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Convexity
Definition. A subset X of Rd is convex if for any x, y ∈ X and α ∈ [0, 1], αx + (1 − α)y ∈ X.

Remark 1. Visually, this means that the line segment between any two points in X is also in X.

Figure 1: X, Y and Z are all non-convex, as the red line segments lie outside the sets. Note that Z is the
finite union of convex sets.

Remark 2. To show a set, X, is convex we can

(i) Take two arbitrary points, x, y ∈ X, and an arbitrary α ∈ [0, 1], and show that αx + (1 − α)y ∈
X.

(ii) Show that X is the intersection of sets we know to be convex, e.g., intervals.

Section Exercise 1. Are the following sets convex? Prove your answer.

(i) R

(ii) A line, ℓ := {(x, y) | ax + by = c}, in R2

(iii) The unit circle centered at the origin, S := {(x, y) | x2 + y2 = 1}

(iv) The open unit disc1 centred at the origin, B := {(x, y) | x2 + y2 < 1}

(v) The complement of a convex set

(vi) A singleton (a set with exactly one element)

(vii) A finite set with more than one element

(i) Yes. If x, y ∈ R and α ∈ [0, 1], then αx + (1 − α)y ∈ R.

1“Disc” is a term for a ball in R2; compare circle versus sphere.
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(ii) Yes. If (x, y) satisfies ax + by = c, and (z, w) satisfies az + bw = c, and λ ∈ [0, 1], then
(λx + (1 − λ)z, λy + (1 − λ)w) satisfies

a(λx + (1 − λ)z) + b(λy + (1 − λ)w) = λ(ax + by) + (1 − λ)(az + bw)

= λc + (1 − λ)c

= c

(iii) No. Both (1, 0) and (−1, 0) are on the unit circle, but 1
2 (1, 0) + 1

2 (−1, 0) = (0, 0) is not.

(iv) Yes. If x2 + y2 < 1 and z2 + w2 < 1, then

(αx + (1 − α)z)2 + (αy + (1 − α)w)2 = α2x2 + 2α(1 − α)xz + (1 − α)2z2 + α2y2

+ 2α(1 − α)yw + (1 − α)2w2

= α2(x2 + y2) + (1 − α)2(z2 + w2) + 2α(1 − α)(xz + yw)

< α2 + (1 − α)2 + 2α(1 − α)(xz + yw)

It suffices to show that xz + yw < 1, for then α2 + 2α(1− α) + (1− α)2 = (α + 1− α)2 = 1. To
show xz + yw < 1, it suffices to show that xz + yw > x2 + y2 and xz + yw > z2 + w2 together
imply a contradiction. Note that we can sum these inequalities to get x2 − 2xz + z2 + yw −
2yw + w2 < 0, which we can rewrite as (x − z)2 + (y − w)2 < 0, which is impossible.

(v) Possibly, but not in general. The complement of (−∞, 0) is [0, ∞), which is convex. However,
the complement of (−1, 1) is (−∞, 1] ∪ [1, ∞), which is non-convex.

(vi) Yes, as αx + (1 − α)x = x ∈ {x} for all α ∈ [0, 1].

(vii) No. Let x and y be distinct elements of the set. Then, {αnx + (1 − αn)y | n ∈ N} is an infinite
set, so at least one of its elements cannot be in the finite set.

Convex and Quasiconvex Functions
Remark 3. Visually, a function f : X ⊆ Rd → R is...

➣ Concave iff its subgraph is convex.

➣ Convex iff its epigraph is convex.

➣ Quasiconcave iff the preimage of every interval [r, ∞) under f is convex.

➣ Quasiconvex iff the preimage of every interval (−∞, r] under f is convex.
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concave convex

concave and quasiconvex convex and quasiconcave

affine linear (=⇒ affine)

quasiconcave quasiconvex

quasiconcave and quasiconvex quasiconvex
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convex none

More Convexity Exercises
Section Exercise 2.

(i) Show that if f , g : Rk → R are convex, then so too is max{ f , g}.

(ii) Provide a counterexample to show that the previous result doesn’t hold if we replace max
with min.

(iii) Using the claim in part (i), show that if f and g are concave, then so too is min{ f , g}.

(i) Let h := max{ f , g}. Fix x, y ∈ Rk and α ∈ [0, 1]. We’re given that f (αx + (1 − α)y) ≤
α f (x) + (1 − α) f (y) and g(αx + (1 − α)y) ≤ αg(x) + (1 − α)g(y).

h(αx + (1 − α)y) = max{ f (αx + (1 − α)y), g(αx + (1 − α)y)}
≤ max{α f (x) + (1 − α) f (y), αg(x) + (1 − α)g(y)}
≤ max{α f (x), αg(x)}+ max{(1 − α) f (y), (1 − α)g(y)} (∗∗)

= α max{ f (x), g(x)}+ (1 − α)max{ f (y), g(y)}
= αh(x) + (1 − α)h(y)

so max{ f , g} is convex. One step we might be unsure of is (∗∗). This step uses the claim that
max{x + y, z + w} ≤ max{x, z}+ max{y, w}. We can confirm this by supposing, without loss of
generality, that x + y ≥ z + w. Then clearly max{x + y, z + w} = x + y ≤ max{x, z}+max{y, w}.2

(ii) Take f , g : R → R given by f (x) := x and g(x) := −x, respectively. Then min{ f , g}(x) := −|x|.

2Solution suggested by Spencer Dean: {(x, y) | y ≥ f (x)} ∩ {(x, y) | y ≥ g(x)} = {(x, y) | y ≥ max{ f , g}(x)}.
Convexity of f and g implies that the first two sets are convex. So their intersection, the epigraph of max{ f , g} must
also be convex. It follows that max{ f , g} is a convex function.
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(iii) If f and g are concave, then − f and −g are convex, and thus so too is max{− f ,−g}. But
max{− f ,−g} = −min{ f , g}, so min{ f , g} is concave.

Exercise 4. Show that if S is open then so too is co(S).

This holds trivially for the empty set. Suppose, then, that S is nonempty and open. Let z ∈ co(S).
Then we can write

z =
n

∑
i=1

αixi

for some xi ∈ S and αi ∈ [0, 1] that sum to 1. Openness of S implies that for each xi, there exists ε i

such that Bεi(xi) ⊆ S. Let ε = min{ε i | i = 1, . . . , n}. Then we can write

Bε(xi) ∈ S

for all i. Take w ∈ Bε(z). We want to show that w ∈ co(S), which would imply Bε(z) ⊆ co(S).
This, in turn, would be sufficient to prove openness of co(S). Write

w = z + w − z =
n

∑
i=1

αixi + w − z =
n

∑
i=1

αi(xi + w − z) =:
n

∑
i=1

αiyi

where yi := xi + w − z for all i. Thus w is a convex combination of y1, . . . , yn, so if y1, . . . , yn ∈ S,
we would have w ∈ co(S). But for all i,

∥yi − xi∥ = ∥xi + w − z − xi∥ = ∥w − z∥ < ε

so yi ∈ Bε(xi) ⊆ S.
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