Econ 6190 Problem Set 8

Fall 2024

1. [Hansen| A Bernoulli random variable X is

P(X
P(X

I—p

0)
)=p

)

Given a random sample {X;,i =1...n} from X,

Find the MLE estimator py;.g for p.

)
(b) Find the asymptotic distribution of py/1p.
(c¢) Propose an estimator for the asymptotic variance V' of pypp.
(d) Show the variance estimator you proposed in (c) is consistent.
(e) Calculate the information for p by taking the variance of the efficient score.
(f) Calculate the information for p by taking the expectation of (minus) the second derivative.

Did you obtain the same answer?
(g) Thus find the Cramér-Rao lower bound (CRLB) for p.
(h) Let var(pyrr) be the asymptotic variance of pypp. Compare var(pyrg) with the CRLB.
(i) Propose a Method of Moment Estimator pysy g for p.

2. Suppose X follows a uniform distribution [0, 8] with # > 0. Given a random sample {X;,i =1...n}
drawn from X, find the MLE estimator for 6.

3. Suppose X follows a normal distribution with unknown mean p and variance o2 > 0. The

density of X is
1 (v — p)?

V2mo? exp(= 202

Given a random sample {X;,i = 1...n} drawn from X, find the MLE estimator for (u,o?).

flalp, o?) = ).

4. Based on the notation in the slides on Estimation, let us prove the Information Matrix Equality

E [82 log f<X|00)] __F [mog f(X160) Olog f(X100)
9000" - 90 00’

Let f = f(z]6y), V; means derivative with respect to the j-th element ), and Vj; mean
2nd-order derivative with respect to 8% and ). Suppose we can exchange the integral “ I”

and derivatives “V;”.



(a) By differentiating [ fdz = 1 with respect to ), show that E[V;log f] = 0.
(b) By differentiating E[V log f] = 0 with respect to §*), show that

E[Vjrlog f]+E[(V;log f) (Vi 1log f)] = 0,
which yields the Information Matrix Equality.

5. [Hansen 10.16] Let g(z) be a density function of a random variable with mean p and variance

o%. Let X be a random variable with density function

f(]0) = g(z)(1 4+ 6(x — p)).

Assume g(z), p and 0% are known. The unknown parameter is . Assume that X has bounded
support so that f(xz|f) > 0 for all x.

(a) Verify that [~ f(z|0)dz = 1.
(b) Calculate E[X].

(c) Find the information Fy for § when true parameter is 6. Write your expression as an

expectation of some function of X
Find a simplified expression for Fy when 6, = 0.
Given a random sample {X7, ..., X,,}, write the log-likelihood function for 6.

Find the first-order-condition for the MLE 6 for 6,.

Using the known asymptotic distribution for maximum likelihood estimators, find the
asymptotic distribution for \/n(6 — 6,) as n — oo

(h) How does the asymptotic distribution simplify when 6, = 07

6. Complete the proof of Cramér-Rao Lower Bound on page 20 of the slides on FEstimation by
showing

0
var <% log f(X|00)> = n%y

7. Let ﬁ’n(x) denote the empirical distribution function of a random sample. For each fixed z,
show that

V(B (x) = F(z)) % N(0,F(z)(1 — F(x))),

where F'(z) = P{X < z} is the cdf function evaluated at x.

8. |[Hansen| Let X follows an exponential distribution with pdf f(z) = fexp(—6z),z > 0,6 > 0.
The expected value of X is given by EX = 3

(a) Find the Cramér-Rao lower bound for 6.
(b) Find the Method of Moment Estimator Oyrarp for 0.

(c¢) Find the asymptotic distribution of Orsar by delta method.



Q1
(a) The probability mass function of X is f(z) = p®(1 — p)™®, 2 = 0,1. Hence the likelihood

function is
Ln(p) = pXi (1 — p)' =

The log-likelihood is

pamre should satisty the FOC:

0 1 1
a_pgn(pﬂp:ﬁl\/[LE = ZXl T~ Z (1 - XZ) =0,

PMLE =

which yields pyrre = %Z?:l X;. The SOC is

@_zg (p)| A — _Z?:l XZ . Z?:l <1 - Xl)
apQ P=PMLE ﬁ?\/[LE (1 — ﬁMLE)Q
n? n2

= <0

_Z?:l Xi N (n— 2?21 X;)

since Y » X;>0andn—> " X; >0.
(b) Since prre = = > iy X, EX; = p, EX? = p < o0, it follows by Lindeberg Levy CLT:

Va(pare — p) - N(0, var(X,)),

where var(X;) = EX2 — (EX;)* = p — p* = p(1 — p).

(¢) V = p(1 —p). A plug-in estimator of V is V = prre(l — pare)-

(d) Note pyre = %2?21 X; and EX; = p < oo, it follows by Khinchin’s WLLN pyre — p.
Moreover, it is clear f(x) = x(1 — x) is a continuous function of x. It follows by continuous mapping
theorem that



Note the probability mass function of X is f(x) = p®(1 — p)}=2, 2 =0, 1.

(e) Since expectation of efficient score is 0,

(a% log f(X!p)) 2]

(a% log (p™ (1 — p)l_x))2]

Fyp=E

~frx (1—X)>2]
_E <__

p l—p
_E[X? X(1-X)]  E[Q-X)%
PP +2E{p 1—p]+ (1—p)?
11 1

where the last equality follows from: (1) X* =X, (2) X(1-X)=0(3) (1-X)*=(1- X).
X

(5) Fo = —E| (£ 108 f(XIp)) ] Since & log f(Xp) = % — 4=,
0? X (1-X)
g7 8Kl = =5 = (.

It follows

So yes we obtain the same answer.
(a) CRLB = (n7y)~" = "2,
(n) Recall
Vi(prres —p) < N(0,p(1 = p)),

that is, the asymptotic variance of \/n(pyre —p) is p(1—p). That is to say, the asymptotic variance

of pyre when n is large is approximately ’@, which is equivalent to CRLB.

(i) Since EX = p, pyue = %Z?ﬂ Xi.



A

Note the density of X is f(z]0) = %, 0 < x < 6. The log density is

1
0

—logh 0<xz<46
log f(x]0) =

—00 otherwise

Thus the log-likelihood is

£, (0) ::\Z: log f(X;|0)

—logh 0< X;<@fforalli=1...n

—00 otherwise

That is, £,(0) is not —oo if and only if 0 < X; < 6 for all i = 1...n, or equivalently, § > max;<,, X;.
And when 6 > max;<,, X;, £,(0) = —log6 is a decreasing function of §. Thus the log-likelihood is
maximized at max;<,, X;. This means éMLE = maX;<, X;.

Note in this example, the likelihood is not differentiable at the maximum. Thus the MLE does
not satisfy a first order condition. Hence the MLE cannot be found by solving first order conditions.

Q3 [Sketch]

The log-likelihood is

n

n n 1
En(e):—§log2ﬂ—§10ga2—ﬁ (XZ—,U)2
i=1

MLE estimator (ji,?) should satisfy FOC

ol (1, 0 1 X
Mb:ﬂvﬂ:c}? — Z (X;—4) =0

a'u 6-2 i=1
o0, (1, 0%) w1 2
=,02=62 — T 5= E XZ —u)” =0.
do? ivo=2 257 2(62)° = ( g

It follows g = 13" X, 62 =1%" (X, —a).
Let 0 = (u,0?) and 6 = (ji,6?). The SOC should be such that
020,,(0
Wgh o—s 1s negative definite.
Note
8%y, (1,0%)  0%4n(u,02)
UL s e )
T e
-2 X )
—a (X =) g — e 2 (Xi — )’




Thus
82€n(9) s = —35 0
0000 =0 0o -

which is negative definite.

Q4
(a) Vj, differentiating [ fdz = 1 with respect to 09, and exchanging “[” and derivatives “V; 7,

we get:
/ijdl =0
Thus:
1
0= [itaz = [ (.0 510
~ [ (951081 5=
=E[V;log f]

(b) Take one more derivative with respect to #*) yields

0= V,iE[V,log f]

= / Vi [(V;log f) f] dz(exchange integral and derivative)
— [ {(Tse1o8.7) 1 + (¥ log 1) Vi } de(chain ule)

_ / (Vlog f) f}dz + / {(V;log f) Vif} dz

~

() @)

(1) = E (Vi log f)

@) = [ (71081 (w%) fd

_ / (V;log f) (Vi log ) fdz
=E[(V;log f) (Vilog f)]

Q5



| stalode = [~ g1+ 00— i

o0 —00

~ [ gwde+ [~ g@ote - pyas

oo —00

:1+e/fguxx—MMx

(e o]

:1+9</_Zg(:v)a:dx—u) —1

where the third equality is because [*_g(x)dx = 1 since g(z) is a density, and the fourth equality
uses [*°_g(x)dz =1 again. Final equality follows from [~ g(x)zdz = p by assumption.

(b)
EX — /xf(q:|9)dx
:[:mmu+mx—mmm
_ /_Oo g(x)rde + e/oo g(2)2(z — p)da

[ee) — 00
I
:u+q/ mw@—wfm+ﬂg/ 9(@)(z — p)de
2 ) 0

= u+ 6o’
(¢) The log likelihood for a single observation X is

log f(X[0) = log [g(X)(1 + 0(X — p))]
= log [¢(X)] +log [(1 + (X — p))].

Efficient score is
0 X —u

So

7o =& | (g 1ossxI0)

—F (1+22(;<M— u))2

where the expectation is taken with respect to density f(xz|6y).
(d) when 6, =0,

Fo=E[(X —p)]



(©
() = 3" log J(Xi16) = 3 log [9(X)] + Y log [(1+0(X; — )]

=1

(f) Note

8 . _ Xz — U

i=1
So the MLE estimator 6 should satisfy FOC:

14+0(X; — p)

i=1

(g) The asymptotic distribution of v/n(f — 6,) should be

~ -l
)

V(0 — o) % N(0, )

where Fy = E [<&>21 .

1400 (X —p)

(h) When 6y = 0, .

V(0 — 65) 5 N(0,E [(X — p)°]).



Recall from slides: x = (21, ...2,), X = (X1,... X,,)". By definition

0 0 0
v (1o £ X)) = E [ 5 g /(X160 s £ (X100)|

_E {% log f(X|9())] E [% log f(XWU)}

—_E P log £(X6y) 2

2 s 1 X1

since we have shown in class that E [2 log f(X|6)] = 0. It remains to find

T-E [%logf(X\é’o) 0 logf(Xl%)]‘

Note again by iid assumption

n

9 9 0
g 8 (X160 = 55108 J (X1, Xalf) = 3_ 55108 F(Xilho)

Thus

T=E

~ 0 “~ 0
2; og 108 /(i) _Z og7 108 1 (Xil6o)

J
5 logf(X|9o) 7 108 f(Xilto) +Z log F(X,100)

i=1 i#]

=E log f(Xil6o)

0o

ZE D108 F(X100) 2 o F X0 + 3 E-- o F(X,l00) - og F X0

/
oy 00

A B

where the third equality we used linearity of expectation.
Now note Ez; 9 5 log f(X; 60) -2 a9 108 [(Xi|0g) = Fy for each i = 1...n by identical assumption. Thus
=n%y. And B = 0 since for each ¢ # j:

0 0
E—log f(Xil6o) =

0 0
2 10100 = [ 10w 70600 & [ o 100 =0

06

where the first equality is by independence and the second equality is by property of efficient score.

Thus we have shown

0 0
T-E [ 2108 1(X10) - T (|6 }
= nﬂg

as required.



Note for each fixed point x on the real line, we have

F(z)=P{X <z} =E[1{X <z},

while
. 1 &
== E <
F(x) "2 1{z; <z}

Therefore F(z) % F(z) by Khinchine’s LLN for iid data. Moreover,

VAP(@) = F@)) = Vi Y {1 e < 2}~ E[L{X < 2}

We check conditions for Lindeberg-Levy CLT, which requires second moment of 1{z; < z} to be
finite. This is apparent. Thus, we have

Va(E(z) — F(z)) % N(0,0?)

where
o? =Var(1{X < z})
:E[12{X <z} -E*[1{X < z}]
E[1{X <} - E*[1{X <a}]
F(x) — F*(x)
F(z)(1 = F(x))

(a) %:-E[(6921ogf(X|9))].smce > log f(X]0) = 1 — X,

82

Hence #y = 3. And CRLB = (n%9) " = 9:
_ iZ? 1 X;. That is, éMME = %’

(b) Since EX = % Oprare should be such that =
9MME

Xn =320 X
1
(c) By CLT, —= .

where

HQ\’

(X; —E[X]) 4 N(0, var(X)), where var(X ;‘ hat is,

™=

1

7

%2(}@- ~E[X)).- 2w (0. 5v)

Now, note

éMME = f()_(n),ﬂ = L = f(]E[X]L

where f(a) = . By Taylor expansion,

Va(f(Xn) = FE[X]) = Vif'(X.) (X, - E[X]),



where f'(a) = — %, and X, is between X, and E[X]. Since X,, > E[X],

/(v P, I _ 1
f'(Xn) = f(EX) = EX) (3)

Combining (1), (2), and (3), and by continuous mapping theorem,

d

Va(F(R) — FEXD) S N, )

N(0, .
(EX)

).
Note EX = £, and var(X) = 7, we have

Vi(Ore — 0) % N(0, 6%).



