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1. Sampling Model
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Motivation
• Economists often collect data that consist of some
observations on variables of interest

Table: Some Observations from March 2009 Current Population Survey

• The statistical view of the table:

a random sample from a large population, from which we
can learn about the wages/education of the population
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The population

• Definition: Let X be a random vector of interest. The
distribution of X , denoted as F , is called population
distribution, or population

• We have n repeated observations made from X

{X1,X2 . . .Xn} ,

which we call a sample or data

• What we observe for X1 is an realization of the random vector
X1

• Notation: Capital X refers to a random variable; lowercase x
refers to a realization of variable X

• We need to model how these observations are collected
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The random sampling model

• Definition: The collection of random vectors {X1,X2 . . .Xn}
are called a random sample of size n from population F if
{X1 . . .Xn} are

• mutually independent

• have the same marginal distribution F

• Alternatively, we say {X1 . . .Xn} are independent and
identically distributed (iid) random vectors
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• Because of the random sampling scheme, the joint pdf/pmf of
{X1 . . .Xn} is given by

f (x1, x2 . . . xn)︸ ︷︷ ︸
joint pdf/pmf

= f (x1)︸ ︷︷ ︸
marginal pdf/pmf of X1

· f (x2) · · · f (xn)

=
n∏

i=1

f (xi )︸ ︷︷ ︸
because of random sampling,

all marginal distributions are the same

• If f (· ) is known, we can use the joint pdf/pmf of the random
sample to calculate any probability events about the random
sample
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Example: exponential distribution

• Let {X1 . . .Xn} be a random sample from the exponential
distribution with parameter β:

f (x | β) =

{
1
β e

− 1
β
x
, x ≥ 0,

0, x < 0

• Then, the joint pdf of {X1 . . .Xn} is

f (x1, . . . xn) =
n∏

i=1

f (xi | β)

=

{(
1
β

)n
e−

1
β

∑n
i=1 xi , xi ≥ 0, for all i = 1, . . . n,

0, otherwise.
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• We may calculate

P{X1 > 2, . . . ,Xn > 2}

=

∫ ∞

2
. . .

∫ ∞

2
f (x1, . . . xn)dx1 . . . dxn

=

∫ ∞

2
. . .

∫ ∞

2

(
1

β

)n

e−
1
β

∑n
i=1 xidx1 . . . dxn

=e−
2/β

∫ ∞

2
. . .

∫ ∞

2

(
1

β

)n−1

e−
1
β

∑n
i=2 xidx2 . . . dxn(integrate out x1)

...

=
(
e−

2/β
)n

= e−
2n/β
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• Alternatively, we may also calculate

P{X1 > 2, . . . ,Xn > 2}
=P{X1 > 2}· . . . ·P{Xn > 2}
= [P{X1 > 2}]n

=
(
e−

2/β
)n

= e−
2n/β

• In general, calculation of such probabilities for any random
sample may be difficult, even if the population distribution is
known
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Statistics, parameters and estimators

• A parameter θ is any function of the population F

• A statistic is a function of sample {Xi : i = 1, . . . , n}, say
T (X1, . . .Xn) for a real or vector valued function T

• A statistic is a random vector. Its distribution is called
sampling distribution

• Sampling distribution of T (X1, . . .Xn) can be quite tractable if
{X1, . . .Xn} is a random sample

• An estimator θ̂ for a parameter θ is a statistic intended as a
guess about θ

• θ̂ is an estimate when it is a specific (or realized) value
calculated in a specific sample
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Example 1: Judging whether I have a fair coin
• I want to figure out whether I have a fair coin by flipping it 10
times and recording 0 for each tail and 1 for each head

• Sample: X = (X1,X2 . . .Xn), where Xi is the result of i-th
experiment

• Note Xi ∼ i.i.d. Bernoulli(p). That is, the pmf of each Xi is
f (xi ) = pxi (1− p)1−xi

• The pmf of X is fX(x1, x2 . . . xn) =
∏10

i=1 p
xi (1− p)1−xi ,

known up to p

• The goal is to make some judgment about p

• A statistic is any function of X, e.g.,

Y1 = {number of heads} =
n∑

i=1

Xi

Y2 = {the order number of the first experiment resulting in heads, with 0 if no heads}
= X1 + 2X2(1− X1) + 3X3(1− X2)(1− X1) + ...
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• For example, if we observe a sample {0, 1, 1, 0, 0, 0, 1, 0, 1, 1},
Y1 = 5, Y2 = 2.

• Notice both Y1 and Y2 are random variables and have a
distribution that depends on p

• For example, in this example, Y1 follows a binomial
distribution with parameter (n, p)

P{Y1 = k} =

(
n
k

)
pk(1− p)k , k = 1, . . . , n,

where (
n
k

)
=

n!

k!(n − k)!
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Example 2: Estimate average income of a worker
• Suppose you want to estimate the average income of a worker
aged between 25 and 65 who resides in Ithaca

• A sample of n workers: X = {X1,X2 . . .Xn}, where
Xi ∼ i.i.d. F (· ), and F (· ) is the unknown distribution of
income

• The distribution of X: FX(x1, x2 . . . xn) =
∏n

i=1 F (xi )

• The parameter of interest is µ =
∫
udF (u), the mean of the

unknown income distribution

• A statistic is any function of X, e.g.,

Y1 =
1

n

n∑
i=1

Xi (average).

Y2 = average of 80% of middle values (trimmed mean)

• The distribution of Y1 and Y2 can be difficult to characterize
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The goal of this course

• Based on observed random sample/data {X1 . . .Xn},
construct a“good” statistic to learn about the population
parameter of interest θ

• Here, “good”means“good statistical property”. ⇒ Requires
careful evaluation of the sampling uncertainty (the underlying
randomness of our data)⇒ Need to study the sampling
distribution of any statistic

• Three approaches: Finite sample approach, asymptotic
approach, and bootstrap
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Alternative sampling models
• i.n.i.d. sampling: each Xi is independent but not necessarily
identically distributed, i.e., Xi is drawn from heterogeneous
population Fi

• Bootstrap with replacement

• a finite population of N values {x1, . . . xN}
• Each Xi , i = 1 . . . n, is drawn from the N values with equal

probability (think of drawing numbers from a hat)

• Then, each Xi is a discrete random variable that takes on
values {x1, . . . xN} with equal probability 1/N

P{Xi = xk} =
1

N
, k = 1 . . .N

• The joint pmf of {X1,X2 . . .Xn} is

P{X1 = t1, . . . ,Xn = tn} =

(
1

N

)n

, tj ∈ {x1, . . . xN} , j = 1 . . . n.



18

• Bootstrap without replacement

• a finite population of N values {x1, . . . xN}
• X1 is drawn from the N values with equal probability 1

N .
Record X1 = x1

• X2 is drawn from remaining N − 1 values equal probability
1

N−1 . Record X1 = x2
• · · ·

• With bootstrap without replacement, the sample we get

{X1 . . .Xn}

does not satisfy i.i.d assumption.
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Useful result
In bootstrap without replacement,

{X1 . . .Xn}

are NOT independently distributed. However, they are identically
distributed.

• Proof



20

2. Some Common Statistics
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Sample mean and sample variance

• We now define three statistics that are often used and provide
goos summaries of the random sample

• The sample mean is the arithmetic average of the values in a
random sample

X̄ =
X1 + . . .+ Xn

n
=

1

n

n∑
i=1

Xi

• The sample variance is the statistic defined by

s2 =
1

n − 1

n∑
i=1

(Xi − X̄n)
2

The sample standard deviation is the statistic defined by

s =
√
s2
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Properties of sample mean and sample statistics

• X̄ and s2 are themselves random variables

• We start by deriving some basic algebraic properties of the
sample mean and variance

Theorem
The following are true:

• mina
∑n

i=1(Xi − a)2 =
∑n

i=1(Xi − X̄ )2

• (n − 1)s2 =
∑n

i=1(Xi − X̄ )2 =
∑n

i=1 X
2
i − n

(
X̄
)2
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Proof



24

Useful results

• We now begin our study of sampling distributions by
considering their moments. The following result will be useful.

Theorem
Let {X1, . . .Xn} be a random sample from a population. Let g(x)
be a function such that Eg(X1) and var(X1) exist. Then:

1 E [
∑n

i=1 g(Xi )] = nEg(X1);

2 Var(
∑n

i=1 g(Xi )) = nVar(g(X1))
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Proof
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Moments of sample mean and variance

Theorem
Let {X1, . . .Xn} be a random sample from a population with mean
µ and variance σ2, then:

1 E[X̄ ] = µ,

2 var(X̄ ) = σ2

n ,

3 E[s2] = σ2.
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Proof

• To prove (1), directly use the linearity of expectations and iid
assumption

• To prove (2), note

var[X̄ ] = var

[
1

n

n∑
i=1

Xi

]
=

1

n2
var

[
n∑

i=1

Xi

]

=
1

n2

n∑
i=1

var [Xi ] (by mutual independence)

=
1

n2

n∑
i=1

var [X ] (by identical distribution)

=
1

n
var [X ] =

σ2

n

• Thus, the variance of sample mean declines with sample size
at rate 1

n
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• To show (3), by the previous theorem,

s2 =
1

n − 1

[
n∑

i=1

X 2
i − n

(
X̄n

)2]
• Thus,

E
[
s2
]
=

1

n − 1

[
n∑

i=1

E
[
X 2
i

]
− nE

[(
X̄n

)2]]

=
1

n − 1

[
nE
[
X 2
1

]
− nE

[(
X̄n

)2]]
=

1

n − 1

[
n
(
µ2 + σ2

)
− n

(
µ2 +

σ2

n

)]
= σ2,

where we have used

E
[
X 2
1

]
= Var (X1) + (E [X1])

2 ,

E
[(
X̄n

)2]
= Var

(
X̄n

)
+
(
E
[
X̄n

])2
.
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3. Sampling from Normal Distribution
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Motivation

• In order to make statistical inference, we often need to know
the distribution of a statistics

• The most widely used statistical model assumes samples are
drawn from a normal distribution

• In this section, we study the properties of common statistics
when observations are normally distributed

• This also leads us to many well-known sampling distributions
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Normal sampling model

• Let {X1,X2, . . .Xn} be a random sample from a normal
distribution N(µ, σ2). This is called a normal sampling
model

• The normal sampling model has many attractive and tractable
properties, since {X1,X2, . . .Xn} follows a multivariate normal
distribution with positive-definite and diagonal covariance
matrix

• Before studying sampling distribution under the normal
sampling model, we first introduce the univariate and
multivariate normal distributions.
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Univariate normal

• A random variable Z has the standard normal distribution,
written as Z ∼ N(0, 1), if it has the density

ϕ(x) =
1√
2π

exp

(
−x2

2

)
, x ∈ R.

• The cdf of a standard normal does not have a closed form but
is written as

Φ(x) =

∫ x

−∞
ϕ(u)du.

• Note key properties of ϕ(· ) and Φ (· )
• ∫∞

−∞ ϕ(x)dx = 1 (a pdf must integrate to 1)

• ϕ(x) = ϕ(−x), and Φ(−x) = 1− Φ(x) (due to symmetry of
ϕ(· ) around 0)
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• If Z ∼ N(0, 1), and X = µ+ σZ for µ ∈ R and σ ≥ 0, then X
has the normal distribution, written as X ∼ N(µ, σ2).

• If X ∼ N(µ, σ2) with σ > 0, then X has the density

f (x | µ, σ2) =
1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
, x ∈ R.
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Moments of normal distribution

• All positive integer moments of the standard normal
distribution are finite. This is because the tails of the density
decline exponentially.

• If Z ∼ N(0, 1), then E [Z ] = 0, Var(Z ) = 1.

• For any positive integer m,

E[Zm] =

{
0, m odd,

2−
m
2

m!
(m/2)! m even.
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Quantiles of standard normal
• The normal distribution is commonly used for statistical
inference. Its quantiles are used for hypothesis testing and
confidence interval construction

Figure: Normal probabilities and quantiles

• Historically, statistical and econometrics textbooks would
include extensive tables of normal (and other) quantiles. This
is unnecessary today since these calculations are embedded in
statistical software.
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Multivariate standard normal

• Let {Z1,Z2, . . .Zm} be iid standard normal. Therefore, the
joint pdf of {Z1,Z2, . . .Zm} equals

f (z1, . . . zm) =
m∏
i=1

f (zi )

=
m∏
i=1

1√
2π

exp

(
−
z2i
2

)
=

1

(2π)
m
2

exp

(
−
∑m

i=1 z
2
i

2

)
=

1

(2π)
m
2

exp

(
−z′z

2

)
,

where z = (z1, z2 . . . zm)
′.

• The above density is called multivariate standard normal
density
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• Definition: An m dimensional vector Z has the multivariate
standard normal distribution, written Z ∼ N(0, Im) if it has
joint pdf

f (z) =
1

(2π)
m
2

exp

(
−z′z

2

)
• It is the joint pdf of m independently and identically

distributed standard normal random variables

• The mean of Z is E[Z] = 0, and the covariance matrix of Z is
var(Z ) = Im

• Since we have now introduced a vector of random variables,
we next review some useful matrix-based notations.
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Expectation and covariance
• Definition: The expectation of X ∈ Rm is the vector of

expectations of its elements

E[X] =


E[X1]
E[X2]

...
E[Xm]


• Definition: The m ×m covariance matrix of X ∈ Rm is

Σ = var(X) = E
[
(X− E[X]) (X− E[X])′

]
=


σ2
1 σ12 · · · σ1m

σ21 σ2
2 · · · σ2m

...
...

. . .
...

σm1 σm2 · · · σ2
m


where on the diagonal σ2

j = var(Xj), j = 1 . . .m, and on the
off-diagonal σij = cov(Xi ,Xj), i ̸= j
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Property of Σ

• Theorem: Σ = E
[
(X− E[X]) (X− E[X])′

]
is

• symmetric: Σ = Σ′

• positive semi-definite: for any vector a ̸= 0, a′Σa ≥ 0

• Proof: Symmetry holds because cov(Xi ,Xj) = cov(Xj ,Xi ).
For positive semi-definiteness,

a′Σa = a′E
[
(X− E[X]) (X− E[X])′

]
a

= E
[
a′ (X− E[X]) (X− E[X])′ a

]
= E

{[
a′ (X− E[X])

]2} ≥ 0

since [a′ (X− E[X])]2 ≥ 0
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Property of expectation and covariance

• Theorem: If X ∈ Rm has expectation µ and covariance
matrix Σ, and A is q ×m, then AX is a random vector with
mean Aµ and covariance AΣA′

• Proof:

E[AX] = AE[X] = Aµ

var[AX] = E
[
(AX− E[AX]) (AX− E[AX])′

]
= E

[
A (X− E[X]) (A (X− E[X]))′

]
= E

[
A (X− E[X]) (X− E[X])′A′]

= AE
[
(X− E[X]) (X− E[X])′

]
A′

= AΣA′
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Multivariate normal

• Definition: If Z ∼ N(0, Im) and X = µ+ BZ for q ×m B,
then X has the multivariate normal distribution, written
X ∼ N(µ,Σ), with q × 1 mean vector µ and q × q covariance
matrix Σ = BB′

• If X ∼ N(µ,Σ) where Σ is invertible, then X has pdf

f (x) =
1

(2π)
m
2 (detΣ)

1
2

exp

(
−(x− µ)′Σ−1(x− µ)

2

)
• The mean of X is E[X] = µ, the covariance matrix of X is
Var(X) = Σ.
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Property of multivariate normal

• Theorem: If X and Y are multivariate normal with
cov(X ,Y ) = 0, then X and Y are independent

• Theorem: If X ∼ N(µ,Σ) then

Y = a+ BX ∼ N(a+ Bµ,BΣB′)

• In words: if X is multivariate (jointly) normal, then any linear
combination of X is also multivariate (jointly) normal

• However, note the following statement is WRONG:

• Wrong statement: If X and Y are both normal, then X + Y
are also normal
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• Theorem: If (X ,Y ) are multivariate normal(
Y
X

)
∼ N

((
µY

µX

)
,

(
ΣYY ΣYX

ΣXY ΣXX

))
with ΣYY > 0 and ΣXX > 0, then the conditional
distributions Y | X and X | Y are also normal
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In summary

• Multivariate normal distribution has many attractive
properties. The most important insight is:

• If a random vector X has a multivariate normal distribution,
then any of their marginal and conditional distributions are
also multivariate normal

• We are now ready to study the sampling distribution of key
statistics under the normal sampling model
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Sampling distribution under normal sampling model

• Theorem: if Xi , i = 1 . . . n are i.i.d N(µ, σ2), then

X̄n ∼ N(µ,
σ2

n
)

• Proof: use the fact that a linear combination of multivariate
normal random variables is still normal
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Sampling distribution of sample variance

• Recall sample variance is

s2 =
1

n − 1

n∑
i=1

(Xi − X̄n)
2

• To study its distribution under normal sampling, introduce the
notion of χ2

r distribution
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• Definition: Let {Z1,Z2 . . .Zr} be r > 0 i.i.d N(0, 1) random
variables. Then

∑r
i=1 Z

2
i follows a chi square distribution

with degrees of freedom r , written as χ2
r

Figure: Chi-Square Densities
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• Theorem: if Xi , i = 1 . . . n are i.i.d N(µ, σ2), then

1 X̄n and s2 are independent;

2
(n−1)s2

σ2 ∼ χ2
n−1
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Proof of statement ❶

• Define residual êi = Xi − X̄n, i = 1 . . . n

• Note êi is a linear combination of X1, . . . ,Xn, which are
multivariate normal. So êi is also normal

• Also E[êi ] = E[Xi ]− E[X̄n] = µ− µ = 0, and

cov(êi , X̄n) = E
[
êi
(
X̄n − µ

)]
= E

[(
Xi − µ+ µ− X̄n

) (
X̄n − µ

)]
= E

[
(Xi − µ)

(
X̄n − µ

)]
− E

[(
X̄n − µ

)2]
=

σ2

n
− σ2

n
= 0

• Since êi and X̄n are jointly normal, uncorrelatedness means
independence

• Thus, any function of êi (including s2) and X̄n are also
independent
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Proof of statement ❷
• We now show (n−1)s2

σ2 ∼ χ2
n−1

• Write s2n = s2 = 1
n−1

n∑
i=1

(Xi − X̄n)
2 and use proof by induction

• First verify that (left for homework)

(n − 1)s2n = (n − 2)s2n−1 +
n − 1

n
(Xn − X̄n−1)

2 (1)

• Consider n = 2. Define 0· s21 = 0, so that we have

s22 = (X2 − X̄1)
2 =

1

2
(X2 − X1)

2

• Since X2−X1√
2σ2

∼ N(0, 1), we have

s22
σ2

=
1

2σ2
(X2 − X̄1)

2 =

(
X2 − X1√

2σ2

)2

∼ χ2
1
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• Suppose when n = k, k ≥ 1,
(k−1)s2k

σ2 ∼ χ2
k−1

• Then for n = k + 1, we have from (1)

ks2k+1 = (k − 1)s2k +
k

k + 1
(Xk+1 − X̄k)

2

• Note we assumed
(k−1)s2k

σ2 ∼ χ2
k−1

• Proof is done if we can establish

(▲)
k

(k + 1)σ2
(Xk+1 − X̄k)

2 ∼ χ2
1

(▼)
k

(k + 1)σ2
(Xk+1 − X̄k)

2 is independent of s2k

• (▲) follows from Xk+1 − X̄k ∼ N(0, k+1
k σ2)

• (▼) follows from statement ❶ and Xk+1 independent of s2k
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Studentized t ratio

• We know if {X1, . . .Xn} are i.i.d N(µ, σ2), then

X̄n − µ
σ√
n

∼ N(0, 1) (2)

• If σ is known, (2) can be used for inference on µ

• Usually σ is unknown. Replacing σ with s, it is natural to

consider distribution of X̄n−µ
s√
n

• Note

X̄n − µ
s√
n

=

X̄n−µ
σ√
n√
s2

σ2

=
N(0, 1)√

χ2
n−1

(n−1)

Moreover, X̄n−µ
σ√
n

is independent of
√

s2

σ2
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• Definition: Let Z ∼ N(0, 1) and Q ∼ χ2
r be independent.

Then T = Z√
Q/r

has a Student’s t distribution with r

degrees of freedom, written as T ∼ tr

• Theorem: if Xi , i = 1 . . . n are i.i.d N(µ, σ2), then

X̄n − µ
s√
n

∼ tn−1
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Student t distribution

Figure: Normal, Cauchy, Student t, and Logistic Densities
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Some facts about t distribution

• The pdf of tr distribution is symmetric around 0

• The pdf of tr distribution has heavier tails than N(0, 1)

• Only the first r − 1 moment exists (vs. all moments of N(0, 1)
exists)

• As r → ∞, tr distribution is approaching to N(0, 1)
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Motivation for F distribution

• Variability comparison of two independent populations
N(µX , σ

2
X ) and N(µY , σ

2
Y )

• One ideal ratio is
σ2
X

σ2
Y

• Information about the aforementioned ratio is contained in
s2X
s2Y

• Since (n−1)s2X/σ2
X ∼ χ2

n−1, (m−1)s2Y/σ2
Y ∼ χ2

m−1

s2X/σ2
X

s2Y/σ2
Y

=
χ2
n−1/(n−1)

χ2
m−1/(m−1)
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F distribution
• Definition: Let Qp ∼ χ2

p and Qq ∼ χ2
q be independent. Then

Qp/p
Qq/q follows an F distribution with p and q degrees of
freedom, written as

Qp/p
Qq/q

∼ Fp,q

Figure: F (m, r) Distribution Densities with r = 10
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• Theorem: Let {X1, . . . ,Xn} be a random sample from
N(µX , σ

2
X ) population. Let {Y1, . . . ,Ym} be a random sample

from an independent N(µY , σ
2
Y ) population. Then

s2X/σ2
X

s2Y/σ2
Y

∼ Fn−1,m−1

• Some facts about F distribution

• If X ∼ Fm,r , then
1
X ∼ Fr ,m

• If X ∼ tq, then X 2 ∼ F1,q
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4. Sufficient Statistics
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Introduction

• Suppose we want to use a sample X = {X1, . . . ,Xn} to learn
about a parameter of interest θ

• All the information we can use is from X

• However, X is a long list of vectors that can be hard to
interpret

• As one data reduction technique, the concept of sufficient
statistics allows to separate information from X into two
parts: one part containing all useful information about θ and
the other containing no useful information
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Sufficient statistics

• Definition: A statistic T (X) is sufficient for θ if the
conditional distribution of X given T (X) does not depend on θ

• A sufficient statistic T (X) contains all useful information
about θ in the following sense

• Experimenter 1 is provided with X and can learn about θ from
pair (X,T (X))

• Experimenter 2 is not provided with X, but only T (X)

• Since T (X) is a sufficient statistics, the conditional
distribution of X given T (X) is known to Experimenter 2

• Experimenter 2 can back out the joint distribution of
(X,T (X)) without knowing X

• Thus, Experimenter 2 has as much information as
Experimenter 1



62

• Theorem: If p(x|θ) is the joint pdf or pmf of X and q(t|θ) is
the pdf or pmf of a statistic T (X), then T (X) is a sufficient
statistic for θ if

p(x|θ)
q(t|θ)

does not depend on θ for all x in the sample space.

• Proof
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Example: Normal sufficient statistic with known variance
• Let {X1 . . .Xn} be iid N(µ, σ2) where σ2 known

• We show that sample mean T (X) = X̄ is a sufficient statistic
for µ

• Note the joint pdf of the sample X is

f (x|µ) =
n∏

i=1

(
2πσ2

)− 1
2 exp

(
−(xi − µ)2

2σ2

)

=
(
2πσ2

)− n
2 exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)

=
(
2πσ2

)− n
2 exp

(
−

n∑
i=1

(xi − x̄ + x̄ − µ)2

2σ2

)

=
(
2πσ2

)− n
2 exp

(
−
∑n

i=1(xi − x̄)2 + n(x̄ − µ)2

2σ2

)
where the last equality holds since the cross-product term∑n

i=1(xi − x̄)(x̄ − µ) = (x̄ − µ)
∑n

i=1(xi − x̄) = 0
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• Recall in a normal sampling model X̄ ∼ N(µ, σ
2

n ). It follows

p(x|θ)
q(t|θ)

=

(
2πσ2

)− n
2 exp

(
−

∑n
i=1(xi−x̄)2+n(x̄−µ)2

2σ2

)
(2πσ2/n)−

1
2 exp

(
−n(x̄−µ)2

2σ2

)
= n−

1
2
(
2πσ2

)− n−1
2 exp

(
−
∑n

i=1(xi − x̄)2

2σ2

)
,

which does not depend on µ.
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Factorization Theorem

• It may be unwise to use the definition of a sufficient statistic
to find a sufficient statistic for a particular parameter

• The following theorem allows find a sufficient statistic more
conveniently

• Theorem (Factorization Theorem): Let f (x|θ) be the joint
pdf or pmf of X. A statistic T (X) is a sufficient statistic for θ
if and only if there exist functions g(t|θ) and h(x) such that,
for all sample points x and for all parameter points θ

f (x|θ) = g(T (x)|θ)h(x). (3)
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Proof for Factorization Theorem

• We give a proof only for discrete distributions

• Only if: Suppose T (X) is a sufficient statistic. Choose

g(t|θ) = Pθ{T (X) = t}
h(x) = P{X = x|T (X) = T (x)}.

Since T (X) is sufficient, h(x) does not depend on θ. For this
choice, we have

f (x|θ) = Pθ{X = x}
= Pθ{X = x,T (X) = T (x)}
= Pθ{T (X) = T (x)}P{X = x|T (X) = T (x)}
= g(T (x)|θ)h(x)

so the only if part is established
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• For the if part, suppose factorization (3) exists

• Let q(t|θ) be the pmf of T (X). To show T (X) is sufficient, it

suffices to examine the ratio f (x|θ)
q(T (x)|θ) for each x

• Define AT (x) = {y : T (y) = T (x)}. Then

f (x|θ)
q(T (x)|θ)

=
g(T (x)|θ)h(x)
q(T (x)|θ)

(apply (3))

=
g(T (x)|θ)h(x)∑

AT (x)
f (x|θ)

(by definition of pmf)

=
g(T (x)|θ)h(x)∑

AT (x)
g(T (y)|θ)h(y)

(apply (3))

=
g(T (x)|θ)h(x)

g(T (x)|θ)
∑

AT (x)
h(y)

(T is a constant on AT (x))

=
h(x)∑

AT (x)
h(y)

which does not depend on θ
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Example: Normal sufficient statistic with unknown variance
• Let {X1 . . .Xn} be iid N(µ, σ2) where σ2 unknown. Thus,
the parameter is θ = (µ, σ2)

• Note we already know

f (x|θ) =
(
2πσ2

)− n
2 exp

(
−
∑n

i=1(xi − x̄)2 + n(x̄ − µ)2

2σ2

)
,

which depends on x only through T1(x) = x̄ , and
T2(x) = s2 = 1

n−1

∑n
i=1(xi − x̄)2

• We can define h(x) = 1 and

g(t|θ) = g(t1, t2|µ, σ2) =
(
2πσ2

)− n
2 exp

(
−(n − 1)t2 + n(t1 − µ)2

2σ2

)
• Thus f (x|θ) = g(T1(x),T2(x)|µ, σ2)h(x). By the

Factorization Theorem,

T (X) = (T1(X),T2(X)) = (X̄ , s2)

is a sufficient statistic for (µ, σ2) in this normal model
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Example: discrete uniform distribution

• Let {X1, . . . ,Xn} be a random sample from the discrete
uniform distribution on {1, 2 . . . θ}. That is, the pmf for Xi is

f (x |θ) =

{
1
θ , x = 1, 2 . . . θ,

0, otherwise.

Show that maxi Xi is a sufficient statistic for θ.

• Proof
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Refinement of sufficient statistic

• It should be obvious that each problem has numerous
sufficient statistic. For example:

• In the previous normal model with unknown variance,(
X̄ , 1

n

∑n
i=1(xi − x̄)2

)
is also a sufficient statistic

• it is always true that the complete sample, X, is sufficient
statistic, as for all x

f (x|θ) = f (T (X)|θ)h(x), by letting T (X) = x, h(x) = 1.

• Also, any one-to-one function of a sufficient statistic is a
sufficient statistic (exercise)

• Is there one sufficient statistic better than another?
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Minimal sufficient statistic

• Definition: A sufficient statistic T ∗(X) is a minimal sufficient
statistic if for any sufficient statistic T (X), there exists some
function such that

T ∗(X) = r(T (X)).

• The above definition implies that, for any sufficient statistic
T (X), if T (x) = T (y), then T ∗(x) = T ∗(y)

• Intuitively, the minimal sufficient statistic achieves the greatest
data reduction without a loss of information about parameters
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Finding a minimal sufficient statistic

• Theorem: Let f (x|θ) be the joint pdf or pmf of X. Suppose
there exists a T (X) such that, for every two sample points x
and y, the ratio

f (x|θ)
f (y|θ)

does not depend on θ if and only if T (x) = T (y).

Then T (X) is a minimal sufficient statistic

• We leave this statement unproven here

• Note minimal sufficient statistic is also not unique
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Example: Normal minimal sufficient statistic

• Consider the previous example where {X1 . . .Xn} is iid
N(µ, σ2) with σ2 unknown

• Let x and ybe two sample points, and let (x̄ , s2x ) and (ȳ , s2y )
be the sample means and variances corresponding two the x
and y samples, respectively

• It follows

f (x|θ)
f (y|θ)

=

(
2πσ2

)− n
2 exp

(
− (n−1)s2x+n(x̄−µ)2

2σ2

)
(2πσ2)−

n
2 exp

(
− (n−1)s2y+n(ȳ−µ)2

2σ2

)
= exp

(
(n − 1)(s2y − s2x ) + n(ȳ2 − x̄2) + 2nµ(x̄ − ȳ)

2σ2

)
.

This ratio is a constant not depending on (µ, σ2) if and only if
x̄ = ȳ and s2y = s2x . Thus, (X̄ , s2) is a minimal sufficient
statistic
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4. Examples of Estimators and
Measures of Their Quality
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Estimators and some examples

• An estimator θ̂ for a parameter θ is a also a statistic,
intended as a guess about θ

• θ̂ is an estimate when it is a specific (or realized) value
calculated in a specific sample

• Let population parameter be µ = E[X ]

• The sample mean is X̄n = 1
n

∑n
i=1 Xi

• Let population parameter be θ = E[g(X )] for some known
function g

• An estimator is the sample mean of g(Xi ): θ̂ = 1
n

∑n
i=1[g(Xi )]

• Let population parameter be β = h(E[g(X )]) for some known
functions g and h

• A plug-in estimator for β is β̂ = h(θ̂) = h
(
1
n

∑n
i=1[g(Xi )]

)
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Quality of an estimator: estimation bias

• Definition: The bias of an estimator θ̂ of a parameter θ is

bias[θ̂] = E[θ̂]− θ

• An estimator is is unbiased if the bias is zero

• Bias depends on the population distribution F

• Let F be a collection of possible distributions

• An estimator θ̂ of a parameter θ is unbiased in F if
bias[θ̂] = 0 for every F ∈ F

• Theorem: X̄ is unbiased for µ = E[X ] if E|X | < ∞
• Sample mean is an unbiased estimator for population mean as

long as population mean is finite
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Quality of an estimator: sampling variance

• Definition: The variance of an estimator θ̂, also called
sampling variance, is var[θ̂]

• We already know that If EX 2 < ∞, then var[X̄ ] = σ2

n , where
σ2 = var(X )

• Therefore, the variance of X̄ declines with sample size at rate
1
n
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Estimation of sampling variance

• Sampling variance is the variance of an estimator and thus
usually unknown!

• To estimate var[X̄n], we need an estimator for

σ2 = var[X ] = E
[
(X − E[X ])2

]
• The plug-in estimator for σ2 is

σ̂2 =
1

n

n∑
i=1

(Xi − X̄n)
2 =

1

n

n∑
i=1

X 2
i −

(
X̄n

)2
• Theorem: If σ2 < ∞, then E[σ̂2] = (1− 1

n )σ
2 (proof left as

homework).

• Question: is there an unbiased estimator for σ2?
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Standard error

• Definition: The standard error of an estimator θ̂ for
parameter θ is

se(θ̂) = V̂ 1/2, where V̂ is an estimator for V = var[θ̂]

• Standard error can be interpreted as an estimator for V 1/2,
the standard deviation of θ̂

• Standard error is usually a biased estimator of V 1/2

• Example:

• sample mean X̄n is an estimator for µ

• the exact variance of X̄n is σ2

n

• if we estimate σ2 by the plug-in estimator σ̂2

• the standard error of X̄n is
√

σ̂2

n
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Quality of an estimator: mean square error
• A standard measure of estimation quality is mean square error
(MSE)

• Definition: The mean square error of an estimator θ̂ for θ is

mse(θ̂) = E[(θ̂ − θ)2]

• Theorem: For any estimator with a finite variance

mse(θ̂) = var(θ̂) + (bias[θ̂])2

• Proof: start from

mse(θ̂) = E[(θ̂ − θ)2]

= E[(θ̂ − E[θ̂] + E[θ̂]− θ)2]

and apply standard algebra

• An estimator with smaller MSE is considered to be better, or
more efficient
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Best unbiased estimator

• Among a class of unbiased estimators, the one with the
lowest sampling variance also has the smallest MSE

• This motivates finding the best unbiased estimator for
estimating parameter θ

• Theorem: If σ2 < ∞, the sample mean X̄n has the lowest
variance among all linear unbiased estimators of µ
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Proof
• Consider a class of linear estimators

µ̃ =
n∑

i=1

wiXi

with some weights {w1, . . .wn}
• Unbiasedness requires

µ = Eµ̃ =
n∑

i=1

wiE[Xi ] =
n∑

i=1

wiµ

which holds if and only if
n∑

i=1

wi = 1

• The variance of µ̃ is

var(µ̃) = var

(
n∑

i=1

wiXi

)
(independence)

=
n∑

i=1

w2
i var (Xi ) = σ2

n∑
i=1

w2
i
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• Hence the best unbiased linear estimator solves

min
w1...wn

n∑
i=1

w2
i , s.t.

n∑
i=1

wi = 1

which has an Lagrangian

L(w1, . . .wn) =
n∑

i=1

w2
i − λ

(
n∑

i=1

wi − 1

)

• FOC with respect to wi , i = 1 . . . n is

2wi − λ = 0 ⇒ wi =
λ

2

implying wi =
1
n in order to satisfy

∑n
i=1 wi = 1. Conclusion

follows
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• In fact, we have a much stronger statement

• Theorem: If σ2 < ∞, the sample mean X̄n has the lowest
variance among all unbiased estimators of µ
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Multivariate means

• Let X ∈ Rm be a random vector and µ = E[X ] be its mean.
The sample mean estimator for µ is

X̄n =
1

n

n∑
i=1

Xi

=


X̄1n

X̄2n
...

X̄mn


• Most properties of the univariate sample mean extend to the
multivariate mean
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• The multivariate mean is unbiased for the population
expectation: E

[
X̄n

]
= µ

• The exact covariance matrix of X̄n is

Var
(
X̄n

)
= E

[(
X̄n − E(X̄n)

) (
X̄n − E(X̄n)

)′]
=

1

n
Var(X ) =

Σ

n

• The MSE matrix of X̄n is

MSE
(
X̄n

)
= E

[(
X̄n − µ

) (
X̄n − µ

)′]
=

Σ

n

• X̄n is the best unbiased estimator for µ

• An unbiased covariance matrix estimator is

Σ̂ =
1

n − 1

n∑
i=1

[(
Xi − X̄n

) (
Xi − X̄n

)′]
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Connection between efficiency and sufficient statistics

• Suppose we have a random sample X = {X1, . . . ,Xn} from a
distribution Fθ, where θ ∈ Rk is the parameter of interest

• Let θ̂ := θ̂(X) be a candidate estimator for θ that we, as
researchers, think is “good”(e.g., it has some desirable MSE
properties)

• Suppose we also know that T (X) is a sufficient statistics for θ

• Question: Can we do better than θ̂?
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Rao-Blackwell Theorem

Rao-Blackwell Theorem
Under the setup from last slide, let

θ̃(X) := E
[
θ̂(X) | T (X)

]
.

Then,

1 MSE (θ̃(X)) ≤ MSE (θ̂(X))

2 If θ̂(X) is an unbiased estimator, so is θ̃(X)
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Proof


