ECON 6130: Dynamic Programming
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Dynamic Programming
Through this section, we will be interested in problems of the form

v(x) = y?ra(ﬁ){F(X’ y)+ Bv(y)}

where
P> x is the set of state variables
P y is the set of controls
» F is the period return function
» [ is the constraint set
For the neoclassical growth model
> x corresponds to k
» y corresponds to k’
> F(k, k') = U(f(k) — k')
> I(k)={keR:0< kK <f(k)}

2/49



Dynamic Programming

Define operator T:
(Tv)(x) = max {F(X )+ Bv(y)}
yer(x
T takes a function v as input and spits out a new function Tv

Using this notation, a solution v* to our original functional equation is a fixed point of
the operator T:
vi=Tv*
Questions:
1. Under what conditions does T have a fixed point v*?
2. Under what conditions is v* unique?

3. Under what conditions does the sequence {v,,} ° o defined recursively by
Vpe1 = Tv, and vy is a guess converges to v*.
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Dynamic Programming

Define operator T:

(Tv)(x) = e {F(x,y)+Bv(y)}

T takes a function v as input and spits out a new function Tv

Using this notation, a solution v* to our original functional equation is a fixed point of
the operator T:

vi=Tv*
Questions:
1. Under what conditions does T have a fixed point v*?
2. Under what conditions is v* unique?

3. Under what conditions does the sequence {vn} ° o defined recursively by
Vo1 = Tvp and vy is a guess converges to v*.

Answer: Contraction mapping theorem
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Metric space

Definition 1
A metric space is a set S and a function, called distance, d : S x S — R such that for
all x,y,z€ §

1. d(x,y) >0

2. d(x,y)=0ifand only if x =y

3. d(x,y) =d(y,x)

4. d(x,z) < d(x,y) + d(y,2)
Definition 2

A sequence {xp}°> 4 with x, € S for all n is said to converge to x € S if for every
€ > 0 there exists a N, € N such that d(xn,x) < € for all n > N,. In this case we write
limp—oo Xn = X.
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Metric space

Definition 3
A sequence {xp}°2 with x, € S for all n is said to be a Cauchy sequence if for every
€ > 0 there exists a N, € N such that d(xn, xm) < € for all n,m > N,.

Definition 4

A metric space (S,d) is complete if every Cauchy sequence {xn}°2 with x, € S for all
n converges to some x € S.

Example: Lex X C R/ and S = C(X) be the set of all continuous and bounded
functions f : X — R. Define the distance d : C(X) x C(X) — R as

d(f,g) = sup,ex |f(x) — g(x)|. This distance is called the sup-norm. Then (S,d) is a
complete metric space. (The proof is in SLP)
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Contraction mapping theorem

Definition 5
Let (S, d) be a metric space and T : S — S. The function T is a contraction mapping
if there exists a number 3 € (0,1) satisfying

d(Tx, Ty) < Bd(x,y) for all x,y € S
B is called the modulus of the contraction.

Theorem 1 (Contraction Mapping Theorem)

Let (S, d) be a complete metric space and suppose that T : S — S is a contraction
mapping with modulus 3. Then

1. the operator T has exactly one fixed point v* € S
2. for any vop € S and any n € N we have

d(T vy, v*) < B"d(vo, v™)
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Proof of the first part of CMT (lemma)

Lemma 1
Let (S,d) be a metric space and T : S — S. If T is a contraction mapping, then T is

continuous.

Proof.
We need to show: for all sp € S and all € > 0 there exists a d(¢, sp) such that if s€ S

and d(s,sp) < d(e,50), then d(Ts, Tsy) < e. Fix arbitrary sp € S and € > 0 and pick
d(e,50) = €. Then
d(Ts, Tsp) < Bd(s,s0) < Bd(e, o).

7/49



Proof of contraction mapping theorem (part 1)

Proof of the first part of CMT:
Start with an arbitrary vg € S an consider the sequence v, = T"vy. Our candidate for

a fixed point is v* = lim,_o0 Va.
Step 1: Show that v, — v* € S.
Since T is a contraction:

d(Vn+17 Vn) = d( Tvp, TVn—l) < ﬁd(Vm Vn—1)
< Bd(Tva-1, Tva—2) < B2d(Vy-1, Vo—2)
<. < B"d(vi, wo)
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Proof of contraction mapping theorem (part 1)

We now use the triangle inequality. For any m > n:

d(Vma Vn) < d(Vm7 Vm—l) + d(Vm—17 Vn)
< d(Vmy, Vm—1) + d(Vm—1, Vm—2) + ... d(Vnt1, Vn)
< ™ (v, vo) + 7 %d(v1, vo) + - .. B"d(v1, vo)
=B"(B™ "4+ B+ 1)d (1, vo)
S 1— 6d(vla VO)

Therefore, the sequence {v,}5°, is a Cauchy sequence. Since (S, d) is a complete
metric space, {v,}°°, converges in S. We have shown that

vp > v'eS
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Proof of contraction mapping theorem (part 1)

Step 2: We now establish that v* is a fixed point of T:

Tvi = T(fim ve) = Jim, T(va) = Jim_vis = v*
Step 3: We now prove that the fixed point is unique. Suppose there is another v € S
such that ¥ = T¥ and ¥ # v*. Then there exists a > 0 such that d(V, v*) = a. But
then

0<a=d(v,v*) = d(To, Tv") < Bd(9,v") = B

which is a contradiction.
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Proof of contraction mapping theorem (part 2)

We proceed by induction. For n = 0, the claim holds. Now suppose that
d( THvo, v¥) < Bkd(vo, v®)

We need to show that
d( Tk+1 Vo, V*) < /Bk+1d(‘/07 V*)

But
d(Tk+1V0, V*) — d(T(TkVO), TV*) < ﬁd(TkVO, V*) < Bk+1d(vo, V*)

which complete the proof of the contraction mapping theorem. O
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Blackwell's theorem

The CMT is extremely powerful. However, it is sometimes hard to show that an
operator is a contraction.
Theorem 2 (Blackwell)

Let X C RE and B(X) be the space of bounded functions f : X — R with the distance
being the sup-norm. Let T : B(X) — B(X) be an operator satisfying:
1. Monotonicity: If f,g € B(X) are such that f(x) < g(x) for all x € X, then
(TF)(x) < (Tg)(x) for all x € X

2. Discounting: Let the function f + a, for f € B(X) and a € R be defined by
(f +a)(x) = f(x) + a. There exists 3 € (0,1) such that for all f € B(X),a>0
and all x € X

[T(f + a)l(x) < [Tf](x) + Ba

then T is a contraction mapping with modulus (.
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Blackwell's theorem

Proof.
If f(x) < g(x) for all x € X we write f < g. Forany f,g € B(X), f < g+d(f,g),
where d is the sup-norm. The monotonicity and discounting imply that

TF<T(g+d(f.g)) < Tg+pd(f.g)
Reversing the roles of f and g gives, by the same logic,
Tg < Tf + Bd(f, g)

Combining these inequalities, we find d(Tf, Tg) < Bd(f,g) so T is a contraction. []
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Application to the neoclassical growth model

Can these theorems help with the growth model?

» Metric space (B[0, c0), d) the space of bounded function with d being the
sup-norm.

» Define an operator

(TV)(K) = _max  (U(F(K) ~ K) + Bv(K)}

» Verify that T maps B[0, c0) into itself: Take v to be bounded, since U is
bounded by assumption, then Tv is also bounded.
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Application to the neoclassical growth model

» Monotonicity: Suppose v < w. Let g, (k) denote an optimal policy (need not be

unique) corresponding to v. Then for all k € [0, 00)

Tv(k) = U(f(k) — gv(k)) + Bv(egv(k))
U(f(k) — gu(k)) + Bw(gv(k))

e (U(F(R) = K) + Bw(k)

Tw(k)

IN I/\

» Discounting:
Tlvta)(k) = _max (U(F(K) — K) + B(v(K) + 2))

= max {U(f(k) = k') + B(v(K')} + Ba

0<k'<f(k)
= Tv(k) + Pa
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Application to the neoclassical growth model

We have shown that the neoclassical model with bounded utility satisfies Blackwell’s
conditions and is therefore a contraction mapping with modulus 5. Hence there is a
unique fixed point to the functional equation that can be computed from any starting
guess vy by repeated application of the operator T.
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Theorem of the maximum - Preliminaries

We're interested in problem of the form

h(x) = max f(x.y)
Define
G(x) ={y € T(x) : f(x,y) = h(x)}
Intuitively, what is G(x)?
Question: What can we say about the properties of h and G?

Definition 6
Let X, Y be arbitrary sets. A correspondence I : X — Y maps each element x € X
into a subset ['(x) of Y.
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Theorem of the maximum - Preliminaries

Definition 7

A correspondence I : X — Y is lower-hemicontinuous at a point x if ['(x) # 0 and if
for every y € ['(x) and every sequence {x,} in X converging to x € X there exists

N > 1 and a sequence {y,} € Y converging to y such that y, € I'(x,) for all n > N.

Definition 8

A compact-valued correspondence I : X — Y is upper-hemicontinuous at a point x if
[(x) # 0 and if for all sequences {x,} in X converging to x € X and all sequences
{yn} in Y such that y, € T'(x,) for all n, there exists a convergent subsequence of {yn}
that converges to some y € I'(x).

Note: a single-valued correspondence (i.e. a function) that is upper-hemicontinuous is
continuous.
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Theorem of the maximum

Definition 9
A correspondence I' : X — Y is continuous if it is both upper-hemicontinuous and
lower-hemicontinuous.

h(x) = max f(x,
()= max F(x.y)

G(x) ={y eT(x): f(x,y) = h(x)}

Theorem 3 (Theorem of the maximum)

Let X CRLan Y CRM, Jet f: X x Y — R be a continuous function, and let
. X = Y be a compact-valued and continuous correspondence. Then h: X — R is
continuous and G : X — Y is nonempty, compact-valued and upper-hemicontinuous.

The proof is in SLP.
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Application to the neoclassical growth model

(To)(k) = _max_(U(F(K) ~ k) + Av(K)}

> x=k,y=kK,X=Y =R,
> f(x,y) = U(f(x) —y) + Bv(y)
> : X = Yisgivenby I'(x) ={y e R4|0 <y < f(x)}
Suppose that v is continuous, then the theorem of the maximum implies that Tv(-) is

a continuous function and that optimal policy g(+) is an uhc correspondence. If g(-) is
a function, then it is continuous.
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Principle of optimality
Functional equation (FE)
v(x) = sup {F(x,y)+Bv(y)}
y€er(x)

has a unique solution v* which is approached from any initial guess v°.

Sequential problem (SP)

o0

w(x) = sup ZﬁtF(XnXtH)
{Xt+1}t°io t=0

subject to
Xt41 S r(Xt)
xp € X given
Questions:

1. When do v = w?

2. When is {x¢11}72, the same as y = g(x)?
22 /49



Principle of optimality - Preliminaries

Define some notation

>
>

| 2

Let X be the set of possible values that the state x can take

Correspondence ' : X — X describes the feasible set of next period’s state y,
given that today's state is x

Graph of ', A is defined as
A={(x,y) e X x Xy el(x)}

Period return function F: A = R

Fundamentals of the analysis are (X, F,3,T). For neoclassical growth model F
and 3 describe preferences and X, " describe technology.

Any sequence of states {x;}?° is a plan

For a given xp, the set of feasible plans M(xp) is M(x0) = {{x¢}327 : xe+1 € [(x¢)}
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Principle of optimality - Preliminaries

We need some assumptions for the Principle of Optimality

Assumption 1 (1)
I(x) is nonempty for all x € X

Assumption 2 (2)
For all initial xo and all feasible plans x € M(xp)

n
lim ZBtF(Xt, Xt+1)
n—o0 =0

exists (although it may be +o00 or —oc0)
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Principle of optimality

Theorem 4 (Principle of optimality)
Suppose that (X, T, F,3) satisfy the two previous assumptions. Then
1. the function w satisfies the functional equation (FE)

2. if for all xo € X and all x € Tl(xp) a solution v to the functional equation (FE)

satisfies
lim 5"v(x,) =0
n—o0
then v = w.
In words

» Supremum function from SP solves the functional equation

P> Result 2 is key. It states a condition under which a solution to FE is a solution to
SP which is what we are looking for.
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Principle of optimality
Equivalence of policies:

Theorem 5 (Principle of optimality)
Suppose that (X, T, F,3) satisfy the two previous assumptions.

1. Let X € M(xg) be a feasible plan that attains the supremum in SP. Then for all
t>0
w(Xe) = F(Xe, Xe41) + Bw(Xet1)

2. Let X € N(xg) be a feasible plan satisfying, for all t > 0
w(Xe) = F(Xe, Req1) + Bw(Ret)

and
lim sup Bfw(%:) <0
t—o0

then X attains the supremum in SP for xg.
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Dynamic Programming with Bounded Returns

Functional equation:

v(x) = sup {F(x,y)+ Bv(y)}

yer(x)

with associated operator T : C(X) — C(X)

(Tv)(x) = max {F(X y)+Bv(y)}

yer(

We will make a number of stronger assumptions on (X, F,3,T) to be able to
characterize v and g where:

g(x) ={y e T(x) : v(x) = F(x,y) + Bv(y)}

is the policy correspondence associated with v.
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DP with Bounded Returns - Uniqueness of solution

Assumption 3 (3)

X is a convex subset of RE and the correspondence I : X — X is nonempty,
compact-valued and continuous.

Assumption 4 (4)
The function F : A — R is continuous and bounded, and 3 € (0, 1).
Note that these Assumptions imply Assumptions 1 and 2.

Theorem 6

Under Assumptions 3 and 4 the operator T maps C(X) into itself. T has a unique
fixed point v and for all vy € C(X)

(T v, v) < B"d(vp, v)

Furthermore, the policy correspondence g is compact-valued and
upper-hemicontinuous.
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DP with Bounded Returns - Monotonicity of value function

Assumption 5 (5)

For fixed y, F(-,y) is strictly increasing in each of its L components.

Assumption 6 (6)

I is monotone in the sense that x < x’ implies T(x) C I'(x’).

Theorem 7
Under Assumptions 3 to 6 the unique fixed point v of T is strictly increasing.
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DP with BR - Strict concavity of v and unique policy

Assumption 7 (7)
F is strictly concave: for all (x,y),(x’,y’) € A and 6 € (0,1)

FIO(oy) + (1= 0)(x',y )] 2 6F (x,y) + (1 = 6)F (X, y)

Assumption 8 (8)
I is convex in the sense that for 6 € [0,1], x,x" € X, y € [(x), y' € [(x) then

Oy +(L—0)y’ e T(6x + (1 —0)X)

Theorem 8
Under Assumption 3-4 and 7-8 the unique fixed point v is strictly concave and the
optimal policy g is a single-valued continuous function.
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DP with BR - Differentiability of value function

Assumption 9 (9)

F is continuously differentiable.

Theorem 9 (Benveniste-Scheinkman or Envelope Theorem)

Under assumption 3-4 and 7-9 if xo € int(X) and g(xo) € int((xo)), then the unique
fixed point v is continuously differentiable at xy with

Ov(x0) _ 9F(x0,&(x))
éa)ﬂ) é?)q)

All the proofs are in SLP.
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Solving Bellman equations with Benveniste-Scheinkman

We have the functional equation

v(k) = oglr:);)f((k) U(f(k) — K')+ Bv(K')

Taking the FOC with respect to k' gives:
U'(f(k) — k') = Bv'(K)
Then with Benveniste-Scheinkman
VI(k) = U'(f(k) — g(k))f'(k)

and hence
U'(f(k) — g(k)) = Bf'(g(k))U'(f(g(k)) — g(g(k)))

which is the Euler equation we found earlier.
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Stochastic growth model - Markov process

Most of what we've done works in a stochastic environment as long as we can
summarize the state of the world in a simple way.

Here we specify a specific structure to uncertainty that makes our models tractable:
discrete time, discrete state, time homogeneous Markov processes.

> Let
7(j|i) = prob(st11 = j|st = i)
Conditional probabilities of s;1 only depend on realization of s; not s;_; or other

past realization.
» Time homogeneity means that 7 is not indexed by time
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Stochastic growth model - Markov process

Given that s;y1 € S and s; € S and S is a finite set, the distribution 7(+,-) is an
N x N-matrix of the form

T11 7T1j TN
™ = i1 .. Tij ee TiN
™1 .- 7TNj ... TNN

» Generic element: 7j; = m(j|i) = prob(s¢+1 = j|s¢ = i).
> Since m; > 0 and > ;m; =1 for all i, matrix 7 is called a stochastic matrix
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Stochastic growth model - Markov process

Dynamics of the probability distribution

» Suppose probability distribution over states today is given by the N-dimensional
column vector Py = (pi,...,pM)T with 3, pi = 1.

» Probability of being in state j tomorrow is
P£+1 = Z TijPt
i

or, in compact form
-
Pt+]_ =T Pt
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Stochastic growth model - Markov process

Stationary distribution
» A stationary distribution I of the Markov chain 7 is

N=x"n

» A Markov process 7 has at least one stationary [1: the eigenvector (normalized to
1) associated with the eigenvalue A\ = 1 of 7.

> If only one such eigenvalue exists, then unique stationary distribution. If more
than one unit eigenvalue, then there are multiple stationary distributions.

» If s; is a Markov chain, we have

7(stY) = w(sey1|se) x w(se|se_1) x ... 7w(s1]s0) x M(s0)
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Stochastic growth model - Markov process

Suppose

for some p € (0,1). Unique invariant distribution is N(s) = 1/2 for both s.

Suppose

(o 7)

then any distribution over the two states is an invariant distribution.
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Stochastic growth model

>

v

Technology
¥t = € F(ke, nt)

where z; is a technology shock that has unconditional mean 0 and follows a
N-state Markov chain with state space Z = {z1, z,...,zy} and transition matrix
7 = (mjj). Let I denote stationary distribution.

Evolution of capital stock ki1 = (1 — ) ke + it

Resource constraint y; = ¢; + iy
Preferences
o0 o0
B> 8 U =3 3 Ba(z)U(c(z"))
t=0 t=0 zte Zt
Endowment: initial capital ky and one unit of time.

Information: z; is publicly observable. zy ~ I1.
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Stochastic growth model

We can use our new cool tools to solve this model.

> State variables (k, z)
» Control variable k'

» Bellman equation

v(k,z)_mkgx{U(ezF(k,l) (1—38)k—K') —i—BZﬂ(z (K, z )}

subject to:
0< Kk <e*F(k,1)+

(1

— &)k
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Stochastic growth model

An important part of output fluctuations is coming from labor.
» Add labor-leisure choice: U(ct,1 — ny)
> New Bellman equation

v(k,z) = T/aK{U(eZF(k, n)+(1—48)k—k',1—n)

+8) n(Zlz)v(K,2)}

subject to:
0< k' <e*F(k,n)+(1-0)k,0<n<1

» This is the benchmark model of modern business cycle research. See: Cooley and
Prescott: Economic Growth and Business Cycles, in Frontiers of Business Cycle
Research, edited by Thomas F. Cooley (1995).
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Stochastic growth model
Solving the model
» Intratemporal optimality condition

U(c,1—n)

eFalkon) = Ge1=n)
C 9

» Intertemporal optimality condition

BZ W (K, 2)

» Envelope condition
V/(k,z) = (e*Fi(k,n) + 1 —6)Uc(c,1 — n)
Combining:
(c,1—n) /32 (€ Fi(K',n') +1—=06)Uc(c, 1= 1)
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Calibration

Purpose: choose (or estimate) parameters of the model so that it can be used for
quantitative analysis of real world and counterfactual analysis.
Idea of calibration
1. Choose a set of empirical facts that the model should match
2. Choose parameters so that equilibrium of model matches the facts
Note: fact that model fits these facts can not be used as claim of success. Evaluation

of success has to be on other dimensions.

We will calibrate a simple version of the deterministic neoclassical model with
population and technology growth.
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Calibration

» Functional forms

T
F(K,N) = K* (1 +g)tN)' "

» Parameters: Technology (o, d, g), Demographics n, Preferences (3, o)

» Empirical targets: Choose parameters such that balanced growth path (BGP) of
model matches long-run average facts for the U.S. economy.

P> Need to decide on period length. Take period to be one year.
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Main facts about long-run growth

Kaldor (1959) popularized the following six stylized facts concerning long run economic
growth

1. Output per capita, Y/N, grows at a constant rate

The capital to labor ratio, K/N, grows at constant rate
The interest rate, R, is fairly constant

The output to capital ratio, Y/K, is fairly constant

The share of value added going to labor and capital are fairly constant

ook~

There are wide dispersion in Y;/N; across countries
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Calibration

Parameters directly taken from long run averages in the data

» Population growth rate in model is n, in data n = 1.1%

» Growth rate of per capita GDP in model is g, in data g = 1.8%
Exploiting BCG relationships

we = (1— )KEN; ((1+g)F) "
WtNt

Yi

=1—-«

In the U.S. the labor share of income has averaged about 2/3, so a = 1/3.
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Calibration
To calibrate the depreciation rate § start with the resource constraint at the BGP
(remember that %; = x; /(1 + g)* and x; = X;/(1 + n)?)

¢+l —n)(1+g)
EH[(1-n(1+g)—(1-9)]

F(k,

k,1) 4+ (1— )k
F(k

k =

k = F(k,1)

In the BGP, investment is given by

i=[(1+n)(1+g)—(1-0d)k
) -

K/Y:K:f; (1+n)(1+g)—(1-90)

In the data, //Y ~ 0.2 and K/Y = 3, using our previous parameters, we find § ~ 4%.
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Calibration

We need to pick parameters for the utility function. From the Euler equation with

CRRA utility function:

(14 n)(1+8)(&) 7 = (1+ rep1 — 6)B(Eq1) 7

In the BGP

(1+n)(1+g)=1+r—0)B(1+g) "

e L1+n
bl +e) C1l4+r-94

We need to find r. The rental rate of capital is:

_ Y,
reg1 :CKK?_]' [(1+g)tNt]l a:a?t
t

with K/Y ~ 3 and v ~ 1/3 we find r ~ 0.11.
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Calibration
Plugging back these values in the FOC:

5(1.018)7 = 0.944

Note that without growth (g = 0) this relationship pins down (3 but doesn't inform us
about . With growth, the typical approach is to pick o from information outside the
model.

One can estimate o by taking the log of
(L4 (L +g)(E) 7 = (L4 rpr = 0)B(E1) ™7

and do the estimation using consumption data:
> with macro data (Hall 1982): 1 =0.1
> with micro data (Attanasio et al, 1993, 1995) 1 € [0.3,0.8]
> We pick 0 = 1.
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Calibration

Summarizing the parameters:

Param. Value Target
g 1.8% g in data
n 1.1% n in data
« 0.33 labor share
5 4% oy
o 1 Outside evidence
I5; 0.961 K/Y

How does the model fare on other moments?

We will come back to the growth model (in continuous time) later.
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