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Class Information This is a really exciting time to learn Econometrics, especially at Cornell. There’s a
long history at Cornell of treating Econometrics essentially as a decision problem. For Chen, Econometrics
is useful and powerful because it helps people make decisions with their data.

The course material will be divided into three parts:

1. Introduction to statistical inference

2. Large-sample approaches to statistical inference

3. Classical theory of estimation and inference

There will be in-class midterms on Tuesday October 8 and Tuesday November 5.

1 Introduction to Statistical Inference

1.1 Sampling Models

Economists often collect data that consist of some observations on variables of interest. Statistically, this is
a random sample from a large population, from which we can learn about the population.

We call X a random variable / vector of interest (e.g. , wage and education in the US). We say that X ∼ F
where F is the true distribution of wage and education in the US. X = (Xw, Xe). We might be interested
in the joint CDF of X, denoted F (xw, xe) = P{Xw ≤ xw, Xe ≤ xe}. We could extend these notions to the
discrete case, where there is a joint PMF, f(xw, xe) = P{Xw = xw, Xe = xe}. We can also define the joint
PDF in the continuous case,

f(xw, xe) =
∂2F (xw, xe)

∂xw∂xe

and note that
󰁕∞
−∞

󰁕∞
−∞ f(u,w)dudw = 1. Therefore, we have that

F (xw, xe) = P{Xw ≤ xw, Xe ≤ xe} =

󰁝 xw

−∞

󰁝 xe

−∞
f(u,w)dwdu

We may also be interested in the marginal distribution, which says that given some {Xw, Xe}, we might be
interested in the distribution of the wage (Xw) irrespective of the education (Xe). We say that the marginal
distribution (or marginal CDF) is

FXw(xw) = P{Xw ≤ xw} = P{Xw ≤ xw, Xe ≤ ∞}

In the continuous case, we have the (marginal) pdf of XW which is fXw(xw) =
󰁕∞
−∞ f(xw, xe)dxe.

In the discrete case, the (marginal) pmf of XW is fXw(xw) = P{Xw = xw} =
󰁓

t∈R P{Xw = xw, Xe = t}.

Now think about conditional distributions. Consider, for example, the distribution of wage conditional on
education being a certain level. In the discrete case, we have P{Xw ≤ xw | Xe = xe}. If we are in the
continuous case, we can define the conditional pdf fXw|Xe

(xw | xe) =
f(xw,xe)
fXe (xe)

(i.e. , the joint pdf over the
marginal pdf).

In summary: starting from the population distribution X ∼ F , we have different aspects that are themselves
distributions – the joint, marginal, and conditional distributions. We are interested in them for different
reasons.

In the sampling model, we observe n repeated observations from the distribution X, which are {X1, . . . , Xn}.
The central question is, given these n observations, how can we make inferences about the population. First,
we need to be precise about how {X1, . . . , Xn} are generated from the population.
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Definition. The random sampling model assumes that {X1, . . . , Xn}
i.i.d.∼ F . i.e. , they are

• Independent: {X1, . . . , Xn} are mutually independent

• Identically distributed: X1, . . . , Xn have the same marginal distribution F .

Why do we call F their marginal distribution? Because {X1, . . . , Xn} ∼ F , which is the joint distribution
of {X1, . . . , Xn}. We can define their joint CDF as follows

F (x1, . . . , xn) = P{X1 ≤ x1, . . . , Xn ≤ xn} =ind P{X1 ≤ x1} · P{X2 ≤ x2} · · ·P{Xn ≤ xn}

=

n󰁜

i=1

P{X ≤ xi}

We can also construct the joint pdf / pmf:

f(x1, . . . , xn) = fX1
(x1) · fX2

(x2) · · · fXn
(xn) = fX(x1) · fX(x2) · · · fX(xn) =

n󰁜

i=1

fX(xi)

Importantly, if F is known, everything is known about the random sample.
Definition. The statistical approach to the sampling model is to consider the parameter θ = θ(F), which
is a function of the distribution. We have that θ = E[Xw] =

󰁕
xfw(x)dx. We construct the test statistic

T (X1, . . . , Xn), which is any function of the data {X1, . . . , Xn}, (e.g. , θ̂ = 1
n

󰁓n
i=1 Xwi). Importantly,

statistics are also random variables – they are just (weighted) sums of random variables.

We will use the statistic to infer on parameters – use a function of the data to infer what a function of the
true distribution would look like.
Example. Estimation of θ. We want to form a guess of θ based on data {X1, . . . , Xn}.

θ =

󰁝
xdFw(x) , θ̂ =

1

n

n󰁛

i=1

xwi

Our goal is to pick a statistic as close as possible to θ.
Example. Hypothesis testing. H0 : θ = 1 versus H1 : θ ∕= 1. For example, we might reject H0 if
θ̂ = 1

n

󰁓n
i=1 xwi ≥ 2

n , and accept H0 otherwise.

A statistic that implements the above procedure is 1{θ̂ > 2
n}. Our goal is to pick a statistic that makes

fewer mistakes, which we call a ‘high-quality’ statistic. How would we find that? It’s a random variable and
a function of data, we are looking to choose the random variable to use. We need to study the distribution of
T (X1, . . . , Xn), which we call the sampling distribution. However, even under the random sampling model,
the sampling distribution can be highly complicated.
Example. (Judging a coin) Want to know whether you have a fair coin by flipping it 10 times and recording
0 for each tail and 1 for each head. Our sample is X = {X1, . . . , Xn}, where Xi is the result of the ith
experiment. Note that Xi

i.i.d.∼ Bernoulli(p), so the pmf of each Xi is f(xi) = pxi(1− p)1−xi , and the pmf of
X is fX (x1, . . . , xn) =

󰁔n
i=1 p

xi(1 − p)1−xi . The goal is to make some judgement about p. A statistic is a
function of X , such as the number of heads, the order number of the first experiment to return heads, etc.
Example. (Estimating average income) Suppose you want to estimate the average income of a worker aged
between 25 and 65 who lives in Ithaca. A sample of n workers X , where Xi

i.i.d.∼ F (·), and F (·) is the unknown
distribution of income. The parameter of interest if µ =

󰁕
xdF (x), and you could try the average of the

sample, or the average of the 80% of middle values, or something else.
Definition. We will use four approaches to studying sampling distributions:

• A finite-sample approach. You could impose a ‘nice’ class of distributions F , which hopefully makes
the distribution of θ̂ tractable (e.g. , X ∼ N (µ,σ2)). However, this can be a very strong assumption!
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• Simulation. Instead of imposing normality or some other form, say that X ∼ F , where F is a
distribution that you think is true, say log normal. However, the functional forms are really com-
plicated here. Instead, you could simulate data. For b = 1, . . . , B, draw {X1b, . . . , Xnb}, where
Xib

i.i.d.∼ F ∀ i = 1, . . . , n. Can calculate θ̂b = 1
n

󰁓n
i=1 Xib. You now have B realizations of θ̂, for

B very large. Then, we have that E[θ̂] ⇒ 1
B

󰁓B
i=1 θ̂i, and P{θ̂ ≤ t} ⇒ 1

B

󰁓B
i=1 1{θ̂ ≤ t}

• Asymptotic approach. θ̂ = T (X1, . . . , Xn). The finite distribution is hard to track. Let n → ∞. As n

becomes large, the distribution of θ̂ is easier to track, e.g. , Central Limit Theorem:

√
n

󰀣
1

n

n󰁛

i=1

Xi − E[X]

󰀤
≈ N (0, V ar(X)) ⇒ 1

n

n󰁛

i=1

Xi ≈ N (E[X], V ar(X))

• Bootstrap. (See notes below). This is an alternative sampling model. There are two forms:

– Bootstrap with replacement . We have {x1, . . . , xN}, a finite population of N values. We draw
one, then replace, then redraw again, n times. We get {X1, . . . , Xn}, where P{X = xi} = 1

N ∀ i.
The joint pmf of {X1, . . . , Xn} is

P{X1 = t1, X2 = t2, . . . , Xn = tn} =

󰀕
1

n

󰀖n

, ∀ tj ∈ {x1, . . . , xN}, j = 1, . . . , n

Note that this is also an iid model, which is important.

– Bootstrap without replacement . We have {x1, . . . , xN}, a finite population of N values. We draw
X1, with probability 1

N . We then draw X2, with probability 1
N−1 , and so on. However, note

that the sample we have drawn, {X1, . . . , Xn} does not satisfy the iid assumption. They are not
independent, but they are identically distributed.

Note that boostrap without replacement is identically distributed. This seems weird, because they have
different probabilities – 1

N for X1, 1
N−1 for X2, etc. However, we care about the marginal probability, so we

are taking an ex ante perspective. The probability of X1 being x for any x ∈ Ω is the same for all x, so they
are identically distributed. Here is a quick proof of identically distributed:

Proof. P{X1 = x} = 1
N ∀ x ∈ {x1, . . . , xN}. How do we derive the marginal distribution of X2? We have

that P{X2 = x} = P{X2 = x}P{X1 ∕= x} = 1
N−1

N−1
N = 1

N ∀ x ∈ {x1, . . . , xN}.

Chen’s Proof:

Proof. Law of total probability, where we note that the possible realizations of X1 partition the sample
space. We have that

P{X2 = x} =

N󰁛

j=1

P{X2 = x,X1 = xj}

=

N󰁛

j=1

P{X1 = xj}P{X2 = x | X1 = xj}

=

N󰁛

j=1

󰀫
1
N

1
N−1 xj ∕= x

1
N 0 xj = x

= (N − 1)
1

N

1

N − 1
=

1

N
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1.2 Some Common Statistics

We have X ∈ R ∼ F , from which we draw iid data {X1, . . . , Xn}. We will define some common statistics,
and think about their sampling distributions.
Definition. The sample mean X̄ = 1

n

󰁓n
i=1 Xi is the arithmetic mean of the sample

Definition. The sample variance s2 = 1
n−1

󰁓n
i=1(Xi − X̄)2

Definition. The sample standard deviation s =
√
s2

X̄, s2, s are all statistics, and all random variables. Our goal is to study their sampling distribution. This
class, we will just look at their moments – their mean and variance. Let’s state some simple facts: E[X̄] =

E[X] = µ, where the left side is the expectation over the data, and the right is the expectation with respect
to F . Also, V ar(X̄) = V ar(X)

n = σ2

n , and E[s2] = V ar(X) = σ2. To establish these results, we need some
auxiliary results.
Theorem 1.1. The following are true:

• mina
󰁓n

i=1(Xi − a)2 =
󰁓n

i=1(Xi − X̄)2

• (n− 1)s2 =
󰁓n

i=1(Xi − X̄)2 =
󰁓n

i=1 X
2
i − n(X̄)2

Proof.

n󰁛

i=1

(Xi − a)2 =

n󰁛

i=1

(Xi − X̄ + X̄ − a)2

=

n󰁛

i=1

󰀅
(Xi − X̄)2 + (X̄ − a)2 + 2(Xi − X̄)(Xi − a)

󰀆

=

n󰁛

i=1

(Xi − X̄)2 + n(X̄ − a)2 + 0

=

n󰁛

i=1

(Xi − X̄)2 + n(X̄ − a)2

and since the right term is squared and always non-negative, the entire equation is minimized at precisely
a = X̄, and in that case we have that

min
a

n󰁛

i=1

(Xi − a)2 =

n󰁛

i=1

(Xi − X̄)2

Based on the above, let a = 0. Then we have that

n󰁛

i=1

X2
i =

n󰁛

i=1

(Xi − X̄)2 + n(X̄)2

which leads to

(n− 1)s2 =

n󰁛

i=1

X2
i − nX̄2

Theorem 1.2. Let {X1, . . . , Xn} be a random sample from the population. Let g(x) be a function such that
E g(X1) and var(X1) exist. Then

• E[
󰁓n

i=1 g(Xi)] = nE[g(X1)]

• V ar(
󰁓n

i=1 g(Xi)) = nV ar(g(X1))
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Proof.

E[
n󰁛

i=1

g(Xi)] =

n󰁛

i=1

E[g(Xi)]

=iid

n󰁛

i=1

E[g(X1)] = nE[g(X1)]

V ar(

n󰁛

i=1

g(Xi)) = E

󰀵

󰀷
󰀣

n󰁛

i=1

g(Xi)− E[
n󰁛

i=1

g(Xi)]

󰀤2
󰀶

󰀸

= E

󰀥
n󰁛

i=1

(g(Xi)− E[g(Xi)])
2

󰀦

= E

󰀥󰀣
n󰁛

i=1

(g(Xi)− E[g(Xi)])

󰀤
·
󰀣

n󰁛

i=1

(g(Xi)− E[g(Xi)])

󰀤󰀦

= E

󰀵

󰀷
n󰁛

i=1

(g(Xi)− E[g(Xi)])
2 +

󰁛

i ∕=j

(g(Xi)− E[g(Xi)]) · (g(Xj)− E[g(Xj)])

󰀶

󰀸

=

n󰁛

j=1

E
󰀅
(g(Xi)− E[g(Xi)])

2
󰀆
+
󰁛

i ∕=j

E [(g(Xi)− E[g(Xi)]) · (g(Xj)− E[g(Xj)])]

=

n󰁛

i=1

V ar(g(Xi)) +
󰁛

i ∕=j

Cov(g(Xi), g(Xj))

=

n󰁛

i=1

V ar(g(Xi)) by independence

= nV ar(g(X1)) by identical distribution

Theorem 1.3. Let {X1, . . . , Xn} be a random sample from a population with mean µ and variance σ2. Then

• E[X̂] = µ

• V ar(X̂] = σ2

n

• E[s2] = σ2

1.3 Sampling from Normal Distribution

Assumption 1.1. X ∼ N (µ,σ2).

The key thing we are studying is the distribution of {X1, . . . , Xn} ∼iid X ∼ N (µ,σ2). We say that
{X1, . . . , Xn} ∼ (jointly normal / multivariate normal). This is important because any affine combina-
tion of (X1, . . . , Xn) are jointly normal. Even stronger, any marginal or conditional distribution of the
sample is similarly jointly normal.
Definition. A random variable Z has the standard normal distribution, written as Z ∼ N (0, 1) if it has the
density

φ(x) =
1√
2π

exp

󰀕
−x2

2

󰀖
, x ∈ R
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The cdf of a standard normal does not have a closed form, but is written as

Φ(x) =

󰁝 x

−∞
φ(u)du

Some key properties:

•
󰁕∞
−∞ φ(u)du = 1

• φ(x) = φ(−x) ⇒ Φ(−x) = 1− Φ(x)

• If Z ∼ N (0, 1) and X = µ+ σZ for µ ∈ R and σ ≥ 0, then X ∼ N (µ,σ2)

• If X ∼ N (µ,σ2) with σ > 0, then X has the density

f(x | µ,σ2) =
1√
2πσ2

exp

󰀕
− (x− µ)2

2σ2

󰀖
, x ∈ R

Definition. All positive integer moments of the standard normal distribution are finite, because the tails of
the density decline exponentially. Formally, if Z ∼ N (0, 1), then E[Z] = 0 and V ar(Z) = 1. For any m ∈ N,

E[Zm] =

󰀫
0 m odd
2−

m
2

m!
(m/2)! m even

Definition. Let X ∼ N (0, 1). Then

f(X1, X2, . . . , Xn) =

n󰁜

i=1

φ(Xi) =

󰀕
1

(2π)
n
2

󰀖
e−

x′x
2

where x = (x1, x2, . . . , xn)
′. We call this the multivarate standard normal density. We say that x ∈ Rn ∼

N (0, In).
Definition. The expectation of X ∈ Rm is

E[X] =

󰀵

󰀹󰀹󰀹󰀷

E[X1]

E[X2]
...

E[Xn]

󰀶

󰀺󰀺󰀺󰀸

Definition. The m×m covariance matrix of X ∈ Rm is

Σ = V ar(X) =

󰀵

󰀹󰀹󰀹󰀷

σ2
1 σ12 · · · σ1m

σ21 σ2
2 · · · σ2m

...
...

. . .
...

σm1 σm2 · · · σ2
m

󰀶

󰀺󰀺󰀺󰀸

where on the diagonal, σ2
j = V ar(Xj) ∀ j = 1, . . . ,m, and off the diagonal σij = Cov(Xi, Xj) ∀ i ∕= j.

Theorem 1.4. For X ∈ Rm, Σ is symmetric and positive semi-definite.

Proof. Symmetry follows from the fact that Cov(Xi, Xj) = Cov(Xj , Xi). PSD follows from the fact that
variances are weakly positive.
Theorem 1.5. If X ∈ Rm has expectation µ and covariance matrix Σ, and A is some matrix in Rq×m, then
AX is a random vector with mean Aµ and variance AΣA′.
Definition. If Z ∼ N (0, Im) and X = µ + BZ, then X ∼ N (µ,Σ), where Σ = B′B. We say that X is
multivariate normal If X ∼ N (µ,Σ) where Σ is invertible, then X has pdf

f(x) =
1

(2π)
m
2 (detΣ)

1
2

exp

󰀕
− (x− µ)′Σ−1(x− µ)

2

󰀖

7



Theorem 1.6. If X,Y are multivariate normal with Cov(X,Y ) = 0, then X ⊥⊥ Y .
Theorem 1.7. If X ∼ N (µ,Σ), then Y = a+BX ∼ N (a+Bµ,BΣB′).
Theorem 1.8. If (X,Y ) are multivariate normal

󰀕
Y
X

󰀖
∼ N

󰀕󰀕
µY

µX

󰀖
,

󰀕
ΣY Y ΣY X

ΣXY ΣXX

󰀖󰀖

where ΣXX ,ΣY Y > 0, then the conditional distributions Y | X and X | Y are also normal:

Y | X ∼ N
󰀃
µY + ΣY XΣ−1

XX(X − µX),ΣY Y − ΣY XΣ−1
XXΣXY

󰀄

X | Y ∼ N
󰀃
µX + ΣXY Σ

−1
Y Y (Y − µY ),ΣXX − ΣXY Σ

−1
Y Y ΣY X

󰀄

Wrong Statement: Assume that
X ∼ N (µX ,σ2

X)

Y ∼ N (µY ,σ
2
Y )

Then X + Y := T ∼ Normal.
Remark. We have that E[T ] = µX +µY , var(T ) = σ2

X +σ2
Y +2σXY . However, the joint distribution is not

necessarily normal. That only holds if they are jointly normal.
Proposition 1.1. If X is a multivariate normal distribution, then any of the marginal or conditional
distributions are also multivariate normal.
Theorem 1.9. If {X1, . . . , Xn} are i.i.d N (µ,σ2), then X̂n ∼ N (µ, σ2

n ).

However, what is the variance? We have that the sample variance is

s2 =
1

n− 1

n󰁛

i=1

(Xi − X̄n)
2

To study its distribution, we need to introduce a new distribution.
Definition. Let {Z1, . . . , Zr} be r > 0 i.i.d N (0, 1) random variables. Then

󰁓r
i=1 X

2
i follows a chi square

distribution with degrees of freedom r, denoted χ2
r.

Theorem 1.10. If {X1, . . . , Xn} are i.i.d N (µ,σ2), then

1. X̂n and s2 are independent

2. (n−1)s2

σ2 ∼ χ2
n−1.

Proof. Statement 1: Define the residual êi = Xi − X̄n ∀ i. Note that êi is a linear combination of
{X1, . . . , Xn}, so it is also multivariate normal like they are. Also, E[êi] = E[Xi]− E[X̄n] = µ− µ = 0, and

cov(êi, X̄n) = E[êi(X̄n − µ)]

= E[(Xi − µ+ µ− X̄n)(X̄n − µ)]

= E[(Xi − µ)(X̄n − µ)]− E[(X̄n − µ)2]

=
σ2

n
− σ2

n
= 0

Since êi and X̄n are jointly normal, the fact that they are uncorrelated means that they are independent,
and any function of êi (including s2) is also independent with X̄n.
Definition. Let Z ∼ N (0, 1) by independent. Then T = Z√

Q/r
has a student’s t distribution with r degrees

of freedom, written as T ∼ tr

8



Theorem 1.11. If Xi, i = 1, . . . , n are i.i.d. N (µ,σ2), then

X̄n − µ
s√
n

∼ tn−1

Remark. Some facts about the t distribution:

• The pdf of tr is symmetric around 0

• The pdf of tr has heavier tails than N (0, 1)

• Only the first r − 1 moments exist (as opposed to N (0, 1), where all moments exist)

• As r → ∞, tr → N (0, 1).

1.4 Sufficient Statistics

Suppose we want to estimate a parameter θ := θ(F) from a population X ∼ F , where X := {X1, . . . , Xn}
are drawn i.i.d. Ultimately, our goal is to pick a good statistic T (X) to learn about θ. We should really
think about all possible functions on the data, and choose the statistic that gives us the most information
about θ. However, there are way too many candidate statistics to choose from! The concept of sufficient
statistics lets us separate information from X into two parts – one containing useful information about θ,
and one containing no useful information about θ. Formally:
Definition. A statistic T (X) is sufficient for θ if the conditional distribution of X given T (X) does not
depend on θ.

Intuition. A sufficient statistic T (X) contains all useful information about θ in the following sense. Re-
searcher 1 is provided with X and can learn about θ from the pair (X,T (X)). Researcher 2 is provided
with only T (X), but since T (X) is sufficient, the distribution of X given T (X) is known to Researcher 2.
Researcher 2 can back out the joint distribution of (X,T (X)) without knowing X, so the two researchers
have the same information about θ. We have that if fX|T (x | t) does not depend on θ, then T is a sufficient
statistic. Think about this as: ‘once conditioned on T , X has no more useful information on θ.’ Researcher
1 has (X,T (X)) and can infer the joint distribution f(X,T (X)). Researcher 2 can back out the conditional
pdf/pmf of T (X), denoted fT (t). They have the same information because f(X,T (X)) = fT (t)fX|T (x | t).
Since T is a sufficient statistic, fX|T (x | t) does not depend on θ, so it is completely known to the researcher.
Question. Given a sufficient statistic, what can we learn about the parameter being estimated?
Answer. Chen: In general, nothing – take as an example the sample mean, which is sufficient for the
mean of a normal distribution OR the probability of a Bernoulli process. If we make assumptions about the
underlying distribution, you can approach the question – one framework might be to think about learning a
modeler’s assumptions from the statistic they choose, assuming the underlying distribution is normal.
Theorem 1.12. If p(x | θ) is the joint pdf or pmf of X and q(t | θ) is the pdf or pmf of a statistic T (X),
then T (X) is a sufficient statistic for X if p(x|θ)

q(t) does not depend on θ for all x in the sample space.

Proof. (Intuitive, discrete case) Consider

P {X = x|T (X) = t} =
P {X = x, T (X) = t}

P{T (X) = t}

=
P{X = x}P{T (X) = t | X = x}

P{T (X) = t}

=
fX(x | θ)
fT (t)

· 1T (X)=t

=

󰀫
0 if T (X) ∕= t
fX(x|θ)
fT (t) if T (X) = t

9



The first case of course does not depend on θ. Thus, it suffices to show that the ratio does not depend on θ
to show that P {X = x|T (X) = t} does not depend on θ.
Example. Let X = {X1, . . . , Xn} be i.i.d. N (µ,σ2), with σ2 known. We show that the sample mean
T (X) = X̄ is a sufficient statistic for µ. The joint pdf of the sample X is

f(x | µ) =
n󰁜

i=1

(2πσ2)−
1
2 exp

󰀕
− (xi − µ)2

2σ2

󰀖

= (2πσ2)−
n
2 exp

󰀣
−

n󰁛

i=1

(xi − µ)2

2σ2

󰀤

= (2πσ2)−
n
2 exp

󰀣
−

n󰁛

i=1

(xi − x̄+ x̄− µ)2

2σ2

󰀤

= (2πσ2)−
n
2 exp

󰀕
−
󰁓n

i=1(xi − x̄)2 + n(x̄− µ)2

2σ2

󰀖

Remember that in a normal sampling model, X̄ ∼ N
󰀓
µ, σ2

n

󰀔
. Thus, we have that

p(x | θ)
q(t | θ) =

fX(x)

fX̄(x̄)
=

(2πσ2)−
n
2 exp

󰀓
−

󰁓n
i=1(xi−x̄)2+n(x̄−µ)2

2σ2

󰀔

(2πσ2/n)−
1
2 exp

󰀓
−n(x̄−µ)2

2σ2

󰀔

= n− 1
2 (2πσ)−

n−1
2 exp

󰀕󰁓n
i=1(xi − x̄)2

2σ2

󰀖

which does not depend on µ. Thus, X̄ is a sufficient statistic for µ.
Remark. The main drawback of this method is that you need to choose a T and write down its pdf. If
you already have a good candidate statistic, this is a great method to use. However, if you are completely
clueless about the ideal candidate statistic, this will be intensive. What should we do in that case?
Theorem 1.13. (Factorization Theorem) Let f(x | θ) be the joint pdf or pmf of X. A statistic T (X) is a
sufficient statistic for θ if and only if there exist functions g(t | θ) and h(x) such that, for all sample points
x and all parameter points θ,

f(x | θ) = g(T (x) | θ)h(x)

Proof. (Only for discrete case) (⇒): We have that T (X) is sufficient. Choose g(t | θ) = Pθ{T (X) = t} and
h(x) = P{X = x | T (X) = T (x)}. Since T (X) is sufficient, h(x) does not depend on θ. For this choice, we
have

f(x | θ) = Pθ{X = x}
= Pθ{X = x, T (X) = T (x)}
= Pθ{T (X) = T (x)}P{X = x | T (X) = T (x)}
= g(T (X) | θ)h(x)

(⇐): Suppose that the factorization exists. Let q(t) be the pmf of T (X). To show that T (X) is sufficient,
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it suffices to examine the ratio f(x|θ)
q(T (x)) for each x. Define AT (x) := {y | T (y) = T (x). Then we have:

f(x | θ)
q(T (x)

=
g(T (x) | θ)h(x)

q(T (x))

=
g(T (x) | θ)h(x)󰁓

AT (x)
f(x | θ)

=
g(T (x) | θ)h(x)󰁓

AT (x)
g(T (y) | θ)h(y)

=
g(T (x) | θ)h(x)

g(T (x) | θ)
󰁓

AT (x)
h(y)

=
h(x)󰁓

AT (x)
h(y)

Since this does not depend on θ, T (x) is a sufficient statistic for θ.
Example. Let X = {X1, . . . , Xn} be iid N (µ,σ2), where σ2 is known. We start by writing the joint pdf:

f(x) =

n󰁜

i=1

󰀕
1√
2πσ

󰀖
exp

󰀕
− (xi − µ)2

2σ2

󰀖
=

󰀕
1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(xi − µ)2

2σ2

󰀖

We will factorize this into a part including θ, and a part not including θ. Recall that we can split the joint
pdf:

f(x) =

󰀕
1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(xi − x̄)2 + n(x̄− µ)2

2σ2

󰀖

which becomes

f(x) =

󰀕
1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(xi − x̄)2

2σ2

󰀖
exp

󰀕
−n(x̄− µ)2

2σ2

󰀖

Only the second exponential depends on θ ≡ µ. We say that

g(x̄ | θ) = exp

󰀕
−n(x̄− µ)2

2σ2

󰀖

and

h(x) =

󰀕
1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(xi − x̄)2

2σ2

󰀖

Thus, we can conclude that T (x) = x̄ is a sufficient statistic for µ in N (µ,σ2) model when σ2 known.
Example. Let X = {X1, . . . , Xn} be iid N (µ,σ2), where σ2 is unknown. Now the parameters are (µ,σ2).
We can now write the joint pdf as

f(x | µ,σ2) =

󰀕
1√
2πσ

󰀖n

exp

󰀕
−
󰁓n

i=1(xi − x̄)2

2σ2

󰀖
exp

󰀕
−n(x̄− µ)2

2σ2

󰀖

Since everything here depends on σ, this entire equation will be g(T1(x), T2(x) | µ,σ2). We set h(x) = 1,
T1(x) = x̄, and T2(x) =

1
n−1

󰁓n
i=1(xi − x̄)2 = s2. Thus, we have that

f(x) = g(x̄, s2 | µ,σ2)h(x)

Remark. The entire sample X = {X1, . . . , Xn} is always a sufficient statistic.
Remark. Any one-to-one function of a sufficient statistic is also a sufficient statistic (exercise)
Definition. A sufficient statistic T 󰂏(X) is a minimal sufficient statistic if for any sufficient statistic T (X),
there exists a function r such that

T 󰂏(X) = r(T (X))

11



This definition implies that for any sufficient statistic T (X), if T (x) = T (y), then T 󰂏(x) = T 󰂏(y). Intuitively,
the minimal sufficient statistic achieves the most dimensional reduction without a loss of information about
the parameters.
Theorem 1.14. Let f(x | θ) be the joint pdf or pmf of X. Suppose that there exists a T (X) such that, for
any x, y ∈ X, the ratio

f(x | θ)
f(y | θ)

does not depend on θ if and only if T (x) = T (y), then T (X) is a minimal sufficient statistic.

Proof. Left to reader
Remark. Note that minimal sufficient statistics are not necessarily unique.
Example. Finding a minimal sufficient statistic for X ∼ N (µ,σ2), with σ2 unknown. Let x and y be two
sample points, and let (x̄, s2x) and (ȳ, s2y) be the sample means and variances respectively. It follows that

f(x | θ)
f(y | θ) =

(2πσ)−
n
2 exp

󰀓
− (n−1)s2x+n(x̄−µ)2

2σ2

󰀔

(2πσ)−
n
2 exp

󰀓
− (n−1)s2y+n(ȳ−µ)2

2σ2

󰀔

= exp

󰀣
(n− 1)(s2x − s2y) + n(ȳ − x̄) + 2nµ(x̄− ȳ)

2σ2

󰀤

This ratio does not depend on (µ,σ) if and only if x̄ = ȳ, and when s2x = s2y. Thus, (x̄, s2) is a minimal
sufficient statistic.
Example. Let {X1, . . . , Xn} be a random sample from the discrete uniform distribution on {1, 2, . . . , θ}.
That is, the pmf for Xi is

f(x | θ) =
󰀫

1
θ x = 1, 2, . . . , θ

0 otherwise

Show that maxi Xi is a sufficient statistic for θ.
Solution. We will use the factorization theorem. First, we write down the joint pmf of the data:

fX(x) =

n󰁜

i=1

f(xi | θ) =
󰀫

1
θn xi ∈ {1, 2, . . . , θ} ∀ i = 1, 2, . . . , n

0 otherwise

This could also be written as
fX(x) =

󰀕
1

θn

󰀖
1 {xi ∈ {1, 2, . . . , θ} ∀ i}

We can split this as follows:

fX(x) =

󰀕
1

θn

󰀖
· 1 {xi ∈ Z+} · 1

󰁱
max

i
xi ≤ θ

󰁲

So defining h(x) = 1 {xi ∈ Z+} and g(maxi xi | θ) = 1
θn · 1 {maxi xi ≤ θ}, we get that

fX(x) = h(x)g(max
i

xi | θ)

So maxi xi is a sufficient statistic for θ.

1.5 Examples of Estimators and Measures of Their Quality

Definition. An estimator θ̂ for a parameter θ is also a statistic, intended as a guess about θ. θ̂ is an estimate
when it is a specific (or realized) value calculated in a specific sample.
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Let the population parameter be µ = E[X]. The sample mean is X̄n = θ̂ = 1
n

󰁓n
i=1 Xi.

Let the population parameter be θ = E[g(X)] for some known function g. An estimator is a sample mean of
g: θ̂ = 1

n

󰁓n
i=1 g(Xi).

Let the population parameter be β = h(E[g(X)]) for known functions h and g. A plug-in estimator for β is
β̂ = h(θ̂) = h( 1n

󰁓n
i=1 g(Xi)).

Definition. The bias of an estimator θ̂ of a parameter θ is bias[θ̂] = E[θ̂] − θ. An estimator is unbiased if
the bias is 0. Note that bias depends on the population distribution F .
Definition. Let F be a family of possible distributions. An estimator θ̂ is unbiased in F if bias[θ̂] = 0 for
every F ∈ F .
Theorem 1.15. X̄ is unbiased for µ = E[X] if E[X] < ∞.

One common criterion for a good estimator is the mean squared error where

mse(θ̂) = E[(θ̂ − θ)2]

Theorem 1.16. If θ̂ has finite variance, then

mse(θ̂) = (bias(θ̂))2 + var(θ̂)

Proof. We have that
mse(θ̂) = E[(θ̂ − θ)2] = E[(θ̂ − E[θ] + E[θ]− θ)2]

Given a set of estimators, we say that the estimator with the smallest mean squared error is said to be more
efficient . We generally don’t talk about the most efficient estimator, because it will only perform well for a
particular θ – think of an estimator which is constant, so has 0 MSE but only works for a specific θ.

We can restrict the set of estimators to only consider unbiased estimators:

Su := {θ̂1, θ̂2, . . . , θ̂k}

where E[θ̂i] = θ ∀ i = 1, . . . , k.

Among the class of unbiased estimators, the estimator with the lowest sampling variance also has the lowest
mean squared error. This motivates finding the best unbiased estimator for estimating parameter θ.
Theorem 1.17. If σ2 < ∞, the sample mean X̄n has the lowest variance among all linear unbiased estima-
tors of µ.

Proof. Consider a class of linear estimators µ̃ =
󰁓n

i=1 wiXi with some weights {w1, . . . , wn}. Unbiasedness
requires

µ = E[µ̃] =
n󰁛

i=1

wi E[Xi] =

n󰁛

i=1

wiµ

which holds if and only if
󰁓n

i=1 wi = 1. The variance of µ̃ is

var(µ̃) = var

󰀣
n󰁛

i=1

wiXi

󰀤
=

n󰁛

i=1

w2
i var(Xi) = σ2

n󰁛

i=1

w2
i

Which is minimized with wi =
1
n for all i. Thus, the sample mean is the best unbiased estimator for the

population mean.

We actually have a much stronger statement:
Theorem 1.18. If σ2 < ∞, the sample mean X̄n has the lowest variance among all unbiased estimators of
µ.
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Definition. The variance of an estimator θ̂, also called the sampling variance, is var[θ̂] = E[(θ̂ − E[θ̂])2].

We already know that if E[X2] < ∞, then var(X̄) = σ2

n where σ2 = var(X). Therefore, the variance of X̄
declines with sample size at rate 1

n .
Remark. Sampling variance is the variance of an estimator and is usually unknown!

To estimate var(X̄), we need an estimator for σ2 = var(X) = E[(X −E[X])2]. The plug-in estimator for σ2

is

σ̂2 =
1

n

n󰁛

i=1

(Xi − X̄n)
2 =

1

n

n󰁛

i=1

X2
i − (X̄n)

2

Theorem 1.19. If σ2 < ∞, then E[σ̂2] =
󰀃
1− 1

n

󰀄
σ2.

Question. Is there an unbiased estimator for σ2? Yes, sample variance s2.
Definition. The standard error of an estimator θ̂ for parameter θ is

se(θ̂) = V̂
1
2 , where V̂ is an estimator for V = var(θ̂)

Standard error can be interpreted as an estimator for V 1/2, the standard deviation of θ̂. Standard error is
usually a biased estimator of V 1/2.
Example. Sample mean X̄n is an estimator for µ. The exact variance of X̄n is σ2

n . If we estimate σ2 with

the plug-in estimator σ̂2, the standard error of X̄n is
󰁴

σ̂2

n .

Let X ∈ Rm be a random vector and µ = E[X] be its mean. The sample mean estimator for µ is

X̄n =
1

n

n󰁛

i=1

Xi =

󰀳

󰁅󰁅󰁅󰁃

X̄1n

X̄2n

...
X̄mn

󰀴

󰁆󰁆󰁆󰁄

Most properties of the univariate sample mean extend to the multivariate sample mean. It is unbiased, so
E[X̄n] = µ, its exact covariance matrix is

var(X̄n) = E
󰀅
(X̄n − E[X̄n])(X̄n − E[X̄n])

′󰀆 = 1

n
var(X) =

Σ

n

The mean squared error matrix of X̄n is

mse(X̄n) = E
󰀅
(X̄n − µ)(X̄n − µ)′

󰀆
=

Σ

n

X̄n is the best unbiased estimator for µ. An unbiased covariance estimator is

Σ̂ =
1

n− 1

n󰁛

i=1

E
󰀅
(Xi − X̄n)(Xi − X̄n)

′󰀆

In the 1950s, the James-Stein estimator was developed. It is a shrinkage estimator, where

θ̃J−S =

󰀕
1− (m− 2)σ2

θ̂θ̂′

󰀖
θ̂

It is a biased estimator, but mse(θ̃J−S) < mse(θ̂)

Suppose we have a random sample X = {X1, . . . , Xn} from a distribution Fθ where θ ∈ Rk is the parameter
of interest. Let θ̂ := θ̂(X) be a candidate estimator for θ that we, as researchers, think is “good” (i.e. has
some desirable MSE properties). Suppose also that we know that T (X) is a sufficient statistic for θ. Can
we do better than θ̂?
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Theorem 1.20. (Rao-Blackwell) Under the above setup, let

θ̃(X) = E
󰁫
θ̂(X)

󰀏󰀏󰀏T (X)
󰁬

Then,

1. mse(θ̃(X)) ≤ mse(θ̂(X))

2. If θ̂(X) is an unbiased estimator, then so is θ̃(X).

Proof. First, we need to verify that θ̃ is indeed an estimator, meaning that it is only a function of data and
not a function of anything unknown (namely, θ). We have that

θ̃(x) =

󰁝
θ̂(S)fX|T (s | t)ds

for t = T (x). By the precise definition of a sufficient statistic, this does not depend on θ, only on known
data, since T is a sufficient statistic.

Next, we will show that MSE(θ̃(X)) ≤ MSE(θ̂(X)). We have that

MSE(θ̂) = E[(θ̂ − θ)2]

= E[(θ̂ − θ̃ + θ̃ − θ)2]

= E[(θ̂ − θ̃)2] + E[(θ̃ − θ)2] + 2E[(θ̂ − θ̃)(θ̃ − θ)]

=LIE E[(θ̂ − θ̃)2] + E[(θ̃ − θ)2] + 2E[(θ̂ − θ̃)(θ̃ − θ) | T ]

= E[(θ̂ − θ̃)2] + MSE(θ̃) +
󰀓
(E[θ̂ | T ]− θ̃)(θ̃ − θ)

󰀔

= E[(θ̂ − θ̃)2] + MSE(θ̃) + (θ̃ − θ̃)(θ̃ − θ)

= E[(θ̂ − θ̃)2] + MSE(θ̃)

≥ MSE(θ̃)

Finally, we will show that if the original estimator is unbiased, the alternative estimator is as well. Consider:

E[θ̃] = E
󰁫
E[θ̂ | T ]

󰁬

=LIE E[θ̂]

Thus, if θ̂ is unbiased, then E[θ̂] = θ, which means that E[θ̃] = θ, meaning that θ̃ is unbiased.

Intuition. We can project the estimator into the sufficient statistic, and always get improvement.
Example. (PS4 Q5) Suppose we have a random sample with a Poisson distribution. Further suppose that
we are interested in estimating the probability of a count of zero so θ = P{X = 0} = e−λ. We have an
unbiased estimator that is

θ̂ =
1

n

n󰁛

i=1

1Xi=0

Note that a sufficient statistic for λ is T =
󰁓n

i=1 Xi. Since θ̂ is not a function of T , just of the data, we can
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definitely find improvement by Blackwellizing the estimator. We say that

θ̃(x) = E
󰁫
θ̂
󰀏󰀏󰀏T (x) = t

󰁬

= E

󰀥
1

n

n󰁛

i=1

1Xi=0

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

Xi = t

󰀦

= E

󰀥
1X1=0

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

Xi = t

󰀦

= P

󰀫
X1 = 0

󰀏󰀏󰀏󰀏󰀏

n󰁛

i=1

Xi = t

󰀬

=
P {X1 = 0,

󰁓n
i=1 Xi = t}

P {
󰁓n

i=1 Xi = t}

=
P {X1 = 0,

󰁓n
i=2 Xi = t}

P {
󰁓n

i=1 Xi = t}

=
P{X1 = 0}P{

󰁓n
i=2 Xi = t}

P{
󰁓n

i=1 Xi = t}

and we can calculate the probabilities directly, using the properties of the Poisson distribution. We will get
that this is

θ̃(x) =

󰀕
n− 1

n

󰀖t
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2 Asymptotic Theory

We derived the distribution of X̄n under a normal distribution assumption. This can be quite restrictive:
What happens when the population is not normal? What is the distribution of nonlinear transformations of
X̄n?

Idea: Allow n to grow to infinity and investigate the behavior of estimators as this happens.

• Pros: provides useful approximations for the finite-sample case; simpler results; asymptotic properties
preserved under continuous transformations

• Cons: never realistic

The main tools of asymptotic theory are the law of large numbers (LLN), central limit theorem (CLT), and
continuous mapping theorem (CMT).

2.1 Convergence in Probability

Definition. A sequence of numbers an has the limit a, or converges to a as n → ∞ if for all δ > 0, there
exists nδ such that for all n > nδ, |an − a| < δ.

We think about asymptotic properties as follows. We have data X = {X1, X2, . . . , Xn}, and construct a
statistic T (X) := T (X1, X2, . . . , Xn) := Tn. We think about the sequence of statistics {Tn}∞n=1, which is
indexed by sample size n.

A non-random sequence can converge to a limit. What about a sequence of random variables? For example,
consider X̄n. In what sense does X̄n converge as n increases? Since X̄n is random, we need to modify the
definition of convergence and limit. There are different ways to define this.

Let {Xn, n = 1, 2, . . . } be a sequence of random variables and let X be another random variable (it may be
degenerate).
Definition. We say that Xn converges in probability to X if for all δ > 0,

lim
n→∞

P {|Xn −X| > δ} = 0

and
lim
n→∞

P {|Xn −X| ≤ δ} = 1

Or, equivalently, for all δ, ε > 0 there exists nδ,ε such that for all n > nδ,ε,

P {|Xn −X| > δ} < ε

and
P {|Xn −X| ≤ δ} ≥ 1− ε

We say that Xn
p→ X if Xn converges in probability to X.

Example. Consider a discrete random variable Zn such that

P{Zn = 0} = 1− 1

n
and P{Zn = an} =

1

n

for some arbitrary sequence an. We can show that Zn
p→ 0 since for each δ > 0, ∃ n such that

P{|Zn − 0| > δ} ≤ P{Zn = an} =
1

n
→ 0
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Next, let Xn, X be k × 1 random vectors with the jth element denoted Xnj , j = 1, 2, . . . , k. Then Xn
p→ X

if and only if Xnj
p→ Xj for all j ∈ {1, . . . , k}. Convergence in probability is equivalent to elementwise

convergence in probability. The same holds for matrices.
Definition. An estimator θ̂n based on a sample size n for parameter θ is (weakly) consistent if θ̂n − θ

p→ 0,
i.e. , θ̂n

p→ θ.
Remark. Consistency is an asymptotic property of an estimator, typically a minimum requirement for any
estimator, and is a different notion than the finite sample property of unbiasedness. In fact, many consistent
estimators are biased or asymptotically biased.
Definition. An estimator θ̂n based on a sample size n for parameter θ is asymptotically unbiased (AU) if

lim
n→∞

{E[θ̂n]− θ} = { lim
n→∞

E[θ̂n]}− θ = 0

Theorem 2.1. Consistency and asymptotic unbiasedness do not imply each other.

Proof. ( ∕⇐) Suppose that X ∼ N (µ,σ2), and our estimator for µ is µ̂ = X1. This is unbiased since
E[X1] = µ so limn→∞{E[µ̂n]− µ} = 0, but P{|µ̂n − µ| > δ} is constant, so does not go to zero.

( ∕⇒) Consider the following artificial example. Suppose the true parameter is θ and θ̂n is binary such that

P{θ̂n = θ} = 1− 1

n
and P{θ̂n = n} =

1

n

θ̂n is consistent since for all δ > 0,

P{|θ̂n − θ| > δ} ≤ P{θ̂n = n} =
1

n
→ 0 as n → ∞

However, θ̂n is not asymptotically unbiased since

E[θ̂n] = θ

󰀕
1− 1

n

󰀖
+ n

󰀕
1

n

󰀖
= θ − θ

n
+

n

n

which approaches θ + 1 as n gets large.
Theorem 2.2. (Continuous Mapping Theorem) Let Xn, X be k × 1 random vectors. If Xn

p→ X and g is
a real-valued continuous function, then

g(Xn)
p→ g(X)

Corollary 2.1. (Slutsky’s Theorem) Let g be continuous at c. Then

Xn
p→ c =⇒ g(Xn)

p→ g(c)

Corollary 2.2. Xn
p→ X =⇒ 󰀂Xn −X󰀂 p→ 0 where 󰀂 · 󰀂 is the Euclidean norm.

2.2 Proving Convergence in Probability

Definition. Let X be a random variable and A be an event. An indicator function is

1X∈A =

󰀫
1 X ∈ A

0 X ∕∈ A

Note that E[1X∈A] = P{X ∈ A}
Theorem 2.3. (Markov Inequality) For each r > 0,

P{|X| > δ} ≤ E[|X|r]
δr

for all δ > 0

provided that E[|X|r] < ∞
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Proof.

P{|X| > δ} = E[1|X|>δ]

≤ E
󰀗
1|X|>δ

|X|r
δr

󰀘

=
1

δr
E[1|X|>δ|X|r]

≤ E[|X|r]
δr

Definition. Assuming E[|X|r] < ∞. Then Xn converges in rth mean, written as Xn →r X, if

lim
n→∞

E[|Xn −X|r] = 0

Theorem 2.4. For any r > 0

Xn →r X =⇒ Xn
p→ X

Proof. By the Markov Inequality:

lim
n→∞

P{|Xn −X| > δ} ≤ lim
n→∞

E[|Xn −X|r]
δr

= 0

Example. Mean square convergence is convergence in rth mean for r = 2. We can show that θ̂n
p→ θ if

E[θ̂n − θ]2󰁿 󰁾󰁽 󰂀
Mean square error

p→ 0, as n → ∞

Since
E[θ̂n − θ]2 = bias(θ̂n)

2 +Var(θ̂n)

we can show that θ̂
p→ θ if bias(θ̂n) → 0 and Var(θ̂n) → 0 as n → ∞.

Theorem 2.5. θ̂n →r θ for some r ≥ 1 implies that limn→∞ E[θ̂n] = θ.

Proof. See that:

E[θ̂n]− θ ≤
󰀏󰀏󰀏E[θ̂n − θ]

󰀏󰀏󰀏

≤ E
󰁫
|θ̂n − θ|

󰁬
(By Jensen’s)

≤
󰁱
E
󰁫
|θ̂n − θ|

󰁬r󰁲1/r

(By Jensen’s again)

→ 0 as n → ∞

Remark. θ̂n →r θ, g continuous ⇒ g(θ̂n)
p→ g(θ). However, it is not true that g(θ̂n) →r g(θ). E[|g(θ̂n)|r]

might not even exist.

By applying the Markov Inequality with r = 2 and replacing X with the demeaned version X − E[X], we
get Chebyshev’s Inequality :
Definition. We have that:

P{|X − E[X]| > δ} ≤ E[|X − E[X]|2]
δ2

=
Var(X)

δ2
for all δ > 0
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Remark. An estimator θ̂n
p→ E[θ̂n] if Var(θ̂n) is vanishing to 0.

Theorem 2.6. (Chebyshev’s Weak Law of Large Numbers) If {Xi, i = 1, . . . , n} are iid with mean µ and
finite variance σ2, then

X̄n
p→ µ

Proof. Recall that we’ve shown under iid that

E[X̄n] = µ and Var(X̄n) =
σ2

n

Applying Chebyshev’s Inequality yields

P{|X̄n − µ| > δ} = P{|X̄n − E[X̄n]| > δ} ≤ Var(X̄n)

δ2
=

σ2

nδ2
→ 0 for all δ > 0

Theorem 2.7. (Khinchine’s Weak Law of Large Numbers) If {Xi, i = 1, . . . , n} are iid with E[Xi] < ∞,
then

X̄n
p→ E[Xi] = µ

Proof. Technical, so omitted. Relies on showing that E[|X̄n − µ|] → 0, which is convergence in rth mean
when r = 1.
Remark. This does not require finite variance, so is stronger than Chebyshev’s Weak Law of Large Numbers.
We often call this the Weak Law of Large Numbers.

We will now extend this result to the vector case.
Theorem 2.8. Suppose Xi ∈ Rm, i = 1, . . . , n are iid distributed and E 󰀂Xi󰀂 = E 󰀂X󰀂 < ∞, then

X̄n
p→ EX

as n → ∞.

Proof omitted. Note that E 󰀂X󰀂 < ∞ if and only if E |Xj | < ∞ for all j = 1, . . . ,m.

2.3 Almost Sure Convergence

Convergence in probability is sometimes called weak convergence. Consider a stronger version: almost sure
convergence, also called strong convergence or convergence with probability one
Definition. We say that Xn converges almost surely to X, denoted Xn

a.s.→ X, if

P
󰁱

lim
n→∞

Xn = X
󰁲
= 1

or, equivalently, for all δ > 0 and ε > 0,

P {|Xm −X| ≤ δ for all m ≥ nδ,ε} > 1− ε

Theorem 2.9. Xn
a.s.→ X =⇒ Xn

p→ X

Proof. Recall that if C ⇒ D, then P{C} ≤ P{D}. Since we have that Xn
a.s.→ X, for all ε > 0, δ > 0 there

exists nδ,ε > 0 such that for all m > nδ,ε, we have that

P{|Xm −X| ≤ δ ∀ m > nδ,ε} > 1− ε ⇐⇒ P

󰀻
󰀿

󰀽

∞󰁟

m=nδ,ε

{|Xm −X| ≤ δ}

󰀼
󰁀

󰀾 > 1− ε
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Take D = |Xm −X| ≤ δ for any m > nδ,ε, and C =
󰁗∞

m=nδ,ε
{|Xm −X| ≤ δ}. Clearly, C =⇒ D. Thus, for

any m > nδ,ε,

P{|Xm −X| ≤ δ} = P{D}
≥ P{C} = P{∩∞

m=nδ,ε
{|Xm −X| ≤ δ}}

> 1− ε

2.4 Stochastic Orders of Magnitude

Definition. (Nonstochastic Orders) For nonstochastic sequences xn and fn, n = 1, . . . , we have that

1. xn = o(fn) if xn

fn
→ 0 as n → ∞

2. xn = O(fn) if xn

fn
is bounded for sufficiently large n, meaning that there exists M such that for all

n > nM , |xn

fn
| < M

Definition. (Stochastic Orders) For Xn random variables and fn constants, for n = 1, . . . , we have that

1. Xn = op(fn) if Xn

fn

p→ 0

2. Xn = Op(fn) if Xn

fn
is bounded in probability, meaning that for all ε > 0, there exists a constant

Mε < ∞ and nε,M > 0 such that

P
󰀝󰀏󰀏󰀏󰀏

Xn

fn

󰀏󰀏󰀏󰀏> Mε

󰀞
< ε for all n > nε,M

Remark. Xn = op(1) means that Xn
p→ 0.

Theorem 2.10. If Xn
p→ c for some constant c, then Xn = Op(1).

Proof. Fix ε > 0. It suffices to show that there exists a constant Cε such that P{|Xn| > Cε} < ε. Since
Xn

p→ c, we know that for each δ > 0 there exists nδ,ε such that P{|Xn − c| > δ} < ε for all n > nδ,ε. By
the Triangle Inequality, we have that |Xn| ≤ |Xn − c|+ |c|. Choose C = |c|+ δ. Then we have that

P{|Xn| > C} = P{|Xn| > |c|+ δ}
≤ P{|Xn − c|+ |c| > |c|+ δ}
= P{|Xn − c| > δ} < ε

since Xn
p→ c.

Definition. Some algebraic definitions:

• If Xn = Op(fn) and Yn = Op(gn), then XnYn = Op(fngn) and Xn + Yn = Op(max{fn, gn})

• The same holds for o

• If Xn = Op(fn) and Yn = op(gn), then XnYn = op(fngn)

• If Xn = Op(fn) and fn
gn

→ 0, then Xn = op(gn)

Example. (Using Stochastic Orders) Suppose X ∼ {X1, . . . , Xn} are iid with finite variance σ2. We know
from the weak law of large numbers that X̄n

p→ µ. But how fast does X̄n converge to µ? Recall that by
Chebyshev’s Inequality, P{|X̄n − µ| > δ} = σ2

nδ2 . It also implies that for all δ > 0,

P

󰀫
|X̄n − µ|

1√
n

> δ

󰀬
= P

󰀝
|X̄n − µ| > 1√

n
> δ

󰀞
≤ σ2

δ2
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We can choose Cε =
σ√
ε

such that

P

󰀫
|X̄n − µ|

1√
n

> Cε

󰀬
≤ ε

Thus, X̄n − µ = Op(1/
√
n) or equivalently, X̄n = µ + Op(1/

√
n), so X̄n converges to µ at a rate no slower

than 1√
n
.

Theorem 2.11. Xn = Op

󰀓
E [|Xn|r]

1
r

󰀔
for r > 0

Proof. Fix some ε > 0, and pick Cε =
󰀃
1
ε

󰀄 1
r . It follows from Markov’s Inequality that

P

󰀫󰀏󰀏󰀏󰀏󰀏
Xn

E [|Xn|r]
1
r

󰀏󰀏󰀏󰀏󰀏> Cε

󰀬
= P

󰁱
|Xn| > E [|Xn|r]

1
r Cε

󰁲

≤ E[|Xn|r]
E[|Xn|r]Cr

ε

=
1

Cr
ε

= ε

2.5 Convergence in Distribution

Let FX(x) = P{X ≤ x} be the distribution function of random variable X, and consider a sequence of
random variables Xn with distribution FXn

(x) = P{Xn ≤ x}.
Definition. Xn converges in distribution to X (denoted Xn

d→ X) if

FXn(a) → FX(a) as n → ∞ ∀ a, where FX(a) is continuous

Remark. It’s quite difficult to show Xn
d→ X by working directly with the distributions. Instead, we can

work with the characteristic function.
Theorem 2.12. Xn

d→ X ⇐⇒ CXn
(t)

d→ CX(t) as n → ∞ for all t, where CX(t) = E[exp(itX)] is the
characteristic function of X.
Theorem 2.13. We have that:

1. Xn
p→ X =⇒ Xn

d→ X

2. Xn
p→ c ⇐⇒ Xn

d→ c for some constant c

3. Xn
d→ X =⇒ Xn = Op(1)

Proof. (Just of statement 2):

⇒: Recall that the CDF of a constant variable X such that P{X = c} = 1 is degenerate: P{X ≤ x} = 1x≥c.
We want to show that (i) For each δ > 0, P{Xn ≤ c − δ} → 0 as n → ∞, and (ii) For each δ > 0,
P{Xn ≤ c+ δ} → 1 as n → ∞. For (i), note that

P{Xn ≤ c− δ} = P{Xn − c ≤ −δ} ≤ P{|Xn − c| ≤ δ} → 0 as n → ∞

from the definition of Xn
p→ c. We can see (ii) by a similar argument.

⇐: Fix some δ > 0, and we have that

P{|Xn − c| > δ} = P{Xn − c > δ}+ P{Xn − c < −δ}
≤ 1− FXn(c+ δ) + FXn(c− δ)

→ 1− 1 + 0 = 0, as n → ∞
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from the definition of Xn
d→ c.

Example. We aim to approximate the distribution of X̄n as n → ∞. By the weak law of large numbers,
X̄n

p→ µ, meaning that X̄n
d→ µ. Asymptotically, the distribution of X̄n degenerates to µ.

In order to get more useful results, we need to rescale X̄n so that it has a stable distribution. Since
Var(X̄n) =

σ2

n , consider

Zn =
√
n

󰀕
X̄n − µ

σ

󰀖

Note that E[Zn] = 0 and Var(Zn) = 1. The distribution of Zn is “stabilized.” We aim to find the asymptotic
distribution of Zn.
Theorem 2.14. Lindeberg-Lévy Central Limit Theorem If Xi for i = 1, . . . , n are i.i.d. and E[X2

i ] < ∞,
then Zn

d→ N (0, 1) or, equivalently,
√
n(X̄n − µ)

d→ N (0,σ2), where µ = E[Xi] and σ2 = Var(Xi).

Proof. WLOG, assume µ = 0. We will show that CZn
(t) = exp

󰀓
− t2

2

󰀔
as n → ∞, since exp

󰀓
− t2

2

󰀔

is the characteristic function of a standard normal. Note that Zn =
√
n
󰀓

X̄n−µ
σ

󰀔
=

󰁓n
j=1 xjn, where

xjn =
Xj−µ

σ
√
n

= Xi

σ
√
n
. We have that

CZn(t) = E [exp (itZn)] = E

󰀵

󰀷exp

󰀳

󰁃it

n󰁛

j=1

xjn

󰀴

󰁄

󰀶

󰀸

=

n󰁜

j=1

E [exp (itxjn)] by independence

= {E [exp (itx1n)]}n by identical distribution

=

󰀝
CX1

󰀕
t

σ
√
n

󰀖󰀞n

where CX1(s) = E[exp(isXi)] is the characteristic function of X1. Since E[X2
1 ] < ∞, by Taylor’s Theorem,

we have that

CX1
(s) = CX1

(0)󰁿 󰁾󰁽 󰂀
1

+ isE[X1]󰁿 󰁾󰁽 󰂀
0

+
i2s2

2
E[X2

1 ]󰁿 󰁾󰁽 󰂀
σ2

+o(s2), as s → 0

Thus for each fixed t,

CX1

󰀕
t

σ
√
n

󰀖
= 1− t2

2n
+ o

󰀕
t2

σ2n

󰀖

and for each fixed t, as n → ∞,

CZn
(t) =

󰀝
1− t2

2n
+ o

󰀕
t2

σ2n

󰀖󰀞n

= e−
t2

2

since
󰀃
1 + a

n

󰀄n → ea as n → ∞.
Theorem 2.15. Cramér-Wold Device For a sequence of random vectors Xn ∈ Rk,

Xn
d→ X ⇐⇒ λ′Xn

d→ λ′X, for all λ ∈ Rk

Remark. This implies that to show that a random vector Xn is asymptotically univariate normal, it is
necessary and sufficient to show that any linear combination of elements of Xn is asymptotically univariate
normal.
Theorem 2.16. Multivariate Lindeberg-Lévy Central Limit Theorem If Xi ∈ Rk, for i = 1, . . . , n are i.i.d.
normal and E 󰀂Xi󰀂2 < ∞, then

√
n
󰀃
X̄n − µ

󰀄 d→ N (0,Σ)

where µ = E[Xi] and Σ = E[(Xi − µ)(Xi − µ)′].
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2.6 Delta Method

Remark. So far, we’ve used X̄ to estimate E[Xi]. The same idea applies to a transformation of X, say
g(X). We can obtain the law of large numbers

µ̂ =
1

n

n󰁛

i=1

g(Xi)
p→ E[g(X)] = µ

and the central limit theorem √
n(µ̂− µ)

d→ N (0,Var(g(X)))

What about functions of moments? Consider β = h(µ) = h(E[g(x)]), where h(·) is not necessarily linear. A
natural estimator is the plug-in estimator

β̂ = h(µ̂) where µ̂ =
1

n

n󰁛

i=1

g(Xi)

How would we derive the asymptotic distribution of β̂?
Theorem 2.17. Continuous Mapping Theorem For random vectors Xn, X ∈ Rk,

Xn
d→ X, g is continuous =⇒ g(Xn)

d→ g(X)

Corollary 2.3. Slutsky Theorem If Xn
d→ X and cn

p→ c, then

(i) Xn + cn
d→ X + c

(ii) Xn · cn
d→ X · c

(iii) Xn

cn

d→ X
c provided c ∕= 0

Example. Xn
d→ X ∼ N (0, Ik) =⇒ X ′

nXn
d→ X ′X ∼ χ2

n

Example. Suppose
√
n
󰀓

X̄n−µ
σ

󰀔
d→ N (0, 1) and σ̂ is a consistent estimator for σ > 0. Then

√
n

󰀕
X̄n − µ

σ̂

󰀖
=

√
n

󰀕
X̄n − µ

σ

󰀖󰀓σ
σ̂

󰀔
d→ N (0, 1)

Now, let’s derive the asymptotic distribution of β̂ = h(µ̂). Note that β̂ is written as a function of µ̂, not√
n(µ̂−µ), so the continuous mapping theorem is not directly applicable. The key step here is the first order

Taylor expansion, assuming differentiability of h(·). We have that

β̂ = h(µ̂) = h(µ) +
∂h(u)

∂u

󰀏󰀏󰀏󰀏󰀏
u=µ󰂏

(µ̂− µ)

where µ󰂏 is on the line joining µ and µ̂. Then

√
n(β̂ − h(µ)) =

∂h(u)

∂u

󰀏󰀏󰀏󰀏󰀏
u=µ󰂏

√
n(µ̂− µ)

so we can use the asymptotic distribution of
√
n(µ̂− µ) and the continuous mapping theorem.
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Theorem 2.18. Delta Theorem If
√
n(µ̂ − µ)

d→ ξ and h(·) is a function continuously differentiable in a
neighborhood around µ, then √

n(h(µ̂)− h(µ))
d→ H ′ξ

where H ′ = ∂
∂uh(u)

󰀏󰀏󰀏
u=µ

.

In particular, if ξ ∼ N (0, V ), then
√
n(h(µ̂)− h(µ))

d→ N (0, H ′V H).

When µ and h are scalar-valued, then

√
n(h(µ̂)− h(µ))

d→ N

󰀳

󰁅󰁃0,

󰀳

󰁃 ∂

∂u
h(u)

󰀏󰀏󰀏󰀏󰀏
u=µ

󰀴

󰁄
2

V

󰀴

󰁆󰁄
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3 Estimation

We will cover two methods – Maximum Likelihood Estimation, and the Method of Moments. These cover
basically everything – MLE is a complete probability model, and MoM is a partial probability model. Almost
every estimation model, no matter how exotic, can be boiled down to either Maximum Likelihood or Method
of Moments.

3.1 Maximum Likelihood Estimation

Motivation. Parameter estimation in complete probability models – useful for IO, structural modeling,
etc. Maximum Likelihood Estimation is very popular for these parametric models. The main advantage is
that it has wide applicability and can handle complicated data and models. The disadvantage is the strong
distributional assumptions you need to make.
Model. Parametric Model We have a vector X ∈ Rd, X ∼ F , and we have a random sample {X1, . . . , Xn}.
We will assume that X has a density or probability mass function f(x | θ) with known form of f but unknown
parameter value θ ∈ Θ ⊆ Rk, where Θ is the (known) parameter space.
Example. Assume that X ∼ N (µ,σ2), which has density

f(x | µ,σ) = 1√
2πσ

exp

󰀣
−1

2

󰀕
x− µ

σ

󰀖2
󰀤

The parameters are µ ∈ R, σ ∈ R++.
Remark. Here, we will focus on unconditional distributions (so f(x | θ) does not depend on conditioning
variables. Next semester, and in most economic modeling, we will focus on conditional distributions.
Definition. A model is correctly specified when there is a unique parameter value θ0 ∈ Θ such that f(x | θ0)
coincides with the true density or pmf of X (i.e. f(x | θ) = f(x)).

This parameter value θ0 is called the true parameter value.

The parameter θ0 is unique if there is no other θ such that f(x | θ0) = f(x | θ).

A model is mis-specified if there is no parameter value θ ∈ Θ such that f(x | θ) coincides with the true
density or pmf of X.
Example. Suppose that the true model is f(x) = 1√

2π
exp

󰀓
−x2

2

󰀔
. Our model is

f(x | p, µ1,σ
2
1 , µ2,σ

2
2) = p

1√
2πσ1

exp

󰀣
−1

2

󰀕
x− µ1

σ1

󰀖2
󰀤

+ (1− p)
1√
2πσ2

exp

󰀣
−1

2

󰀕
x− µ2

σ2

󰀖2
󰀤

This model is “correct” since it includes f(x) as a special case. However, the “true” parameter is not unique
– it includes:

(p, 0, 1, 0, 1) ∀ p

(1, 0, 1, µ2,σ
2
2) ∀ µ2,σ

2
2

(0, µ1,σ
2
1 , 0, 1) ∀ µ1,σ

2
1

Thus, the model is not correctly specified.

Note that the joint density or pmf of i.i.d. {X1, . . . , Xn} given θ is

f(x1, . . . , xn | θ) =
n󰁜

i=1

f(xi | θ)
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Definition. The likelihood function is

Ln(θ) = f(X1, . . . , Xn | θ) =
n󰁜

i=1

f(Xi | θ)

It is the joint density (or pmf) of the data, and is viewed always as a function of θ. It essentially describes
the compatibility of different values of θ with the observed data.
Definition. A maximum likelihood estimator θ̂ is the value that maximizes Ln(θ):

θ̂ ∈ argmax
θ∈Θ

Ln(θ)

Or equivalently,
θ̂ ∈ argmax

θ∈Θ
ℓn(θ)

where

ℓn(θ) = logLn(θ) =

n󰁛

i=1

log f(Xi | θ)

is called the log likelihood function.
Remark. In practice (finite samples, basically) it is very possible for there to be multiple maximizers – it
may even not be a global maximum, just a local maximum. In this class, when we impose correct specification
and large (asymptotic) samples, there will always be exactly one.
Example. (Exponential Distribution) Assume f(x | λ) = 1

λ exp
󰀃
−x

λ

󰀄
for x ∈ R+,λ ∈ R++. The log

likelihood is

ℓn(λ) =

n󰁛

i=1

󰀕
− log λ− Xi

λ

󰀖
= −n log λ− n

X̄n

λ

The first order condition is
∂ℓn
∂λ

(λ) = −n
1

λ
+ n

X̄n

λ2
= 0 =⇒ λ̂ = X̄n

We can see that λ̂ is a maximizer since

∂2ℓn
∂λ2

(λ̂) = n
1

λ̂2
− 2n

X̄n

λ̂3
= − n

X̄2
n

< 0

Question. Why does MLE make sense?
Definition. Define the expected log likelihood function as

ℓ(θ) := E[log f(X | θ)]

Note that the expectation is with respect to the random vector X, not θ.
Theorem 3.1. (Analog Principle) When the model is correctly specified, the true parameter θ0 maximizes
ℓ(θ).

Proof. For each θ ∕= θ0, we have that

ℓ(θ)− ℓ(θ0) = E
󰀗
log

󰀕
f(X | θ)
f(X | θ0)

󰀖󰀘
< logE

󰀗
f(X | θ)
f(X | θ0)

󰀘

where the inequality follows from Jensen’s Inequality, and strict inequality holds since log is strictly concave
and the argument is not a constant.

Let the true density of the data be f(x). Since f(X | θ0) = f(x) and f(X | θ) is a valid density,

E
󰀗
f(X | θ)
f(X | θ0)

󰀘
=

󰁝
f(x | θ)
f(x | θ0)

f(x)dx =

󰁝
f(x | θ)dx = 1
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Thus,
ℓ(θ)− ℓ(θ0) < log 1 = 0 =⇒ ℓ(θ) < ℓ(θ0)

Remark. The likelihood function of parametric models provides a way to evaluate their estimators. Recall
that ℓ(θ) = E[log f(X | θ)] is the expected log likelihood.
Definition. The log likelihood at a single observation X and the true parameter θ0 is log f(X | θ0). The
efficient score is

S =
∂

∂θ
log f(X | θ0)

The Fisher information is
Fθ0 = E[SS′]

Theorem 3.2. Assume that the model is correctly specified, the support of X does not depend on θ, and θ0
lies in the interior of Θ. Then E[S] = 0 and Var(S) = Fθ0

Proof. By Leibniz Rule:

E[S] = E
󰀗
∂

∂θ
log f(X | θ0)

󰀘

=
∂

∂θ
E [log f(X | θ0)]

=
∂

∂θ
ℓ(θ0) = 0

where the last equality follows from the fact that θ0 maximizes ℓ(·) and θ0 ∈ intΘ. Then,

Var(S) = E [(S − E[S])(S − E[S])′] = E[SS′] = Fθ0

Theorem 3.3. (Information Matrix Equality)

E
󰀗
∂ log f(X | θ0)

∂θ

∂ log f(X | θ0)
∂θ′

󰀘

󰁿 󰁾󰁽 󰂀
Fisher Information

= −E
󰀗

∂2

∂θ∂θ′
log f(X | θ0)

󰀘

󰁿 󰁾󰁽 󰂀
Curvature of ℓ(θ0)

That is,
Fθ0 = Hθ0

where

Hθ0 = −E
󰀗

∂2

∂θ∂θ′
log f(X | θ0)

󰀘
= − ∂2

∂θ∂θ′
E[log f(X | θ0)] = − ∂2

∂θ∂θ′
ℓ(θ0)

is called the expected Hessian.

Proof. Left for homework.
Remark. This result is useful for simplifying the formula for the asymptotic variance of the maximum
likelihood estimator.
Theorem 3.4. Assume that the model is correctly specified, that the support of X does not depend on θ,
and that θ0 lies in the interior of Θ. If θ̃ is an unbiased estimator of θ, then

Var(θ̃) ≥ (nFθ0)
−1

(nFθ0)
−1 is called the Cramér-Rao Lower Bound (CRL). An estimator θ̃ is Cramér-Rao efficient if it is

unbiased and Var(θ̃) = (nFθ0)
−1
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Remark. If Var(θ̃) is a matrix, Var(θ̃) ≥ (nFθ0)
−1 means that Var(θ̃)− (nFθ0)

−1 is positive semidefinite.

Intuition. More curvature of the expected log likelihood =⇒ more information =⇒ lower variance bound.

Proof. We write x = (x1, . . . , xn)
′ and X = (X1, . . . , Xn)

′, and we write the joint density of X as f(x | θ).
Since θ̃ is an estimator, it is a function of data (X), and since it is unbiased, it must hold that

θ = E
θ
[θ̃(X)] =

󰁝
θ̃(x)f(x | θ)dx

for any θ. By taking derivatives of both sides, we get that

I =

󰁝
θ̃(x)

∂

∂θ′
f(x | θ)dx =

󰁝
θ̃(x)

󰀕
∂

∂θ′
log f(x | θ)

󰀖
f(x | θ)dx

where I is the identity matrix. Evaluating at the true value θ0, we get that

I =

󰁝
θ̃(x)

󰀕
∂

∂θ′
log f(x | θ0)

󰀖
f(x | θ0)dx

= E
󰀗
θ̃(X)

󰀕
∂

∂θ′
log f(X | θ0)

󰀖󰀘

= E
󰀗
θ̃(X)

󰀕
∂

∂θ′
log f(X | θ0)

󰀖󰀘
− E[θ̃(X)]󰁿 󰁾󰁽 󰂀

θ0

E
󰀗

∂

∂θ′
log f(X | θ0)

󰀘

󰁿 󰁾󰁽 󰂀
0

= cov

󰀕
θ̃(X),

∂

∂θ′
log f(X | θ0)

󰀖

where the third equality follows from the fact that

E
󰀗󰀕

∂

∂θ′
log f(X | θ0)

󰀖󰀘
= E

󰀥󰀣
n󰁛

i=1

∂

∂θ′
log f(Xi | θ0)

󰀤󰀦
= nE[S′] = 0

Thus, we have that

Var

󰀕
θ̃

∂
∂θ log f(X | θ0)

󰀖
=

󰀕
Var(θ̃) I

I nFθ0

󰀖

(note that ∂
∂θ log f(X | θ0) = nFθ0 , showing this is left for homework)

Since this matrix is positive semi-definite, for any matrix A we have that

A′ Var

󰀕
θ̃

∂
∂θ log f(X | θ0)

󰀖
A ≥ 0

Choosing A =

󰀕
I

−(nFθ0)
−1

󰀖
, we get that

Var(θ̃)− (nFθ0)
−1 ≥ 0

Asymptotic Properties of MLE If θ0 uniquely maximizes ℓ(θ) = E[log f(X | θ)] and some technical
conditions hold such that

1

n

n󰁛

i=1

log f(Xi | θ)
p→ E[log f(X | θ)]
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uniformly for all θ ∈ Θ, then θ̂
p→ θ0, where θ̂ is the maximum likelihood estimator. With more technical

conditions, we have that √
n(θ̂ − θ0)

d→ N (0,F−1
θ0

)

The MLE estimator is: consistent, converging at rate n− 1
2 , asymptotically normal, and asymptotically

Cramér-Rao efficient !

Variance Estimation The asymptotic variance of
√
n(θ̂ − θ0) is F−1

θ0
, which is unknown. Since

Fθ0 = E
󰀗
∂ log f(X | θ0)

∂θ

∂ log f(X | θ0)
∂θ′

󰀘
= −E

󰀗
∂2

∂θ∂θ′
log f(X | θ0)

󰀘

by the Information Matrix Equality, we can estimate F−1
θ0

by either

󰀫
− 1

n

n󰁛

i=1

∂2

∂θ∂θ′
log f(Xi | θ̂)

󰀬−1

or 󰀫
1

n

n󰁛

i=1

∂

∂θ
log f(Xi | θ̂)

∂

∂θ′
log f(Xi | θ̂)

󰀬−1

3.2 Method of Moments

Introduction MLE is used for parametric models. Method of moments allows semi-parametric models:
estimation of a finite dimensional parameter when the distribution is non-parametric. A distribution is called
non-parametric if it cannot be described by a finite list of parameters.
Example. Estimation of the mean µ = E[X] when the distribution of X is unspecified. µ̂MME = 1

n

󰁓n
i=1 Xi,

so the sample mean is a method of moments estimator. By the central limit theorem, as long as E 󰀂X󰀂2 < ∞,

√
n(µ̂MME − µ)

d→ N (0,Σ)

where Σ = Var(X). Meanwhile, Σ can be consistently estimated by the sample covariance matrix:

Σ̂ =
1

n− 1

n󰁛

i=1

(Xi − µ̂)(Xi − µ̂)′

Algorithm. In method of moments, we match the “theoretic moment” with the “sample moment” – essen-
tially, we take the mth moment of X, µ′

m = E 󰀂X󰀂m, and estimate it using

µ̂′
m =

1

n

n󰁛

i=1

󰀂Xi󰀂m

Example. We can take this even further – if the mean of some transformation g(X) is θ = E[g(X)], the
MME for θ is

θ̂ =
1

n

n󰁛

i=1

g(Xi)

By CLT, if E 󰀂g(X)󰀂2 < ∞, then

√
n(θ̂ − θ)

d→ N (0, Vθ), whereVθ = Var(g(X))
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We can consistently estimate Vθ using

V̂ =
1

n− 1

n󰁛

i=1

(g(X)− θ̂)(g(X)− θ̂)′

Example. Suppose that we are interested in the CDF of X, F (x). We have that the MME is

Fn(x) =
1

n

n󰁛

i=1

1Xi≤x

We can show (homework) that

√
n(Fn(x)− F (x))

d→ N (0, F (x)(1− F (x)))

Smooth Functions of Moments. Now, let’s be a bit more general. Suppose the parameter of interest
is β = h(θ), where θ = E[g(X)], where X, g, and h can all be vectors. By plugging in the MME θ̂ =
1
n

󰁓n
i=1 g(Xi), β can be estimated by β̂ = h(θ̂). When h is continuously differentiable, we call it smooth. By

applying Delta method, we get
β̂ − β

d→ N (0, Vβ)

where Vβ = H ′VθH, H ′ = ∂
∂θ′h(θ), and Vθ = Var(g(X)).

Vβ can be consistently estimated by V̂β = Ĥ ′V̂θĤ, where

Ĥ ′ =
∂

∂θ′
h(θ̂)

V̂θ =
1

n− 1

n󰁛

i=1

(g(Xi)− θ̂)(g(Xi)− θ̂)′

Example. The variance of a random variable X is

σ2 = E[(X − E[X])2] = E[X2]− (E[X])2

a smooth function of uncentered first and second moment. The MME for σ2 is

σ̂2 =
1

n

n󰁛

i=1

(Xi − µ̂)2 =
1

n

n󰁛

i=1

X2
i −

󰀣
1

n

n󰁛

i=1

Xi

󰀤2

and we can find the asymptotic distribution from delta method.
Definition. In many problems, we can write moments as explicit functions of parameters called moment
functions:

E[m(X,β)] = 0

with parameter β ∈ Rk and m is a k × 1 function. For each β, the sample moment of E[m(X,β)] is

1

n

n󰁛

i=1

m(X,β)

The MME β̂ solves a system of k nonlinear equations:

1

n

n󰁛

i=1

m(X, β̂)
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Remark. The functions m are chosen by researchers, guided by economic theory or statistical theory.
Example. If we are estimating E[X] = µ, our moment function is

E[(X − µ)] = 0 =⇒ m(x, µ) = x− µ

Thus, we get that
1

n

n󰁛

i=1

(Xi − µ̂MM ) = 0 =⇒ µ̂MM =
1

n

n󰁛

i=1

Xi

This is very simple, because the first moment gives us the MME estimator. However, we could also consider
the second moment. We have that

E[X2] = σ2 + µ2

so we have that

E
󰀗

X − µ
X2 − σ2 − µ2

󰀘
= 0 =⇒ 1

n

n󰁛

i=1

󰀗
Xi − µ̂MM

X2
i − σ̂2

MM − µ̂2
MM

󰀘
= 0

so we have that

µ̂MM =
1

n

n󰁛

i=1

Xi and σ̂2
MM =

1

n

n󰁛

i=1

X2
i +

󰀣
1

n

n󰁛

i=1

Xi

󰀤2

Example. Parametric models. This is the classical way of defining MME. We have X ∼ f(x | θ), θ ∈ Rk.
The kth moment of this model is

µk(β) =

󰁝
xkf(x | θ)dx

Hence, β satisfies

E

󰀵

󰀹󰀹󰀹󰀷

X − µ1(β)
X2 − µ2(β)

...
Xm − µm(β)

󰀶

󰀺󰀺󰀺󰀸
= 0

We can set

m(x,β) =

󰀳

󰁅󰁅󰁅󰁃

X − µ1(β)
X2 − µ2(β)

...
Xm − µm(β)

󰀴

󰁆󰁆󰁆󰁄

so the MME β̂ solves

1

n

n󰁛

i=1

󰀵

󰀹󰀹󰀹󰀷

Xi − µ1(β̂)

X2
i − µ2(β̂)

...
Xm

i − µm(β̂)

󰀶

󰀺󰀺󰀺󰀸
= 0

Example. Euler equation. We have that the consumer’s utility function is

U(Ct, Ct+1) = u(Ct) +
1

β
u(Ct+1)

and their budget it

Ct +
Ct+1

Rt+1
≤ Wt
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They want to maximize expected utility

E
󰀗
u(Ct) +

1

β
u((Wt − Ct)Rt+1)

󰀘

which admits first order condition

0 = u′(Ct)− E
󰀗
Rt+1

β
u′(Ct+1)

󰀘

Assuming CRRA utility, so u(c) = c1−α

1−α , the Euler equation is now

E

󰀥
Rt+1

󰀕
Ct+1

Ct

󰀖−α

− β

󰀦
= 0

Suppose that β is known and we are interested in estimating α. Then, α satisfies E[m(Rt+1, Ct+1, Ct,α)] = 0,
where

m(Rt+1, Ct+1, Ct,α) = Rt+1

󰀕
Ct+1

Ct

󰀖−α

− β

the MME for α solves
1

n

n󰁛

i=1

󰀅
m(Rt+1, Ct+1, Ct, α̂)

󰀆
= 0

Asymptotic Theory of MME. If there is a unique β0 that solves E[m(X,β)] = 0, and further technical
conditions hold so that

1

n

n󰁛

i=1

m(Xi,β)
p→

n󰁛

i=1

E[m(Xi,β)]

uniformly for all β in some set B, then the MME β̂
p→ β0. With more technical conditions we can show that

√
n(β̂ − β0)

d→ N (0, V )

where V = (Q′)−1ΩQ−1, Ω = Var(m(X,β0)), and Q′ = E
󰁫

∂
∂β′m(X,β0)

󰁬

Efficiency of MME. We know that sample mean µ̂ is the best linear unbiased estimator for population
mean µ, which might justify the use of MME, but the restriction to linear estimators is not particularly
convincing. In fact, we can show that µ̂ has the lowest variance among all unbiased estimators.
Theorem 3.5. Let X be a random vector and F be a set of distributions such that E 󰀂X󰀂2 < ∞. If µ̃ is an
unbiased estimator for µ = E[X] for all distributions in F , then

Var(µ̃) ≥ 1

n
Σ

where Σ = Var(X).
Remark. Since sample mean µ̂ is unbiased and Var(µ̂) = 1

nΣ, we conclude that µ̂ has the lowest variance
among all unbiased estimators.

Proof. (Not examinable, but interesting!) The basic framework: If X has a parametric pdf f(x | θ), we
can apply Cramér-Rao theory to find a lower bound. However, the distribution of X is left unspecified – the
space of possible distributions is too big. We will construct a smaller class of correctly specified parametric
distributions f(x | α), so that when α = 0, f(x | θ) = f(x). Since µ̃ is unbiased for all distributions, it is
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also unbiased for f(x | α). The variance lower bound among all distributions must be at least as large as
the Cramér-Rao lower bound for the subclass of distributions f(x | α). Conclusion follows.

Focus on the case where X is continuous with f(x). WLOG, assume that µ = 0 and X is bounded so that
󰀂X󰀂 ≤ C for some 0 < C < ∞ (extending to cases where µ ∕= 0 and unbounded X only involves some more
technicality). Now let F be the set of distributions such that E 󰀂X󰀂 = 0 and 󰀂X󰀂 ≤ C with probability 1.
Note that the condition that E 󰀂X󰀂2 ≤ ∞ is automatically satisfied.

Step 1: Construct a parametric subclass of distributions

f(x | α) = f(x)
󰀋
1 + α′Σ−1x

󰀌

where α ∈
󰀋
α : 󰀂Σ−1α󰀂 ≤ 1

C

󰀌
, and Σ = Var(X) = E[XX ′]. Note E[X] = 0, 󰀂x󰀂 ≤ C. Let Eα[·] denote

expectation under f(x | α)

Step 2: Verify that f(x | α) ∈ F :

1. f(x | α) is a valid pdf sharing support with f(x): f(x | α) ≥ 0 since |α′Σ−1x| ≤ 󰀂Σ−1α󰀂󰀂x󰀂 ≤ 1,
and 󰁝

f(x | α)dx =

󰁝
f(x)dx+

󰁝
f(x)α′Σ−1xdx = 1 + α′Σ−1 E[X] = 1

2. f(x | α) is correctly specified: when α = 0, f(x | α) = f(x)

3. Variance of X under f(x | α) is finite: the above implies that f(x | α) ≤ 2f(x). Thus Eα 󰀂X󰀂2 ≤
2E 󰀂X󰀂 < ∞

4. Expectation of X under f(x | α) is:
󰁝

xf(x | α)dx =

󰁝
xf(x)dx+

󰀕󰁝
xx′f(x)dx

󰀖
Σ−1α = 0 + Σ−1Σ−1α = α

Step 3: Apply Cramér-Rao Theorem for f(x | α). First, note that unbiasedness of µ̃ implies that it is unbiased
for all f(x) ∈ F . Since f(x | α) ∈ F , µ̃ is unbiased for f(x | α). By Cramér-Rao Theorem, Var(µ̃) ≥
n−1Fα, where

Fα = E
󰀗
∂

∂α
log f(X | 0) ∂

∂α′ log f(X | 0)
󰀘

Note that
∂

∂α′ log f(X | 0) = Σ−1X

1 + α′Σ−1X

Hence, Fα = Σ−1 E[XX ′]Σ−1 = Σ−1 as desired.
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4 Hypothesis Testing

4.1 Basic Concepts

A random vector X has distribution F (x), where F is unknown. We have a parameter of interest θ,
determined by F ∈ F . The parameter space is Θ, and we consider θ ∈ Θ. We have a random sample
{X1, . . . , Xn} from F . In previous sections, we talked about estimating θ. Now, we talk about testing
hypotheses about θ.
Definition. A hypothesis is a statement about population parameter θ. We call the hypothesis to be tested
the null hypothesis, H0, which is the restriction of θ. Specifically, it is either a restriction of θ to some θ0, or
to some subset Θ0 ⊆ Θ. We often write

H0 = {θ ∈ Θ : θ = θ0} or H0 = {θ ∈ Θ : θ ∈ Θ0}

The complement of H0 is the alternative hypothesis H1, defined as either

H1 = {θ ∈ Θ : θ ∕= θ0} or H1 = {θ ∈ Θ : θ ∕∈ Θ0}

Remark. In these notes, we will focus on only point hypotheses, i.e. H0 = {θ ∈ Θ : θ ∕= θ0}. The alternative
could be one-sided (H1 : θ > θ0 or θ < θ0) or two-sided (H1 : θ ∕= θ0). The one-sided alternative is relevant
when the null lies on the boundary of the parameter space (θ0 ∈ ∂Θ ≡ Θ = {θ : θ ≥ θ0}). An example of
this would be if a policy necessarily has a non-negative effect.
Definition. A hypothesis is a restriction on the underlying distribution. Define the null distribution as a
set F0 such that

F0 = {F ∈ F : H0 is true}

F0 can be a singleton, a parametric family, or a nonparametric family.
Example. Suppose H0 = {µ = µ0}. Examples of F0:

• Singleton: X ∼ N (µ,σ2) with known σ2

• Parametric: X ∼ N (µ,σ2) with unknown σ2

• Nonparametric: X has finite mean
Definition. A hypothesis H is simple if {F ∈ F : H is true} is a singleton, and composite if the set contains
multiple distributions.
Example. In the example above, X ∼ N (µ,σ2) with known σ2 is the only simple hypothesis. The others
are composite.
Definition. A hypothesis test is a decision based on data. The decision either accepts H0 or rejects H0 in
favor of H1. The procedure is as follows:

1. Construct a real-valued function of the data called a test statistic

T = T (X1, . . . , Xn) ∈ R

which is a random variable.

2. Pick a critical region C, where in a one-sided test C := {x : x > c} for critical value c, and in a
two-sided test C := {x : |x| > c}.

3. State the hypothesis test as a decision rule
󰀫

accept H0 if T ∕∈ C

reject H0 if T ∈ C
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Evaluation of hypothesis tests. A decision could be correct or incorrect. We evaluate hypothesis tests
through their probability of making mistakes. There are two types of error in hypothesis testing:

Truth: H0 Decision: Accept H0 Error: None
Truth: H0 Decision: Reject H0 Error: Type I
Truth: H1 Decision: Accept H0 Error: Type II
Truth: H1 Decision: Reject H0 Error: None

Definition. The power function of a hypothesis test is the probability of rejection:

π(F ) = P {reject H0 | F} = P{T ∈ C | F}

Definition. The size of a hypothesis test is the probability of Type I error:

P{reject H0 | F0} = π(F0)

for F0 satisfying H0.
Definition. The power of a hypothesis test is the complement of the probability of Type II error:

P{reject H0 | F1} = π(F1) = 1− P{accept H0 | H1}

for F1 satisfying H1.
Remark. Size is the power function evaluated at null, power is the power function evaluated at alternative.
Theorem 4.1. Type I and Type II errors cannot be reduced at the same time.

Proof. (Intuition) Let G(x | F ) = P{T ≤ x | F} be the sampling distribution of T . G(x | F0) is called
the null sampling distribution, and G(x | F1) is called the alternative sampling distribution. Consider a
one-sided test with rejection rule T > c. Type I error is size π(F0) = P{T > c | F0} = 1−G(c | F0). Type 2
error is 1− π(F1) = P{T ≤ c | F1} = G(c | F1). Since any distribution function G(x | F ) is increasing in x,
Type I error is decreasing in c while Type II error is increasing in c.

4.2 Classical Approach

We will control size, and pick the test to maximize power subject to the size constraint.
Definition. The significance level α ∈ (0, 1) is the probability selected by the researcher to be the maximal
acceptable size of the hypothesis test.
Example. Consider a one-sided test, where H0 : θ = θ0 and H1 : θ > θ0. Given test statistic T , consider
the test taking form

Decision =

󰀫
accept H0 if T ≤ c

reject H0 if T > c

We choose c to control Type I error, so c solves

π(F0) = P{T > c | F0} = 1−G(c | F0) = α =⇒ c = G−1(1− α | F0)

The Type I controlled decision rule is

Decision =

󰀫
accept H0 if T ≤ G−1(1− α | F0)

reject H0 if T > G−1(1− α | F0)

and it has a size equal to α.
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Example. Consider a two-sided test, where H0 : θ = θ0 and H1 : θ ∕= θ0. The test takes the form:

Decision =

󰀫
accept H0 if |T | ≤ c

reject H0 if |T | > c

We again choose c to control size:

π(F0) = P{|T | > c | F0} = 1−G(c | F0) +G(−c | F0) = α

Assuming that G is symmetric about 0, we have that

1−G(c | F0) +G(−c | F0) = 2(1−G(c | F0)) = α =⇒ c = G−1
󰀓
1− α

2

󰀏󰀏󰀏F0

󰀔

The test rule

Decision =

󰀫
accept H0 if |T | ≤ G−1

󰀃
1− α

2

󰀏󰀏F0

󰀄

reject H0 if |T | > G−1
󰀃
1− α

2

󰀏󰀏F0

󰀄

has size α.
Example. Suppose X ∼ N (µ,σ2) and we wish to test

H0 : µ = µ0 versus H1 : µ > µ0

We create a test statistic, using X̄n = 1
n

󰁓n
i=1 Xi and s2 = 1

n−1

󰁓n
i=1(Xi − X̄)2:

T =
X̄n − µ0󰁴

s2

n

Under H0, T ∼ tn−1. Given α, set c = q1−α, where q1−α is the (1 − α)th quantile of the tn−1 distribution.
A one-sided t-test with size α is

accept H0 if T ≤ q1−α ; reject H0 if T > q1−α

If σ2 is known, replacing s2 with σ2, we get that T yields a z test that uses the quantiles of a standard
normal. A two-sided test is similar to this entire process, with absolute values.
Theorem 4.2. In the normal sampling model X ∼ N (µ,σ2), let

T =
X̄n − µ0󰁴

s2

n

1. The t test of H0 : µ = µ0 against H1 : µ > µ0 rejects if T > q1−α

2. The t test of H0 : µ = µ0 against H1 : µ < µ0 rejects if T < qα

3. The t test of H0 : µ = µ0 against H1 : µ ∕= µ0 rejects if |T | > q1−α/2

These tests have exact size α.
Example. Suppose X has mean µ and finite variance. We wish to test

H0 : µ = µ0 ; H1 : µ > µ0

The t-statistic is

T =
X̄ − µ0󰁴

s2

n

where s2 could be replaced by the plug-in variance estimator. Under H0, T is not normal, but is asymptoti-
cally normal – by CLT, T d→ N (0, 1). Thus, as n → ∞,

π(F0) = P{T > c | F0} → P{N (0, 1) > c} = 1− Φ(c)
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Theorem 4.3. If X has finite mean µ and variance σ2, then

1. The asymptotic t-test of H0 : µ = µ0 against H1 : µ > µ0 rejects if T > Z1−α

2. The asymptotic t-test of H0 : µ = µ0 against H1 : µ < µ0 rejects if T < Zα

3. The asymptotic t-test of H0 : µ = µ0 against H1 : µ ∕= µ0 rejects if |T | > Z1−α/2

where Z1−α is the (1 − α)th quantile of the standard normal distribution. These tests have asymptotic size
α.

Again, consider a one-sided test which accepts H0 if T ≤ c and rejects H0 if T > c, where c is chosen to
control size at α, so P{T > c | F0} = 1−G(c | F0) = α.
Question. How should we report the results of this test?

We’ve used two methods thus far: (i) report size α and the decision to reject or accept H0; and (ii) report
the critical value c and the value T at sample points.

Another method: report the value of a certain kind of statistic called the p-value.
Definition. Define the p-value as

p = 1−G(T | F0)

Since G(T | F0) is increasing, p is a decreasing function of T . Also note that α = 1 − G(c | F0), so the
decision to reject H0 if T > c is equivalent to rejecting H0 if p < α.

For each α ∈ (0, 1), the test ‘accept H0 if p > α, reject H0 if p ≤ α’ is a size α test:

P{p ≤ α | F0} = P{1−G(T | F0) ≤ α | F0}
= P{G−1(1− α | F0) ≤ T | F0}
= 1−G(G−1(1− α | F0) ≤ T | F0)

= α

p is ‘the degree of evidence against H0’ (the smaller the p-value, the stronger the evidence against the null);
p is the ‘marginal significance level’ (the lower bound of the range at size α that we would reject the null).
Remark. p is the transformation of a statistic rather than a probability – it transforms the T statistic to
an easily interpretable universal scale in [0, 1].

p allows inference to be continuous rather than dichotomous, which is more informative. If we had one
statistic that had p = 0.049 and one that had p = 0.051, we would know that they are essentially the same.
Otherwise, we’d just see reported ‘reject’ and ‘accept’.

4.3 Power Analysis

So far, we’ve focused on the size of the tests. We know how to construct a test of (asymptotic) size α for
mean. But a good test should also have good power. It’s important to know the power of the test we
construct.
Example. Suppose X ∼ N (µ,σ2) with known σ2. Consider the standard statistic

T =
X̄n − µ0󰁴

σ2

n

for tests H0 : µ = µ0 and H1 : µ > µ0. We reject if T > c, where c is chosen to control size at level α. Since
X̄ is centered around the true mean µ,

X̄n − µ󰁴
σ2

n

∼ N (0, 1)
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The power function of the test is

π(F ) = P{T > c | F} = P

󰀻
󰀿

󰀽
X̄n − µ0󰁴

σ2

n

> c

󰀏󰀏󰀏󰀏󰀏󰀏
F

󰀼
󰁀

󰀾

= P

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

X̄n − µ󰁴
σ2

n󰁿 󰁾󰁽 󰂀
Z∼N (0,1)

−µ− µ0󰁴
σ2

n

> c

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

F

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰀾

= 1− Φ

󰀳

󰁃c+
µ0 − µ󰁴

σ2

n

󰀴

󰁄

The size is π(F0) = 1− Φ(c), since under F0, µ = µ0. Power is

π(µ | F1) = 1− Φ

󰀳

󰁃c+
µ0 − µ󰁴

σ2

n

󰀴

󰁄

where µ > µ0. Note that π(µ | F1) is increasing in n and µ, and decreasing in σ2 and c.
Example. Suppose we want to choose n and c to achieve size of 0.1 and power of at least 0.8 if µ ≥ µ0 + σ.
How should we proceed?

Step 1: selecting c such that π(F0) = 1− Φ(c) = 0.1 yields c = 1.28.

Step 2: selecting n such that

1− Φ

󰀳

󰁃1.28− µ0 − µ󰁴
σ2

n

󰀏󰀏󰀏󰀏󰀏󰀏
µ = µ0 + σ

󰀴

󰁄 ≥ 0.8

which yields n ≥ 4.49.

Thus, choosing c = 1.28 and n = 5 yields the desired.

4.4 Likelihood Ratio Test

Recall the classical approach to testing, where we control size and then maximize power subject to the size
constraint. So far, we’ve focused on the t-test, but another important class of tests is called the likelihood
ratio test . We will show that it maximizes power subject to the size constraint for simple hypothesis tests.

Consider a parametric model f(x | θ) with likelihood Ln(θ) =
󰁔n

i=1 f(Xi | θ). We want to test simple
hypotheses H0 : θ = θ0, H1 : θ = θ1 for some hypothetical values θ0, θ1. The ratio Ln(θ1)

Ln(θ0)
compares the

likelihood function under the two hypotheses. A decision rule could be

accept H0 if
Ln(θ1)

Ln(θ0)
≤ c ; reject H0 if

Ln(θ1)

Ln(θ0)
> c

for some critical value c. Note that the size is

P
󰀝
Ln(θ1)

Ln(θ0)
> c

󰀏󰀏󰀏󰀏θ = θ0 ≡ H0

󰀞
= a0󰁿󰁾󰁽󰂀

size

We can fix size by choosing c such that a0 = a󰂏 for some optimal size a󰂏.
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Definition. (for convenience) We define the likelihood ratio statistic as

LRn = 2(ℓn(θ1)− ℓn(θ0))

where ℓn(θ) = logLn(θ). A likelihood ratio test is

accept H0 if LRn ≤ c ; reject H0 if LRn > c

for some critical value c.
Example. For X ∼ N (µ,σ2) with known σ2, we have that

ℓn(µ) = −n

2
log(2πσ2)− 1

2σ2

n󰁛

i=1

(Xi − µ)2

Suppose that H0 : µ = µ0, H1 : µ = µ1 > µ0. Then we have that

LRn =
1

σ2

n󰁛

i=1

󰀃
(Xi − µ0)

2 − (Xi − µ1)
2
󰀄
=

n

σ2

󰀅
2X̄n(µ1 − µ0) + (µ2

0 − µ2
1)
󰀆

Rejecting H0 for some LRn > c is equivalent to rejecting if

T =
X̄n − µ0

σ/
√
n

> c

Theorem 4.4. (Neyman-Pearson Lemma) Suppose random variable X has a parametric pdf / pmf f(X | θ).
Among all tests of a simple null hypothesis H0 : θ = θ0 against a simple alternative hypothesis H1 : θ = θ1
with size α, the likelihood ratio test has the greatest power.
Remark. In a normal sampling model with known variance, the likelihood ratio test of simple hypotheses
is identical to a t-test with known variance. By Neyman-Pearson, this is now the most powerful test for this
hypothesis in this model.

Proof. Consider the likelihood ratio test:

accept H0 if
Ln(θ1)

Ln(θ0)
≤ c ; reject H0 if

Ln(θ1)

Ln(θ0)
> c

where c is chosen such that
P
󰀝
Ln(θ1)

Ln(θ0)
> c | θ = θ0

󰀞
= α

Let the joint density of observations be f(x | θ), meaning that Ln(θ) = f(X | θ). Since the test is a binary
decision, we can represent it with a binary test function. Define the likelihood ratio test function as

ψLR = 1f(X|θ1)>cf(X|θ0)

so ψLR = 1 if the decision rejects H0 and 0 otherwise. Define some alternative test as ψa, where ψa also has
size α. Since both tests have the same size, we have that

P{ψLR = 1 | θ = θ0} = P{ψa = 1 | θ = θ0} = α

or, equivalently, 󰁝
ψLRf(x | θ0)dx =

󰁝
ψaf(x | θ0)dx = α
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We have that the power of the likelihood ratio test is

P
󰀝
Ln(θ1)

Ln(θ0)
> c

󰀏󰀏󰀏󰀏θ = θ1

󰀞
= P{ψLR = 1 | θ = θ1}

=

󰁝
ψLRf(x | θ1)dx

=

󰁝
ψLRf(x | θ1)dx− c

󰀝󰁝
ψLRf(x | θ0)dx−

󰁝
ψaf(x | θ0)dx

󰀞

=

󰁝
ψLR(f(x | θ1)− cf(x | θ0))dx+ c

󰁝
ψaf(x | θ0)dx

≥
󰁝

ψa(f(x | θ1)− cf(x | θ0))dx+ c

󰁝
ψaf(x | θ0)dx

=

󰁝
ψaf(x | θ1)dx = P{ψa = 1 | θ = θ1}

where the inequality holds because

ψa(f(x | θ1)− cf(x | θ0)) ≤ ψLR(f(x | θ1)− cf(x | θ0)) =
󰀫
f(x | θ1)− f(x | θ0) f(x | θ1)− f(x | θ0) > 0

0 f(x | θ1)− f(x | θ0) ≤ 0

Thus, the power of the likelihood ratio test is (weakly) greater than any other test with size α.
Example. Consider a two-sided composite alternative, where H0 : θ = θ0 and H1 : θ ∕= θ0. The log
likelihood under H1 is the unrestricted maximum of the likelihood. Let θ̂ be the MLE that maximizes Ln(θ).
The likelihood ratio statistic is

LRn = 2
󰀓
ℓn(θ̂)− ℓn(θ0)

󰀔

and the likelihood ratio test is

accept H0 if LRn ≤ c ; reject H0 if LRn > c

for some critical value c.
Example. Consider the one-sided composite alternative, where H0 : θ = θ0 and H1 : θ > θ0. The log
likelihood under H1 is the maximum of the likelihood on the set {θ : θ ≥ θ0}, which we call ℓn(θ̂+), where
θ̂+ ∈ argmaxθ≥θ0 ℓn(θ). The likelihood ratio statistic is

LR+
n = 2

󰀓
ℓn(θ̂

+)− ℓn(θ0)
󰀔

and the likelihood ratio test is

accept H0 if LR+
n ≤ c ; reject H0 if LR+

n > c

for some critical value c.
Example. Again, suppose X ∼ N (µ,σ2), with σ2 known. Consider testing H0 : µ = µ0 against H1 : µ > µ0.
We showed earlier that the t-test is equivalent to the likelihood ratio test for simple hypotheses. This analysis
did not depend on the specific value of the alternative µ1, so it still holds here. The t-test is still the likelihood
ratio test for the one-sided composite alternative.
Theorem 4.5. (Asymptotics) For simple null hypotheses, under H0 : θ = θ0,

LRn
d→ χ2

dim(θ)

Let q1−α be the (1− α)th quantile of χ2
dim(θ). The test

accept H0 if LRn ≤ q1−α ; reject H0 if LRn > q1−α

has asymptotic size α. Moreover, likelihood ratio tests and t-tests are asymptotically equivalent tests.
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Proof. (Sketch) Note that LRn = 2
󰀓
ℓn(θ̂)− ℓn(θ0)

󰀔
. Second-order Taylor expansion yields

ℓn(θ0) ≃ ℓn(θ̂) +
∂

∂θ
ℓn(θ̂)

′

󰁿 󰁾󰁽 󰂀
0

(θ̂ − θ0) +
1

2
(θ̂ − θ0)

′ ∂2

∂θ∂θ
ℓn(θ̂)

󰁿 󰁾󰁽 󰂀
−V̂ −1

(θ̂ − θ0)

where V̂ =
󰁱
− ∂2

∂θ∂θ ℓn(θ̂)
󰁲−1

is the estimator of the expected Hessian of the asymptotic variance of θ̂. Thus,

2
󰀓
ℓn(θ̂)− ℓn(θ0)

󰀔
≃ (θ̂ − θ0)

′V̂ −1(θ̂ − θ0)

as n → ∞, the right hand side converges to χ2
dim(θ)
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5 Confidence Intervals

5.1 Motivation

We’ve seen point estimation of a parameter θ, where we report a single value as a guess of θ. Now, we
consider interval estimation as a tool to report estimation uncertainty. Essentially, we can now quantify how
precise our estimates for θ are.
Definition. Given a sample X = {X1, . . . , Xn}, an interval estimator of a real-valued parameter θ is an
interval C = C(X) = [L(X), U(X)]. Note the following:

(i) L(X) and U(X) are functions of X, so they are themselves random

(ii) For X = x, [L(x), U(x)] are realized values of the interval

(iii) If L(X) = −∞, we have a one-sided interval (−∞, U(X)]

(iv) If U(X) = ∞, we have a one-sided interval [L(X),∞)
Example. Consider a random sample {X1, X2, X3, X4} where Xi ∼ N (µ, 1). An interval estimator for µ
could be [X̄ − 1, X̄ + 1], we will assert that µ is in this interval. Of course, reporting [X̄ − 1, X̄ + 1] is less
precise than reporting X̄. So why would we do that? Well, because by giving up precision we gain confidence
that our report is true. To see why, recall that P{X̄ = µ} = 0. However,

P{X̄ − 1 ≤ µ ≤ X̄ + 1} = P{−1 ≤ X̄ − µ ≤ 1}

= P

󰀫
−2 ≤ X̄ − µ󰁳

1/4
≤ 2

󰀬

= P{−2 ≤ Z ≤ 2} (where Z ∼ N (0, 1))
= 0.9544

So we have a 95% chance of covering µ
Definition. For an interval estimator [L(X), U(X)] of parameter θ, the coverage probability of [L(X), U(X)]
is the probability that the random interval includes the true parameter θ, denoted by

P{L(X) ≤ θ ≤ U(X)} or P{θ ∈ [L(X), U(X)]}

Note that the probability statements depend on the distribution F of X.
Definition. A 1− α confidence interval for θ is an interval [L(X), U(X)] with coverage probability 1− α.
Remark. When the finite sample distribution is unknown, we can approximate its coverage probability by
its asymptotic limit.
Definition. The asymptotic coverage probability of interval estimator [L(X), U(X)] is

lim inf
n→∞

P{θ ∈ [L(X), U(X)]}

A 1−α asymptotic confidence interval for θ is an interval estimator [L(X), U(X)] with asymptotic coverage
probability 1− α.

5.2 Finding Confidence Interval by Pivotal Quantities

Definition. A random variable Q(X, θ) = Q(X1, . . . , Xn, θ) is a pivotal quantity (or pivot) if the distribution
of Q(X, θ) is independent of parameters θ. That is, if X ∼ F (x, θ), then Q(X, θ) has the same distribution
for all values of θ.
Example. Let {X1, . . . , Xn} be a random sample from N (µ,σ2). Then the t-statistic X̄−µ

s/
√
n

is a pivot since
it follows a tn−1 distribution and does not depend on µ or σ2.
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Remark. Once we have a pivot, finding a confidence interval is easy.
Example. Again let {X1, . . . , Xn} be a random sample from N (µ,σ2), and consider the same t-statistic,
distributed tn−1. Fix a coverage probability 1− α. Let q1−α/2 be the (1− α/2)th quantile of tn−1. Then

P
󰀝
−q1−α/2 ≤ X̄ − µ

s/
√
n

≤ q1−α/2

󰀞
= 1− α

⇒ P
󰀝
X̄ − q1−α/2

s√
n
≤ µ ≤ X̄ + q1−α/2

s√
n

󰀞
= 1− α

Thus, a 1− α confidence interval for µ is
󰀗
X̄ − q1−α/2

s√
n
, X̄ + q1−α/2

s√
n

󰀘

Example. Again let {X1, . . . , Xn} be a random sample from N (µ,σ2). Now we consider the variance
statistic

(n− 1)s2

σ2
∼ χ2

n−1

Specify a coverage probability 1 − α, and let cα/2 and c1−α/2 be the (α/2)th and (1 − α/2)th quantiles of
χ2
n−1 respectively. Then

P
󰀝
cα/2 ≤ (n− 1)s2

σ2
≤ c1−α/2

󰀞
= 1− α

⇒ P
󰀝
(n− 1)s2

c1−α/2
≤ σ2 ≤ (n− 1)s2

cα/2

󰀞
= 1− α

Thus, a 1− α confidence interval for σ2 is
󰀗
(n− 1)s2

c1−α/2
,
(n− 1)s2

cα/2

󰀘

Example. Let {X1, . . . , Xn} be a random sample from some F with mean µ and variance σ2. By the
Central Limit Theorem, as n → ∞

X̄ − µ

σ/
√
n

d→ N (0, 1)

By the weak law of large numbers, s is a consistent estimator for σ, so by the continuous mapping theorem

X̄ − µ

s/
√
n

d→ N (0, 1)

This is an asymptotic pivot . Again specify a coverage probability 1 − α and let z1−α/2 be the (1 − α/2)th
quantile of N (0, 1). Then as n → ∞,

P
󰀝
−z1−α/2 ≤ X̄ − µ

s/
√
n

≤ z1−α/2

󰀞
→ 1− α

⇒ P
󰀝
X̄ − z1−α/2

s√
n
≤ µ ≤ X̄ + z1−α/2

s√
n

󰀞
→ 1− α

Thus, an asymptotic 1− α confidence interval for µ is
󰀗
X̄ − z1−α/2

s√
n
, X̄ + z1−α/2

s√
n

󰀘
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Example. Let θ̂ be an estimator of scalar-valued parameter θ satisfying
√
n(θ̂ − θ)

d→ N (0, V ) as n → ∞
and V̂ is a consistent estimator of V . Standard error for θ̂ is given by s(θ̂) =

󰁴
V̂ /n. By continuous mapping

theorem,
θ̂ − θ

s(θ̂)

d→ N (0, 1)

which implies that an asymptotic 1− α confidence interval is
󰁫
θ̂ − z1−α/2s(θ̂), θ̂ + z1−α/2s(θ̂)

󰁬

5.3 Finding Confidence Interval by Test Inversion

Definition. A general way of getting a confidence interval is by test inversion. Consider testing H0 : θ = θ0
against H1 : θ ∕= θ0 for some parameter θ ∈ Θ. Suppose we have a test statistic T (θ0) and critical value c so
that the decision rule

accept H0 if T (θ0) ≤ c ; reject H0 if T (θ0) > c

has size α. Define the test inversion set as the set of all θ not rejected by the test:

C = {θ ∈ Θ : T (θ) ≤ c}

This test inversion set is a valid choice of confidence interval.
Theorem 5.1. If T (θ0) has exact size α for all θ0 ∈ Θ, then

C = {θ ∈ Θ : T (θ) ≤ c}

is a 1− α confidence interval for θ. If T (θ0) has asymptotic size α for all θ0 ∈ Θ, then C is an asymptotic
1− α confidence interval for θ.

Proof. Let the true value be θ0. Then

P{θ0 ∈ C} = P{T (θ0) ≤ c} = 1− P{T (θ0) > c} = 1− α

If instead T has asymptotic size α, the same proof works by applying the limit.
Example. Again, if θ̂−θ

s(θ̂)

d→ N (0, 1), then an asymptotic size α test for H0 : θ = θ0 versus H1 : θ ∕= θ0 is

accept H0 if |T (θ0)| ≤ z1−α/2 and reject H0 if |T (θ0)| > z1−α/2

where z1−α/2 is the (1− α/2)th quantile of N (0, 1), and

T (θ0) =
θ̂ − θ0

s(θ̂)

The test inversion confidence interval is

C =
󰀋
θ ∈ Θ : |T (θ)| ≤ z1−α/2

󰀌

=

󰀫
θ ∈ Θ : −z1−α/2 ≤ θ̂ − θ0

s(θ̂)
≤ z1−α/2

󰀬

=
󰁱
θ ∈ Θ : θ̂ − z1−α/2s(θ̂) ≤ θ ≤ θ̂ + z1−α/2s(θ̂)

󰁲

which is the same as the one derived in the previous section.
Remark. In fact, all confidence intervals derived using pivotal quantities rely on test inversion.
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Example. Consider a parametric model f(x | θ) with log likelihood ℓn(θ) =
󰁓n

i=1 log f(Xi | θ). The
likelihood ratio statistic for testing H0 : θ = θ0 against H1 : θ ∕= θ0 is

LRn(θ0) = 2

󰀕
max
θ∈Θ

ℓn(θ)− ℓn(θ0)

󰀖

Since LRn(θ0)
d→ χ2

dim θ, an asymptotic size α test is

accept H0 if LRn(θ0) ≤ q1−α ; textrejectH0 if LRn(θ0) > q1−α

where q1−α is the (1− α)th quantile of χ2
dim θ. Thus, a test inversion (1− α) confidence interval is

{θ ∈ Θ : LRn(θ) ≤ q1−α}

5.4 Evaluation of Confidence Interval

Remark. For the same problem, we can find many different confidence intervals. Naturally, we want small
length and large coverage probability. We can always increase coverage probability by increasing the size of
the interval (for example, (−∞,∞) has coverage probability 1, but is useless). One method is to minimize
length subject to a specific coverage probability.
Example. Let {X1, . . . , Xn} be a random sample from N (µ,σ2) with known σ2. Then

Z =
X̄ − µ

σ/
√
n

∼ N (0, 1)

is a pivot. Any numbers a and b such that

P
󰀝
a ≤ X̄ − µ

σ/
√
n

≤ b

󰀞
= 1− α

gives a 1− α confidence interval. Note that this is equivalent to:
󰀝
µ : X̄ − b

σ√
n
≤ µ ≤ X̄ − a

σ√
n

󰀞

The length of the confidence interval is (b− a) σ√
n
. The constrained optimization problem we can consider is

min
a,b∈R

(b− a) s.t. P{a ≤ Z ≤ b} = 1− α

We can examine some different intervals as follows:

a b Probability b− a
−1.34 2.33 P{Z < a} = 0.09, P{Z > b} = 0.01 3.67
−1.44 1.96 P{Z < a} = 0.075, P{Z > b} = 0.025 3.40
−1.65 1.65 P{Z < a} = 0.05, P{Z > b} = 0.05 3.30

Table 1: Three 90% Normal Confidence Intervals

In this case, splitting α equally in the two tails results in the shortest interval.
Definition. A pdf f(x) is unimodal if there exists x󰂏 such that f(x) is nondecreasing for x ≤ x󰂏 and f(x)
is nonincreasing for x ≥ x󰂏.
Theorem 5.2. Let f(x) be a unimodal pdf. If [a, b] satisfies
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1.
󰁕 b

a
f(x)dx = 1− α

2. f(a) = f(b) > 0

3. a ≤ x󰂏 ≤ b where x󰂏 is the mode of f(x)

Then [a, b] is the shortest among all intervals that satisfy (1).

Correspondence between hypothesis tests and confidence intervals. Recall that a hypothesis test
where size is controlled at α will reject if

󰀏󰀏󰀏󰀏󰀏
X̄ − µ0

σ/
√
n

󰀏󰀏󰀏󰀏󰀏 < z1−α/2

meaning that we ‘accept’ H0 if X̄ falls into the following acceptance region:
󰀗
µ0 − z1−α/2

σ√
n
, µ0 + z1−α/2

σ√
n

󰀘

Meanwhile, a confidence interval for (1− α) is
󰀗
X̄ − z1−α/2

σ√
n
, X̄ + z1−α/2

σ√
n

󰀘

Remark. Hypothesis testing asks: fixing a parameter, what values of the data are consistent with that fixed
parameter?

Confidence interval asks: given realized values of the data, what parameter values make these realized data
most plausible?

We can think about this relationship visually:

X̄

µ

X̄

µ0

Acceptance region
of data for µ0

Confidence interval
of µ given data

X̄ = µ − z1−α/2
σ√
n

X̄ = µ + z1−α/2
σ√
n

Figure 1: Confidence Intervals and Hypothesis Testing
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