from any point in X and get to a fixed
point by iteration. Thus, unlike most other fixed point theorems, Contraction Mapping Theorem
tells us how to find the unique fixed point as well as proving its existence. You will use this property
a lot in dynamic programming (e.g., in macroeconomics although these can crop up in IO as well
as in dynamic games).

Let us give some sufficient conditions for a function to be a contraction.

Proposition 3 (Blackwell’s Test). Let X be a compact metric space. Suppose that W : C(X) →
C(X) is a self-map on C(X). Then, W is a contraction with modulus β if

(i) W is increasing, i.e., W (f) ≥ W (g) for all f, g ∈ C(X) such that f ≥ g;

(ii) for all (f, α) ∈ C(X)× R+, there exists β ∈ (0, 1) such that W (f + α) ≤ W (f) + βα.

Proof. Suppose that f ≥ g, which implies that f + ∥f − g∥∞ ≥ g. Since W is increasing, this
implies that

W (f + ∥f − g∥∞) ≥ W (g) .

Using property (ii),
W (f) + β ∥f − g∥∞ ≥ W (f + ∥f − g∥) ≥ W (g) ,

which rearranges to
β ∥f − g∥∞ ≥ W (g)−W (f) .

Now suppose that g ≥ f , then we can obtain that

β ∥f − g∥∞ ≥ W (f)−W (g) .

That is,
β ∥f − g∥∞ ≥ |W (f)−W (g)| .
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This inequality holds for all x ∈ X, and in particular, it holds for x∗ = argmaxx∈X |W (f)−W (g)|.
That is, there exists β ∈ (0, 1) such that

ρ (W (f) ,W (g)) ≤ βρ (f, g)

so that W is a contraction. ■

4.1 Example: Bellman equation

In many economic problems, especially when dynamics are considered, the following type of problem
are of interest: given x0 ∈ X,

V ∗ (x0) = max
(xt)∞t=0⊂X

∞∑
t=0

βtF (xt, xt+1) s.t. xt ∈ Γ (xt−1) ∀t ∈ N, (3)

where β ∈ (0, 1), X ⊆ R is a compact metric space, F is bounded and continuous and Γ : X ⇒ X

is a compact-valued and continuous correspondence. We can interpret equation (3) as follows:
A forward-looking economic agent is optimising the life-time objective, with the same objective
function (say utility) in each period, and β being the discount factor. The problem is complicated
because, in each period, current choice xt may enter into current period flow payoff and the next
period flow payoff (since F depends on both xt and xt+1). Moreover, current choice xt may affect
the feasible choices in the future (since xt ∈ Γ (xt−1)). It is well-known that this problem, under
the conditions provided above, has a solution.

We take as given the Principle of Optimality which tells us that we may consider the first-period
decision separately, setting aside all future decisions.5 So consider the choice of x1 by rearranging
equation (3) as below:

V ∗ (x0) = max
x1∈Γ(x0)

[
F (x0, x1) + β

[
max

(xt)∞t=1

∞∑
t=1

βt−1F (xt, xt+1) s.t. xt ∈ Γ (xt−1) ∀t ≥ 1

]]
.

The inner maximisation problem is, in fact, the value of the t = 1 decision problem, given x1. Thus,
we can write the expression above as a recursive definition of the value function V ∗:

V ∗ (x0) = max
x1∈Γ(x0)

[F (x0, x1) + βV ∗ (x1)] .

The Bellman operator W : C(X) → C(X) is defined as

W (V ) (x) := max
y∈Γ(x)

F (x, y) + βV (y) ∀x ∈ X.

By the Contraction Mapping Theorem (Theorem 7), if W is a contraction, since C(X) is a complete
metric space, there exists a unique fixed point. That is, there exists a unique V : X → X such that

V (x) = max
y∈Γ(x)

F (x, y) + βV (y) , (4)

5We need Γ to be non-empty valued, limn→∞
∑n

t=0 β
tF (xt, xt+1) exists for all x0 ∈ X and (x0, x1, . . .) ∈ Γ(x0)

(i.e., all feasible plans can be evaluated) and the solution to Bellman equation satisfies the transversality condition
limn→∞ βnV (xn) = 0 holds for all (x0, x1, . . .) ∈ Γ(x0) and all x0 ∈ X.
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which then implies that V = V ∗. This gives a useful characterisation of the solution of the problem
equation (3), which we call equation (4) the Bellman equation.

To show that the Bellman operator is a contraction, we can use the Blackwell’s test.

Claim 1. The Bellman operator

W (V ) (x) := max
y∈Γ(x)

F (x, y) + βV (y) ∀x ∈ X

is a contraction.

Proof. First, if β > 0, then, V (x) ≥ V ′(x) for all x ∈ X implies that

W (V ) (x) = max
y∈Γ(x)

F (x, y) + βV (y) ≥ max
y∈Γ(x)

F (x, y) + βV ′ (y) = W (V ′) (x)

so that W is increasing. For α ∈ R+,

W (V + α) (x) = max
y∈Γ(x)

F (x, y) + β [V (y) + α]

=

[
max
y∈Γ(x)

F (x, y) + V (y)

]
+ βα

= W (V ) (x) + βα.

Since both conditions of the Blackwell’s test are satisfied, we conclude that W is a contraction. ■

Remark 9. Define g(x) as the policy function that solves the right-hand side of (4). We do not
(at the moment) know whether V is differentiable. However, by our monotone comparative statics
results, if F has single-crossing differences in (y, x) and Γ is increasing (in the set-inclusion order),
then the objective function of the problem has single-crossing differences. If we also know that the
objective function is quasi-supermodular in y for all x, then it follows that g(x) is increasing in x.

- 14 -


	1 Recap
	2 LatticeThe section is based on lecture notes by Federico Echenique and John Quah.
	2.1 Example: Pure-strategy Nash equilibria in quasi-supermodular games
	2.2 Example: Stable matching

	3 Continuity
	3.1 Example: Mixed-strategy Nash equilibrium

	4 Contraction
	4.1 Example: Bellman equation


