ECON 6170 Module 5 and Problem Sets 7, 8, 9 Answers

Patrick Ferguson®

Exercise 1. False. Take any function with a “kink”, e.g.,
X x>0
|x] =
—x x<0

which is not differentiable at xy := 0.

Exercise 2.
(i)
(F +8) (30) = lim L0 1) E 80 0 = f(x0) (o)
—im Lot = fl) | 8(x0 4 1) — 8(x0)
h—0 h h—0 h
= f'(x0) + 8 (x0)
(ii)
(af) (xo) = }g% af(xo + h]i —af(xo)
= Dc.hmf(XO"i‘h) — f(xo)
h—0 h
= af'(xo)
(iii)
(F ) (30) = lim L B0+ 1S0 £1) = f o) )
i SO0 )8 (x0 + 1) — f(x0)8(x0 + 1) + £ (x0)g(x0 + 1) — f(x0)g(x0)
h—0 h
i S o+ 1) — f(x0))g (x0 + 1) + f(x0) (8 (x0 + 1) — g(x0))
h—0 h
=% S h;)l S mf(xg)g(xo ! h})l — ()
 tim OO Z IOy o3 4-1) 4 f(30) i B0 ) = 80)

= f'(x0)g(x0) + f(x0)&’ (x0)

*Based on Professor Takuma Habu'’s solutions.




(iv) It suffices to show that

(5) w0 -~

from which the product rule gives the rest. Note that g(xo) > 0 implies g(xo + /1) > 0 for h
sufficiently close to 0.

1 1

R e R €
(Y- gy

8(x0)—g(xo+h)
— lim g(xo+h)g(xo)

h—0 h

. 8(x0) —g(xo+h) 1
=1

oo h g(xo+h)g(xo)
o 8(x0) —g(xo+h) . 1
N ]1113% h }llg(l) g(xo + h)g(xo)
_ 8'(x0)

g(x0)?

Exercise 3. First consider the case in which f'(xg) # 0. Then f(x) # f(xo) for x # xg sufficiently
close to xj. For otherwise, we would have a sequence x, — xo with f(x,) = f(xo) for all n and
thus %:f;ém) =0 — 0, a contradiction.
Then we can write

(gof)(xn) — (g0 f)(x0) _ (g0 f)(xn) — (g f)(x0) f(xn)— f(x0)

Xn — X0 f(xn) — f(x0) Xn — X0

By continuity of f, x, — xo implies f(x,) — f(xo), so letting x, — x¢ on both sides, we obtain
(80 f) (x0) = §'(f(x0)) - f(x0)

Now suppose f'(xg) = 0. We will use the following lemma: If f : X C R — R is differentiable at x,
then f is Lipschitz on some (xo — 6, xo + J). To see this, note that differentiability of f implies that

there exist § > 0 such that ‘%ﬁxo) <
|f(x) = f(x0)| < L-[x—xol.

Continuity of f at xo implies that for all ¢ > 0, there exists 6 > 0 such that x € (xo — 4, x0 + J)
implies f(x) € (f(xo0) —¢, f(x0) + ¢€). Therefore, differentiability of ¢ combined with our lemma
implies that there exists 6 > 0 such that if x € (xg — J,x¢ + J) then

(g0 f)(x) = (g0 f)(x0)| < LIf(x) — f(x0)|
Dividing across by |x — xo|, we get

(g0 f)(x) = (gof)(x0)

X — Xo

(xo —9,x0+9) \ {x0}. Rearranging, we have

SL’f(x)—f(xo)

X — X0

Taking x — xo implies that the the term on the right-hand side converges to L - | f'(xo)| = 0. The
term on the left-hand side is bounded below by the sequence 0, 0,0, ..., so it too converges to 0.

Therefore, (go f)'(x0) =0 = f'(xo).



Exercise 4. Since f is strictly increasing, x # y implies f(x) # f(y), so f ! is well-defined on some
subset of R. By the intermediate value theorem and continuity of f, this subset will be an interval,
call it (c,d). By the extreme value theorem, f(S) is compact for any closed (implying compact)
S C (a,b). Equivalently, the preimage of any closed S C (a,b) under f~! is closed. By (a slight
generalisation of) a result seen in section, this means that f ~1is continuous.

The derivative of f~1 aty = f(x), if it exists, is given by

(71 ) = tim fly+9) =)

0—0 )

By the intermediate value theorem, for ¢ sufficiently small, we can find an x + h € (a,b) such that
h #0and f(x 4+ h) = y + 5. We can then rewrite the quotient above as

fly+0) —f'y) _ T fG+h) - (fx+h) h
) f(x+h)—

f(x) f(x+h) = f(x)

Note that, by construction, as § — 0, f(x +h) — y = f(x). Since x + & is the only element of (a,b)
that gives f(x + h), this means that 1 — 0 as § — 0. It follows that we can write

Y h 1 1
() =l = = iy [ ()

using the fact that f'(x) > 0 for all x.

Exercise 5. Take any x and y such that 2 < x < y < b. By the mean value theorem, there exists
z € (x,y) such that

fly) = f(x) = f(2)(y —x)
Since y —x > 0 and z € (x,y), it follows that f(y) — f(x) = 0. Since x and y are arbitrary, this
holds for all x,y € (a,b).

Exercise 6. Since f(¥) is continuous at xg and f*)(xq) > 0, there exists 6 > 0 such that ) (x) >0
for all x € (xg — J,x0 + J). By Taylor’s theorem, and using the fact that the first k — 1 derivatives
of f at xq are 0, we have that for any x € (xo — J,x0 + ),

£ = £lxo) + P e,

where p is some point between x and xo. But then f*)(p) > 0, and, since k is even, (x — xo)* > 0.
Therefore f(x) is larger than f(xp), i.e., f has a local minimum at x.

Exercise (Additional Exercise on PS 7). Note tha

-y = (Gaya+ -+ xaya)® = Z,xi%'xjyi
ij

and
(xll-llylD* = (e + - +x3) - B+ +13) = inzy?
L

Y £ ) = Ty Ty £ ) and Licj £(i,f) = Ty Ty £ ()
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But
(xiyj — xyi)* = X2y7 — 2xiyi%y; + X7y
SO

Y (xiyy —xyi)? = ) (xfy} — 2xycgy + xfy?)

i<j i<j

Y

i<j

Y (w9 +x7?) - ZExzy]x]%+Z XY — i)
i<j i<j

= Zx leijjyl
L]

ij

i<j

(
(P2 + 97 ) =2 xwx
(x

= (lxll - yl)* = = - yP?

. . 2 . .
But Y, (xiy; — xjy:)? is nonnegative, so (|[x]| - [[y[|)” > [x - y[?, implying [|x]| - ly|| > |x - yl.
Exercise 7.

1f(x0 + 1) — f(x0) — Df (x0)h|]

0 = lim

h—0 ||F]|
— i 1] i 22410 = £50) D)
h—0 |||

= lim ||f(xo +h) — f(x0) = Df (xo)h||
> lim || f(xo + 1) = f(x0) || = lim |Df (xo)"|
= lim || f(xo + 1) = f(x0) |

Exercise 8. Differentiability of f : X C R? — R™ at Xo means that

£ 0+ F) = f0) = Aflln
Il

as h — 0, for some A € R"*4. Fori e {1,...,m}and j € {1,...,d}, we want to show thaiﬂ

lim fi(xo + hej) — fi(xo)
h—0 h

exists, and equals the (i, j)-th entry of A. To do so, it suffices to show that

fi(xo + hej) — fi(xo)
h

2Note that i above is a d-vector, whereas here it is a scalar.



is bounded above by by some function that converges to zero with h. Letting A;, be the i-th row of
A as a vector in R?, we can rewrite this as

fl'(X() + h€]) — fi(xo) — A;';he] _ fi(X() + h€]) — fi(X()) — AI]’ZEJ
[[ej|a

< ! \/i [fi(xo+ hey) — fi(xo) — ALhe;]
[hejlla \| =

_ [If Cxo +hey) — f(xo) — Ahejflm )
el

But he; is a sequence of d-vectors converging to zero with 4, so () converges to zero as h — 0.
Exercise 9. . 0+ 10
+
h { 0+ h)? +02 f(0,0)] =0

of — f
SO == = 0. Similarly, =0.

"0 00
To prove that f is not differentiable at (0,0), it suffices, by Exercise 7, to show that f is not
continuous at (0,0). Observe that the sequence z, = (1, 1) converges to (0,0), but f(z,) = 3 for

all n, so f(z,) = 2 # 0= £(0,0). "

Exercise 10. By Proposition 10 (the chain rule), we can write

D(go f)(x0) = Dg(f(x0)) - Df(x0)

afla(xo)
X
_ {ag(f(xo)) 38(f(xo))} .
Y1 Y .
af%(xo)

i xo afi(xo)
Y ox

where y = f(x).

Exercise 11. To simplify notation, I write x := (x1,x2) (i.e., drop the 0 subscript). Define

I’(hl,hz) = f(x1 +hy,x0 + hz) — f(x1 + h1,x2)
t(hl,hz) = f(x1 + hl,xz + hz) — f(xl,XZ + ]’12)
Then
T(hl, hz) — 1’(0, hz) = f(x1 +hy,x0 + hz) — f(X1 + ]’ll,x2) — f(xl,XQ + hz) + f(xl,xz)
— (i1, ) — (I, 0)
By the mean-value theorem applied to (-, hy) and ¢(hy, -)

ar(cl,hz)hl _ at(hl,CZ)

h
axl aXQ 2



for some c¢; € (0,h1) and ¢, € (0, hy). Rewriting in terms of f,

I <8f(x1 +c1,x+h)  9f(x —|—c1,x2)> — <8f(x1 +h,x+c) 8f(x1,x2+cz)>
aX1 aﬁq -

axz axz

f(xg;gclr') and Y Cxate)

Applying the mean value theorem to 2 vy

hh azf(xl +c1, ’)’2) — hoh aZf(,),l, X2 + C2)
172 0x20x1 2 dx10x7
for some 1 € (x1,x1 +h1), 72 € (x2,x2 + hy). We can divide both sides by hih; to get

Pfrite,r) _ Pf(n,n+o)
aXanl ax18x2

Note that as i1 — 0, ¢y — 0 and 1 — xy; and as o — 0, c; — 0 and 2 — x». Taking the limit of
both sides as hy1, hy — 0 and using that f € C2?,

Pf(xr,x2) _ 0%f(x1,%2)
0x20x7 dx10x7

Exercise 13. Write x,, := ax + (1 — a)y, with a € (0,1). Then concavity of f implies that

flxn) 2 af (x) + (1= a) f(yn)
f(xn) = f(x) = (1= a)(f(yn) = f(x))
flxn) = f(x) o flyn) = f(x)
(I—a)(yn—x) = yn—x
fln) = f(x) o flyn) = f(%)

Xy — X Yn — X

f) = flxn) o f(x) = fyn)

X—X; X —Yn

and

f(xn) = f(yn) = a(f(x) = f(yn))

f(xn) = fyn) _ f(x) = f(yn)
alx—yn) T X—yn

fCxn) = fyn) _ f(x) = f(yn)
Xn — Yn o X = Yn

Combining, we have
f(x) = f(xn) > f(xn) = f(yn)

X — Xy - Xn — Yn

An analogous argument gives the second inequality,

f(xn) = fQyn) o fQyn) = f(y)

Xn — Yn Yn—Y




Exercise 14. Suppose first that f is concave on X. Fix any x,v € R? with v # 0. For any t,t' € Sy,
and any « € [0,1],

o (at+(1—a)t) =f(x+ (at+ (1 —a)t')v)
fa(x+to)+(1—a)(x+t0))
af (x+1to) + (1 —a) f (x+t'v)
280 (1) + (1 ) 8o (t)

(AVAR|

Hence, ¢, (+) is concave. Conversely, suppose that for any x,v € RY with v # 0, (+) is concave.
Pick any z1,z2 € X and any a € [0,1]. Letting x = z; and v = 2z, — 21, observe that g, ,(0) = f(z1),
8xo(1) = f(22), and
Sxo(@)=f(zi+a(zo—z1)) =f((1—a)z1 +az)
Since gy(+) is concave, for any a € [0,1],
f(A—a)z1 +az) = guo (a)
= 8ro((1—a)-0+a-1)
> (1= ) 8x0 (0) + agxo (1)
= (1—a)f(z1) +af (2)

i.e., f is concave. The proof for the case of strict concavity is analogous.

Q

~— —

Exercise 16. By Proposition 15 and Remark 16, f”(x) < 0 is a sufficient condition for strict
concavity, but not a necessary one. Note that in this case f”/(x) = —12x> < 0 for all x € R\ {0}.
Therefore, f is strictly concave on R\ {0}. We therefore only need to prove strict concavity at
ax + (1 —a)y = 0 and for x = 0 or y = 0 (every other convex combination is not strict or is in the
restricted domain R \ {0}). Suppose that neither x nor y is 0 but ax + (1 — ay) = 0. Then

af(x) + (1= a)f(y) = = (ax' + (1))

Suppose y = 0 and x # 0. Then
Kf () + (1- )f(y) = —ax
< —(ax)?
= flax+(1—a)y)

Exercise 17. First we calculate the Hessian. The first derivatives are

of _ 18 O _ e p
ax_ax y ay_:Bxy

The Hessian is then
b |xe— Dxv=2yf afxv 1yl
apx*tyPt o B(B—1)x"pF2



(i) Sylvester’s criterion says that H is negative definite if 11 < 0 and det H > 0. The former is
trueif « — 1 < 0, or « < 1. The latter is true if

0 < a(a—1)x"2yP BB —1)x"pF~2 — (apx" 1y 1)
= apx 2y 2 (a = 1) (B~ 1) — ap]

which is trueif ap —a —f+1—af > 0, or « + B < 1. This condition is then sufficient for
strict concavity.

(ii) I claim that « + 8 = 0 is a sufficient (and necessary) condition. Sylvester’s criterion implies
that H is negative semidefinite if f11,hpy < 0and detH > 0. Givena > 0and a + =1, we
know that B < 1, so hy; < 0. By the same reasoning as in (i), « + = 1 implies det H = 0.
Therefore, « + B = 1 is sufficient for concavity. We will require « + > 1 to avoid strict
concavity (negating (i)). However, this alone is insufficient, as it only says the Hessian is not
negative definite, which does not disprove strict concavity. We need to find some other way
of showing that f with a« + p = 1 will violate strict concavity. If « +- p = 1, we can write
B =1 — a. Therefore, we can write f(x,y) = x*y'!~*. Consider the distinct points (1,1) and
(3,3). Then

f (;(1,1) + 2(3,3)> = f(2,2) =2%1* =2

_1 1 _1 wql—n 1 oclfa_l 1

But if f were strictly concave, this would not hold with equality. Thus, f is not strictly
concave.

(iii) For f to be neither concave nor convex, Sylvester’s criterion implies that it suffices that
det H < 0 or hy; > 0 or hyp > 0. This will be the case iff « + > 1.

Exercise (Additional Exercise on PS 8). Because f is hod k, we can write
f(Ax) = A4 (x)
Differentiating both sides with respect to A, we have
Vi(Ax) -x = kAF 1 f(x)

which evaluated at A = 1 gives

Vf(x)-x = kf(x)
Exercise 18. We can rewrite the equation defining our implicit function as
F(x*,h(x*)) =0

The implicit function theorem then says that at in some neighbourhood of (x*,y*), h : R? — RR? is
well-defined and has derivative

Dh(x) = —(DyF(x,h(x))) " - D<F(x, h(x))

8



which we can write as

M I oF Rl TR 9R
ox;  0xo | a1 Iy | 9x1 9x
oy o | T T |oE 9B 9 b
dx;  Jdxp dy1 Iz dx;  dxp

where y = h(x). Using the formula for inverting a 2 x 2 matrix, we get

CISR) S 1 o _ 3R
dy1  Iy2 _ 92 32
oh  dh oF obh _ 0F 0Fh |_9k 9k
dy1 9y dyi dy2  dy2 oy; L 9y1 9

Inserting this into the previous formula, we have

OB R _ R B R h _ 0B 0R
ahl oYy dxy oYy dxy dya  Oxp dya  Oxp
o1 9F  0Fh _ R oh  OR 0B _ 0F _0h

dyr  dy2  dy2 9y dy1 dy2  dy2 Iy

oh, oF _ dF  dh of db _ 0L  9F
ahl ayz dx7 E)yz 9x7 ayz dxn ayz dxn
x> of dF _ doF  dh oF dh _ doF  dh
gy dy2  dy2 Iy dy1 dy2  dy2 Iy

oF, 9F, | 9F 9K oL, 9F _ oF dF

Ohy _ oy oam Toy om _ ap ow aw om
ox; oF 0h _9F 0B  9F 0Rh _ 0R 3R
1 "y, dyp o dy1 dy2  dya  dy
6F2 aFl aF] an aﬁ.aﬁ_aﬁ.aﬁ
ohy 0 9% "9y 9m 9y 9y 9n
oxy o oh _ 0k 9B ~ 9F OB _ 0F b
dy1 Y2 oy  dy; ay1 9y dy2 Iy

Exercise 19. Define

Fy,x)=y—f(x)
for all (y,x) € Y x X Note that xy € intX by assumption. It is WLOG to assume that Y is openﬂ
implying yo := f(xo) € intY. Note that this is implies (xo, o) € int(X x Y).

We also have F(y, xo) = 0. That f is C! at xo implies that F is C! at xo. Moreover, D,F(yo, xo) =
—Df(xp) is invertible. Thus, applying the implicit function theorem on F gives us that x is
implicitly defined as a function g of y on an open ball By(y) such that F(y, g(y)) = 0 for all
Y € Be, (o). Furthermore, g is differentiable and

Dg (y) = — [Dx (y,g(y))] DyF (v, g (v))
=—[-Df(gy)] "
=Df (g(y)) "

3Because every potential codomain can be extended to an open superset.



