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1 Correspondences

Many economic problems have more than one “answer” at a time: multiple solutions of a constrained
optimisation problem, multiple equilibria of a game or a market, etc. A function from parameters of
the problem to its answer cannot capture this multiplicity, since functions are by definition single-
valued. We thus need a “multi-valued” function, which we formally define as a correspondence.

Definition 1. A correspondence F from a nonempty set X to a nonempty set Y , denoted1

F : X ⇒ Y,

maps every element in X to not-necessarily unique elements in Y .2 Equivalently, a correspondence
F is a function from X to 2Y (i.e., set of all subsets of Y ). Given a correspondence F : X ⇒ Y , X
is referred to as the domain and Y as the codomain, and its range is given by

F (X) :=
⋃
x∈X

F (x) .

Definition 2. A correspondence F : X ⇒ Y is closed-valued if F (x) is closed for all x ∈ X; it is
compact-valued if F (x) is compact for all x ∈ X; it is convex-valued if F (x) is convex for all x ∈ X;
it is nonempty-valued if F (x) ̸= ∅ for all x ∈ X.

Definition 3. The graph of a correspondence F : X ⇒ Y , denoted gr(F ), is the set of points
{(x, y) ∈ X × Y : y ∈ F (x)}. (Compare to the graph of a function.)

Example 1 (Budget correspondence). Consider a correspondence B : Rd+1
++ ⇒ Rd

+ defined as

B (p,m) :=
{
x ∈ Rd

+ : p · x ≤ m
}
.

This correspondence gives the the budget set given any strictly positive prices p ∈ Rd
++ and income

w ∈ R++.
∗Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes

are heavily based.
1You may also see F : X ⇒ Y as well as F : X ↠ Y .
2Recall that a function f : X → Y maps every element of X to a unique element in Y .
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Example 2 (Solution correspondence). Given a function f : X → Y and some set G ⊆ X,

max
x∈G

f (x) := max {f (x) : x ∈ Γ} ,

argmax
x∈G

f (x) :=

{
x ∈ X : x ∈ Γ, f (x) = max

y∈G
f (y)

}
.

Let Γ : Θ ⇒ X be a correspondence and f : X → R be a function given some set Θ and X.
Consider the following constrained maximisation problem

max
x∈Γ(θ)

f (x) ,

where Γ(·) is a constraint correspondence. We can define a solution correspondence X∗ : Θ ⇒ X

as
X∗ (θ) := argmax

x∈Γ(θ)

f (x) .

2 Continuity of correspondences

Throughout, we will assume that X ⊆ Rd and Y ⊆ Rq are Euclidean spaces (with d, q ∈ N). Recall
that a function f : X ⊆ Rd → Y ⊆ Rq is continuous if and only if f−1(O) is open for any open
subset O of Y (recall problem set 4). To extend this definition to correspondences, we must first
decide how to define the inverse image of a set under F . Given a subset S ⊆ Y , note that

f−1 (S) ≡ {x ∈ X : f (x) ∈ S}

= {x ∈ X : {f (x)} ⊆ S} (1)

= {x ∈ X : {f (x)} ∩ S ̸= ∅} . (2)

The expressions (1) and (2) represent two views on what it means by “f(x) ∈ S”: Expression (1)
interprets it to mean all y ∈ F (x) is in S, while (2) interprets it to mean that at least one y ∈ F (x)

exists that belongs in S.
If we follow (1), we get the upper inverse image of F :

F−1 (S) := {x ∈ X : F (x) ⊆ S} ∀S ⊆ Y.

If we follow (2), we get the lower inverse image of F :

F−1 (S) := {x ∈ X : F (x) ∩ S ̸= ∅} ∀S ⊆ Y.

Above suggests there are at least two “genuine” ways (in the sense that the definition reduces to the
usual continuity of functions when F is single-valued) of defining continuity. The first way, called
upper hemicontinuity, captures the idea that moving slightly away from a point x ∈ X does not
cause F (x) to become “much larger.” The second way, called lower hemicontinuity, captures the
idea that moving slightly away from a point x ∈ X does not cause F (x) to become “much smaller.”

Definition 4. A correspondence F : X ⊆ Rd ⇒ Y ⊆ Rq is

� upper hemi-continuous at x ∈ X if, for any open subset O ⊆ Y such that F (x) ⊆ O, there
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exists ϵ > 0 such that F (Bϵ(x)) ⊆ O.

� lower hemi-continuous at x ∈ X if, for any open subset O ⊆ Y such that F (x)∩O ̸= ∅, there
exists ϵ > 0 such that F (z) ∩O ̸= ∅ for all z ∈ Bϵ(x).

The correspondence F is upper (resp. lower) hemi-continuous if it is upper (resp. lower) continuous
at all x ∈ X.

Proposition 1. F : X ⊆ Rd ⇒ Y ⊆ Rq is upper hemi-continuous (resp. lower hemi-continuous)
if and only if F−1(O) (resp. F−1(O)) is open for every open O ⊆ Y .

Proof. (Upper hemi-continuity) Suppose F−1(O) is open for every open O ⊆ Y . Fix some x ∈ X

and take any open O ⊆ Y such that F (x) ⊆ O (i.e., x ∈ F−1(O)). Then, by the hypothesis,
F−1(O) is open and so there exists ϵ > 0 such that Bϵ(x) ⊆ F−1(O). This, in turn, implies that
F (Bϵ(x)) ⊆ F (F−1(O)) = O. Hence, F is upper hemi-continuous. Conversely, suppose F is upper
hemi-continuous. Choose some open O ⊆ Y . Pick some x ∈ F−1(O). Then, F (x) ⊆ O. To show
that F−1(O) is open, we need to show that there exists ϵ > 0 such that Bϵ(x) ⊆ F−1(O). To that
end, because F is upper hemi-continuous, there exists ϵ > 0 such that F (Bϵ(x)) ⊆ O. This implies
that Bϵ(x) = F−1(F (Bδ(x))) ⊆ F−1(O).

(Lower hemi-continuity) Suppose F−1(O) is open for every open O ⊆ Y . Fix some x ∈ X

and take any open O ⊆ Y such that F (x) ∩ O ̸= ∅ (i.e., x ∈ F−1(O)). Then, by hypothesis,
F−1(O) is open so that there exists ϵ > 0 such that Bϵ(x) ⊆ F−1(O). This, in turn, implies that
F (Bϵ(x)) ⊆ F (F−1(O)) = O. Conversely, suppose F is lower hemi-continuous. Choose some open
O ⊆ Y . Pick some x ∈ F−1(O). Then, F (x) ∩ O ̸= ∅. We want to show that F−1(O) is open.
Because F is lower hemi-continuous, there exists ϵ > 0 such that F (z) ∩ O ̸= ∅ for all z ∈ Bϵ(x).
That is, Bϵ(x) ⊆ F−1(O). ■

Remark 1. A correspondence F : X ⊆ Rd ⇒ Y ⊆ Rq is called singleton-valued if F (x) is a singleton
for all x ∈ X. In this case, we can define a function f : X → Y via f(x) ∈ F (x) for all x ∈ X.
Now consider the definition of hemi-continuity when F is singleton-valued. Upper hemi-continuity
at x ∈ X says that, for any open subset O ⊆ Y such that F (x) = {f(x)} ⊆ O meaning f(x) ∈ O,
there exists ϵ > 0 such that f(Bϵ(x)) ⊆ O. Lower hemi-continuity at x ∈ X says that, for any open
subset O ⊆ Y such that F (x)∩O = {f(x)}∩O ̸= ∅ meaning f(x) ∈ O there exists ϵ > 0 such that
F (z) ∩ O = {f(z)} ∩ O ̸= ∅ for all z ∈ Bϵ(x) meaning f(Bϵ(x)) ⊆ O. Therefore, we see that the
two definitions of hemi-continuity leads to the same condition that is equivalent to the continuity
of function f at x.3 Then, problem set 4 tells us that if a correspondence is singleton-valued, then
both upper and lower hemi-continuity implies continuity of f .

Proposition 2. Let F : X ⊆ Rd ⇒ Y ⊆ Rq be a correspondence.

(i) F is upper hemi-continuous at x ∈ X if, for any sequence (xn)n in X and any sequence (yn)n

in Y such that xn → x and yn ∈ F (xn) for all n ∈ N, there exists a subsequence of (yn)n that
converges to a point in F (x). If F is compact-valued, then the converse is also true.

3To see how this condition implies continuity of f at x, fix r > 0. Let Aϵ(f(x)) be an open ball centred at
f(x) with radius ϵ > 0. Since Aϵ(f(x)) is an open subset of Y that contains f(x), there exists δ > 0 such that
f(Bδ(x)) ⊆ Aϵ(f(x)). In other words, there exists δ > 0 such that for any x′ ∈ X such that ∥x′ − x∥ < δ, we have
∥f(x′)− f(x)∥ < ϵ. Hence, f is continuous at x.
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(ii) F is lower hemi-continuous at x ∈ X if and only if, for any sequence (xn)n in X with xn → x

and y ∈ F (x), there exists a sequence (yn)n in Y and N ∈ N such that yn → y and yn ∈ F (xn)

for all n > N .

Remark 2. In words, (when the correspondence is compact-valued) upper hemi-continuity is the
property that any sequence in the correspondence converges to a limit in the correspondence. Lower
hemi-continuity is the property that any point in the correspondence (which need not be compact-
valued) can be reached by a sequence in a correspondence. In characterising lower hemi-continuity
using sequences, we do not require yn ∈ F (xn) for all n ∈ N to account for the possibility that
F (xn) may be empty.4

Remark 3. Some textbooks have different definitions and different assumptions about the domain
and codomain. I adopt the definition from Efe Ok’s textbook, Real Analysis with Economic Ap-
plications while (i) imposing that the domain and codomain are always Euclidean spaces, and (ii)
allowing the correspondence to take the “value” ∅ (i.e., a correspondence from X to Y is a function
X → 2Y and not X → 2Y \{∅}).

Definition 5. A correspondence F : X ⊆ Rd ⇒ Y ⊆ Rq is closed at x ∈ X if, for all sequences
(xn)n in X and (yn)n in Y such that xn → x, yn → y ∈ Y and yn ∈ F (xn) for all n ∈ N, we have
y ∈ F (x). The correspondence F has the closed graph property if F is closed at all x ∈ X.

Remark 4. In words, F is closed at x ∈ X if some points in the image of points nearby x (i.e.,
points around F (x′) where x′ is near x) concentrate around a particular point y in Y , that point y
must be contained in the image of x (i.e., F (x)).

Proposition 3. Let F : X ⊆ Rd ⇒ Y ⊆ Rq be a correspondence. If F is closed at x ∈ X, then
F (x) is a closed set.

Proof. Take any convergent sequence (yn)n in F (x) such that yn → y ∈ Y . We must show that
y ∈ F (x) Let (xn)n be a constant sequence in X by defining xn = x for all n ∈ N. Then, xn → x,
yn → y and yn ∈ F (xn) = F (x) for all n ∈ N. Because F is closed at x, it follows that y ∈ F (x). ■

Exercise 1 (PS6). Give an example of a correspondence F : X ⇒ Y such that F (x) is closed for
some x ∈ X but F is not closed at x.

Proposition 4. A correspondence F : X ⊆ Rd ⇒ Y ⊆ Rq has the closed graph property if and
only if gr(F ) is closed in the product space X × Y .5

Proof. Take a sequence (xn)n in X and sequence (yn)n in Y such that xn → x, yn → y ∈ Y and
yn ∈ F (xn) for all n ∈ N. Because gr(F ) is closed in X × Y , and (xn, yn) → (x, y), we have
(x, y) ∈ gr(F ); i.e., y ∈ F (x) so that F is closed at x ∈ X. Conversely, suppose that F has the
closed graph property. To show that gr(F ) is closed, it suffices to show that any convergent sequence
(xn, yn)n in gr(F ) converges to a point in gr(F ). Then take any sequence (xn, yn) → (x, y) ∈ X×Y .
Then, xn → x and yn → y (why?) and that (xn, yn) ∈ gr(F ) implies yn ∈ F (xn) for all n ∈ N.
Because F has the closed graph property, we must have y ∈ F (x); i.e., (x, y) ∈ gr(F ). ■

4If we had required F to be nonempty-valued, then we could have required that yn ∈ F (xn) for all n ∈ N in
characterising lower hemi-continuity using sequences.

5Recall that X ⊆ Rd and Y ⊆ Rq are equipped with metrics ∥ · ∥d and ∥ · ∥q respectively. We can use ∥ · ∥d+q as
the metric for X × Y .
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It is often easier to verify whether F has the closed graph property rather than checking whether
F is upper hemi-continuous directly.

Proposition 5. Let F : X ⇒ Y be a correspondence.

(i) If F has the closed graph property and Y is compact, then F is upper hemi-continuous.

(ii) If F is upper hemi-continuous and closed-valued, then F has the closed graph property.

Proof. (i) Fix some x ∈ X. We will use the sequential characterisation of upper hemicontinuity.
Consider a sequence (xn)n in X that converges to x ∈ X and a sequence (yn)n in Y such that
yn ∈ F (xn) for all n ∈ N. Since yn ∈ Y and Y is (sequentially) compact, there exists a subsequence
of (yn)n, (ynk

)k, that converges to some y ∈ Y . Because F has the closed graph property, in
particular, F is closed at x. Thus, we must have y ∈ F (x).

(ii) Suppose F is upper hemi-continuous and closed-valued. Consider sequences (xn)n in X and
(yn)n in Y such that xn → x, yn → y ∈ Y and yn ∈ F (xn) for all n ∈ N. We wish to show that
y ∈ F (x). By way of contradiction, suppose y /∈ F (x). Since F (x) is closed, Y \F (x) is open. Thus,
there exists ϵ > 0 such that Bϵ(y) ⊆ Y \F (x). This means that ∥y − y′∥ ≥ ϵ > 0 for all y′ ∈ F (x).
Define ϵ∗ := inf{∥y − y′∥ : y′ ∈ F (x)} > 0 and

T :=

{
z ∈ Y : inf {∥z − y′∥ : y′ ∈ F (x)} ≤ ϵ∗

2

}
.

Let us show that T is closed. We first show that the function f(y) := inf{∥y − y′∥ : y′ ∈ F (x)} is
continuous. To see this, for each z, z′ ∈ Y ,

f (z) = inf {∥z − y′∥ : y′ ∈ F (x)} ≤ inf {∥z − z′∥+ ∥z′ − y′∥ : y′ ∈ F (x)} = ∥z − z′∥+ f (z′)

and similarly,

f (z′) = inf {∥z′ − y′∥ : y′ ∈ F (x)} ≤ inf {∥z′ − z∥+ ∥z − y′∥ : y′ ∈ F (x)} = ∥z − z′∥+ f (z) .

Thus,
|f (z)− f (y)| ≤ ∥z − z′∥ ∀z, z′ ∈ Y

so that f is continuous. Now, take any sequence (zn)n in T that converges to some z ∈ Y . We wish
to show that z ∈ T . Since zn ∈ T for each n ∈ N and f is continuous,

f (zn) ≤
ϵ∗

2
∀n ∈ N ⇒ f (z) = lim

n→∞
f (zn) ≤

ϵ∗

2
.

Hence, z ∈ T ; i.e., T is closed. By construction F (x) ⊆ int(T ) and y /∈ T . But since F is upper
hemi-continuous at x, there exists δ > 0 such that F (Bδ(x)) ⊆ int(T ). That is, there exists N ∈ N
such that yn ∈ F (xn) ⊆ int(T ) for all n ≥ N . But then since T is a closed set and yn → y, we must
have y ∈ T ; a contradiction. ■

Corollary 1. Suppose Y is compact and let F : X ⇒ Y be a compact-valued correspondence. Then,
F has the closed graph property if and only if F is upper hemi-continuous.
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Proof. Since Y is compact, if F has the closed graph property, by Proposition (5), F is upper
hemi-continuous. Conversely, if F is upper hemi-continuous, then F has a closed graph property
because F being compact-valued implies that F is also closed-valued. ■

Exercise 2 (PS6). TFU: If a correspondence F : X ⇒ Y is upper hemi-continuous, then F (x) is
closed for every x ∈ X.

Exercise 3 (PS6). Are following correspondences upper hemi-continuous and/or lower hemi-
continuous?

F (x) =


{4− x, 2− x} , if x < 2,

[2− x, 4− x] , if 2 ≤ x ≤ 3,

{x− 3} , if x > 3.

G (x) =


{4− x, 2− x} , if x < 2,

[3− x, 5− x] , if 2 ≤ x ≤ 3,

{x− 3} , if x > 3.

Proposition 6. Let F : X ⊆ Rd ⇒ Y ⊆ R be a nonempty-valued correspondence. If F is compact-
valued and upper hemi-continuous, then maxF (x) is upper semi-continuous and minF (x) is lower
semi-continuous.

Proof. Fix any x ∈ X, since F is compact-valued, F (x) is compact and so maxF (x) = supF (x) and
minF (x) = inf F (x). Define f∗, f∗ : X → R pointwise as f∗(x) := maxF (x) and f∗(x) := minF (x).
To show that f∗ is upper semi-continuous, we show that for any α ∈ R, {x ∈ X : f∗(x) < α} is
open (in X). Observe that

F−1 ((−∞, α)) = {x ∈ X : F (x) ⊆ (−∞, α)} = {x ∈ X : supF (x) < α} = {x ∈ X : f∗ (x) < α} ,

Since (−∞, α) ⊆ R is open and F is upper hemi-continuous, F−1((−∞, α)) is open (Proposition
1). Now let (xn)n be a convergence sequence such that xn → x0 ∈ X. Fix ϵ > 0. Then, since x0

belongs to an open set {x ∈ X : f∗(x) < f∗(x0) + ϵ}, there is δ > 0 such that Bδ(x0) ⊆ {x ∈ X :

f∗(x) < f∗(x0) + ϵ}; i.e.,

f∗(x) ≤ f∗(x0) + ϵ ∀x ∈ X : |x− x0| < δ.

Hence, f∗ is upper semi-continuous.
To show that f∗ is lower semicontinuous, it suffices to show that, fixing α ∈ R, {x ∈ X : f∗(x) >

α} is open (in X). Observe that

F−1 ((α,∞)) = {x ∈ X : F (x) ⊆ (α,∞)} = {x ∈ X : inf F (x) > α} = {x ∈ X : f∗ (x) > α} ,

Since (α,∞) ⊆ R is open and F is upper hemi-continuous, F−1((α−∞)) is open (Proposition 1).
Now, let (xn)n be a convergence sequence such that xn → x0 ∈ X. Fix ϵ > 0. Then, since x0

belongs to an open set {x ∈ X : f∗(x) > f∗(x0)− ϵ}, there is δ′ > 0 such that Bδ′(x0) ⊆ {x ∈ X :

f∗(x) > f∗(x0)− ϵ}; i.e.,

f∗ (x) ≥ f (x0)− ϵ ∀x ∈ X : |x− x0| < δ′.
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Hence, f∗ is lower semi-continuous. ■

Remark 5. In the proof above, we showed that a function f : S ⊆ R → R is upper semi-continuous
(resp. lower semi-continuous) if {x ∈ X : f(x) < α} (resp. {x ∈ X : f(x) > α} is open for
all α ∈ R. The converse, in fact is true, so that we’ve in fact given another characterisation of
semi-continuity. This also gives us that f is upper semi-continuous (resp. lower semi-continuous)
if (and only if) {x ∈ X : f(x) ≥ α} (resp. {x ∈ X : f(x) ≤ α} is closed for all α ∈ R.

3 Berge’s theorem of the maximum

Definition 6. A correspondence is continuous if it is both upper hemi-continuous and lower hemi-
continuous.

We are now ready to state one of the most important theorems in optimisation.

Theorem 1 (Berge). Suppose Θ ⊆ Rd and X ⊆ Rq and let Γ : Θ ⇒ X be a nonempty-valued
and compact-valued correspondence that is continuous at some θ0 ∈ Θ, and f : X × Θ → R be
continuous. Define f∗ : Θ → R and X∗ : Θ ⇒ X by

f∗ (θ) := max
x∈Γ(θ)

f (x, θ) , X∗ (θ) := argmax
x∈Γ(θ)

f (x, θ) . (3)

Then,

(i) X∗ is nonempty-valued, compact-valued, upper hemi-continuous at θ0, and closed at θ0.

(ii) f∗ is continuous at θ0.

Let us make slightly stronger assumptions before we interpret.

Corollary 2. Suppose Θ ⊆ Rd and X ⊆ Rq and let Γ : Θ ⇒ X be a nonempty-valued, compact-
valued, continuous correspondence, and f : X×Θ → R be continuous. Define f∗ and X∗ as in (3).
Then,

(i) X∗ is a nonempty-valued, compact-valued, upper hemi-continuous correspondence.

(ii) f∗ is continuous.

Think of f as an objective function in an optimisation problem (e.g., utility), where x is the
variable that we are maximising with respect to (e.g., consumption) and θ is a parameter (e.g.,
prices). Then, Γ represent a set of constraints on x that can depend upon the parameter θ (e.g.,
budget constraint). Thus, inter alia, the Maximum Theorem tells us the following:

� A solution to the optimisation problem exists; e.g., solution to consumer’s maximisation
problem exists.

� The maximised objective function varies continuously with the parameter θ; e.g., maximised
utility is a continuous function of prices.

� Given parameter θ, the set of maximisers are compact and continuous; e.g., given prices, set
of optimal consumption bundles are compact and the set does not expand much when prices
change.
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Let us break down the proof of Theorem 1 into several Lemmata.
Existence is guaranteed by the Weierstrass Extreme Value Theorem as we demonstrate below.

Lemma 1. X∗ and f∗ are well-defined.

Proof. For every θ ∈ Θ, Γ(θ) is nonempty and compact, and f is continuous so that by the Extreme
Value theorem, X∗(θ) ̸= ∅. Hence, X∗(θ) and f∗(θ) = f(x∗, θ) for any x∗ ∈ X∗(θ) are well-defined
(i.e., nonempty). ■

Lemma 2. X∗ is compact-valued.

Proof. We wish to show that X∗(θ) is compact for all θ ∈ Θ. By definition, X∗(θ) ⊆ Γ(θ) for
each θ ∈ Θ and since Γ is compact-valued, Γ(θ) is compact. Since closed subsets of compact
sets are compact (why?), it suffices to show that X∗(θ) is closed for every θ ∈ Θ. To that end,
fix an arbitrary θ ∈ Θ. Take any convergent sequence (xn)n in X∗(θ). We wish to show that
xn → x ∈ X∗(θ); i.e., x ∈ Γ(θ) and f(x, θ) = f∗(θ). Since (xn)n is a sequence in Γ(θ) and Γ(θ) is
closed, xn → x ∈ Γ(θ). Since f(xn, θ) = f∗(θ) for all n ∈ N and f(·, θ) is continuous, it follows that
f(xn, θ) → f(x, θ) = f∗(θ). Thus, x ∈ X∗(θ) as we wanted. ■

The following makes it clear that we need the full continuity of f (i.e., both upper and lower
semicontinuity of f) in both arguments (x, θ).

Lemma 3. X∗ is closed at θ0.

Proof. Next, we show that X∗ is closed at θ0. Take any sequence (θn)n in Θ and a sequence (xn)n

in X such that θn → θ0 and xn → x0, and suppose xn ∈ X∗(θn) for all n ∈ N (i.e., xn ∈ Γ(θn)

and f(xn) = f∗(θn) for all n ∈ N). We must show that x0 ∈ X∗(θ0); i.e., x0 ∈ Γ(θ0) and
f(x0, θ0) = f∗(θ0).

By way of contradiction, suppose that x0 /∈ X∗(θ0). Since Γ is compact-valued (and thus closed-
valued) and Γ is upper hemi-continuous, By Proposition 5, Γ has a closed graph; i.e., x0 ∈ Γ(θ0).
Hence, x0 /∈ X∗(θ0) if and only if f(x0, θ0) ̸= f∗(θ0). By definition of f∗, this means that there exists
y0 ∈ Γ(θ0) such that f∗(θ0) = f(y0, θ0) > f(x0, θ0). By lower hemicontinuity of Γ (Proposition 2),
since we have xn → x0 and y0 ∈ Γ(θ0), we can find a sequence (yn)n in X such that yn → y0 and
yn ∈ Γ(θn) for each n ∈ N.

Claim 1. For sufficiently large n ∈ N, f(yn, θn) > f(xn, θn).

Proof. Define ϵ > 0 such that f(y0, θ0) − f(x0, θ0) > ϵ. Since f is continuous, in particular, it is
upper semicontinuous. Thus, by the ϵ-δ criterion, there exists δ > 0 such that

f (x, θ) ≤ f (x0, θ0) + ϵ ∀ (x, θ) ∈ X ×Θ : ∥(x, θ)− (x0, θ0)∥ < δ.

Since xn → x0 and θn → θ0, (xn, θn) → (x0, θ0) (in X ×Θ) so there exists N1 ∈ N such that

∥(x, θ)− (x0, θ0)∥ < δ ∀n > N1 ⇒ f (x0, θ0) + ϵ ≥ f (xn, θn) ∀n > N1.

By the choice of ϵ, f(y0, θ0) > f(x0, θ0) + ϵ, and so we have

f (y0, θ0) > f (x0, θ0) + ϵ ≥ f (xn, θn) ∀n > N1.
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Hence,
f (y0, θ0) > sup {f (xn, θn) : n > N1, n ∈ N} =: s.

Pick any e > 0 such that f(y0, θ0) − s > e. Since f is continuous, in particular, it is lower
semicontinuous. Then, a similar argument as to above shows that there exists N2 ∈ N such that

f (yn, θn) ≥ f (y0, θ0)− e > s ∀n > N2.

Then, define N := max{N1, N2}, so that

f (yn, θn) > s ≥ f (xn, θn) ∀n > N. ■

Since yn ∈ Γ(θn) for all n ∈ N, the claim contradicts the fact that xn ∈ X∗(θn) for all n ∈ N;
i.e., we must have x0 ∈ X∗(θ0). ■

Lemma 4. Suppose Z ⊆ Rd and Y ⊆ Rq and let F1, F2 : Z ⇒ Y with F1(z) ∩ F2(z) ̸= ∅ for all
z ∈ Z. Define F : Z ⇒ Y by F := F1 ∩ F2. If F1 is compact-valued and upper hemi-continuous at
z0 ∈ Z, and if F2 is closed at z0, then F is upper hemi-continuous at z0.

Proof. We will show that F is upper hemi-continuous at z0 using part (i) of Proposition 2. To
that end, take an arbitrary sequences (zn)n in Z and (yn)n in Y such that zn → z0 and yn ∈
F (zn) = F1(zn) ∩ F2(zn) for all n ∈ N. We want to show that there exists a subsequence of (yn)n
that converges to some y0 ∈ F (z0). Since F1 is compact-valued and upper hemi-continuous and
yn ∈ F1(zn) for all n ∈ N, by Proposition 2, there exists a subsequence (ynk

)k of (yn)n that converges
to y0 ∈ F1(z0). It remains to show that y0 ∈ F2(z0). Since ynk

→ y0, ynk
∈ F2(znk

) for all k ∈ N,
and zn → z0, that F2 is closed at z0 implies y0 ∈ F2(z0). That is, y0 ∈ F1(z0)∩F2(z0) = F (z0). ■

Lemma 5. X∗ is upper hemi-continuous.

Proof. Since Γ(θ) ∩ X∗(θ) = X∗(θ) ̸= ∅ for all θ ∈ Θ, Γ(θ) is compact-valued and upper hemi-
continuous. Moreover, by Lemma 3, X∗(θ) is closed at x0. Then, by lemma 4 (letting F1 = Γ and
F2 = X∗), we have that X∗(θ) = Γ(θ) ∩X∗(θ) is upper hemi-continuous. ■

Lemma 6. f∗ is continuous at θ0.

Proof. To show that f∗ is continuous at θ, we will show that, for any sequence (θn)n in Θ such
that θn → θ0, we have f∗(θn) → f∗(θ0). Since (f∗(θn))n is a sequence in R, it has a subsequence,
say (f∗(θnk

))k such that f∗(θnk
) → lim supn→∞ f∗(θn) (why?). Pick any xnk

∈ X∗(θnk
) so that

f∗(θnk
) = f(xnk

, θnk
) for each k ∈ N. Since X∗ is compact-valued and upper hemi-continuous at

x, by Proposition 2, there exists a subsequence of (xnk
)k, say (xnkℓ

)ℓ, that converges to a point
x0 ∈ X∗(θ0). By continuity of f , then

f∗
(
θnkℓ

)
= f

(
xnkℓ

, θnkℓ

)
→ f (x0, θ0) = f∗ (θ0) .

Since (f∗(θnk
))k is convergent, every subsequence of (f∗(θnk

))k must also converge to the same
limit. Thus, above shows that f∗(θ0) = lim supn→∞ f∗(θn). An analogous argument shows that
f∗(θ0) = lim infn→∞ f∗(θn). Thus, it follows that f∗(θ0) = limn→∞ f∗(θn). ■
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Proof of Theorem ??). Part (i) of the theorem follows from Lemma 2, Lemma 3 and Lemma 5.
Part (ii) of the theorem follows from Lemma 6. ■

Exercise 4 (PS6). Prove that the budget correspondence is continuous. What does the Berge’s
maximum theorem tell you about the consumer’s problem when the agent’s utility function is
continuous?

We will see how adding convexity to the corollary above gives us some additional properties on
X∗ and f∗. A correspondence Γ : Θ ⇒ X is convex-valued if Γ(θ) is convex for all θ ∈ Θ. Γ has a
convex graph if its graph, defined as

gr (Γ) := {(θ, x) ∈ Θ×X : x ∈ Γ (θ)} ,

is convex.

Theorem 2 (Maximum Theorem with concavity). Let Θ ⊆ Rd and X ⊆ Rq and let Γ : Θ ⇒ X be
a nonempty-valued, compact-valued, continuous correspondence and f : X ×Θ → R be continuous.
Define F ∗ and X∗ as in (3).

(i) If f(·, θ) is concave on X for each θ ∈ Θ and Γ is convex-valued, then X∗ is a convex-valued,
upper hemi-continuous correspondence.

(ii) If f(·, θ) is strictly concave on X for each θ ∈ Θ and Γ is convex-valued, then X∗ is a
continuous function.

(iii) If f is concave on X ×Θ and Γ has a convex graph, then f∗ is a concave function and X∗ is
a convex-valued, upper hemi-continuous correspondence.

(iv) If f is strictly concave on X × Θ and Γ has a convex graph, then f∗ is a strictly concave
function and X∗ is a continuous function.

Proof. (i) The fact that X∗ is upper hemi-continuous follows from the corollary to the Maximum
Theorem. Thus, it remains to show that X∗ is convex-valued; i.e., X∗(θ) is convex for all θ ∈ Θ.
Fix some θ ∈ Θ. Choose x1, x2 ∈ X∗(θ) and define xα := αx1+(1−α)x2 for some α ∈ (0, 1). Since
Γ(θ) is convex, xα ∈ Γ(θ). Then,

f (xα, θ) = f (αx1 + (1− α)x2, θ)

≥ αf (x1, θ) + (1− α) f (x2, θ)

= αf∗ (θ) + (1− α) f∗ (θ)

= f∗ (θ) ,

where the inequality follows from the concavity of f(·, θ). By definition of f∗, we must have
xα ∈ X∗(θ).

(ii) If f is strictly concave, then we would obtain f(xα, θ) > f∗(θ), which is a contradiction,
unless x1 ̸= x2, Hence, X∗(θ) must be unique. Recall that upper hemi-continuous single-valued
correspondence are continuous functions.
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(iii) Suppose θ1, θ2 ∈ Θ and define θα := αθ1+(1−α)θ2 for some α ∈ (0, 1). Pick x1 ∈ X∗(θ1) ⊆
Γ(θ1), x2 ∈ X∗(θ2) ⊆ Γ(θ2) and define xα := αx1 + (1−α)x2. Since θ1 ∈ Γ(θ1) and θ2 ∈ Γ(θ2) and
Γ has a convex graph, we must have xα ∈ Γ(θα).

f∗ (θα) = f∗ (αθ1 + (1− α) θ2)

≥ f (xα, θα)

= f (αx1 + (1− α)x2, αθ1 + (1− α) θ2)

≥ αf (x1, θ1) + (1− α) f (x2, θ2)

= αf∗ (θ1) + (1− α) f∗ (θ2) ,

where the first inequality follows from the fact that xα is feasible but not necessarily optimal at θα,
and the second inequality follows from the concavity of f on X ×Θ. Thus, we have shown that f∗

is concave in θ.
(iv) If f is strictly concave on X × Θ, the second inequality in the expression above is strict,

which implies that f∗ is strictly concave. ■

Theorem 3 (Maximum Theorem under quasiconcavity). Let Θ ⊆ Rd and X ⊆ Rq and let Γ :

Θ ⇒ X be a nonempty-valued, compact-valued, continuous correspondence, and f : X ×Θ → R be
continuous. Define f∗ and X∗ as in (3).

(i) If f(·, θ) is quasiconcave on X for each θ ∈ Θ and Γ is convex-valued, then X∗ is a convex-
valued, upper hemi-continuous correspondence.

(ii) If f(·, θ) is strictly quasiconcave on X for each θ ∈ Θ and Γ is convex-valued, then X∗ is a
continuous function.

Proof. (i) Following the same argument as in part (i) of the proof of the previous theorem, we have

f (xα, θ) = f (αx1 + (1− α)x2, θ)

≥ min {f (x1, θ) , f (x2, θ)} = f∗ (θ) .

Therefore, we must again have xα ∈ X∗(θ). (ii) follows from the fact that strictly quasiconcave
functions have a unique maximum. ■
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