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1. Basic Concepts



Set-up

A random vector X has distribution F(x)

We are interested in (scalar) parameter 6 determined by
FeZ

The parameter space is 6 € ©
We have a random sample {Xi, X2 ... X,} from distribution F
In previous sections, we talked abut estimation of 6

In this section, we are interested in testing some hypothesis
about 6



Hypotheses

A hypothesis is a statement about population parameter 6
We call the hypothesis to be tested the null hypothesis

Definition: The null hypothesis Hy, is the restriction 8 = 6q
for some specific value g, or 8 € ©¢ for some subset ©g of ©.
The null hypothesis is often written as

HOZ{QGG:GZQO} or]HIo:{HE@:Oe@o}
The complement of null hypothesis is alternative hypothesis
Definition: The alternative hypothesis is the set

H1:{96929#90} OrH0:{96929¢@0}



Point hypotheses

® |n this note, we focus on point hypothesis
Ho={0€0:0=06}

® The alternative hypothesis could be
® one sided: H : 0 > 6y or H; : 0 < 6,
® two sided: Hj : 0 # 6

® One sided alternative arises if the null lies on the boundary of
the parameter space © = {6 : 0 > 6y}

® Example: some policy with non-negative effect



A hypothesis is a restriction on the underlying distribution F

Define the null distribution as a set Fg such that
Fo={F € .% : Hp is true}

Fo can be a singleton (a single distribution), a parametric
family, or a nonparametric family

Suppose Ho = {in = uo}. Examples of Fy

* singleton: X ~ N(u,0?) with known o2

® parametric: X ~ N(u,o?) with unknown o2

® nonparametric: X has finite mean



Simple vs. composite hypothesis

¢ Definition: A hypothesis H (could be null or alternative) is
simple if the set {F € .%# : H is true} is a singleton.

A hypothesis H is composite if the set {F € .% : H is true}
contains multiple distributions

® Suppose Hy = {i = po}. Examples of Fy

® singleton: X ~ N(u,0?) with known o2

= simple

® parametric: X ~ N(u,o?) with unknown o2

= composite

® nonparametric: X has finite mean
=- composite



Hypothesis test

® Hypothesis test is a decision based on data
® The decision either accepts Hy or rejects Hy in favor of Hjy

® Procedures of hypothesis testing

® Construct a real valued function of the data called test

statistic
T=T(X,X...X,) €R

which is a random variable
® Pick a critical region C
® One sided test: C = {x : x > c} for critical value c
® Two sided test: C = {x : |x| > ¢} for critical value ¢

® State hypothesis test as the decision rule

accept Hy if T ¢ C
reject Hy if Te C



Accept Hy Reject Hy Reject Hy Accept Hy Reject Hy

T=c c T>c T<-c ~° ITlsc

(a) One-Sided Test (b) Two-Sided Test

Figure: Acceptance and Rejection Regions for Test Statistic



Evaluation of hypothesis test

® A decision could be correct or incorrect

We evaluate hypothesis tests through their probability of

making mistakes

Two types of errors in hypothesis testing

Decision
Accept Hy | Reject Hy
Hp Correct Type |
decision Error
Truth
u H; | Typell Correct
Error decision




Power function

Power function characterizes probability of making mistakes

Definition: The power function of a hypothesis test is the
probability of rejection

w(F) = P{reject Hp|F} = P{T € C|F}

Definition: The size of a hypothesis test is the probability of

a Type | error
P{reject Hy|Fo} = m(Fo)

for Fy satisfying Hg

Definition: The power of a hypothesis test is the
complement of the probability of a Type Il error

P{reject Hy|F1} = w(F1) = 1 — P{accept Hp|H]; }
for F; satisfying H;

Size is power function evaluated at null; Power is power
function evaluated at alternative



Type | and Il errors can't be reduced simultaneously

® Let G(x|F) = P{T < x|F} be the sampling distribution of T
® G(x|Fp) is called null sampling distribution
® G(x|Fy) is called alternative sampling distribution
e Consider a one sided test with rejection rule T > ¢
® Type | error is size m(Fy) = P{T > c|Fo} =1 — G(c|Fo)
® Type ll erroris 1 —w(F) = P{T < c|F} = G(c|F)
® Since any distribution function G(x|F) is increasing in x
® Type | error is decreasing in ¢

® Type Il error is increasing in ¢



Accept Hy

Figure: Left: Null Sampling Distribution for One-Sided Test; Right:
Alternative Sampling Distribution for One-Sided Test



2. Classical Approach



Classical approach

® Control size and then pick the test to maximize the power
subject to this size constraint

¢ Definition: The significance level o € (0, 1) is the
probability selected by the researcher to be the maximal
acceptable size of the hypothesis test



Classical approach for one sided test
Consider one sided test
Ho: 60 =6y, Hy: 0 > 6
Given test statistic T, consider the test taking form

accept Hp if T <c
reject Hg if T > ¢

Choose ¢ to control size at «
w(Fo) = P{T > c|Fo} =1— G(c|R) =«
Solving (1) yields
c=G 1 - alF),
the (1 — a)—th quantile of the null sampling distribution

The test rule
accept Hy if T < G71(1 — a|Fy)
reject Hop if T > G~ 1(1 — alF)

has a size equal to «

(1)



Classical approach for two sided test

® Consider two sided test
Ho: 60 =06y, Hy:0# 6

with test taking form
if |T|<c

accept Hp
if |[T|>c

reject Hp

® Choose ¢ to control size at «
(Fo) = P{|T| > c|Fo} =1— G(c|Fo) + G(—c|Fy) = «

® Suppose G(x|Fp) is symmetric around 0

1—G(c|Fo) + G(—c|Fo) =2(1 - G(c[R)) = (2)



e Solving (2) yields
¢ =G (1- ),

the (1 — §)—th quantile of the null sampling distribution
® The test rule

accept Hy if |T| < G71(1— 5|Fo)
reject Ho if |T| > G1(1 — §|Fo)

has a size equal to «



Example: T Test with normal sampling

® Suppose X ~ N(u,c?) and we wish to test

Ho : pp = pro, Hi > po

® Form test statistic

- n
where X, is sample mean and s? = 1= 37 (X; — X,,)?

n—1
i=1
® Under Hp _
X —
T = 2n HO ~t g
52
n
® Given «, set
¢ =dqi—«

where g1_,, is the 1 — a-th quantile of t,_; distribution



® A one sided t test with size o is

accept Hy if T < qgi_q
reject Hyp if T > q1—«

e If o2 is known, replacing s with ¢?

X —
T=2n k0

n
yields a z test that uses the quantile of a standard normal

® Analysis of a two sided test is similar



® Theorem: In the normal sampling model X ~ N(u,c?), let

T:Xn_NO

s?
n

@ The t test of Hp : 4t = po against Hy : p > o rejects if
T> d1—a

where g1_, is the 1 — « quantile of the t,_; distribution

@® The t test of Hy : u = po against Hy : p < o rejects if
T < qa
© The t test of Hp : 4t = po against Hy : p # po rejects if
IT| > q1-a/

These tests have exact size a



Example: Asymptotic T test

Again suppose X has mean p and finite variance

We wish to test

Ho : po = po, Hi:p> po

The t-statistic is _
Xn — Ho
52

n

T —

n
where s2 could be replaced by 6% = 1 3°(X; — X,)?

Under Hp, T is not exactly normal but asymptotically normal
by CLT

T % N(0,1)

Thus as n — oo

m(Fo) = P{T > c|Fo} — P{N(0,1) > c} = 1 — &(c)



® Theorem: If X has finite mean y and variance o2
@ The asymptotic t test of Hp : u = o against Hy : p > po
rejects if
T>7Z1_4

where Z;_, is the 1 — o quantile of the standard normal
distribution

@® The asymptotic t test of Hp : u = o against Hy : p < po
rejects if
T < Z,

© The asymptotic t test of Hy : pu = o against Hy : pu # po
rejects if
|T| > Zl—a/2

These tests have asymptotic size «



P-value

® Again consider a one sided test

accept Hp if T <c
reject Hg if T > ¢

where ¢ is chosen to control size at «
P{T > c|Fo} =1— G(c|Fy) = «

® How should we report the results of the test?

® Method 1: report size «, and decision “Reject Hp" or “Accept
Hy"

® Method 2: report critical value ¢ and value T at sample points

® Another method: report the value of a certain kind of statistic
called p-value



Define p-value as
p=1-G(T|F)
Since G(-|Fp) is increasing, p is a decreasing function of T

Also note
a=1- G(c|Fy)

Therefore, the decision

reject Hp if T > ¢

is equivalent to
reject Hp if p < «



Method 3: report the value of p
® For each o € (0,1)
accept Hyp if p> «
reject Hy if p<a
is a size « test
P{p < a|Fy} = P{1 — G(T|F) < a|F}
= P{G1(1 - a|F) < T|Fo}
=1-G(G'(1-a|F)|F)
=«
® pis “degree of evidence against Hgp"

® the smaller the p-value, the stronger the evidence against the
null

® pis “marginal significance level”

® the lower bound of the range of size o at which we would
reject the null



Further remarks about p-value

® pis a transformation of a statistic rather than a probability

® |t transforms the T statistic to an easily interpretable universal
scale between [0, 1]

® p allows inference to be continuous rather than dichotomous
(more informative)

® Suppose one statistic has p-value of 0.049 (mildly significant)
and the second statistic has the p-value 0.051(mildly
insignificant)

® From their p value we know these two statistics are essentially
the same

® Reporting "Reject” or “Accept” would not be able to give us
such information



2. Power Analysis



Introduction

So far we focus on the size of the tests

We know how to construct a test of (asymptotic) size « for
mean

A good test should also have a good power

It is important to know the power of the test we constructed



Power of T test with known &2

® Suppose X ~ N(u,?) with known o2

® Consider statistic

T:Xn_,UO

a?

for tests

® We reject if

where ¢ is chosen to control size at level «



«ﬁ“ ~ N(0,1) since X, is

n

® \Whether Hy is true or not, X

centered around true mean p
® The power function of the test is

TF(F)—P{T>C|F}—P{)_<\/> >CF}

)

f Ve

Z~N(O 1)

:1—¢(c+u0_“>
o2

e Sizeis m(Fo) = 1—®(c), since Fo = {F ~ N(u,02) : = po}

> c|F

n

® Poweris m(ulF1)=1—9® <c + “°:2“> where 1 > o

® Note 7(u|Fy) is increasing in n, u and decreasing in 02 and ¢



Example: Selection of ¢ and n for power targets

® Suppose now we want to select n and ¢ to achieve size 0.1 and

power at least 0.8 if u > po+ o

How should we proceed?

Step 1: selecting ¢ such that
m(Fo)=1—®(c)=0.1 (3)

ensures size o = 0.1. Solving (3) yields ¢ = 1.28

Step 2: since power is increasing in u, selecting n such that

fio —
0-2
0

Solving above inequality yields n > 4.49

1—-d|1.28+

lw=po+o| >08

Conclusion: choosing ¢ = 1.28 and n =5 yields the desired
size and power balance



3. Likelihood Ratio Test



Motivation

® Recall classical approach to testing

® Control size and then pick the test to maximize power subject
to this size constraint

® So far we focus on t test

® Another important class of tests is likelihood ratio test

® We show it maximizes power subject to size constraint for
testing simple hypotheses



Likelihood ratio test for simple hypotheses

Consider a parametric model f(x|0) with likelihood
Ln(0) = [Ti= £(Xil6)
We want to test simple hypotheses

Hoiezeo, H120:91

for some hypothetical values 6y and 6

The ratio f:gz;g

hypotheses

compares the likelihood function under two

A decision rule could be

accept Hy if La(1) ¢

L"EBO
reject Hy if i"(g;) > c

NI

for some critical value ¢



® For convenience, define the likelihood ratio statistic as
LR, =2 (n(01) — £n(60))
where £,(0) = log L,(0)

® A likelihood ratio test is

accept Hy if LR, <c¢
reject Hyg if LR, > ¢

for some critical value ¢



Example: normal sampling with known variance
® For X ~ N(u,0?) with known o2

fn(u):—glog (7o) — o 22( i — 1)

® Suppose
Ho : po = po, Hy @ pp = p1 > po

LR, = % Z ((Xi — po)® = (Xi = m)?)

_ UL’Z [2X (111 — p0) + (13 — 113)]

® Rejecting Hg for some LR, > c is equivalent to rejecting if

Xn_,UO

T = >
Vn

> some constant



Neyman-Pearson Lemma

® Theorem: Suppose random variable X has a parametric
pdf/pmf f(X|#). Among all tests of a simple null hypothesis
against a simple alternative hypothesis

Ho:@zeo, H129:91
with size «, the likelihood ratio test has the greatest power.

® In the normal sampling model with known variance, the
likelihood ratio test of simple hypotheses is identical to a t
test using a known variance

® By Neyman-Pearson Lemma, t test using a known variance is
the most powerful test for this hypothesis in this model



Proof

® Consider likelihood ratio test

accept Hp if i"(z;) <c
Ln591
L. (B0

|

reject Ho if >c

~

where ¢ is chosen such that

P{tgzg > ¢l = eo} —a

® |Let the joint density of observations be f(x|#) for some
x=(x1,...xn)

e Then L,(0) = £(X|6), where X = (X1, ... X,)



Since test is binary decision (accept/reject), it can be
represented by binary function (called test function)

The likelihood ratio test function is
Yrr = 1{f(X|01) > cf (X|60)}

that is, ¥, g = 1 if likelihood ratio rejects Hg and ¢y g =0
otherwise

Let 1, be any alternative test function with same size «

Since both tests have same size
P{vir=10=60} =P{va=10=6p} =«

or equivalently

[ vunrxo0)ax = [ vaf(xito)ox = o



The power of likelihood ratio test is

P { tgzg; > clf = 91}

=P{¢r=1|0 =061}
:/wLRf(le)dX

:/¢LRf(x|01)dx c{/q/;LRf(x]Hg)dx/d}af(xwo)dx}
:/z/;LR(f(x\Hl)—cf(x\@o))dx-i-C/¢af(X’90)dx
>/¢a(f(x|01) - cf(x|90))dx+c/waf(xwo)dx
:/¢af(x91)dx

=power of 1,




® The inequality holds since
® f (f(X|91) — Cf(X|90)) > 0, wLR = ]_, and

YR (F(x]601) — cf (x]00)) > 1a (F(x]|01) — cf (x]6b))
o if (f(x|61) — cf(x]|60)) <0, g =0
YR (F(x|601) — cf (x|60)) = 0 > 2, (F(x|01) — cf (x]6o))

® Hence the power of the likelihood ratio test is greater than the
power of the test v,

® By the arbitrariness of 1,, we conclude likelihood ratio test
has higher power than any other test with the same size



Likelihood Ratio Test against composite alternatives

® Consider two sided test

Ho:@zgo, H1:07590

The log likelihood under Hj is the unrestricted maximum of
the likelihood

Let § be the MLE that maximizes L,(6)

The likelihood ratio statistic is

LR, =2 (zn(é) - En(00)>

The likelihood ratio test is

accept Hy if LR, <c
reject Hy if LR, > ¢

for some critical value ¢



1n(8)

LR,

In(80)

6o

D>

Figure: Likelihood Ratio



Consider one sided test
H0:6:907 H1:0>90

The log likelihood under Hj is the maximum of the log
likelihood in the restricted set

{0:6> 60},
that is, £,(81), where 8+ = arg maxg>g, £n(6)
The likelihood ratio statistic is
LR+:2( WS(0) — ¢, (90))
The likelihood ratio test is

accept Hy if LRT <c¢
reject Hy if LR > ¢

for some critical value ¢



Example: Normal sampling with known variance
® Again suppose X ~ N(u,c?) with 02 known

e Consider testing

Ho : o= po, Hy: > po

® \We've shown that for simple hypothesis

Ho : pt = po, Hy @ pp = p1 > po

likelihood ratio test is equivalent to a t test

7

X. —
rejecting Hg if nTo > b, for some b

vn
® Such analysis does not depend on specific value of 11

® Thus this t test is also the likelihood ratio test for one-sided
alternative



Asymptotic size control for Likelihood Ratio Test

® Theorem: For simple null hypotheses, under Hg : 6 = 6q
d 2
LRn = Xgim(o)
Let g1_, be the 1 — a-th quantile of X<2iim(0)' The test

accept Hp if LR, < g1«
reject Ho if LR, > q1—«

has asymptotic size o

® Moreover, likelihood ratio and t tests are asymptotically
equivalent tests



Sketch proof
Note LR, =2 (E,,(é) - fn(90)>

Second order Taylor expansion yields

N A 1, 8
(1 (6o) —gn(0)+%£n(9) (9—90)4'5(9—90) 60(‘9«9£”(9)(9_ 0)
— >
_p-t

S 52 ~17 L. . .
Note where V = {—mﬁn(e)} is the Hessian estimator of

the asymptotic variance of 6 estimated Hessian

Hence
2 (en(é) - en(oo)) ~ (O — 60) V(8 — 6o)

As n — oo, the RHS converges to X<21im(9)



