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1. Maximum Likelihood Estimation



Motivation

Parameter estimation in complete probability models

® Structural economic modeling

Maximum likelihood estimation is very popular for these
parametric models

Advantage: wide applicability (many different data types); can
handle complicated data and models

Disadvantage: strong distributional assumption



Parametric model

A parametric model for X is the assumption that X has a
density or probability mass function f(x|0) with known form
of f but with unknown parameter vector § € ©

Example: Assume X ~ N(u,0?), which has density
f(x|p,0%) = \/1— e 205

2o

peER, 02>0

Y2
= ). The parameters are

In this course we focus on unconditional distributions: f(x|6)
does not depend on conditioning variables

In many economic modeling, we focus on conditional
distributions (next semester)



Correct specification

e Definition: A model is correctly specified when there is a
unique parameter value 6y € © such that f(x|fy) coincides
with the true density or pmf of X

This parameter value 6y is called the true parameter value
The parameter 6y is unique if there is no other 6 such that

f(x[o) = f(x0)

® A model is mis-specified if there is no parameter value § € ©
such that f(x|@) coincides with the true density or pmf of X



Example

Suppose true model is f(x) = \/%76—%%
The model is

L (o el 1 -iegey

f(X\Pvuhff%,m,Ug):pme o1 _g_(l_p)W
1 vV 2

The model is “correct” since it includes f(x) as a special case
However the “true” parameter is not unique, as they include
(p,0,1,0,1) for any p

(1,0,1, 412, 03) for any 2,05
(0.411,02,0,1) for any pu1,03

Hence the model is not correctly specified



Likelihood

® The joint pdf or pmf of i.i.d {Xi,...X,} given 0 is a function
f(x1,x2,...%5]0) = ﬁ f(xi|0)
i=1
¢ Definition: The likelihood function is
La(0) = f( X1, Xa,..., X,]0) = ﬁ f(X;|9)
i=1

® The likelihood function
® is the joint pdf or pmf evaluated at the observed data

® s viewed as function of 6

® describes the compatibility of different values of 6 with
observed data



Maximum Likelihood Estimator (MLE)

Definition: An maximum likelihood estimator  is the value
that maximizes L,(0)

0 = arg maxL,(6)
0c©

or equivalently,

0 = arg max/,(0)
0cO

where

0n(0) = log L() = Zlong|9

is called the log likelihood function



Example: exponential distribution

Suppose f(x|A\) = exp(—%),x > 0,A >0

The log likelihood is

. Xi )_<n
lh(N) = Z <— log A — )\> = —nlog A — n—-

i=1

FOC is 5 _
1 Xn
aainN) =—n34nsy

Setting 8%6,,()\) equal to zero yields A = X,

A is indeed a maximizer since

2
9 () =n

1
ox" SC I CR



Likelihood analog principle

® Why does MLE make sense?
® Define expected log likelihood function
((8) = Ellog f(X|6)]

® Theorem: When the model is correctly specified, the true
parameter 6y maximizes ¢(0)



Proof: For each 6 # 6y

) 00 = [log (750 )| < es® [ FEE] @

where the inequality follows from Jensen's inequaIiEcy‘a)nd strict
X|6

inequality holds since log is strictly concave and W is not
a constant

Let the true density of the data be f(x)
Since f(x|0p) = f(x) and f(x|€) is a valid density

. U(%Z))]

_ [ f(x19) _ _
= | Fxi60) f(x)dx = / f(x|0)dx =1 (2)

Conclusion follows by combining (1) and (2)



Evaluation of estimators

e |ikelihood function of parametric models provides a way of
evaluating their estimators

® Recall ¢(0) = E[log f(X|0)] is the expected log likelihood
® |ntroduce some terminology
® |og-likelihood at single observation X and true parameter 6y:
log £(X16o)
¢ Efficient Score:

O log £(X]0o)

5:@

® Fisher Information
Fo, = ESS’



Property of efficient score

® Theorem: Assume model is correctly specified, the support of
X does not depend on #, and 6 lies in the interior of ©.
Then ES = 0 and var(S) = .,

® Proof: By Leibniz rule

ES=E [880 log f(XWO)}
_ %E [log £(X|6o)]
9
= %E(Qo)
=0

where the last equality holds as 6y maximizes £(6) and 6 is in
the interior of ©

® Then var(S) = E [(S — E[S]) (S — E[S])'] = E[SS'] = s,



Property of Fisher information

Theorem [Information Matrix Equality]

. [alog f(X|60) @ log f(X\HO)] :_E[ 02 log £(X|60) |-

00 oo’ 0000’
Fisher information curvature of £(6p)
That is,
Fo, = Hp,
where
Hy, = —E o log f(X|6o)| = o ———E[log f(X]|6o)] = 872[(90)
5600" 9006 0000'

is called the Expected Hessian



Remarks

® Fisher information is identical to the the curvature of expected
log likelihood

e yseful for simplifying formula for the asymptotic variance of
MLE

® Proof left for homework



Cramér-Rao Lower Bound

® Theorem: Assume model is correctly specified, the support of
X does not depend on 6, and 6 lies in the interior of ©. If 6
is an unbiased estimator of  then

var(6) > (nFg,)~?

(nFy)~1 is called Cramér-Rao Lower Bound (CRL)

An e~stimator 0 is Cramér-Rao efficient if it is unbiased and
var() = (nFg,) L

e If var(f) is a matrix, var(f) > (n.%p,)~" means
var(f) — (n.%y,) ! is positive semidefinite

® Intuition: More curvature of the expected log likelihood =
more information = smaller variance bound



Proof
Write x = (x1,...%)/, X = (X1,... Xp)
Write the joint density of X as f(x|6)
Since 6 is an estimator, § = §(X)
Since 6 is unbiased, it must hold that

0 = By[i(X)] _/9 F(x|0)d

for any 6. By taking derivative on both sides

1= [ 8057 F(<i0) s
/9 (89’ log f(x9)> f(x|0)dx

where [ is identity matrix



® Evaluated at true value 6y

/e(x (89, log £ x\eo)> £(x[66)dx
_E [G(X) (89, log £(X]60) )]

—E [é(X) (aef log £(X|6o) )] Eié(j(_)llﬁl {;0, log f(X\Ho)}

= cov (0( ), gelog f(X|90)> |

where the third equality follows from

E [(89, log f(xwo)ﬂ —E [(Z_; % log f(X,-|90)>] — nE[S] = 0



® Thus (showing var(% log f(X|0g)) = nZy left for homework)

var( 0 > _ < var(d) I )
2 log f(X|6o) / nFs,

® Since this matrix is positive semidefinite

7]
Alvar ( ) A>0
2 log f(X|6o) -

for any matrix A

® Picking A = { (nﬁl’ )1 } yields
_ %

var(0) — (n%g,) * > 0



Asymptotic property of MLE

If 6y uniquely maximizes ¢(0) = Elog f(X|#) and some
technical conditions hold so that

1 n
;Ejmgﬁxm»lsEmgqxw)
i=1

uniformly for all 8 € ©, then
65 0,
With more technical conditions, we can also show

V(@ — 60) % N0, 7, 1)

. : . . _1
Thus MLE estimator is: consistent, converging at rate n™ 2,
asymptotically normal and asymptotically Cramér-Rao
efficient



Variance estimation

* The asymptotic variance of /n(f — 6p) is 99_01, which is
unknown

® Since

log £(X16o)

2, — [alog £(X|60) Olog f(X|90)] _ _E[ 52

00 o0y’ 0000

we can estimate 29—1 by either

-1
1 02
{— 090 Iogf(X|9)}

=1

or
n

-1
1o~ d
{n§ — log f(Xi|A) 54 198 f(xw)}

l:l



2. Method of Moments



Introduction

MLE is used for parametric models

Method of Moments (MM) allows semi-parametric models:
estimation of finite dimensional parameter when distribution is
non-parametric

A distribution is called non-parametric if it cannot be
described by a finite list of parameters

Example: Estimation of the mean 6 = E[X] when the
distribution of X is unspecified



Multivariate means

® To start with, for random vector X, its mean = EX can be
estimated by MME
L1
w== Z Xi

e By CLT, if E||X|? < o0

where ¥ = var[X]
® 3 can be consistently estimated by sample covariance matrix

n

. 1
3 = X: — p)(X; — pY
”_1,;( 2)( i)




Mean of transformed variable

The mean of any transformation g(X) is = E[g(X)]
MME for 6 is

By CLT, if E||g(X)|* < o0
V(6 —6) % N(0, Vp)
where Vjy = var[g(X)]
Vi can be consistently estimated by
~ 1 ~ ~
V=—1 > (g(X) = b)(g(Xi) - b)

i=1




Example: moments

® The m—th moment of random variable X is u), = EX™

e Similarly, MME for p, is

1 n
fim = 2 X
i=1

e CLT yields its asymptotic distribution



Example: empirical distribution function

The cdf of X is
F(x) = P{X < x} =E[I{X < x}]

The MME for F(x) is
F(x)—lil{x-q}
n - n l:1 1 =

Fn(x) is called the empirical distribution function

We can show (homework)

VA(Fa(x) = F(x)) % N (0, F(x)(1 = F(x))



Smooth functions of moments

® Now let's be a bit general
® Suppose the parameter is
B = h(6), where § = E[g(X)]
and X, g and h can all be vectors
e By plugging in MME § = %27:1 g(X;), B can be estimated
by
B = h(0)



® When h is continuously differentiable we call it smooth

® By applying delta method

where V3 = H'VyH, H' = 2, h(0), Vj = var(g(X))
® V3 can be consistently estimated by \75 = H' VA where

H = ih(é)

> (e%) — D)) — )



Example: variance

® The variance of random variable X is
o2 =E [(x - E[X])z}
~E[x?] - (EX))?
a smooth function of uncentered first and second moment
e MME for o2 is
1 1< 1« ?
5% = ;Z(Xi - f)* = ;inz - (nZXi>
i=1 i=1 i=1

® The asymptotic distribution of 52 can be found by delta
method



Moment equations

® In many problems, we can write moments as explicit functions
of parameters

E[m(X,8)] =0
where parameter 3 € RK and m(x, 3) is a k x 1 function

® For each 3, the sample moment of E[m(X, )] is
1 n
; Z m(Xi7 B)
i=1
e The MME § solves a system of k nonlinear equations

Z leﬂ _0



Example: parametric models

Classical way of defining MME
Let f(x|B) be a parametric density with parameter 5 € R™

The k—th moment of the model is
uel3) = [ X F(x]5)dx

a mapping from parameter space to R

Hence [ satisfy

X — u1(B)

. X? —.uz(ﬂ)

X"~ pim(B)



® We can set

e MME /3’ solves

X - 1 (B)
m(x, ) = T :MZ(B)
xM — Nm(ﬁ)
Xi— Hl(/B:)
;I;Zn: Xiz_-u2(ﬁ) -0



Example: Euler equation in macro

Consumer’s utility function

U(Ce, Cepr) = u(Cy) + ;u(ctm

Consumer’s budget

C
G+

< W,
Rey1 — ‘

Consumer chooses C; to maximize expected utility

E [u(ct) + Zu((W, — Ct)Rm)]

1
—u
B
FOC is

0=u(C)-E [Rfﬁ“ u'(cm)]



Cl_&, the Euler equation is
03

Cey1)
R — -
t+1< C, > ﬁ] 0

Suppose [ is known and we are interested in estimating «

Assuming u(c) =

E

Then « satisfies E [m(R¢+1, Ce+1, G, @)] = 0, where

C —
m(Ret1, Cey1, Gy ) = Rey <tc+1> - B
t

The MME for « solves

1 n
; Z [m(Rt+1, Ct+1a Ct7 64)] =0
t=1



Asymptotic property of MME
® |f there is a unique [y that solves
E[m(X,8)] =0

and further technical conditions hold so that
1« P
=D _[m(X;. )] 5 E[m(X, §)]
i=1

uniformly for all 3 in some set B, then MME B LN Bo
e \With more technical conditions, we can also show
~ d
V(3 — o) = (0, V)

where V = (Q') "1 QQ1, Q = var(m(X, o)),
Q' =E [ m(X. fo)]



Efficiency of MME Estimator
We know sample mean [ is BLUE for population mean p,
which might justify use of MME

Restriction to linear models is not convincing

In fact, we can show [i has the lowest variance among all
unbiased estimators

Theorem: Let X be a random vector and F be a set of
distributions such such that E||X||? < co. If ji is an unbiased
estimator for y = EX for all distributions in F, then

var(fi) > =X

S|

where ¥ = var(X)

. A e . A~ _ l
Since sample mean i is unb|a§ed and var(jl) = n;, we
conclude /i has the lowest variance among all unbiased
estimators



Proof (non-examinable)

® Basic ldea

If X has a parametric pdf f(x|#), we can apply Cramér-Rao
theory to find lower bound

However, the distribution of X is left unspecified (the space of
possible distributions is too big)

Construct a smaller class of correctly specified parametric
distributions f(x|«) so that when a =0, f(x]0) = f(x)
Since [i is unbiased for all distributions, it is also unbiased for
f(x|)

The variance lower bound among all distributions must at least
as large as the Cramér-Rao bound for the subclass of
distributions f(x|«)



Focus on the case when X continuous with f(x). Wilog,
assume £ = 0 and X is bounded so that ||X|| < C for some
0<C<oo

Extending to cases with p # 0 and unbounded X only involves
some more technicality

Now let F be the set of distributions such that EX = 0 and
| X|| < C with probability 1

Note || X|| < C with probability 1 implies E || X||* < oo is
automatically satisfied



® Step 1: construct a parametric subclass of distributions
f(x|a) = f(x) {1+ T !x}
where o € {a HZ aH < C}
= var(X) = E[XX']

Note EX =0, |x| < C



e Let E,[-] denote expectation under f(x|a)

e Step 2: verify that f(x|a) € F
® f(x|a) is a valid pdf sharing same support with f(x)

f(x|a) > 0'since [@/E7'x| < [|[Z 7 e [Ix]| <1 (3)
/f(x|a)dx = /f(x)dx + / f(x)a’E " xdx
=1+dT'EX =1

® f(x|a) is correctly specified: when a = 0, f(x|a) = f(x)

® Variance of X under f(x|a) is finite:
(3) implies f(x|a) < 2f(x). Thus E, || X|* < 2E || X|| < oo

® Expectation of X under f(x|a) is

/Xf(x|a)dx = /f(x)xdx+ (/Xx'f(x)dx) Y la

=0+YX 1y la=a



® Step 3: apply Cramér-Rao Theorem for model f(x|a)

® Unbiasedness of ji means it is unbiased for all f(x) € F. Since
f(x|a) € F, it must hold that [i is unbiased for model f(x|«)
® By Cramér-Rao Theorem,

var(ji) > n"1.7,

where
Fo=E 9 log f(X|0)i log £(X|0)
Oa oo/
® Note 5 .
% log f(X|a) = Trarix}

® Hence #, = T IE[XX'] £~ = 7! as desired



