
Econ 6170: Mid-Term 1

3 October 2024

You have the full class time to complete the following problems. You are to work alone. This
test is not open book. Please write out your answer neatly below each question, and use a new
sheet of paper if you need more space than provided. When using extra sheets, make sure to write
out your name and the relevant question number. In your answers, you are free to cite results that
you can recall from class or previous problem sets unless explicitly stated otherwise. The exam is
out of 25 points.
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Question 1 (5 points) Let f : S → R be a function on a nonempty set S ⊆ R.

(i) Suppose f is continuous. Give an example in which S is closed but not bounded and f (S) is
not bounded.

(ii) Suppose f is continuous. Given an example in which S is bounded but not closed and f (S)
is not bounded.

(iii) Suppose S is compact. Given an example in f is not continuous and f (S) is not bounded

Make sure to argue/prove that f (S) is not bounded in each of your example.

· · · · · ·

Solution 1. A set is bounded if it is bounded from above and below. A set S ⊆ R is bounded from
above (resp. below) if there exists s∗ ∈ R such s ≤ s∗ (resp. s ≥ s∗) for all s ∈ S.

(i) f (x) = x and S = R+. Note that limx→∞ f (x) = ∞.

(ii) f (x) = 1
x and (0, 1]. Note that f is continuous on (0, 1] but f (S) is not bounded above.

(iii) f (x) =

x−1 if x ̸= 0

0 if x = 0
and S = [−1, 1]. f (S) = R.
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Question 2 (5 points) A set U ⊆ V ⊆ Rd is open relative to V if and only if U = Ou ∩ V for some
open set Ou ⊆ Rd.

(i) Show that, if {Ui : i ∈ I} is a collection of sets that are open relative to V, then
⋃

i∈I Ui is also
open relative to V.

(ii) Show that, if {Ui : i = 1, 2, . . . , N} is a finite collection of sets that are open relative to V, then⋂N
i=1 Ui is also open relative to V.

(iii) Show that, if U is open relative to V, then, for all x ∈ U, there exists ϵ > 0 such that Bϵ(x) ∩
V ⊆ U.

· · · · · ·

Solution 2. (i) Since each Ui is open relative to V, there exists an Oi ⊆ Rd that is open such that
Ui = Oi ∩ V. Then, ⋃

i∈I
Ui =

⋃
i∈I

(Oi ∩ V) =

(⋃
i∈I

Oi

)
∩ V.

Since arbitrary unions of open sets are open,
⋃

i∈I Oi ⊆ Rd is open and hence
⋃

i∈I Ui is also relative
to V.

(ii) Since each Ui is open relative to V, there exists an Oi ⊆ Rd that is open such that Ui =

Oi ∩ V. Then,
N⋂

i=1

Ui =
N⋂

i=1

(Oi ∩ V) =

(
N⋂

i=1

Oi

)
∩ V.

Since finite intersections of open sets are open,
⋂N

i=1 Oi ⊆ Rd is open and hence
⋂N

i=1 Oi is also
relative to V.

(iii) Since each U is open relative to V, there exists an O ⊆ Rd that is open such that U = O∩V.
Fix x ∈ U. Since x ∈ O, there exists ϵ > 0 such that Bϵ(x) ⊆ O. Then, Bϵ(x) ∩ V ⊆ O ∩ V = U.
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Question 3 (5 points) A set S ⊆ Rd is totally bounded if and only if, for any ϵ > 0, there exists
{s1, s2, . . . , sn} ⊆ S for some n ∈ N such that

S ⊆
n⋃

s=1

Bϵ (s) .

(i) Describe what it means for a set S to be totally bounded in words. How does it relate to
compactness?

(ii) Show that if S is totally bounded, then S is bounded.

(iii) Show that if S is sequentially compact, then S is totally bounded. Hint: Prove by contradic-
tion; i.e., construct a sequence that violates S being sequentially compact.

· · · · · ·

Solution 3. (i) It’s like compactness but the open sets that cover S must have a constant radius.

(ii) Suppose S is totally bounded and let {s1, s2, . . . , sn} ⊆ S be a finite set such that, for ϵ > 0,⋃n
i=1 Bϵ(si) covers S. Fix some i∗ ∈ {1, 2, . . . , n} and define

M := max {|si − si∗ | : i ∈ {1, 2, . . . , n}}+ 1.

Observe that S ⊆ BM(s∗i ) and so S is bounded.
(iii) Suppose S is sequentially compact but S is not totally bounded; i.e., for some ϵ > 0. S,⋃

s∈T Bϵ(s) does not cover S for any finite subset T of S. To obtain a contradiction, we will construct
a sequence in S with no convergent subsequence. Fix s1 ∈ S and ϵ. By hypothesis, we cannot have
S ⊆ Bϵ(s1); i.e., there exists s2 ∈ S such that ∥s1 − s2∥ ≥ ϵ. By hypothesis again, we cannot have
S ⊆ Bϵ(s1)∪ Be(s2) and so we can find s3 ∈ S such that ∥s1 − s3∥, ∥s2 − s3∥ ≥ ϵ. Proceeding in this
manner, we obtain a sequence (sn)n in S such that ∥si − sj∥ ≥ ϵ for any distinct i, j ∈ N. Since S
is sequentially compact, there must exist a convergent subsequence, (snk )k. But this is impossible
since snk → s implies that

∥xnk − xnℓ
∥ ≤ ∥xnk − x∥+ ∥x − xnℓ

∥ < ϵ

for sufficiently large and distinct k and ℓ.
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Question 4 (5 points) Suppose f : X → R is strictly quasiconvex, where X ⊆ Rd is nonempty
and convex. Show that any local minimum of f is a global minimum of f . Prove or disprove the
same statement when f is only quasiconvex.

· · · · · ·

Solution 4. Now suppose f is strictly quasiconvex and x∗ ∈ X is a local minimum of f on X. Thus,
there exists ϵ > 0 such that f (x∗) ≤ f (x) for all x ∈ Bϵ(x∗). Toward a contradiction, suppose that
x∗ is not a global minimum; i.e., there exists z ∈ X such that f (z) < f (x∗) . But then since X is
convex, for any α ∈ [0, 1], αx∗ + (1 − α)z ∈ X and by the quasiconvexity of f , we have

f (αx∗ + (1 − α) z) < max { f (x∗) , f (z)} = f (x∗) ∀α ∈ (0, 1) .

In particular, for sufficiently large α > 0, αx∗ + (1− α)z ∈ Br(x∗) and hence we must have f (αx∗ +
(1 − α)z) < f (x∗); a contradiction.

Example from class notes: consider f : R+ → R defined as

f (x) :=


x3 x ∈ [0, 1]

1 x ∈ (1, 2]

x3 x > 2

.

Observe that f is both quasi-concave and quasi-convex because f is a nondecreasing function. Ob-
serve that f is constant on the interval (1, 2) and so every point in this interval is a local maximum
(as well as minimum) of f . However, no point in (1, 2) is either a global maximum or a global
minimum.
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Question 5 (5 points) Let X ⊆ Rd be a convex set with a nonempty interior. Let x0 be a boundary
point of X. We wish to show that there is a supporting hyperplane at x0. The idea of the proof is
to construct sequence of hyperplanes that converges to the hyperplane at x0. To that end, let (xn)n

be a sequence in Rd that converges to x0.

(i) Write down the definition for X to have a supporting hyperplane at x0.

(ii) Suppose xn /∈ X , given an example of a set X such that no hyperplane exists that strongly
separates xn and X? How can we modify X, say to X̃, to ensure the existence of a strongly
separating hyperplane?

(iii) Suppose we found a sequence of hyperplanes that strongly separate xn and X̃ for all n ∈
N. Argue that the sequence of hyperplanes converges to a limit and that the limit is the
supporting hyperplane at x0.

· · · · · ·

Solution 5. (i) There exists p ∈ Rd\{0} such that p · x0 ≥ p · x for all x ∈ X.
(ii) If X is not closed, then a hyperplane that strongly separates xn and X need not exist. For

example, suppose d = 2, x = (0, 1) and X := {(x, y) ∈ R2 : x > 0, xy > 1}. We therefore can let
X̃ := cl(X).

(iii) By the separating hyperplane theorem, there exists pn ̸= 0 such that

pn · xn > pn · x ∀x ∈ cl (X)

x ∈ X ⊆ cl(X). Since we can normalise pn without affecting the inequality, we can assume that
∥pn∥ = 1 for all n ∈ N. Then, (pn)n is a bounded sequence and so has a convergent subsequence,
(pnk )k (by what theorem?). That is, pnk converges to some p and since xnk converges to x0, we
have

p · x0 ≥ p · x ∀x ∈ X,

where the inequality is weak because x0 ∈ X. Note that the H(p, p · x0) is a hyperplane supported
at x0.
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