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In Section notes

Review

(Potential) Properties of 7:
1. Rational + continuous

2. Strong monotonicity
= Weak version: local non-satiation (LNS)

3. Convexity
(Potential) Properties of w(.)
1. Continuity
2. (Quasi-) Concave
Relationship between properties of 7~ and u(.)
1. Continuous+Rational 22 = 3 continuous u(.) representing .
2. Monotonic 75 = u(.) is nondecreasing’.
3. Convex 77 (+ LNS) = Vu(.) representing 2, u(.) is quasi-concave.
Let the hessian of v be H, (z). We also have,
convex u(.) <= H,(z) P.S.D Vz
concave u(.) <= H,(z) N.S.D Vz
Properties of indirect utility function
1. V(p,w) is continuous in (p, w).
2. Non-increasing in p. Strictly increasing in w.
3. HoD 0.

The Bordered Hessian
The bordered Hessian is a determinant-based tool used to verify second-order conditions for constrained
optimization problems. Specifically, it applies to problems of the form:

max f(x1,22,...,7,)
st g(xy,x9,...,2,) =0,

where f is the objective function, and g is the constraint.
To construct the bordered Hessian, follow these steps:

1Strong Monotonicity — Strictly Increasing



1. Compute the Lagrangian:
L(x1,22,. .., Tn, A) = f(z1,22,...,2n) + Ag(z1, 22, ..., Tp).

2. Form the bordered Hessian matrix H, which has the following structure:

0 T
H=|0 Y|,
Vg VL
where:
e Vg is the gradient of the constraint function g,
e V2L is the Hessian matrix of the Lagrangian with respect to x1,za, ..., 2.

The bordered Hessian is evaluated at the candidate solution (z*, A*). For a maximization problem:

e The (n + 1)-th leading principal minor of H (the determinant of the upper-left (n + 1) x (n + 1) submatrix)
must alternate in sign:
(=1)* det(Hy) >0, fork=2,4,...,n+1,

where Hy, is the k-th leading principal minor of H.
e For minimization problems, all even-order leading principal minors must be positive.

Example
Consider the problem:
max  f(x1,22) = x122, st g(z1,22) =21 + 22 —1=0.

1. Compute the Lagrangian:
,C(IL'l, o, )\) =122 + )\(1’1 + T9 — 1)

1 0 1
ng, VZEL 0].
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0
1

2. Compute the gradients:

3. Form the bordered Hessian:

T

I
= = O
O = =

4. Check the minors for second-order conditions.

Conditions for Quasiconcavity and Concavity Based on the Bordered Hessian
1. Quasiconcavity

For a differentiable function f(z1,zo,...,z,), quasiconcavity is determined by the signs of the determinants of the
bordered Hessian minors:

e Necessary condition: The (n + 1)-th bordered Hessian minor, denoted by H, 1, alternates in sign:

(—=1)*det(Hy) >0, fork=2,4,...,n+1.

e Sufficient condition: The (n + 1)-th bordered Hessian minor alternates in sign strictly:

(=1)*det(Hy) >0, fork=2,4,....,n+1.

2. Concavity

For a twice-differentiable function f(x1,xs,...,x,), concavity requires that the bordered Hessian determinants
satisfy the following conditions:

e Necessary condition: The bordered Hessian determinants for all even & must be non-positive:

det(Hg) <0, fork=24,...,n+1.

e Sufficient condition: The bordered Hessian determinants for all even k must be strictly negative:

det(Hp) <0, fork=24,...,n+1.



Exercises

Preference and utility representation

u(z,y) = 2°y?

The gradient of u(x,y) is the vector of partial derivatives with respect to 2 and y. Compute:

Ou 9 o Ou

— =32%%, — =22
ox 4 oy 4
Thus, the gradient is:
ou 2,2
o 3x*y
Vu(z,y) = [gm] = [ 3 }
6%; 2z°y
The Hessian of u(z,y) is the matrix of second-order partial derivatives. Compute:
0? 02 02 0?
au_ 6zy>, au_ 223, Yo 4o 622y
0x? Oy? 0xdy  OJydx
The Hessian matrix is:
u  u 2 2
A= | 5 | = [0 o
J ) )
By (,;; 8yg 6x*y 2z
The bordered Hessian is constructed for a two-variable function as:
) )
0 @g @Z 0 3x2y? 223y
Hy= |2 Zu aawé‘y = [32%y? 6xy® 62%y
u  9*u  d%u 223y 622y 223

oy Jyox y?
Compute the principal minors of Hy:

e First minor (Hy):

det(Hl) =0.
e Second minor (Hs):
10 3z%y%|
det(Hz) = 322y 6xy? | 0

e Third minor (Hj):
0 3x2y? 223y
det(Hs) = |32%y? 6y 62%y
223y 6x%y 223

Expanding along the first row:
6xy®  6x3y

_ 922
det(H3) = —3z°y 622y 207

Compute the determinant of the 2 x 2 matrix:

6zy? 62y

det {zey 223

Substituting back:
det(Hs) = —3z%y*(—24a%y?) = 7225y*
For concavity:
e H, < 0: Fails because det(Hs) = 0.
e Hj3 < 0: Fails because det(Hs) = 722%* > 0

Therefore, u(z,y) is not concave.
For quasiconcavity:

e Hy > 0: Holds because det(Hz) = 0.
e H3 > 0: Holds because det(H3) = 72z5y* > 0

Thus, u(z,y) is quasiconcave.

} = 6xy? - 2% — 622y - 622y = 122%y — 362y

= —242%y?



Optimization and Comparative Statics

(a)

max wui(x1) + uz(xa) subject to: pixy + pors < w.
T1,22

The Lagrangian for this problem is:

L=uyi(x1) +uz(x2) — A(p1a1 + poxo — w).

The first-order conditions are:

oL . .
% e N m=0, 0
oL . .
9 s uh(xs) — Npy =0, (2)
oL . .
o - +P2xy =W (3)

*
dx]

(b) We are interested in —X. Differentiating the FOCs with respect to w, we get,

In matrix form,

—P1 ’U,Ill 0 aui 0
—p2 0 uj 5= |0
0 p1 p2] |22 1

Solving the system we get,
dry prufy
dw — pPul + piu!

>0

Because,
pruy < 0 and piul + pauy <0
(¢) We are interested in %. We use a similar approach as before, and take derivative of the FOCs with respect
to P1-

dxt  dX*
- P1
dp;  dp;

dzs  d\*
(2 2
(r2) dpr  dp P
dxy Lty dxzs
dp TP,

u’(z7) -A=0

0 =10

p1 =1
In matrix form,
" @/\* *
—p1 w0 | |9p A
— 0 wl| |
D2 2 81)1« .
0 p1 p2| |9%2 —T]
Op2

Solving the system we get,
dry —ulxipr + \*p3 0
d - 2 //+ 1,2 <
D1 biuy T U1P3
Because,

piuy +uip3 < 0and —uhaip + Ap3 >0



