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September 27, 2024

Convexity

Definition. A subset X of R is convex if for any x,y € X and « € [0,1], ax + (1 — &)y € X.

Remark 1. Visually, this means that the line segment between any two points in X is also in X.

Figure 1: X, Y and Z are all non-convex, as the red line segments lie outside the sets. Note that Z is the
finite union of convex sets.

Remark 2. To show a set, X, is convex we can

(i) Take two arbitrary points, x,y € X, and an arbitrary a € [0, 1], and show that ax + (1 —a)y €
X.

(ii) Show that X is the intersection of sets we know to be convex, e.g., intervals.
Section Exercise 1. Are the following sets convex? Prove your answer.
i R
(ii) A line, ¢:= {(x,y) | ax + by = c}, in R?
(iii) The unit circle centered at the origin, S := {(x,y) | ¥* +y*> = 1}
(iv) The open unit dis centred at the origin, B := {(x,y) | x> +y*> < 1}
(v) The complement of a convex set
(vi) A singleton (a set with exactly one element)
(vii) A finite set with more than one element

(i) Yes. If x,y € Rand & € [0,1], then ax + (1 —a)y € R.

“Disc” is a term for a ball in R?; compare circle versus sphere.



(i) Yes. If (x,y) satisfies ax + by = ¢, and (z,w) satisfies az + bw = ¢, and A € [0,1], then
(Ax+ (1 —=A)z, Ay + (1 — A)w) satisfies

a(Ax+ (1—=A)z) +b(Ay + (1 — A)w) = Aax + by) + (1 — A)(az + bw)
=Ac+(1—-A)c

=C

(iii) No. Both (1,0) and (—1,0) are on the unit circle, but 1(1,0) + 3(—1,0) = (0,0) is not.
(iv) Yes. If x* +y?> < 1 and 2% + w? < 1, then
(x4 (1 —a)z)*> + (ay + (1 — a)w)? = a®x® + 2a(1 — a)xz + (1 — a)?2> + a®y?
+20(1 — a)yw + (1 — o) *w?
= a?(2+ )+ (1 — ) (2% + w?) + 2a(1 — &) (xz + yw)

<a®+ (1 —a)® +2a(1 —a)(xz + yw)

It suffices to show that xz + yw < 1, for then a> + 2a(1 —a) + (1 —a)?> = (a +1—a)> = 1. To
show xz + yw < 1, it suffices to show that xz + yw > x> +y? and xz + yw > z> + w? together
imply a contradiction. Note that we can sum these inequalities to get x? — 2xz + z% + yw —
2yw + w? < 0, which we can rewrite as (x — z)? + (y — w)? < 0, which is impossible.

(v) Possibly, but not in general. The complement of (—c0,0) is [0, o), which is convex. However,
the complement of (—1,1) is (—oo,1] U [1, 00), which is non-convex.

(vi) Yes,as ax + (1 —a)x = x € {x} for all « € [0,1].

(vii) No. Let x and y be distinct elements of the set. Then, {a,x + (1 — a,)y | n € N} is an infinite
set, so at least one of its elements cannot be in the finite set.

Convex and Quasiconvex Functions

Remark 3. Visually, a function f : X C R? — R is...
> Concave iff its subgraph is convex.
> Convex iff its epigraph is convex.
> Quasiconcave iff the preimage of every interval [r, c0) under f is convex.

> Quasiconvex iff the preimage of every interval (—oco, ] under f is convex.



concave convex
concave and quasiconvex convex and quasiconcave
1
affine linear (= affine)
quasiconcave quasiconvex
quasiconcave and quasiconvex quasiconvex



e

convex none

More Convexity Exercises

Section Exercise 2.
(i) Show that if f,¢ : R* — R are convex, then so too is max{f,g}.

(ii) Provide a counterexample to show that the previous result doesn’t hold if we replace max
with min.

(ili) Using the claim in part (i), show that if f and g are concave, then so too is min{f, g}.

(i) Let h := max{f,g¢}. Fix x,y € RF and a € [0,1]. We're given that f(ax + (1 —a)y) <
af(x) + (1 —a)f(y) and g(ax + (1 - a)y) < ag(x) + (1 —a)g(y).

h(ax + (1 —a)y) = max{f(ax + (1 - a)y), glax + (1 —a)y)}
<max{af(x) + (1 —a)f(y) ag(x) + (1 —a)g(y)}
(

< max{af(x), ag(x)} +max{(1 - a)f(y), (1 - a)g(y)} (+4)
= wmax{f(x),g(x)} + (1 - &) max{f(y),g(»)}
— ah(x) + (1 - a)h(y)

so max{f, g} is convex. One step we might be unsure of is (xx). This step uses the claim that
max{x +y,z+w} < max{x,z} + max{y, w}. We can confirm this by supposing, without loss of
generality, that x +y > z + w. Then clearly max{x +y,z +w} = x +y < max{x,z} +max{y,w}f]

(ii) Take f,g : R — R given by f(x) := x and g(x) := —x, respectively. Then min{f, g} (x) := —|x|.

2Solution suggested by Spencer Dean: {(x,y) | v > f(x)}n{(xy) | v > g(x)} = {(x,y) | y > max{f,g}(x)}.
Convexity of f and g implies that the first two sets are convex. So their intersection, the epigraph of max{f, ¢} must
also be convex. It follows that max{f, g} is a convex function.
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(iii) If f and g are concave, then —f and —g are convex, and thus so too is max{—f, —g}. But
max{—f, —g} = —min{f, g}, so min{f, g} is concave.
Exercise 4. Show that if S is open then so too is co(S).

This holds trivially for the empty set. Suppose, then, that S is nonempty and open. Let z € co(S).
Then we can write

for some x; € S and «; € [0,1] that sum to 1. Openness of S implies that for each x;, there exists ¢;
such that B, (x;) € S. Let e = min{e¢; | i = 1,...,n}. Then we can write

for all i. Take w € B¢(z). We want to show that w € co(S), which would imply B,(z) C co(S).
This, in turn, would be sufficient to prove openness of co(S). Write

n n
W=z4+w—z=

n
wixi+w—z=Y ai(xi+w—z) =) ay;
i=1 i=1 i=1
where y; := x; + w — z for all i. Thus w is a convex combination of y1,...,y,, soify1,...,yx €S,
we would have w € co(S). But for all 7,

lyi —xill = llxi+w—z—xif| = lw—z| <e¢
so i € Be(x;) C S.
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