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1 Exercises from class notes

Exercise 8. Prove the following: Suppose f : X ⊆ Rd → Rm is differentiable at x0 ∈ int(X). Then
∂fi
∂xj

(x0) exists for any (i, j), and

Df(x0) =
󰁫
∂fi
∂xj

(x0)
󰁬

ij
=

󰀵

󰀹󰀷

∂f1
∂x1

(x0) · · · ∂f1
∂xd

(x0)
...

. . .
...

∂fm
∂x1

(x0) · · · ∂fm
∂xd

(x0)

󰀶

󰀺󰀸

Proof. We have that f is differentiable, meaning that there exists a linear transformation D : Rd → Rm

such that
lim
h→0

󰀂f(x0 + h)− (f(x0) +Dh)󰀂m
󰀂h󰀂d

= 0

Fix some (i, j) ∈ {1, . . . ,m}× {1, . . . , d}. Take h = ηej for some η ∈ R and ej the standard jth basis vector
in Rm. Then we have

lim
η→0

󰀂f(x0 + ηej)− (f(x0) +Dηej)󰀂m
󰀂ηej󰀂d

= lim
η→0

󰀂f(x0 + ηej)− (f(x0) +Dηej)󰀂m
|η|

= lim
η→0

󰀂f(x0 + ηej)− f(x0)− ηdj󰀂m
|η|

where dj is the jth column of D. This implies that, expanding the norm, we have that

lim
η→0

󰀂f(x0 + ηej)− (f(x0) +Dηej)󰀂m
󰀂ηej󰀂d

= lim
η→0

󰁴󰁓m
i=1 (fi(x0 + ηej)− fi(x0)− ηdij)

2

|η| = 0

which implies that

lim
η→0

fi(x0 + ηej)− fi(x0)− ηdij
η

= 0 =⇒ lim
η→0

fi(x0 + ηej)− fi(x0)

η
= dij

Thus, by definition ∂fj
∂xj

(x0) exists, and Df(x0) =
󰁫
∂fi
∂xj

(x0)
󰁬

ij
.

Exercise 9. Let f(x, y) = xy
x2+y2 , if (x, y) ∕= (0, 0), and let f(0, 0) = 0. Show that the partial derivatives

of f exist at (0, 0), but that f is not differentiable at (0, 0).

Proof. Consider first ∂f
∂x (0, 0). From the definition of the partial derivative, we have that

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0

h
= lim

h→0
0 = 0
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Similarly, we have that

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0

h
= lim

h→0
0 = 0

So the two partial derivatives do exist. However, f is not differentiable at (0, 0). To see why, note that the
limit from two directions is:

lim
h→0

f(h, h) = lim
h→0

h2

2h2
=

1

2

and
lim
h→0

f(h, 0) = lim
h→0

0

h2
= 0

So f is not continuous at (0, 0) and thus is not differentiable.

Exercise 10. Let f : (a, b) ⊆ R → Y ⊆ Rd be differentiable, and let g : Y → R be differentiable at f(x0)
for x0 ∈ (a, b). Express D(g ◦ f) as a function of the partial derivatives of f and g.

Proof. We have that from the Chain rule:

D(g ◦ f)(x0) = Dg(f(x))Df(x0)

From Exercise 8, we have that

Dg(f(x)) =
󰁫

∂g
∂fj(x)

f(x)
󰁬

1×d
and Df(x0) =

󰁫
∂fj
∂x0

(x0)
󰁬

d×1

for j = {1, . . . , d}. Thus, we have that

D(g ◦ f)(x0) =
󰁫

∂g
∂fj(x)

f(x)
󰁬

1×d
·
󰁫
∂fj
∂x0

(x0)
󰁬

d×1
=

d󰁛

i=1

󰀕
∂g

∂fi(x)
f(x)

󰀖󰀕
∂fi
∂x0

(x0)

󰀖

Exercise 11. Prove the following:
Theorem 1. (Young’s Theorem with d = 2) Suppose f : X ⊆ R2 → Rm and f ∈ C2 at x0 ∈ int(X). Then,
when they both exist,

∂2f

∂x1∂x2
(x0) =

∂2f

∂x2∂x1
(x0)

Proof. We have that f is twice continuously differentiable. Consider the rectangle formed by x0 + h, where
the points are x0, (x0,1 + h1, x0,2), (x0,1, x0,2 + h2), and (x0,1 + h1, x0,2 + h2). Define the distance functions

r(h) = f(x0,1 + h1, x0,2 + h2)− f(x0,1 + h1, x0,2)

and
t(h) = f(x0,1 + h1, x0,2 + h2)− f(x0,1, x0,2 + h2)

Then we define

d(h) = f(x0,1 + h1, x0,2 + h2)− f(x0,1 + h1, x0,2)− f(x0,1, x0,2 + h2) + f(x0)

and note that
d(h) = r(h1, h2)− r(0, h2) = t(h1, h2)− t(h1, 0)
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Since these are all additive functions of f , which is twice continuously differentiable, all of these functions
are continuous and differentiable on their domains, so the Mean Value Theorem applies. We have that there
exists y ∈ (0, h1), y

′ ∈ (0, h2) such that

d(h) = r(h1, h2)− r(0, h2) = r′(y, h2) · (h1, 0)

and
d(h) = t(h1, h2)− t(h1, 0) = t′(h1, y

′) · (0, h2)

so
r′(y, h2) · (h1, 0) = t′(h1, y

′) · (0, h2)

Thus, we have that

∂

∂h
[f(x0,1 + y, x0,2 + h2)− f(x0,1 + y, x0,2)] (h1, 0) =

∂

∂h
[f(x0,1 + h1, x0,2 + y′)− f(x0,1, x0,2 + y′)](0, h2)

which implies that

h1

󰀕
∂f

∂x1
(x0,1 + y, x0,2 + h2)−

∂f

∂x1
(x0,1 + y, x0,2)

󰀖
= h2

󰀕
∂f

∂x2
(x0,1 + h1, x0,2 + y′)− ∂f

∂x2
(x0,1, x0,2 + y′)

󰀖

Since f ∈ C2, we have that each of the parts inside the parentheses are continuous and differentiable. Thus,
using the Mean Value Theorem again, we get that there exists z ∈ (0, h1), z

′ ∈ (0, h2) such that this becomes

h1

󰀕
∂

∂z

∂f

∂x1
(x0 + z) · (0, h2)

󰀖
= h2

󰀕
∂

∂z′
∂f

∂x2
(x0 + z′) · (h1, 0)

󰀖

Recalling that y, y′, z, z′ ∈ (0, h), we have that as h → 0, y, y′, z, z′ → h, and this becomes

h1

󰀕
∂

∂h

∂f

∂x1
(x0 + h) · (0, h2)

󰀖
= h2

󰀕
∂

∂h

∂f

∂x2
(x0 + h) · (h1, 0)

󰀖

Simplifying the partial derivatives, we get that this is

h1

󰀕
h2

∂2f

∂x2∂x1
(x0 + h)

󰀖
= h2

󰀕
h1

∂2f

∂x1∂x2
(x0 + h)

󰀖

So we have that
∂2f

∂x2∂x1
(x0 + h) =

∂2f

∂x1∂x2
(x0 + h)

As h → 0, since f ∈ C2, we can conclude that

∂2f

∂x2∂x1
(x0) =

∂2f

∂x1∂x2
(x0)

Exercise 14. Let f : X ⊆ Rd → R, where X is nonempty, open, and convex. For any x, v ∈ Rd, let
Sx,v := {t ∈ R : x + tv ∈ X} and define gx,v : Sx,v → R as gx,v(t) := f(x + tv). Then f is (resp. strictly)
concave on X if and only if gx,v is (resp. strictly) concave for all x, v ∈ Rd with v ∕= 0.

Proof. (⇒): We have that f is concave on X, meaning that f ′′(x) ≤ 0 for all x ∈ X. We also have that
from the chain rule,

g′x,v(t) = f ′(x+ tv) · v =⇒ g′′x,v(t) = f ′′(x+ tv) · v2

Thus, when v ∕= 0, g′′x,v(t) ≤ 0. A similar proof holds when f is strictly concave, replacing ≤ with <.
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(⇐): We have that g is concave for all x, v ∈ Rd where v ∕= 0. Again from the chain rule, we have that

g′′x,v(t) = f ′′(x+ tv)v2 =⇒ f ′′(x+ tv) =
g′′x,v(t)

v2

and since v ∕= 0 and x+ tv ∈ X by definition, we have that f ′′(x+ tv) is concave whenever the argument is
in X. A similar proof holds when f is strictly concave.

Exercise 17. Let f : R2
++ → R be defined by f(x, y) := xαyβ for some α,β > 0. Compute the Hessian

of f at (x, y) ∈ R2
++. Find conditions on α and β such that f is (i) strictly concave, (ii) concave but not

strictly concave, and (iii) neither concave nor convex. How do your answers change if the domain of f was
R2

+?
Solution. We have that

Hf =

󰀵

󰀹󰀷

∂2f
(∂x)2 (x, y)

∂2f
∂x∂y (x, y)

∂2f
∂y∂x (x, y)

∂2f
(∂y)2 (x, y)

󰀶

󰀺󰀸 =

󰀵

󰀷
α(α− 1)xα−2yβ αβxα−1yβ−1

αβxα−1yβ−1 β(β − 1)xαyβ−2

󰀶

󰀸

From Proposition 15, we have that Hf being negative definite implies that f is strictly concave. We have
that the determinant of Hf is

det(Hf ) = (α(α− 1)xα−2yβ)(β(β − 1)xαyβ−2)− (αβxα−1yβ−1)2

so simplifying, we get that
det(Hf ) = αβx2α−2y2β−2(1− α− β)

Additionally, the trace of Hf is

tr(Hf ) = α(α− 1)xα−2yβ + β(β − 1)xαyβ−2 = xαyβ
󰀕
α2 − α

x2
+

β2 − β

y2

󰀖

A matrix is negative definite if its Eigenvalues are all negative. Equivalently, since this is a 2× 2 matrix, it
is negative definite if the determinant is positive and the trace is negative. This condition is satisfied when
1−α− β > 0 and when α2 −α and β2 − β are both negative. This implies that α,β ∈ (0, 1) and α+ β < 1.

Similarly, this function is concave but not strictly concave if the Hessian is negative semi-definite but not
negative definite. This happens when the determinant is non-negative and the trace is non-positive, which
happens when 1 − α − β ≤ 0 and α2 − α,β2 − β ≤ 0. Since we also need that the function not be strictly
concave, this implies that α,β ∈ {0, 1}, and α ∕= β.

Finally, this function is neither concave nor convex when the determinant is negative, which implies that
1− α− β < 0, with the condition that α+ β > 1.

If the domain of f were instead R2
+, none of these conditions would be sufficient. Specifically, since we can

have that (x, y) = (0, 0), it is possible that the Hessian takes indeterminate values depending on the values
of α and β.

2 Additional Exercises

Theorem 2. Euler’s Theorem If f : X ⊆ Rn → R is differentiable at x ∈ int(X) and homogenous of degree
k, then

∇f(x)x = kf(x)
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Proof. We have that f is homogeneous of degree k, which means that f(λx) = λkf(x) for all λ ∈ R++. We
will differentiate both sides with respect to λ, using the chain rule. We get that

∇f(λx) · x = kλk−1f(x)

Then, choosing λ = 1, we get that
∇f(x)x = kf(x)
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