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1 Solution Algorithm 2: Shooting Method

The sample codes provided by Ryan include four MATLAB functions (model.m,
model_ss.m, parameters.m, and resid.m) and one main program script (main_prog.m).
Additionally, we will use four helper functions (declare.m, gx_hx_alt.m, make_prime.m,
and passign.m) in the helper_functions folder.

1.1 Functions in the helper_functions Folder

1.1.1 passign.m

The function takes each field of the struct (a type of data structure that groups
variables together) and creates separate variables outside the function. If you call
passign(myStruct) and myStruct has fields a, b, and c, then after running the
function, you’ll have new variables a, b, and c with the values from myStruct in your
workspace.

1.1.2 declare.m

The function creates symbolic variables based on the input (either do declare A B
C, or do declare("A", "B", "C")), then puts those symbolic variables into a vector
named V and also assigns each variable individually in the workspace.

1.1.3 make_prime.m

The function takes a symbolic vector V and returns a new symbolic vector Vp with
the same elements as V but with each element’s name modified to include a _p suffix.

1.1.4 gx_hx_alt.m

The function takes inputs fy, fx, fyp, fxp (matrices of derivatives (or Jacobians)
from (log-)linearizing the model equations evaluted at the (log) steady state) and out-
puts gx and hx (policy matrices).

1.2 parameters.m

The function prepares a set of model parameters as fields in a param struct, allowing
them to be passed easily to other functions and scripts.
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1.3 model_ss.m

The function calculates steady-state values for state variables and jump variables
using formulas based on the model’s parameters. It returns these values in two vectors,
Xss and Yss, which represent states and jumps in steady state.

1.4 model.m

This function computes the log-linearized version of the RBC model using symbolic
calculations in MATLAB. It returns fxn, fyn, fxpn, fypn, and fn, representing the
log-linearized model matrices evaluated at log steady states.

1.5 resid.m (Main Function for Shooting Method)

The function calculates the residuals (differences) of the model equations based on
a guessed path for the variables over time. It helps assess how close the guessed paths
are to satisfying the model’s equations. Let’s break down each part of the code.

• function f = resid(XYv, ss, param, log_var): The function resid takes
four inputs:

– XYv: A matrix of size (# state + # jump, # time period) containing
guesses for the paths of variables in log deviations over time. In the sample
code, # time period is 500.

– ss: The log steady-state values of these variables.

– param: A struct with model parameters.

– log_var: Indices of variables that should be in log.

The function returns f, a matrix of size (# model equations, # time period)
where each row represents the residual of a model equation over time.

• passign(param): Uses passign to assign each parameter in param as a sepa-
rate variable, making them accessible by name.

• XYv = reshape(XYv,[8,numel(XYv)/8]) + ss(:): Reshapes XYv to an 8-
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row matrix (one row per variable) and adds back the log steady-state values ss.
This creates the variables in log over time.

• Converts the log variables in XYv back to levels by exponentiating them. Does
the same for the steady-state values in ss. We do this because the model questions
are in terms of level variables.

• We will create row vectors for states, jumps, next-period states, and next-period
jumps, each with a size of (1, # time period). To set this up, we first create
auxiliary row vectors of size (1, # time period + 1) for each variable.

– For the exogenous state that shocks our model, A, the first element in the
row vector will be the shock value, exp(log(ss(1))+siga). The remain-
ing elements in this vector will be the guessed path for A, represented by
XYv(1,:).

– For the endogenous state, K, the first element in the row vector will be its
steady state value in level, ss(2). The rest of the row vector will be our
guessed path for K, represented by XYv(2,:).

– For jumps, the first part of the row vector (in total # time period elements)
will contain the guessed path for the jump variable, and the final element
will be set to its steady state value in level.

To access present-time variables, take the first 500 (# time period) elements from
each auxiliary vector. For next-period variables, take the last 500 (# time period)
elements from each auxiliary vector.

• Finally, we create a matrix of size (# model equations, # time period). Each
equation is defined element-wise (using .*, ./, etc.) to handle paths over time.
Each row of the matrix represents the residuals of a particular equation over time.
If all equations are perfectly satisfied, f would be zero across all elements.

The resid function calculates the residuals for each model equation over a sequence
of time steps. By checking these residuals, you can see how close a guessed solution is
to satisfying the model’s equations dynamically.
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1.6 main_prog.m

For the main program script, we skip the explanation for the codes for plotting.

• param = parameters: Calls the parameters function to create a structure of
model parameters.

• passign(param): Unpacks the param struct, making each parameter accessible
as a variable.

• [Xss, Yss] = model_ss(param): Calculates the steady-state values in level
Xss (for state variables) and Yss (for jump variables) using the model_ss func-
tion.

• [fyn, fxn, fypn, fxpn, fn, log_var] = model(param): Calls the model func-
tion to compute the Jacobian matrices (fyn, fxn, fypn, fxpn), which represent
the model’s log-linearized dynamics.

• ss(log_var) = log(ss(log_var)): Converts certain steady-state values to logs.

• eta = [siga; 0]: Sets up a shock to GAM (the first state variable) with standard
deviation siga.

• Impulse response computation:

– Initializes X with a size matching the number of state variables, setting the
initial shock.

– Iteratively applies hx to compute the path of X over time in response to
the initial shock.

– Calculates the path of jump variables (Y) based on X using the policy
matrix gx.

• Shooting method:

– XYv = [X(:,2:end), zeros(2,1); Y(:,1:end)]: Sets up the initial guess
for X(t+1) and Y(t) in log deviations, based on the log-linearized model’s
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output. Note that it is fine if your initial guess a just a matrix of random
numbers, but a more educated guess saves time for computation.

– resid0 = resid(XYv, ss, param, log_var): Calculates initial residuals
to check if the current guess for paths is close to satisfying the model’s
equations.

– obj = @(x) resid(x, ss, param, log_var): Defines an anonymous func-
tion, obj, that calculates residuals for any given guess of paths (x) fixing
ss, param, and log_var.

– XpYshoot = fsolve(obj, XYv, options): Calls fsolve to adjust the
guess XYv until residuals are 0 for all model equations at each time.

– XYshoot = [X(:,1), XpYshoot(1:2,1:end-1); XpYshoot(3:end,:)]:
Combines the solution from fsolve with the initial state for a full path
solution, XYshoot.
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2 Decentralized Economy

2.1 Model Setup

Household’s Optimization Problem

Consider a household that chooses consumption and investment in shares of the
representative firm. The household’s objective is to maximize the following expected
life-time utility:

max
{Ct,Γt}

E0

∞∑
t=0

βt

{
C1−σ

t

1− σ
+ λt [WtNt + Γt−1(Dt + Pt)− Ct − ΓtPt]

}

where:

• λt is the Lagrange multiplier on the budget constraint at time t, representing the
shadow value of wealth.

• Wt is the wage rate at time t.

• Γt is the amount of shares of the representative firm held by the household at
time t.
Remark: Since we have a representative agent model, note that Γt = Γ = 1 (as
the representative agent owns the entire firm). However, we see this as one of the
market clearing conditions and still take the first-order condition with respect to
Γt to assign a value to firm ownership.

• Dt is the dividend paid by the representative firm at time t.

• Pt is the price of a share of the representative firm at time t.

Firm’s Optimization Problem

Remark: Note the difference from what we saw in the previous part of this course.
Recall the neoclassical growth model: we set it up so that the representative household
chose how much to invest in capital, while the representative firm solved an uncon-
strained optimization problem to maximize its profit. Here, the setting is different:
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The firm chooses the optimal levels of output, vacancies, investment, employment,
and capital stock, and pays a wage wt. The probability that a vacancy gets filled, Qt,
is taken as exogenous.

The firm’s objective function represents the discounted present value of profits, where
profits are defined as revenue minus costs:

max
{Yt,It,Vt,Kt+1,Nt+1}

E0

∞∑
t=1

βt

{
λt

λ0

[Yt −WtNt − It − ϕnVt]

+
1

λ0

Γ1,t [(1− δn)Nt−1 + VtQt −Nt]

+
1

λ0

Γ2,t [(1− δk)Kt + It −Kt+1]

+
1

λ0

Γ3,t

[
AtK

α
t N

1−α
t − Yt

]}

where:

• Γ1,t, Γ2,t, Γ3,t: Lagrange multipliers associated with the firm’s constraints. Have
nothing to do with Γt representing firm shares!

• Qt: Probability that a vacancy gets filled, assumed exogenous (so we do not
substitute the formula for Q just yet!).

• λt/λ0: Stochastic discount factor.
Remark: λ0 and λt are the same as in the household problem, representing the
shadow value of wealth in terms of marginal utility.
Intuition: Since the household owns the firm, it values the income flow generated
by the firm’s profits as part of its total wealth. The shadow value of this income
flow is, therefore, identical to the shadow value of wealth for the household. Thus,
the firm’s per-period profits are discounted accordingly.
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2.2 Key Equations

Optimality conditions for the representative household (follow from the
FOCs):

C−σ
t = λt

Intuition: This condition states that the Lagrange multiplier λt on the household’s
budget constraint is equal to the marginal utility of consumption, C−σ

t (we have seen
this result many times).

Pt = βEt

 (
Ct+1

Ct

)−σ

︸ ︷︷ ︸
Stochastic Discount Factor

(Pt+1 +Dt+1)


Intuition: This equation describes the optimal condition for holding shares. The

price of a share today, Pt, equals the discounted expected future payoff (next period’s

price Pt+1 plus dividend Dt+1), adjusted by the stochastic discount factor
(

Ct+1

Ct

)−σ

.

Optimality conditions for the representative firm (follow from the FOCs):

1 = βEt

[
λt+1

λt

At+1α

(
Kt+1

Nt+1

)α−1

+ 1− δk

]

Intuition: This condition (Euler equation for capital) represents the firm’s optimal
choice for capital - just the same as what we saw in the SPP. The left side represents
the "cost" of one unit of capital. The right side is the expected marginal benefit,
discounted by β and adjusted by the ratio of future to current marginal utility λt+1

λt
.

ϕn

Qt

= At

(
Kt

Nt

)α

(1− α)−Wt︸ ︷︷ ︸
Net Benefit of Hiring a Worker

+ βEt

[
λt+1

λt

(1− δn)
ϕn

Qt+1

]
︸ ︷︷ ︸

Continuation Value of Having This Worker

Intuition: This equation (Euler equation for labor) describes the firm’s optimal
choice for vacancies. The left side represents the cost per posting a vacancy, adjusted
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for the probability of successfully filling it. The right side represents the net marginal
benefit of filling this vacancy, which includes the net flow from the matched worker (the
marginal product of labor minus the wage) and the continuation value, representing
the savings from not having to hire this worker again in the next period.

2.3 Differences from SPP

The key differences between the solutions to the decentralized economy and social
planner problem are in the Euler equation for labor:

ϕn

Qt

= At

(
Kt

Nt

)α

(1− α)−Wt + βEt

[
λt+1

λt

(1− δn)
ϕn

Qt+1

]
(Decentralized)

ϕn

Mv(·)
= At

(
Kt

Nt

)α

(1− α) + βEt

[
λt+1

λt

(1− δn)
ϕn

Mv(·)

]
(Social Planner)

• In the Decentralized economy, the term Qt represents the probability that a
vacancy is filled in the market. This reflects the vacancy-filling process in a
decentralized labor market where firms consider the exogenous probability Qt

when posting vacancies (think of it as an externality).

• In the Social Planner setting, the term Mv(·) represents a planner-controlled
matching function that determines how vacancies and job seekers are matched.
This allows the planner to directly control the vacancy matching process, poten-
tially making it more efficient than the decentralized market.

• The decentralized equation includes the wage term Wt, which represents the
wage firms must pay workers in a competitive labor market. In the decentralized
economy, firms take this wage as given and consider it when deciding on vacancy
postings.

• The social planner’s equation does not include a wage term, as the planner inter-
nalizes the labor market dynamics and does not need to consider wages explicitly.
Instead, the planner directly optimizes the allocation of labor and capital without
facing a market wage constraint.
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We can rewrite these equations substituting Qt and Mc(·):

Qt =
Matches
Vacancies

=
χV ϵ

t S
1−ϵ
t

Vt

= χ

(
St

Vt

)1−ϵ

Mv(·) = χϵ

(
St

Vt

)1−ϵ

Remark: Remember that we make this substitution in equilibrium after we have
already computed the FOCs, not before!

After the substitution:

ϕn

χ
(

St

Vt

)1−ϵ = At

(
Kt

Nt

)α

(1−α)−Wt+βEt

λt+1

λt

(1− δn)
ϕn

χ
(

St+1

Vt+1

)1−ϵ

 (Decentralized)

ϕn

χϵ
(

St

Vt

)1−ϵ = At

(
Kt

Nt

)α

(1− α) + βEt

λt+1

λt

(1− δn)
ϕn

χϵ
(

St+1

Vt+1

)1−ϵ

 (Social Planner)

In a decentralized economy, individual firms do not consider the broader impact of
their hiring decisions on the labor market. Specifically:

• Crowding in the Labor Market: When a firm in a decentralized economy
posts an additional vacancy, it doesn’t account for how this increases competi-
tion for workers, making it harder for each vacancy to be filled. As more firms
post vacancies, the probability of successfully filling any given vacancy decreases,
leading to a "crowded" labor market. However, because individual firms do not
internalize this effect, they perceive the cost of posting vacancies to be lower
than it truly is at a societal level. By contrast, the social planner recognizes this
effect and internalizes it, effectively perceiving a higher cost of hiring. This is
reflected in the planner’s condition, where ϵ < 1 captures the diminishing returns
in matching efficiency as the labor market becomes more saturated.

• Private vs. Social Benefits of Labor: In the decentralized economy, the
firm’s private benefit from hiring additional labor (i.e., marginal product of labor
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- MPL) is reduced by the wage it must pay, which limits its incentive to hire
relative to the socially optimal level. The social planner, however, considers the
full marginal product of labor, without needing to "compensate" for wages, since
it views labor from a collective welfare perspective. As a result, the planner
values additional labor more highly, recognizing the full social benefit of hiring.

The Social Planner’s allocation is efficient, whereas the decentralized economy is
not, except in one particular case if

Wt = (1− ϵ)MPLt

i.e., when the firm’s perceived marginal benefit of labor equals the social marginal
benefit.

In this scenario, the decentralized firm would effectively "internalize" the social ben-
efit of hiring additional labor, as if it were considering the welfare impact of each
hiring decision on the entire economy. How to achieve this? Read the section "Nash
Bargaining of Wages" in the notes uploaded on Canvas.
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