Econ 6190: Econometrics |

Asymptotic Theory

Chen Qiu

Cornell Economics

2024 Fall



Motivation for asymptotic theory

We derived the distribution of X,, under normal distribution
assumption

This can be quite restrictive
® What happens when the population is not normal?

® What is the distribution of nonlinear transformations of X,?

Idea: Allow sample size n to grow to infinity and investigate
the behavior of the estimators as this happens

® Pros: provide useful approximations of the finite-sample case;
simpler results

® Cons: never realistic

Main tools of asymptotic theory
® Law of large numbers (LLN)
® Central limit theorem (CLT)

¢ Continuous mapping theorem (CMT)
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1. Convergence in Probability



Asymptotic limits
® Definition: A sequence of numbers a, has the limit a, or
converges to a as n — < if for all § > 0, there exists some
ng such that for all n > ng, |a, —a| <

® Notations to indicate “a, converges to a" include:

a,—a, asnh—oo;, or lim a,=a
n—oo

® |ntuitively, a, gets arbitrarily close to a as n — oo

Figure: Limit of a sequence of numbers



Motivation for convergence in probability

A (non-random) sequence may converge to a limit. What
about a sequence of random variables?

For example, X, is a sequence of random variables indexed by
sample size n

As n changes, the distribution of X, also changes
In what sense does X, converge when n becomes large?

Since X, is random, we need to modify definition of
convergence and limit

There are different ways to define convergence of sequence of
random variables



Convergence in probability

e Let {X,,n=1,2,...} be a sequence of random variables
® Let X be another random variable (X could be a constant)
¢ Definition: We say X, converges in probability to X if
forall§ >0
lim P{|X,—X|>d}=0
n—o0
or equivalently
lim P{|X,—X|<d}=1
n—o0
or equivalently, for all 6 > 0, € > 0, there exists some ns .

such that for all n > ns.
P{|Xn—X| >0} <e¢

P{X,—X|<d}>1-—¢
® Notations to indicate convergence in probability include

Xo 2 X, plimX, =X, X, =X+ 0,(1)



Example

® Consider discrete random variable Z, such that

1

P{Z,=0} =1~

Z=0y=1-1
P{Z —a}—1
n — n _n

where a, is an arbitrary sequence

® \We can show Z, £, 0 since for each § > 0

1
P{1Zy 0| > 0} < P{Zy = an} = = >0



Convergence in probability of vectors

Let X,, X be k x 1 random vector with jth element denoted
as Xpj, j=1...k

Then X, 2 X if and onIyianJ-ﬂ)Xjforeachjzl...k

Convergence in probability of a vector is defined as
convergence in probability of all elements in the vector

Same would apply for matrices



Consistency

® Definition: An estimator GA,, based on a sample of size n for
parameter 6 is (weakly) consistent if 0, —0 >0, ie., 6, > 0
e Consistency is
® an asymptotic property of an estimator
® typically a minimum requirement for any estimator

® a different notion compared to finite sample property such as
unbiasedness

® |n fact, many estimators are biased or asymptotically biased



Asymptotic unbiasedness

e Definition: An estimator 6, based on a sample of size n for
parameter 6 is asymptotically unbiased (AU) if

tn {51000} = i 5000} 00

® Theorem: Consistency and asymptotic unbiasedness do not
imply each other



® Proof: (by counterexamples)

® (1): show AU=-Consistency

® Suppose population is X ~ N(u,0?). Parameter of interest is
w. Given a sample {Xi, X5 ... X,} drawn from X, let

a=X

® Since E[i] = E[Xi] = p, [i is unbiased and thus AU

® But P{|fp —p| >0} =P{|X —pu| >0} » 0as n— oco. Thus
not consistent



® (2): show Consistency=AU
® Consider the following artificial example
® Suppose true parameter is , and 0, is binary

1

P{O,=60}y=1—=, P{én:n}:1
n

S|

A~

® @, is consistent since for all § > 0

A A 1
P{|9n—9|>§}§P{9n:n}:E—>0, as n — oo

However 6, is not AU since

. 1 1 9
E[en]:9<1n)+nn:9n+:

—60+1, asn—



Continuous mapping theorem

® Theorem: Let X,, X be k x 1 random vectors. If X, B x
and g is a real valued continuous function, then

g(Xa) 5 g(X)

® Corollary 1 [Slutsky's theorem]: Let g be continuous at c.
Then
Xn 5 ¢ = g(X) > g(c)

e Corollary 2: X, 2 X = || X, — X|| & 0, where ||-|| is the
Euclidean norm



2. Proving Convergence in Probability



Markov inequality

Definition: Let X be a random variable and A be an event.
An indicator function is

l{XeA}{l if X cA

0 ifX¢A

Note E[1{X € A}] = P{X € A}

Theorem [Markov Inequality]: For each r >0
E[IX]']

P{|X| >0} < 5

, forall§ >0

provided E[| X|"] < o0

Proof
P{|X| > o} = E[1{|X] > ¢}]

<E {1{|X\ > 5}'?#}

— %E[l{\XI > 6} X]|]

_E[X/]
<=



Application: convergence in r—th mean implies
convergence in probability

¢ Definition: Assuming E[|X|"] < co. Then X, converges in
r — th mean, written as X, —, X, if

lim E[| X, — X|"]=0
n—oo
® Theorem: For any r > 0
Xn —, X implies X, 2 X

® Proof: by Markov inequality

E X, = X|']

P{IXn — X| > 6} < =70

— 0, asn— o



Application: consistency by mean square convergence

m TR .
® “Mean square convergence” is convergence in r—th mean for
r=2

e We can also show estimator 0, 2 0 if
E[f, — 6> — 0, as n — oo
—_——
mean square error

® Since )
B[, — 0 = [bias(én)] +var(,)
———

mean square error

® \We can show estimator 9,, B if

bias(d,) — 0, and var(d,) — 0, as n — oo



Convergence in r—th mean implies AU

e Theorem: 0, —, 0 for some r > 1 implies ILm E[GA"] =0
® Proof: Note
E[d,] — 6 < [E[d, — 6]
<E[f, - 0] (Jensen's Inequality)
N 1/r

< {IE\G,, - ¢9|r} (Jensen's Inequality again)
— 0, as n — o0

e Remark: 0, —, 0 , g continuous =g(0,) 2> g(0)

However, it is NOT true that g(8,) —, g(6). E|g(f,)|" might
not even exist



Chebyshev's inequality

® By applying Markov inequality with r = 2 and replacing X
with demeaned version X — EX

we have Chebyshev’s Inequality

E[|X —EX|?] _ var(X)

P{|X —EX| > 6} < - 52 forall 6>0

® |Implication

® An estimator §, 5 E {én} if var[é,,] is vanishing to zero



Application: Chebyshev's weak law of large numbers

® Theorem: If {X;,i =1,...n} arei.i.d with mean p and finite
variance o2, then
Xn 2 7

® Proof: Recall we've shown under i.i.d assumption,

— — 0'2
EX, = u, var(X,) =—
n
Applying Chebyshev’s Inequality yields
Y 2
P{Ko—pt] > 8} = P{K0—EX| > 6} < 20 T 0 forall 650

52 né?



Application: Khinchine's Weak Law of Large Numbers

Theorem: If {X;,i =1,...n} arei.id with E|X;| < oo, then

X, B E[X/] = p

Notice Khinchine's WLLN does not require finiteness of
variance and thus is a stronger result than Chebyshev’s LLN

Khinchine's WLLN is often referred to as “the WLLN"

® Proof is technical and done by showing
E[| X, — pl] = 0,

or convergence in r—th mean when r =1



Khinchine's WLLN for vector case

® We now extend Khinchine's WLLN to vector case

® Theorem: Suppose X; € R™ i =1...n are iid distributed
and E || X;|| = E || X|| < oo, then

X, 5 EX
as n — o0

® Note E||X]| < oo if and only if E|Xj| < co forall j=1,....m



3. Almost Sure Convergence



Almost sure convergence

e Convergence in probability is sometimes called weak
convergence

® A stronger concept is almost sure convergence, also known
as strong convergence, or convergence with probability
one

¢ Definition: We say X, converges almost surely to X,
denoted X, 22X if

P{jm % =x} =1

or equivalently, for all § > 0 and £ > 0
P{|Xm —X| <6 forallm>ns.} >1—¢

e Theorem: X, 23 X implies X, > X



Proof
Proposition: If (C = D), then P{C} < P{D}

Recall X, & X if forall § >0, >0
there exists some ns . such that for all m > ns.

P{Xm—X| <0} >1—¢

X, 23 X ifforall § >0,¢>0
there exists some ns. such that for all m > ns .

P{{Xm—X|<dforalm>ns.} >1—¢
<:>P{ﬂf:n6‘5{|Xm ~X| < 5}} >1-¢
Take

D= |Xm— X| <6 forany m> ns,.
C = M5y A1Xm — X| < 6}

Clearly C = D. Hence for any m > ns.
P{|Xm — X| < 6} = P{D}
> P{C} = P{Nis, A1Xn — X| < 5}}
>1-c¢



Strong law of large numbers (SLLN)

Theorem: if X;, i =1...n are i.i.d with finite mean
E|Xi| = E|X| < oo, then

X, 3 EX
SLLN is a stronger asymptotic result
Proof uses more advanced tools

For most practical purposes weak laws of large numbers are
sufficient



4. Stochastic Orders of Magnitude



Introduction

® |t is convenient to have simple symbols for random variables
and vectors which converge in probability to zero or are
stochastically bounded

¢ Definition: [Nonstochastic orders|
For nonstochastic sequences x, and f,, n=1,...
©® (small oh) x, = o(f,) if 2 — 0 as n — oo.
@ (big oh) x, = O(f,) if % is bounded for all sufficiently large n,

that is

there exists some M < oo such that for all n > ny, <M

n



Stochastic orders of magnitude

¢ Definition: [Stochastic orders]

Let X, and f,, n=1,... be a sequence of random variables
and constants

@ (small oh-p) X, = o,(f,) if % L)
@ (big oh-p) X, = Op(f,) if 52 is bounded in probability, that is

for all ¢ > 0, there exists a constant M. < oo and n. p > 0
such that

n

e

fn

> ME} <eg, forall n>n.pm

* X, = op(1) simply means X, 2> 0



Theorem: If X, 5 ¢ for some constant ¢, then X, = Op(1)

Proof: For each € > 0, we must find some constant C. such
that for each ¢ > 0

P{|Xn| > C.} <e¢, forall n> n, ¢
Since X, > ¢, we know for each £ > 0, and each § > 0
P{|Xn —c| > 6} < e, forall n> ns, (1)
By triangle inequality
[ Xl < [Xn — |+ ¢l (2)
Pick C = |c| 4+ ¢. Combining (1) and (2) yield

P{IXal > C} = P{IXa| > [c| + 0}
< P{|Xn—c|+|c| > |c| + 0}
= P{|X, — c| > 4}

<eg, forall n> ns,



Algebra of stochastic orders

O If X, = Op(fn), Yn = Op(gn), then
° X, Y, = Op(fngn)
* X, + Y, = Op(max(f,, gn))

® We can replace O by o everywhere in @
O If X, = Op(fn), Yn = 0p(gn), then X, Y, = 0p(fagn)
O If X, = Op(fy) and &2 — 0, then X, = 0,(g)



Why stochastic symbols are useful?

® We use stochastic orders because we want a simple
characterization of how fast X, converges to X in probability

e Example: Suppose {X;,i =1...n} are i.i.d with finite finite
variance 2. We know from weak law of large numbers

Xy B

e But how fast does X, converge to u?



To tackle this, recall by Chebyshev's inequality

2
P{| Xy — | > 6} < 5T for all 6 >0

It also implies that for all §

X - 1
7 !

From (3), for each € > 0, we can choose C. =

P{'X “|>C}
W

Hence X, — = O (f) or equivalently X, =

X, converges to y at a rate no slower than -1

/n

b<% o

% such that

et Op(75)



Derive stochastic order from bounded moments

® Theorem: X, = O, {[E|Xn|r]%} forr >0

N =

* Proof: For each £ > 0, pick C. = (1)

€

It follows by Markov Inequality

P{ | > cs} = P{1X:| > [EIXI]" .}
(B Xa]"
E[X|"
TEXC
1

= — = £
r
¢



5. Convergence in Distribution



Motivation

From previous sections we show sample mean converge to
population mean in probability

And we are also able to characterize is convergence rate by
using stochastic symbols

However, for most economic applications, this is not enough

In order to do inference, we also need to approximate the
sampling distribution of sample mean

® Sampling distribution is a function of the unknown population
distribution F and sample size n

® Study the sampling distribution by letting n — oo

® Hopefully after some standardization, as n — oo, the sampling
distribution becomes much more tractable than the unknown F



Convergence in distribution

® Let Fx(x) = P{X < x} be the distribution function of
random variable X

e Consider a sequence of random variables X,, with distribution
function Fx, (x) = P{X, < x}

¢ Definition: X, converges in distribution to X (X, LN X) if
Fx,(a) — Fx(a) as n — o

for all a where Fx(a) is continuous



Equivalent conditions for convergence in distribution

® Technically it is often difficult to show X, 4 x by working
directly with cdf. Following theorem guarantees that instead
we can work with characteristic function

* Theorem: X, % X & Cx,(t) — Cx(t), as n — oo for all t,
where Cx(t) = E[exp(itX)] is the characteristic function of X



Relationship between 2, % and Op(1)

® Theorem
P d
X, X=X,—-X
d
O X, b= X, — ¢ for some constant ¢

® X, 5 X = X,=0,(1)



Proof for statement @

(1): show X, B c = X, 4 c
The cdf of a constant variable X such that P{X =c} =1s
degenerate

0 ifx<c
1 ifx>c

P{ng}:{

We need to show

® (a) Foreach § >0, P{X,<c—d}—>0asn— oo
® (b) Foreachd >0, P{X,<c+d} >lasn—

To see (a), note
P{Xpy<c—0}=P{Xp—c< -6} <P{|Xp—c| >} =0
by definition of X, 5 ¢

To see (b), it suffices to show P{X, > c+d} - 0as n— o0
and the proof is similar to (a)



° (2): show X, % c = X, B ¢
® Note for each § > 0,

P{|Xn —c| > 6} = P{Xp —c >} + P{X, — c < =6}

<1 Fx,(5+ ) + Fx,(c — )
—1—-14+40=0, asn—



Asymptotic distribution of sample mean

The aim is to approximate the distribution of X, as n — oo
By weak law of large numbers X, LN w. Thus X, LA I
® The asymptotic distribution of X, degenerates to

In order to get more useful results, we need to rescale X, so
that it has a stable distribution

. < 2 .
Since var(X,) = Z-, consider

zn=ﬁ<)_<”_“)

g

Note E[Z,] = 0, var(Z,) = 1. The distribution of Z, is
“stabilized”

We aim to find the asymptotic distribution of Z,



Lindeberg-Lévy central limit theorem

® Theorem: If X;,i=1,...,n arei.id and IEX,-2 < 00 then

zZ, % N(0,1), or equivalently, v/n (X, — 1) i>N(0,02)

where E[X;] = i and 02 = var(X;)



Proof of Lindeberg-Lévy CLT

® Wlog, assume =0

® We show Cz, (t) — exp (—%2) as n — oo, since exp (—tz—z) is
the CF of a standard normal

® Note Z, = /n (%) = 2}1:1 Xjn, Where

oo = Ximp) X
SN gy/n T oy/n”

Cz, (t) = Elexp(itZ,)] = E |:exp (ithJ-n) ]

Jj=1

= H]E[exp(ibg,,)](by independence)
j=1
= {E[exp(itx1,)]}" (by indentical distribution)

(o))

where Cx, (s) = E[exp(isX1)] is the CF of Xi



® Since EX? < oo, by Taylor's Theorem

2.2
Cx, (5) = Cx, (0) + isEX; + —EX2 + o(s?), as s — 0
—— N~~~ 2 N~

1 0 o2

® Hence for each fixed t,

t t2 t2
5 (a) 2o (o)

® And for each fixed t, as n — oo

t2 t2 " 2
CZ,,(t) = {1 — % +o <0’2n>} — e 2

. n .
since (1 + %) — e? as n — 0o. Conclusion follows




Multivariate central limit theorem

¢ Theorem: [Cramér-Wold Device]
For a sequence of random vectors X, € RX,

X, % X = XX, % XX, forall A € R¥

® The above theorem implies that
to show a random vector X, is asymptotically multivariate
normal, it is necessary and sufficient to show that any linear
combination of elements of X, is asymptotically univariate
normal

® Theorem: [Multivariate Lindeberg-Lévy CLT]
If X;,i=1,...,nareiid and E|X;|* < oo then

V(Xn — 1) % N(0, %),

where = E[X;] and & = E[(X; — u)(X; — p)']



6. Delta Method



Motivation

So far we consider X, to estimate E[X]]
Same idea applies to transformation of X, say g(X)

We can obtain LLN and CLT like

n

= 13" 6(X) B Elg(X)] = 1
i=1

=

Vi(p — ) % N(0, var(g(X)))

Just replace “X" with “g(X)" in previous slides



Functions of moments

® How about functions of moments

B = h(p) = h(E[g(X)])
where h(-) is a possibly nonlinear transformation

® Natural estimator is plug-in estimator

A

R R
B = h(p), where ji = — ;g(x,-)
1=

® How do we derive the asymptotic distribution of BA?



Continuous mapping theorem

e Theorem: For random vectors X,, € R¥ and X € R¥

X, % X, g is continuous = g(X,) LN g(X)

e Convergence in distribution is preserved under continuous
transformations

® Theorem: If X,,E>X and c,,£> c, then
o Xn+cni>X+c
o X,,c,,i>Xc
o X» 4 X

2 — < provided ¢ #0



o Example 1: X, 3 X ~ N(0, ) = XX, 5 X'X ~ 2
e Example 2: [Normal approximation with estimated variance]

® Suppose v/n (@) < N(0,1) and & is a consistent estimator
of e >0

® Then v (%) = i (%) (2) % N(0,1)




Delta method

* Now let us derive asymptotic distribution of 3 = h(ji)

* Note that 3 is written as function of /i (not \/n(fi — 1)), so
CMT is not directly applicable

e Key step is first-order Taylor expansion (by assuming
differentiability of h(-))

b= h() = h) + 200 oo 1)

where p* is on the line joining fi and p. Then

_ 9h(w)

V(B = h(n) = =5 == V(i1 = 1)

so we can use asymptotic distribution of \/n(fi — ) and CMT



Theorem: If \/n(ji — p) LN ¢ and h(-) is a function
continuously differentiable in a neighborhood 1, then

~ d
Vn(h(f1) = h(p)) = H',
where H' = %h(u) | u=p
In particular, if £ ~ N(0, V), then

Vn(h(B) — h(8)) % N(0,H'VH) (4)

When 1 and h are scalar in (4)

2
Vi(h(2) = () 4 N <07 (h) 1) V>



