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1 Mathieu Taschereau-Dumouchel

Class Organization This is the first half of the course, Ryan Chahrour will teach the second half. Ekate-
rina Zubova and Zheyang Zhu are the teaching assistants. There is no required textbook, but some recom-
mended textbooks for references. Ljundqvist and Sargent, Recursive Macroeconomic Theory; and Stokey,
Lucas, and Prescott, Recursive Methods in Economic Dynamics are the two good references. For general
discussion, Romer Advanced Macroeconomics and Blanchard and Fisher Lectures on Macroeconomics are
solid.

Class Topics:

• Data and Introduction to Macroeconomics

• Endowment Economies with Complete Markets

• Asset Pricing

• Math, Dynamic Programming, and Numerical Methods

• Production and Investment

• Neoclassical Growth Model

Some advice for this class: Focus on understanding rather than the grade you get. Since this is a PhD
course, nobody cares about your grades. Focus on understanding the material and build your intuition.
Also, question the material always – is there a problem with it? Does the model fit the data? Is there a
better one?

Quick look at the data World GDP per capita over time – essentially no growth until the Industrial
Revolution, and exponential growth since then. Mathieu also notes that people had more freedom in general
– think the difference between a serf / peasant and a worker. Also note regional dispersion; Western Europe
and their offshoots are larger and grew (and are growing) faster than other places.

We will tend to focus on the US economy. Looking at US output since 1900, some notable facts. Recessions
don’t seem to matter that much for long-term growth. There was a larger downturn after World War II than
anything since then, including the Great Recession. Note that US GDP per capita is essentially the same,
though the Great Depression looks more significant – there was still population growth, so output doesn’t
look as large of a difference.

When you take the log of US GDP per capita, it’s remarkably linear. It holds a growth rate of approximately
two percent from 1820 to present. Why is it two percent? We have no idea. It’s not necessarily true for
other countries, or necessarily true over time.

GDP is a proxy for welfare more generally. We care about welfare, but there’s a strong positive correlation
between GDP per capita and ‘happiness’ by different measures. When we move to non-aggregate measures,
the distribution of incomes looks like a normal distribution with an extremely long right tail. It’s important
to think about how policy affects people rather than average people.

When you look at US log rGDP, it looks like the Great Recession actually changed the growth rate lower.
Rather than a direct interruption, it looks like it fundamentally changed the economy. That’s a really
interesting fact. Covid, on the other hand, looks extremely temporary – we went back to the same level and
trend basically immediately.

Real personal consumption expenditures look to basically mirror each other. Interestingly, in the dot com
recession consumption basically did not change. GDP looks more volatile than consumption – not particularly
surprising, as people don’t like to have big changes in their consumption. People tend to smooth consumption
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over time – literally, the curve looks much smoother. Meanwhile, investment is extremely volatile. It varies
a ton, has a similar trend but it’s a lot wilder.

Unemployment is a weird measure, since we don’t count discouraged workers. If you instead look at the
employment-population ratio, the Great Recession looks a lot more significant. Worth thinking about workers
aging out of the workforce – were there early retirements? More retirements? NY Fed has tried to disentangle
this, it seems extremely complicated.

Inflation rate – typically calculated as the percent change in CPI from one year ago. In the 1970s, there were
large spikes – oil shocks (OPEC); bad monetary policy, etc. Why was there inflation during / post covid?
(i) supply chain disruptions; (ii) fiscal policy; (iii) Fed dropping interest rates; etc.

What do we do about the data? Well, try and understand it. What drives long-run growth, why are
some countries richer than others, etc. We want to answer these questions to affect policy, and improve lives.
Example. The Phillips Curve is a negative relationship between inflation and unemployment. This relation-
ship held for many countries during many periods. This seems great! We can increase inflation to decrease
unemployment, and help millions of people!

Oops! It does not work. When central banks tried to exploit the relationship, it disappeared! Why? Observed
relationships are the outcome of agent decisions. Importantly, when the environment changes, agents change
their behavior, and these observed relationships can disappear.
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1.1 Some Basic Models

So how do we actually learn anything about the macroeconomy? Well, we could run experiments. We could
learn something if we had a lot of data. Unfortunately, macro data are sparse and experiments infeasible.
Instead, we build models.
Definition. Models are little laboratories to make sense of the economy. We specify how the world works and
how agents behave, we anchor these choices with policy-independent foundations, we use data to discipline
the model. Using these models, we can test different policies and make predictions.

There is art to building a good model! Not too descriptive; realism is not the objective. The world is too
complicated, and we cannot build models axiomatically without extremely strong assumptions. We look
for regularities in the data, and build models to understand them, focusing on the essential ingredients to
explain the data.

Definition. A model is a set of entities making decisions under constraints and interacting with each other.
The entities are households, who maximize their utility under a budget constraint; firms, who use technology
to transform inputs into outputs; and governments who use policies (normative vs positive).

We also need to specify the set of commodities being traded, the information structure, and the market
structure.
Model. (Partial Equilibrium) Consumption-saving model of a household:

max
{ct},{bt+1}

∞󰁛

t=0

βtu(ct)

s.t. ct + bt+1 ≤ yt +Rtbt

bt+1 ≥ −A

ct ≥ 0

b0, yt, Rt given

where u′ > 0, u′′ < 0, limct→0 u
′(ct) = ∞ ∀ t ∈ N, 0 < β < 1, A is large.

Conclusion This is essentially a class about making models. We will of course focus on macroeconomic
models, but the lessons here should apply to different areas of focus – for example, you might use a simulation
model in Micro theory; or a model of firms in Industrial Organization.

Last time, we introduced the consumption-saving model of a household. Note that yt and Rt are given –
the income flow and the interest rate. We will endogenize these later, but for now take them as exogenous.
Note that the constraint that ‘A is large’ will not bind – A is large enough to not bind.

How do we solve? First, note that the non-negative consumption constraint will not bind, and the budget
constraint will. We will use KKT, with the Lagrangian:

L =

∞󰁛

t=0

βtu(yt +Rtbt − bt+1)

We will optimize with respect to bt+1, because it is the thing chosen in period t. Fix t, and differentiate
w/r/t bt+1. Fix t = 2, and we get

L′ = βu′(y1 +R1b1 − b2) + β2u′(y2 +R2b2 − b3)R2 = 0

and we get
u′(c1) = βu′(c2)R2 (and in general: u′(ct) = βu′(ct+1)Rt+1)
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Note that these conditions are necessary, but not sufficient, as we do not have a transversality condition.
This will hold in finite time, but not necessarily infinite time. Also note that if βRt+1 = 1 ∀ t, ct = c ∀ t ≥ 0.
Example. Solve for ct, assume that Rt = R = 1

β ∀ t ≥ 0, so ct = c. We will rewrite the budget constraint
isolating bt, so we have bt =

1
R (c+ bt+1 − yt). We have yt, R given, and can iterate to find b0:

b0 =
c− y0
R

+
c− y1
R2

+
c− y2
R3

+ · · · =
∞󰁛

t=0

c− yt
Rt+1

+ lim
t→∞

bt+1

Rt+1

limt→∞
bt+1

Rt+1 = 0 is the transversality condition, where if it is nonzero it means that you are not optimizing.
We get that:

c = (1− β)󰁿 󰁾󰁽 󰂀
Propensity to consume

󰀣
R · b0 +

∞󰁛

t=0

yt
Rt

󰀤

󰁿 󰁾󰁽 󰂀
Lifetime income

This example has essentially been a re-derivation of the Permanent Income Hypothesis (Friedman 1957)
– note that we have just shown that people smooth their consumption over time, which is exactly what
Friedman predicts. What’s incredibly nice is that these results do not depend on the utility function beyond
the basic increasing and concave conditions.

Model. (General Equilibrium) We have a pure exchange economy, meaning there are no firms, with two
agents who live forever and discrete time indexed by N. Each period, agents can trade the unique, nonstorable
good. Agent i ∈ {1, 2} has the utility function

u(ci) =

∞󰁛

t=0

βt log(cit)

for some β ∈ (0, 1). Endowments are given by

e1t =

󰀫
2 if t is even
0 if t is odd

e2t =

󰀫
0 if t is even
2 if t is odd

Definition. A competitive Arrow-Debreu equilibrium is a set of prices {p̂t}∞t=0 and allocations ({ĉti}∞t=0)i=1,2

such that

1. Given {p̂t}∞t=0, for i = 1, 2, ({Ĉt
i}∞t=0)i=1,2 solves

max
{cit}∞

t=0

∞󰁛

t=0

βt log(cit)

subject to

∞󰁛

t=0

p̂tc
i
t ≤

∞󰁛

t=0

p̂te
i
t

cit ≥ 0 for all t

2. Market clearing
ĉ1t + ĉ2t = e1t + e2t for all t
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Definition. Some terms:

• Competitive: no one has any influence over prices

• Arrow-Debreu: this structure of endowment equilibria, where we meet before the process begins and
make trades

• Equilibrium: everyone maximizes their utility, and markets clear

How do we solve this model? We solve each agent’s individual maximization problem, and then solve for the
equilibrium.
Solution. For each agent i, we have:

L =

∞󰁛

t=0

βt log(cit)− λi

󰀣 ∞󰁛

t=0

ptc
i
t −

∞󰁛

t=0

pte
i
t

󰀤

The first order conditions give us:
βt = ptc

i
tλi ∀ t

Combining with the budget constraint, we can get cit({pt}, {eit}). The first order conditions for t and t + 1
give us a way to eliminate λi. In the simple case:

pt+1(c
1
t+1 + c2t+1) = βpt(c

1
t + c2t )

and, with market clearing:
pt+1(e

1
t+1 + e2t+1) = βpt(e

1
t + e2t )

Thus, pt+1 = βpt, and then pt = βtp0. We can set p0 = 1, and get that equilibrium prices are p̂t = βt.
Also, recall from the FOCs that we have pt+1c

i
t+1 = βptc

i
t, so we have that cit+1 = cit ∀ t. The values of the

endowments are
∞󰁛

t=0

p̂te
1
t = 2

∞󰁛

t=0

β2t =
2

1− β2

∞󰁛

t=0

p̂te
2
t = 2β

∞󰁛

t=0

β2t =
2β

1− β2

And thus, equilibrium consumptions are

c1t =
2

1 + β
, c2t =

2β

1 + β

Some notes on this equilibrium Agent 1 is better off, because they get the endowment in the first
period (period 0), so their goods are more valuable. They can leverage this endowment to consume more
than agent 2 in every period.

Trade is clearly welfare-improving – in the absence of trade, agent 2 would starve in every even period, and
agent 1 would starve in every odd period. Instead, they can smooth their consumption. Indeed, trade is
always weakly welfare-improving; you can always consume your endowment if you would not improve from
trading.

This allocation is socially optimal in the sense that it is Pareto efficient. Some benevolent dictator could
not make one better off without making the other worse off. However, note that a utilitarian dictator could
improve total utility, just not in a Pareto efficient way.

If trade was sequential instead of Arrow-Debreu, the consumption in each period would not change. Note
that this is not a game – we don’t have parameters for that, and people interact only through the market.
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1.2 Endowment Economies with Complete Markets

1.2.1 Models of Complete Markets

Model. (Probabilistic World) In each period t ≥ 0, a stochastic event st ∈ S is realized. Denote st =
{s0, . . . , st} to be a history up to and including time t. The unconditional probability of observing st is
given by the measure πt(s

t). The conditional probability of observing st given that some sτ happened is
πt(s

t | sτ ). Assume that a given s0 occurred before trading started, with P{s0} = 1.
Model. (The Economy Environment) There are I agents indexed by i = 1, . . . , I. Agent i owns a stochastic
endowment of goods yit(s

t). Household i values a history-dependent consumption plan ci = {xi
t(s

t)}∞t=0

according to

U(ci) =

∞󰁛

t=0

󰁛

st

βtu(cit(s
t))πs(s

t)

where u′ > 0, u′′ < 0, and limc→0 u
′(c) = ∞.

Definition. A feasible allocation satisfies
󰁛

i

cit(s
t) ≤

󰁛

i

yit(s
t) ∀ t, st

Trading arrangements Suppose that each household evolves in autarky. Their consumption ct(s
t) =

yt(s
t), which is dependent on st. We will study two types of trading arrangements:

1. Arrow-Debreu securities: at t = 0, households trade claims to consumption at all time t > 0, contingent
on all possible histories up to time t, st. There is no trade at time t > 0.

2. Sequential markets: trade occurs at each t ≥ 0. Trades for history st+1-contingent t + 1 goods occur
only at node st.

Definition. An allocation {ci}Ii=1 is (Pareto) efficient if there is no feasible allocation {c̃i}Ii=1 such that

U(c̃i) ≥ U(ci) ∀ i and ∃ i s.t. U(c̃i) > U(ci)

Proposition 1.1. An allocation is Pareto efficient if and only if it solves the social planner’s problem

max
{ci}i

I󰁛

i=1

λiU(ci), where all ci ∈ {ci}i are feasible,

for some non-negative λi for all i. The λ’s are the Pareto weights.

Solving the planner’s problem Lagrangian, where θt(s
t) ≥ 0 are the Lagrange multipliers:

L =

∞󰁛

t=0

󰁛

st

󰀣
I󰁛

i=1

λiβ
tu(cit(s

t))πt(s
t) + θt(s

t)

I󰁛

i=1

[yit(s
t)− cit(s

t)]

󰀤

The first order conditions give us:
λiβ

tu′(cit(s
t))πt(s

t) = θt(s
t)

Therefore:
cit(s

t) = u′−1(λ−1
i λ1u

′(c1t (s
t)))

and 󰁛

i

u′−1(λ−1
i λ1u

′(c1t (s
t))) =

󰁛

i

yit(s
t)
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Note that Agent 1’s consumption depends on the aggregate endowment, not their own endowment in partic-
ular. It does depend on the weight the planner places on them, but not necessarily on their own endowment
all that much.

Also note that if aggregate endowments don’t change, consumption will not change. Consumption is
smoothed across time and across states of the world, given that the aggregate endowment does not change.
Definition. An Arrow-Debreu equilibrium is a sequence of allocations {cit(st)}∞t=0 for all agents i and prices
{q0t (st)}∞t=0 such that

1. Given prices, household i’s allocation solves its maximization problem

max
{cit(st)}∞

t=0

∞󰁛

t=0

󰁛

st

βtu(cit(s
t))πt(s

t)

s.t.
∞󰁛

t=0

󰁛

st

q0t (s
t)cit(s

t) ≤
∞󰁛

t=0

󰁛

st

q0t (s
t)yit(s

t)

2. The allocation is feasible (markets clear)

Solving the equilibrium Each agent’s FOC is

βtu′(cit(s
t))πt(s

t) = µiq
0
t (s

t)

where µi is the Lagrange multiplier on the budget constraint. Therefore,

cit(s
t) = u′−1

󰀕
u′(c1t (s

t))
µi

µ1

󰀖

and 󰁛

i

u′−1

󰀕
u′(c1t (s

t))
µi

µ1

󰀖
=

󰁛

i

yit(s
t)

Remark. At the ADE allocation, the shadow prices θt(s
t) are equal to q0t (s

t).
Theorem 1.1. (First Welfare Theorem) Any Arrow-Debreu equilibrium allocation is efficient.

Proof. (sketch) Set λi = µ−1
i and normalize the weights. Need to check the RC, and the shadow prices

θt(s
t) = q0t (s

t).

From MWG Proposition 5.F.1 (pg. 150), we have that if y ∈ Y is profit-maximizing for some price
vector p ≫ 0, then y is efficient. It suffices to show that any Arrow-Debreu equilibrium allocation is
utility-maximizing. Suppose FSOC that for some consumer, there exists feasible {c′n(st)}∞n=0 such that󰁓∞

t=0

󰁓
st β

tu(c′t(s
t))πt(s

t) >
󰁓∞

t=0

󰁓
st β

tu(ct(s
t))πt(s

t). Since markets clear, and the utility function is
strictly increasing, this would imply that

󰁓∞
t=0

󰁓
st ct(s

t) <
󰁓∞

t=0

󰁓
st c

′
t(s

t), and since markets clear we
have that

󰁓∞
t=0

󰁓
st ct(s

t) =
󰁓∞

t=0

󰁓
st yt(s

t). This implies that
󰁓∞

t=0

󰁓
st c

′
t(s

t) >
󰁓∞

t=0

󰁓
st yt(s

t), mean-
ing that {c′t(st)}∞t=0 is not feasible, which is a contradiction.
Theorem 1.2. (Second Welfare Theorem) Let {cit(st,λ)}∞t=0 be an efficient allocation for some Pareto
weights {λi}∞i=1. Then there exist transfers {τ i}Ii=1 such that the allocation is an Arrow-Debreu equilibrium.

Proof. See MWG Proposition 16.D.1 (pg. 552), which demonstrates that any efficient allocation can be
transformed into a price quasi-equilibrium, and then Proposition 16.D.3 (pg. 555-6) which shows that any
price quasi-equilibrium can be transformed into a true price equilibrium.
Definition. Negishi’s Method, from Negishi (1960), gives us a way to easily find the set of Arrow-Debreu
equilibria:

1. Compute all efficient allocations (the social planner’s problem)
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2. The first welfare theorem says that the set of competitive allocations are contained in the set of efficient
allocations

3. Isolate the efficient allocations that are also competitive allocations
Example. Recall the 2-agent economy with endowments (2, 0) in each period. With Pareto weight α ∈ [0, 1],
the social planner’s problem is

max
c1,c2

∞󰁛

t=0

βt
󰀃
α log(c1t ) + (1− α) log(c2t )

󰀄

s.t. cit ≥ 0 ∀ i, ∀ t

c1t + c2t = e1t + e2t ≡ 2, ∀ t

Attach multipliers θt/2 to the resource constraints. The FOCs are

αβt

c1t
=

θt
2

,
(1− α)βt

c2t
=

θt
2

and therefore
c1t =

α

1− α
c2t

Combining with the resource constraints, we get

c1t (α) = 2α

c2t (α) = 2(1− α)

θt = βt

So there is a continuum of efficient allocations. However, there was a unique solution when we solved
this problem earlier. There should be an extra condition that will help us select from the set of efficient
allocations. We can add the budget constraints:

ti(α) =
󰁛

t

θt[c
i
t(α)− eit]

We will look for α󰂏 such that t1(α󰂏) = t2(α󰂏) = 0. We have

t1(α) =
󰁛

t

θt[c
1
t (α)− e1t ] =

󰁛

t

βt(2α− e1t ) =
2α

1− β
− 2

1− β2

t2(α) =
󰁛

t

θt[c
2
t (α)− e2t ] =

󰁛

t

βt(2(1− α)− e2t ) =
2(1− α)

1− β
− 2β

1− β2

Thus, the solution is α󰂏 = 1
1+β , and the consumptions are

c1t =
2

1 + β
and c2t =

2β

1 + β

which is the same solution as when we solved for the Arrow-Debreu Equilibrium.
Example. (Solving the Equilibrium with no Aggregate Uncertainty) Suppose that there is no aggregate
uncertainty and I = 2. Let the stochastic events st ∼ U([0, 1]) be independent across time. Suppose that
the endowments are y1t (s

t) = st and y2t (s
t) = 1 − st. How do cit(s

t) vary across time? From the FOC, we
have that

q0t (s
t) = βtπt(s

t)
u′(ci)

µi

9



We can use the household budget constraint to write:

ci = (1− β)

∞󰁛

t=0

󰁛

st

βtπt(s
t)yit(s

t)

1.2.2 Asset Pricing

The main idea is that the price of an asset reflects some information about the potential states of the world.
Of course, we don’t see Arrow-Debreu securities in the real world. However, we do see more complicated
securities, which we can recreate using Arrow-Debreu securities.
Definition. Suppose that we have an asset that provides dividends {dt(st)}∞t=0, what should the price of
this asset be?

p00 =

∞󰁛

t=0

󰁛

st

q0t (s
t)dt(s

t)

What is the price of an asset that pays 1 in each t regardless of st? Set dt(s
t) = 1, and we get

∞󰁛

t=0

󰁛

st

q0t (s
t)

What is the price of an asset that pays 1 at period τ regardless of sτ?
󰁛

sτ

q0τ (s
τ )

What is the time 0 price of an asset that entitles the owner to dividend stream {dt(st)}t≥τ if history sτ is
realized?

p0τ (s
τ ) =

󰁛

t≥τ

󰁛

st|sτ
q0t (s

t)dt(s
t)

The units of the price are time 0 goods: q00(s0) = 1. To convert the price into units of time τ , history sτ

consumption goods, we must divide by q0τ (s
τ ):

pττ (s
τ ) =

p0τ (s
τ )

q0τ (s
τ )

=
󰁛

t≥τ

󰁛

st|sτ

q0t (s
t)

q0τ (s
τ )

dt(s
t)

Notice that (using the FOCs), (qτt (st) is the price of one unit of st goods in terms of sτ goods)

qτt (s
t) =

q0t (s
t)

q0τ (s
τ )

=
βtu′(cut (s

t))πt(s
t)

βτu′(cuτ (s
τ ))πτ (sτ )

= βt−τ u′(cit(s
t))

u′(ciτ (s
τ ))

πt(s
t | sτ )

Remember that from Bayes’ Law:

πt(s
t | sτ )× πτ (s

τ ) = πt(s
t, sτ ) = πt(s

t)

So we can write
pττ (s

τ ) =
󰁛

t≥τ

󰁛

st|sτ
qτt (s

t)dt(s
t)

So why did we go to all this trouble? The price of equity in time τ in state sτ . We have

qττ+1(s
τ+1) = β

u′(ciτ+1(s
τ+1))

u′(ciτ (s
τ ))

πτ+1(s
τ+1 | sτ )

10



Intuitively, what is this quantity and why is it useful? It’s the pricing kernel. We can write the price at time
τ in history sτ of a claim to a random payoff ω(sτ+1) as

pττ (s
τ ) =

󰁛

sτ+1

qττ+1(s
τ+1)ω(sτ+1) = E

τ

󰀗
β
u′(cτ+1)

u′(cτ )
ω(sτ+1)

󰀘

Defining the gross return Rτ+1 := ω(sτ+1)/p
τ
τ (s

τ ), we can write

1 = E
τ

󰀗
β
u′(cτ+1)

u′(cτ )
Rτ+1

󰀘
≡ E

τ
[mτ+1Rτ+1]

The term mτ+1 is called the stochastic discount factor.

Previously, we’ve done everything in Arrow-Debreu. The math is really nice, but it’s not so realistic. We
move to a more realistic setting
Model. (Sequential Trading) An Arrow security (distinct from Arrow-Debreu securities) has that at each
date t ≥ 0, trade occurs in a set of claims to one-period-ahead state-contingent consumption. Are markets
complete? Yes, sequentially complete. Define the natural debt limit , where qtτ are the Arrow-Debreu prices,
as

Ai
t(s

t) :=

∞󰁛

τ=t

󰁛

sτ |st

qtτ (s
τ )yiτ (s

τ )

The intuition is: Household i at time t − 1 cannot promise to pay more than Ai
t(s

t) at time t in state st,
otherwise their consumption would be negative. Denote by ãit(s

i) the claims to time t consumption, on top
of its endowment, that agent i gets at time t in state st. Denote by Q̃t(s

t+1 | st) the price to a claim of one
unit of consumption at time t+ 1 in state st+1 when the current history is st.

The objective function of households is unchanged. Using the new notation, their budget constraint is

c̃it(s
t) +

󰁛

st+1

ãit+1(s
t+1, st)Q̃t(s

t+1 | st) ≤ yit(s
t) + ãit(s

t)

To rule out Ponzi schemes, we impose the constraint that

−ãit+1(s
t+1) ≤ Ai

t+1(s
t+1)

This is not the only condition that would work.
Definition. A sequential trading competitive equilibrium is a distribution of assets ãit+1 for all i and t, an
allocation {c̃i} for all i, and pricing kernels Q̃t(s

t+1 | st) such that

• For all i, c̃i solves household i’s problem

• For all {st}∞t=0, we have
󰁓

i c̃
i
t(s

t) =
󰁓

i y
i
t(s

t) and
󰁓

i ã
i
t+1(s

t+1, st) = 0.

Solving the Equilibrium The Lagrangian is

Li =

∞󰁛

t=0

󰁛

st

󰀃
βtu[c̃it(s

t)]πt(s
t)
󰀄
+ ηit(s

t)

󰀣
yit(s

t) + ãit(s
t)− c̃it(s

t)−
󰁛

st+1

ãit+1(s
t+1, st)Q̃t(s

t+1 | st)
󰀤

+

󰀣
󰁛

st+1

νit(s
t, st+1)(Ai

t+1(s
t+1) + ãit+1(s

t+1)

󰀤
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The First Order Conditions are:

βtu′[c̃it(s
t)]πt(s

t)− ηit(s
t) = 0

−ηit(s
t)Q̃t(s

t+1 | st) + νit(st, s
t+1) + ηit+1(s

t+1, st) = 0

Since the borrowing constraint will not bind, we can say that νit(st, s
t+1) = 0. Further playing with the

FOCs, we get

Q̃t(s
t+1 | st) = β

u′(c̃it+1(s
t+1))

u′(c̃it(s
t))

π(st+1 | st)

So this pricing kernel is the exact same as in the Arrow-Debreu Equilibrium!
Proposition 1.2. Let {cit(st)}∞t=0 be an Arrow-Debreu Equilibrium allocation with associated prices {q0t (st)}∞t=0.
Then the pricing kernel given by q0t+1(s

t+1) = Q̃t(s
t+1 | st)q0t (st), the consumption c̃it(s

t) = cit(s
t), and as-

sociated assets holdings form a Sequential Trading Equilibrium.

Proof. See LS chapter 8
Remark. The converse is also true. Intuitively, both market structures allow agents to move resources
across histories.

Recap of findings:

• The set of equilibria is the same under Arrow-Debreu and Sequential Trading

• Competitive allocations are solutions to a social planner problem (they are Pareto Efficient)

• We can decentralize any Pareto efficient with a set of lump sum transfers

• Pricing kernels allow us to price any securities

12



1.3 Neoclassical Growth Model

We have previously been assuming that endowments just “fell from the sky” (often called the Robert Lucas
Tree Model). This is unsatisfying, both in general and also because it makes it impossible to ask questions
about policy.

We are moving to essentially a production economy – the economy is a factory that takes inputs (labor and
capital, typically) and produces some consumption goods. There are of course more complicated models,
but this is typical. The Neoclassical Growth Model is essentially the most simple growth model. We will use
growth as a gateway to study dynamic programming.

Facts about long-run growth Kaldor (1961) popularized the following six stylized facts concerning long
run economic growth:

1. Output per capita, Y/N , grows at a constant rate

2. The capital to labor ratio, K/N , grows at a constant rate

3. The interest rate, R, is fairly constant

4. The output to capital ratio, Y/K, is fairly constant

5. The share of value added going to labor and capital is fairly constant

6. There are wide dispersions in Yi/Ni across countries

These facts generally still hold, with some exceptions. Famously, (5) has been falling recently, meaning less
wealth is going to workers and more to capital. This is an issue, as it exacerbates inequality.
Model. (Discrete Time Neoclassical Growth) Time is discrete, t = 0, 1, . . . . In each period, three goods are
traded: labor services nt, capital services kt, and final good output yt that can be consumed (ct) or invested
(it). We have an aggregate production function F , where output yt = F (kt, nt) is either consumed or invested
yt = ct + it. Investment increases capital stock which depreciates at rate δ > 0, so kt+1 = (1− δ)kt + it. We
have a large number of identical, infinitely lived households with utility

u({ct}∞t=0) =

∞󰁛

t=0

βtU(ct)

Each household is endowed with initial capital k0, and one unit of time each period.

We will concern ourselves with optimal growth. We will study the problem of a social planner who maximizes
total welfare.
Definition. An allocation {ct, kt+1, nt}∞t=0 is feasible if, for all t ≥ 0,

F (kt, nt) = ct + kt+1 − (1− δ)kt

ct ≥ 0, kt ≥ 0, 0 ≤ nt ≤ 1

k0 given

Definition. An allocation {ct, kt+1, nt}∞t=0 is Pareto efficient if it is feasible and there is no other feasible
allocation {ĉt, k̂t+1, n̂t}∞t=0 such that

∞󰁛

t=0

βtU(ĉt) >

∞󰁛

t=0

βtU(ct)

13

https://link.springer.com/chapter/10.1007/978-1-349-08452-4_10


The social planner solves

w(k0) = max
{ct,kt+1,nt}∞

t=0

∞󰁛

t=0

βtU(ct)

subject to

F (kt, nt) = ct + kt+1 − (1− δ)kt

ct ≥ 0, kt ≥ 0, 0 ≤ nt ≤ 1

k0 given

We make the following assumptions.

• Utility:

– U is continuously differentiable, strictly increasing, strictly concave, and bounded.

– Inada conditions: limc→0 U
′(c) = ∞ and limc→∞ U ′(c) = 0.

– β ∈ (0, 1)

• Production function:

– F is continuously differentiable and homogenous of degree 1, strictly increasing and strictly con-
cave.

– F (0, n) = F (k, 0) = 0 for all k, n > 0.

– Inada conditions: limk→0 Fk(k, 1) = ∞ and limk→∞ Fk(k, 1) = 0

These assumptions imply that from the structure of U , nt = 1 for all t. We can write

f(k) = F (k, 1) + (1− δ)k

Since ct = f(kt)− kt+1, we can write the social planner problem as:

w(k0) = max {ct, kt+1, nt}∞t=0

∞󰁛

t=0

βtU(f(kt)− kt+1)

subject to
0 ≤ kt+1 ≤ f(kt)

k0 given

Why do we care about this problem? Because the Welfare Theorems apply here! By solving the social plan-
ner’s problem, we can solve for the competitive equilibrium. Specifically, since this is an infinite-dimensional
optimization problem, we can use dynamic programming to rewrite it in a much simpler form. We write,
recursively, that:

w(k0) = max
{kt+1}∞

t=0 s.t. 0≤kt+1≤f(kt)

∞󰁛

t=0

βtU(f(kt)− kt+1)

= max
k1 s.t. 0≤k1≤f(k0)

U(f(k0)− k1) + β

󰀣
max

{kt+1}∞
t=1 s.t. 0≤kt+1≤f(kt)

∞󰁛

t=1

βt−1U(f(kt)− kt+1)

󰀤
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Intuitively, this looks like we have that

w(k0) = max
k1 s.t. 0≤k1≤f(0)

U(f(k0)− k1) + β(w(k1))

This is a functional problem – the solution to this equation is the function w, not a vector of capital. This
is complicated, but much simpler than finding {kt+1}∞t=0.
Definition. Denote by v(·) the value function for this new formulation of the problem:

v(k) = max
0≤k′≤f(k)

{U(f(k)− k′) + βv(k′)} (1)

Interpretation: v(k) is the discounted lifetime utility of the representative agent, from the current period
onward, if the social planner has initial capital stock k and allocated consumption optimally. This is the
recursive formulation of the planner’s problem, where (1) is the Bellman Equation, k is a state variable
which completely describes the economy today, and k′ is called the control variable, which is decided by the
planner today. To solve (1), we need a value function v, and a policy function g where k′ = g(k).

This approach raises some questions:

1. Under what conditions does a solution to (1) exist, and is it unique? Contraction Mapping Theorem
(formally, Banach’s Fixed Point Theorem).

2. Under what conditions can we solve (1) and be sure that we’ve solved the sequential problem (i.e.
when does v = w and g(k) generate the optimal {kt+1}∞t=0)? Bellman’s Principle of Optimality.

3. Is there a simple algorithm that allows us to solve (1)? Contraction Mapping Theorem
Example. A simple recursive case. Let U(c) = ln c, F (k, n) = kαn1−α, and δ = 1. Then f(k) = kα and

v(k) = max
0≤k′≤kα

{ln(kα − k′)− βv(k′)}

How do we solve this? Let’s go by technique.

1. Guess and verify. We guess that v(k) has the form

v(k) = A+B ln(k)

for some constants A,B. The maximization problem is now:

max
0≤k′≤kα

{ln(kα − k′)− β(A+B ln(k′))}

and the FOC is
k′∗ =

βBkα

1 + βB

We next plug the optimal back into the Bellman Equation:

v(k) = max
0≤k′≤kα

{ln(kα − k′) + βv(k′)}

= ln(kα − k′∗) + β(A+B ln(k′∗))

= ln

󰀕
kα

1 + βB

󰀖
+ βA+ βB ln

󰀕
βBkα

1 + βB

󰀖

= − ln(1 + βB) + βA+ βB ln

󰀕
βBkα

1 + βB

󰀖
+ α ln(k) + αβB ln(k)

Was our guess correct? Yes!
B = α(1 + βB)
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A =
1

1− β

󰀕
αβ

1− αβ
ln(αβ) + ln(1− αβ)

󰀖

Is the solution unique? Yes, by the Contraction Mapping Theorem! The last step is finding an
allocation. Remember that g(k) = k′. Thus,

g(k) =
βBkα

1 + βB
= αβkα

How do we interpret this? Saving a constant fraction αβ of output and consuming what is leftover.
From this policy rule, we can construct the whole sequence:

k1 = g(k0) = αβkα0

k2 = g(k1) = αβkα1 = (αβ)1+αkα
2

0

k3 = g(k2) = . . .

2. Value function iteration. We guess an arbitrary function v0(k), say v0(k) = 0. We solve

v1(k) = max
0≤k′≤kα

{ln(kα − k′) + βv0(k
′)}

and get the solution k′ = g1(k) = 0 for all k. Therefore, v1(k) = ln(kα) = α ln(k). Then we solve

v2(k) = max
0≤k′≤kα

{ln(kα − k′) + βv1(k
′)}

We repeat for
vn+1(k) = max

0≤k′≤kα
{ln(kα − k′) + βvn(k

′)}

gt And we get the sequences {vn}∞n=0 and {gn}∞n=0. Will these sequences converge to the optimal v󰂏
and g󰂏? Yes, by the Contraction Mapping Theorem.
Example. (A numerical example) Since a computer can only deal with finite-dimensional and dis-
crete objects, we can only approximate the value function. This example is from Dirk Krüger’s
notes. We discretize the space: k, k′ ∈ K = {0.04, 0.08, 0.12, 0.16, 0.2}, and have value functions
(vn(0.04), vn(0.08), vn(0.12), vn(0.16), vn(0.2)). We also pick values for the parameters. Say α = 0.3
and β = 0.6. We again initially guess v0(k) = 0. We solve the equation

v1(k) = max
0≤k′≤k0.3

{ln(k0.3 − k′) + 0.6 · 0}

and get optimal policy k′(k) = g1(k) = 0.04 for all k ∈ K. Plugging back in:

v1(0.04) = ln(0.040.3 − 0.04) = −1.077

v1(0.08) = ln(0.080.3 − 0.04) = −0.847

v1(0.12) = ln(0.120.3 − 0.04) = −0.715

v1(0.16) = ln(0.160.3 − 0.04) = −0.622

v1(0.20) = ln(0.200.3 − 0.04) = −0.55

We then iterate again and again. We solve

v2(k) = max
0≤k′≤k0.3

{ln(k0.3 − k′) + 0.6v1(k
′)}
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Start with k = 0.04:
v2(0.04) = max

0≤k′≤0.040.3
{ln(0.040.3 − k′) + 0.6v1(k

′)}

We try different values of k′:

v2(0.04) = ln(0.040.3 − 0.04) + 0.6(−1.08) = −1.72

v2(0.04) = ln(0.040.3 − 0.08) + 0.6(−0.85) = −1.71

v2(0.04) = ln(0.040.3 − 0.12) + 0.6(−0.72) = −1.77

v2(0.04) = ln(0.040.3 − 0.16) + 0.6(−0.62) = −1.88

v2(0.04) = ln(0.040.3 − 0.20) + 0.6(−0.55) = −2.04

Therefore, for k = 0.04, the optimal choice is k′(0.04) = g2(0.04) = 0.08 and v2(0.04) = −1.71. The
table below shows the values of

(k0.3 − k′) + 0.6v1(k
′)

for different values of k and k′

(k, k′) 0.04 0.08 0.12 0.16 0.20
0.04 −1.72 −1.71󰂏 −1.77 −1.88 −2.04
0.08 −1.49 −1.45󰂏 −1.48 −1.55 −1.64
0.12 −1.36 −1.31󰂏 −1.32 −1.37 −1.44
0.16 −1.27 −1.21󰂏 −1.21 −1.25 −1.31
0.20 −1.20 −1.13 −1.13󰂏 −1.16 −1.20

3. Euler equation approach. We are back to the original problem:

w(k0) = max
{kt+1}∞

t=0

∞󰁛

t=0

βtU(f(kt)− kt+1)

subject to
0 ≤ kt+1 ≤ f(kt) ; k0 given

We cannot use KKT, because this is an infinite-dimensional object. However, if we assume that there
is a final period T , we can solve this. Consider:

wT (k0) = max
{kt+1}T

t=0

T󰁛

t=0

βtU(f(kt)− kt+1)

subject to
0 ≤ kt+1 ≤ f(kt) ; k0 given

We obviously have kT+1 = 0. The problem is now the optimization of a continuous function in a
finite-dimensional space on a compact set, so a solution exists by the Extreme Value Theorem. Since
the constraint is convex and U is strictly concave, the first order conditions are necessary and sufficient
to characterize an optimum. We write the Lagrangian:

L = U(f(k0)− k1) + · · ·+ βtU(f(kt)− kt+1) + βt+1U(f(kt+1)− kt+2) + · · ·+ βtU(f(kT )− 0)

The FOCs are:

∂L
∂kt+1

= −βtU ′(f(kt)− kt+1) + βt+1U ′(f(kt+1)− kt+2)f
′(kt+1) = 0

17

https://en.wikipedia.org/wiki/Extreme_value_theorem


We get the Euler Equation:

U ′(f(kt)− kt+1)󰁿 󰁾󰁽 󰂀
Cost of saving one
more unit of capital

= βU ′(f(kt+1)− kt+2)󰁿 󰁾󰁽 󰂀
Discounted benefit from

one more unit of consumption

f ′(kt+1)󰁿 󰁾󰁽 󰂀
Additional productivity

from one more unit of capital

This is a system of T second order difference equations with T+1 unknowns {kt+1}Tt=0. With kT+1 = 0,
we can solve for this (it can be a huge pain).

Going back to the example with U(c) = ln(c) and f(k) = kα, we get that the Euler Equation is:

1

kαt − kt+1
=

βαkα−1
t+1

kαt+1 − kt+2

so
kαt+1 − kt+2 = βαkα−1

t+1 (k
α
t − kt+1)

Here is a trick: Define zt ≡ kt+1

kα
t

. This converts to

1− zt+1 = αβ

󰀕
1

zt
− 1

󰀖

so
zt+1 = 1 + αβ − αβ

zt

We know that zT = 0. Solve backwards from T . Since

zt =
αβ

1 + αβ − zt+1

we get

zt = αβ
1− (αβ)T−t

1− (αβ)T−t+1

and therefore

kt+1 = αβ
1− (αβ)T−t

1− (αβ)T−t+1
kαt

and
ct =

1− αβ

1− (αβ)T−t+1
kαt

Finally, notice that
lim

T→∞
kt+1 = αβkαt

Plotting zt+1 against zt can give us some insights into the dynamics of the system. Some facts:

• Since kt+1 ≥ 0, zt ≥ 0

• limzt→0 zt+1 = −∞

• limzt→∞ zt+1 = 1 + αβ > 1

• zt+1 = 0 for zt =
αβ

1+αβ < 1

We define a steady state as
zt+1 = zt = z
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There are two steady states in this economy, can find them by factoring:

z = 1 + αβ − αβ

z
=⇒ (z − 1)(z − αβ) = 0

Therefore, z = 1 and z = αβ are steady states.

Now, let’s go back to the infinite case. We have

w(k0) = max
{kt+1}∞

t=0

∞󰁛

t=0

βtU(f(kt)− kt+1) s.t. 0 ≤ kt+1 ≤ f(kt), k0 given

The Euler equation is the same:

U ′(f(kt)− kt+1) = βU ′(f(kt+1)− kt+2)f
′(kt+1)

We are missing a terminal condition! So we impose a Transversality Condition:

lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)󰁿 󰁾󰁽 󰂀

Value in discounted utility terms
of one more unit of capital

k0󰁿󰁾󰁽󰂀
capital
stock

= 0

This essentially means that the shadow value of capital has to converge to zero. Mathematically, it’s a
condition coming from the use of the Separating Hyperplane Theorem to find optimality conditions in
an infinite-dimensional context. See a note on Chris Sims’ website for more. This condition can also
be limt→∞ λtkt+1 = 0, where λt is the Lagrange multiplier on ct + kt+1 = f(kt).
Theorem 1.3. (Sufficiency of the Euler and Transversality Conditions) Let U , β, and F satisfy our
earlier assumptions. Then an allocation {kt+1}∞t=0 that satisfies the Euler equations and the transver-
sality condition solves the sequential social planner’s problem, for a given k0

Proof. (From SLP Theorem 4.15, pg. 98-99) Let k0 be given; let {k󰂏t }∞t=0 ∈ Π(k0)
1 satisfy the

Euler equations and the transversality condition, and let {kt}∞t=0 ∈ Π(k0) be any feasible sequence.
It is sufficient to show that the difference D between the objective function in the sequential social
planner’s problem evaluated at {k󰂏t } and {kt} is non-negative.

Since U is continuous, concave, and differentiable, we have that

D = lim
T→∞

T󰁛

t=0

βt[U(k󰂏t , k
󰂏
t+1)− U(kt, kt+1)]

≥ lim
T→∞

T󰁛

t=0

βt[U2(k
󰂏
t , k

󰂏
t+1)(k

󰂏
t − kt) + U1(k

󰂏
t , k

󰂏
t+1)(k

󰂏
t+1 − kt+1)]

Since k󰂏0 − k0 = 0, rearranging terms gives

D ≥ lim
T→∞

󰀫
T−1󰁛

t=0

βt[U2(k
󰂏
t , k

󰂏
t+1) + βU1(k

󰂏
t+1, k

󰂏
t+2)](k

󰂏
t+1 − kt+1) + βTU2(k

󰂏
T , k

󰂏
T+1)(k

󰂏
T+1 − kT+1)

󰀬

Since {k󰂏t } satisfies the Euler equation, the terms in the summation are all zero. Therefore, substituting
1This notation is defined precisely later. For now, say that it means that the capital stream is feasible.
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from the Euler equation into the last term and using the transversality condition gives

D ≥ − lim
T→∞

βTU1(k
󰂏
T , k

󰂏
T+1)(k

󰂏
T − kT )

≥ − lim
T→∞

βTU1(k
󰂏
T , k

󰂏
T+1)k

󰂏
T = lim

T→∞
βTU1(k

󰂏
T , k

󰂏
T+1)k

󰂏
0 = 0

Where the last line follows from the fact that U is increasing and capital use is non-negative. It then
follows from the transversality condition that D ≥ 0.

Note that this does not work for log utility, since it is technically not bounded, but a similar theorem
holds for that case. This theorem gives sufficient conditions for optimality. The conditions of this
theorem are necessary for the log-case (Ekelund and Scheinkman (1986)).

Going back to the log example, recall that U(c) = ln(c) and f(k) = kα. The transversality condition
becomes:

lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)kt = lim

t→∞

αβtkαt
kαt − kt+1

= lim
t→∞

αβt

1− zt

The Euler equation is still

zt+1 = 1 + αβ − αβ

zt

How do we solve this? Guess z0, check if the Transversality Conditions hold. The process was:

(a) If z0 < αβ: in finite time zt < 0 which violates kt+1 ≥ 0

(b) If z0 > αβ: we get limt→∞ zt = 1, which violates the Transversality Condition

(c) If z0 = αβ: then zt = αβ for all t > 0. This satisfies the Euler Equation and the Transversality
Condition:

lim
t→∞

αβt

1− zt
= lim

t→∞

αβt

1− αβ
= 0

Theorem 3 tells us that zt = αβ is an optimal solution. The log case is essentially the only one that
can be computed by hand. Usually, we need computational methods.

Definition. We say that a social planner’s optimum or a competitive equilibrium is a steady state if ct = c󰂏

and kt+1 = k󰂏 for all t. From the Euler Equation:

U ′(f(kt)− kt+1) = βU ′(f(kt+1)− kt+2)f
′(kt+1)

U ′(ct) = U ′(ct+1)f
′(kt+1)

At a steady state:

f ′(k) =
1

β
≡ 1 + ρ

where ρ is called the time discount rate. Since f ′(k) = Fk(k, 1) + 1− δ, we obtain the modified golden rule

Fk(k, 1)− δ = ρ

In our example

α(k󰂏)α−1 = ρ+ 1 =
1

β
and k󰂏 = (αβ)

1
1−α

The planner’s optimal sequence will converge to k󰂏 regardless of k0. Why is it called the modified golden
rule? The resource constraint is

ct = f(kt)− kt+1 =⇒ c = f(k)− k
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Therefore to maximize consumption per capita we need

f ′(kg) = 1 and Fk(k
g, 1)− δ = 0

where kg is called the golden rule capital stock . Why does the social planner find it optimal to pick k󰂏 < kg

in the long run? Because the agent is impatient.
Model. (Balanced Growth Path) What do you think of our growth model so far? Not a lot of growth! Let’s
add in population growth (Nt = (1 + n)t) and labor-augmenting technological progress F (Kt, Nt(1 + g)t).
What is the utility function now? Either (where ct is per capita consumption):

(i) Per capita lifetime utility
∞󰁛

t=0

βtU(ct)

(ii) Lifetime utility of the entire dynasty
∞󰁛

t=0

(1 + n)tβtU(ct)

with resource constraint

(1 + n)tct +Kt+1 = F (Kt, (1 + n)t(1 + g)t) + (1− δ)Kt

Define

c̃t =
ct

(1 + g)t

k̃t =
kt

(1 + g)t
=

Kt

(1 + n)t(1 + g)t

We can rewrite the resource constraint as

c̃t + (1 + n)(1 + g)k̃t+1 = F (k̃t, 1) + (1− δ)k̃t

In order to obtain a balanced growth path, we assume CRRA utility U(c) = c1−σ

1−σ

∞󰁛

t=0

βt c
1−σ

1− σ
=

∞󰁛

t=0

β̃t c̃
1−σ

1− σ

where β̃ = β(1 + g)1−σ. The social planner solves

max
{kt+1}∞

t=0

=

∞󰁛

t=0

β̃t (f(k̃t)− (1 + g)(1 + n)k̃t+1)
1−σ

1− σ

subject to
0 ≤ (1 + g)(1 + n)k̃t+1 ≤ f(k̃t)

with k0 given. A balanced growth path is a socially optimal allocation where all variables grow at a
constant rate. Here is corresponds to a steady state for {c̃t, k̃t+1}. From the Euler equations:

(1 + n)(1 + g)(c̃t)
−σ = β̃(c̃t+1)

−σ
󰀓
Fk(k̃t+1, 1) + (1− δ)

󰀔
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A steady state on {c̃, k̃} is

(1 + n)(1 + g) = β̃
󰀓
Fk(k̃

󰂏, 1) + (1− δ)
󰀔

Defining β̃ ≡ 1
1+ρ̃ , we find

(1 + n)(1 + g)(1 + ρ̃) = Fk(k̃
󰂏, 1) + (1− δ)

which is (approximately)
Fk(k̃

󰂏, 1)− δ ≈ n+ g + ρ̃

Model. (Competitive Equilibrium) So far we have been interested in the social planner’s problem. Now we
decentralize the Pareto allocation to a competitive equilibrium. We have:

• Arrow-Debreu market structure

• Perfect competition

• Ownership

– Households own firms (receive their profits)

– Households own capital (they rent it to firms)

• Goods:

– Final output yt: Used for consumption and investment. Its price is pt (quoted in period 0)

– Labor nt: Let wt be the price of one unit of labor delivered in period t (quoted in period 0) in
terms of the period t consumption good. wt is called the real wage. The nominal wage is wtpt.

– Capital services kt: Let rt be the rental price of one unit of capital services delivered in period
t, quoted in period 0, in terms of the period t consumption good. rt is the real rental rate, the
nominal rental rate is rtpt.

Firms behave competitively in output and factor markets. The representative firm’s problem is, given a
sequence of price {pt, wt, rt}∞t=0:

π = max
{yt,nt,kt}∞

t=0

∞󰁛

t=0

pt(yt − rtkt − wtnt)

subject to
yt = F (kt, nt) and yt, nt, kt ≥ 0 for all t ≥ 0

Households own capital stock and supply labor and capital services. They decide how much to consume and
how much to save (through capital accumulation). Taking prices {pt, wt, rt}∞t=0 as given, the representative
household solves

max
{ct,it,xt+1,kt,nt}∞

t=0

∞󰁛

t=0

βtU(ct)
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subject to

∞󰁛

t=0

pt(ct + it) ≤
∞󰁛

t=0

pt(rtkt + wtnt) + π

xt+1 = (1− δ)xt + it

0 ≤ nt ≤ 1

0 ≤ kt ≤ xt

ct, xt+1 ≥ 0 and x0 given

Here we are being very careful. We will have kt = xt.
Definition. A competitive equilibrium (Arrow-Debreu) is a set of prices {pt, wt, rt}∞t=0 and allocations for
the firm {ydt , nd

t , kt}∞t=0 and the household {ct, it, xt+1, k
s
t , n

s
t}∞t=0 such that

1. Given prices, the allocation of the representative firm solves the firm’s problem

2. Given prices, the allocation of the representative household solves the household’s problem

3. Markets clear:

yt = ct + it (Goods market)

nd
t = ns

t (Labor market)

kdt = kst (Capital services market)

In equilibrium, it must be the case that kt = kdt = kst , nt = nd
t = ns

t , and all prices are strictly positive, so
pt, rt, wt > 0.

The firm’s problem is static:
max

kt,nt≥0
pt(F (kt, nt)− rtkt − wtnt)

Taking the first order conditions, we get that the firm produces such that marginal product is equal to
marginal cost:

rt = Fk(kt, nt) and wt = Fn(kt, nt)

Using constant returns to scale and Euler’s Theorem, we get that firm profits are

πt = pt(F (kt, nt)− Fk(kt, nt)kt − Fn(kt, nt)nt) = 0

Remark. We need constant returns to scale for this – constant returns imply that F (λk,λn) = λF (k, n).
Taking derivatives with respect to λ, we get Euler’s Theorem. We will usually assume constant returns to
scale. Sometimes we will assume decreasing returns, in which case there will be profits in equilibrium. This
could be seen by assuming that there is a scale factor F for every decreasing returns production function.
There will be some increase in F in equilibrium, which can be interpreted as profit.
Remark. If firms own their own capital, profits will be positive. The fact that they don’t own their own
capital is what leads to zero profit in equilibrium. This is still unrealistic, because markups of course exist
in real life, but for now we are assuming they don’t exist.
Proposition 1.3. With constant returns to scale, the number of firms is indeterminate.

Proof. Since we have constant returns, we have that

F (λk,λn) = λF (k, n)
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Differentiating with respect to k, we get that

λFk(λk,λn) = λFk(k, n) ⇐⇒ Fk(λk,λn) = Fk(k, n)

Now taking λ = 1
n , we get

Fk(k/n, 1) = Fk(k, n) = rt

Thus, a large number of small firms that behave optimally are equivalent to a single large firm that behaves
optimally.
Remark. Total output could be produced by one representative firm or nt firms with one worker each. The
only thing that is determinate is total output and the capital / labor ratio.

For the households, we have that nt = 1, kt = xt, and it = kt+1 − (1 − δ)kt. Since the budget constraint
holds with equality, we can write

max
{ct,kt+1}∞

t=0

∞󰁛

t=0

βtU(ct)

subject to
∞󰁛

t=0

pt(ct + kt+1 − (1− δ)kt) =

∞󰁛

t=0

pt(rtkt + wt)

where ct, kt+1 ≥ 0, k0 given.

Using µ as the Lagrange multiplier of the budget constraint, we get that the FOC are

βtU ′(ct) = µpt

βt+1U ′(ct+1) = µpt+1

µpt = µ(1− δ + rt+1)pt+1

Which yield

βU ′(ct+1)

U ′(ct)
=

pt+1

pt
=

1

1− δ + rt+1

(1− δ + rt+1)βU
′(ct+1)

U ′(ct)
= 1

Using the previous notation (f(k) = F (k, 1) + (1− δ)k) and the marginal pricing equation rt = Fk(kt, 1) =
f ′(kt)− (1− δ), as well as goods market clearing (ct = f(kt)− kt+1), we obtain

f ′(kt+1)βU
′(f(kt+1)− kt+2)

U ′(f(kt)− kt+1)
= 1

Which is exactly the same Euler equation as in the social planner’s problem.
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The transversality condition for the household is limt→∞ ptkt+1 = 0. Using the first order conditions, we get

lim
t→∞

ptkt+1 =
1

µ
lim
t→∞

βtU ′(ct)kt+1

=
1

µ
lim
t→∞

βt−1U ′(ct−1)kt

=
1

µ
lim
t→∞

βt−1U ′(ct)(1− δ + rt)kt

=
1

µ
lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)kt

Which is the exact same as the social planner’s transversality condition. We have just loosely shown that
the welfare theorems hold.

Notice that once we have determined the equilibrium capital stock, we are done:

ct = f(kt)− kt+1

yt = F (kt, 1)

it = yt − ct

nt = 1

rt = Fk(kt, 1)

wt = Fn(kt, 1)

Model. (Sequential Markets Equilibrium) In the same setup, the household’s problem is

max
{ct,kt+1}∞

t=0

∞󰁛

t=0

βtU(ct)

subject to
ct + kt+1 − (1− δ)kt = wt + rtkt

where ct, kt+1 ≥ 0 and k0 is given. The firm’s problem is

max
kt,nt≥0

F (kt, nt)− wtnt − rtkt

Definition. A sequential markets equilibrium is streams of prices {wt, rt}∞t=0, allocations for a representative
household {ct, kst+1}∞t=0, and allocations for a representative firm {nd

t , k
d
t }∞t=0 such that

1. Given k0 and {wt, rt}∞t=0, the household’s allocation solves the household’s maximization problem

2. For each t ≥ 0, given (wt, rt) firm allocation (nd
t , k

d
t ) solves the firm’s maximization problem

3. Markets clear: for all t ≥ 0,

nd
t = 1

kdt = kst

F (kdt , n
d
t ) = ct + kst+1 − (1− δ)kst

Model. (Recursive Competitive Equilibrium) We have:

• State variables (k,K) and control variables (c, k′)
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• Bellman equation:

v(k,K) = max
c,k′≥0

U(c) + βv(k′,K ′)

c+ k′ = w(K) + (1 + r(K)− δ)k

K ′ = H(K)

• K ′ = H(K) is the aggregate law of motion.

• The solution to this problem is a value function v and policy functions c = C(k,K) and k′ = G(k,K)

• For firms:
w(K) = Fn(K, 1) and r(K) = Fk(K, 1)

Definition. A recursive competitive equilibrium is a value function v : R2
+ → R and policy functions

C,G : R2
+ → R+ for the representative household, pricing functions w, r : R+ → R+, and an aggregate law

of motion H : R+ → R+ such that

1. Given w, r, and H, v solves the Bellman equation and C,G are the associated policy functions

2. The pricing functions solve the firm’s first order conditions

3. Consistency: H(K) = G(K,K)

4. For all K ∈ R+,
C(K,K) +G(K,K) = F (K, 1) + (1− δ)K
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1.4 Dynamic Programming

Throughout this section, we will consider problems of the form

v(x) = max
y∈Γ(x)

{F (x, y) + βv(y)}

where x is the set of state variables, y is the set of controls, F is the period return function, and Γ is the
constraint set.
Remark. In the neoclassical growth model, x = k, y = k′, F (k, k′) = U(f(k) − k′), and Γ(k) = {k′ ∈ R :
0 ≤ k′ ≤ f(k)}.
Definition. An operator T is defined as:

(Tv)(x) ≡ max
y∈Γ(x)

{F (x, y) + βv(y)}

where T takes as an input a function v, and outputs another function Tv. Using this notation, a solution v󰂏

to our original functional equation is a fixed point of the operator T :

v󰂏 = Tv󰂏

Questions:

1. Under what conditions does T have a fixed point v󰂏?

2. Under what conditions is v󰂏 unique?

3. Under what conditions does the sequence {vn}∞n=0 defined recursively by vn+1 = Tvn with v0 as a
guess converge to v󰂏?

Answer: Contraction Mapping Theorem

1.4.1 Proving the Contraction Mapping Theorem

Definition. A metric space is a set S and a function d : S × S → R such that for all x, y, z ∈ S,

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)
Definition. A sequence {xn}∞n=0 with xn ∈ S ∀ n ∈ N is said to converge to x ∈ S if for every ε > 0 there
exists Nε ∈ N such that d(xn, x) < ε for all n > Nε. In this case we write limn→∞ xn = x.
Definition. A sequence {xn}∞n=0 with xn ∈ S ∀ n ∈ N is called a Cauchy sequence if for every ε > 0 there
exists Nε ∈ N such that d(xn, xm) < ε for all n,m > Nε.
Definition. A metric space (S, d) is said to be complete if every Cauchy sequence {xn}∞n=0 with xn ∈ S for
all n ∈ N converges to some x ∈ S.
Example. Let X ⊆ RI and S = C(X) be the set of all continuous and bounded functions f : X → R.
Define the distance d : C(X) × C(X) → R as d(f, g) = supx∈X |f(x) − g(x)|. This distance is called the
sup-norm. Then (S, d) is a complete metric space (the proof is in SLP, Theorem 3.1, pg. 47-49).
Definition. Let (S, d) be a metric space and T : S → S. The function T is a contraction mapping if there
exists a number β ∈ (0, 1) satisfying

d(Tx, Ty) ≤ βd(x, y) for all x, y ∈ S
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β is called the modulus of the contraction.
Theorem 1.4. (Contraction Mapping Theorem)2 Let (S, d) be a complete metric space and suppose that
T : S → S is a contraction mapping with modulus β. Then

1. The operator T has exactly one fixed point v󰂏 ∈ S

2. For any v0 ∈ S and and n ∈ N we have

d(Tnv0, v
󰂏) ≤ βnd(v0, v

󰂏)

Lemma 1.1. Let (S, d) be a metric space and T : S → S be a contraction mapping. Then T is continuous.

Proof. (Lemma 1) We need to show: for all s0 ∈ S and all ε > 0, there exists δ(ε, s0) such that if s ∈ S and
d(s, s0) < δ(ε, s0), then d(Ts, Ts0) < ε. Fix s0 ∈ S and ε > 0, and pick δ(ε, s0) = ε. Then

d(Ts, Ts0) ≤ βd(s, s0) < βδ(ε, s0) < ε

Proof. (Contraction Mapping Theorem) We will start with an arbitrary v0 ∈ S and consider the sequence
vn = Tnv0. Our candidate for a fixed point is v󰂏 = limn→∞ vn. We will prove the Contraction Mapping
Theorem as follows:

Part 1:

1. First, we will show that vn → v󰂏 ∈ S. Since T is a contraction, we have

d(vn+1, vn) = d(Tvn, T vn−1) ≤ βd(vn, vn−1)

≤ βd(Tvn−1, T vn−2) ≤ β2d(vn−1, vn−2)

≤ · · · ≤ βnd(v1, v0)

We will now use the Triangle Inequality. For any m > n, we have that

d(vm, vn) ≤ d(vm, vm−1) + d(vm−1, vn)

≤ d(vm, vm−1) + d(vm−1, vm−2) + · · ·+ d(vn+1, vn)

≤ βm−1d(v1, v0) + βm−2d(v1, v0) + · · ·+ βnd(v1, v0)

= βn(βm−n−1 + βm−n−2 + · · ·+ 1)d(v1, v0)

≤ βn

1− β
d(v1, v0)

Therefore, {vn}∞n=0 is a Cauchy sequence. Since (S, d) is a complete metric space, {vn}∞n=0 converges
in S, so vn → v󰂏 ∈ S.

2. Next, we will establish that v󰂏 is a fixed point of T . We have that

Tv󰂏 = T ( lim
n→∞

vn) = lim
n→∞

Tvn = lim
n→∞

vn+1 = v󰂏

3. Now, we will show that the fixed point is unique. Suppose that there exists v̂ ∈ S such that v̂ = T v̂
and v̂ ∕= v󰂏. Then there exists a > 0 such that d(v̂, v󰂏) = a. But then

0 < a = d(v̂, v󰂏) = d(T v̂, Tv󰂏) ≤ βd(v̂, v󰂏) = βa

2Formally, this is the Banach Fixed-point Theorem

28

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem


which is a contradiction, so v󰂏 is unique.

Part 2: We proceed by induction. For n = 0, the claim holds trivially. Suppose that

d(T kv0, v
󰂏) ≤ βkd(v0, v

󰂏)

It suffices to show that
d(T k+1v0, v

󰂏) ≤ βk+1d(v0, v
󰂏)

We have that
d(T k+1v0, v

󰂏) = d(T (T kv0), T v
󰂏) ≤ βd(T kv0, v

󰂏) ≤ βk+1d(v0, v
󰂏)

Remark. The contraction mapping theorem is extremely powerful. However, it can be hard to show that
an operator is a contraction.
Theorem 1.5. (Blackwell’s Theorem) Let X ⊆ RL and B(X) be the space of bounded functions f : X → R
with the distance being the sup-norm. Let T : B(X) → B(X) be an operator satisfying

1. Monotonicity: If f, g ∈ B(X) are such that f(x) ≤ g(x) ∀ x ∈ X, then (Tf)(x) ≤ (Tg)(x) ∀ x ∈ X.

2. Discounting: Let the function f + a, for f ∈ B(X) and a ∈ R+ be defined by (f + a)(x) = f(x) + a.
There exists β ∈ (0, 1) such that for all f ∈ B(X), a ∈ R+, and x ∈ X,

[T (f + a)](x) ≤ [Tf ](x) + βa

Then T is a contraction mapping with modulus β.

Proof. If f(x) ≤ g(x) ∀ x ∈ X, we write f ≤ g. For any f, g ∈ B(X), f ≤ g + d(f, g) where d is the
sup-norm. The monotonicity and discounting imply that

Tf ≤ T (g + d(f, g)) ≤ Tg + βd(f, g)

Reversing f and g gives, by the same logic,

Tg ≤ Tf + βd(f, g)

Combining these inequalities, we find that d(Tf, Tg) ≤ βd(f, g), so T is a contraction.

Can these theorems help with the Neoclassical Growth Model?
Example. Work in the metric space B([0,∞)), d) the space of bounded functions with d being the sup-norm.
Define an operator

(Tv)(k) = max
0≤k′≤f(k)

{U(f(k)− k′) + βv(k′)}

We can verify that T : B([0,∞)) → B([0,∞)): Take v to be bounded, and since U is bounded by assumption,
Tv is also bounded. First, we will prove monotonicity. Suppose v ≤ w. Let gv(k) denote an optimal policy
(need not be unique) corresponding to v. Then for all k ∈ [0,∞),

Tv(k) = U(f(k)− gv(k)) + βv(gv(k))

≤ U(f(k)− gv(k)) + βw(gv(k))

≤ max
0≤k′≤f(k)

{U(f(k)− k′) + βw(k′)}

= Tw(k)
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Next, we will prove discounting. We have that

T (v + a)(k) = max
0≤k′≤f(k)

{U(f(k)− k′) + β(v(k′) + a)}

= max
0≤k′≤f(k)

{U(f(k)− k′) + βv(k′)}+ βa

= Tv(k) + βa

Thus, the neoclassical growth model with bounded utility satisfies Blackwell’s Theorem and is therefore a
contraction mapping with modulus β. Hence there is a unique fixed point to the functional equation that
can be computed from any starting guess v0 by repeated application of the operator T .

We are interested in the problem of the form

h(x) = max
y∈Γ(x)

f(x, y)

Define G(x) := {y ∈ Γ(x) : f(x, y) = h(x)}. Intuitively, what is G(x)? What can we say about the properties
of h and G?
Definition. Let X,Y be arbitrary sets. A correspondence Γ : X 󰃃 Y maps each element x ∈ X into a
subset Γ(X) ⊆ Y .
Definition. A correspondence Γ : X 󰃃 Y is lower-hemicontinuous at a point x ∈ X if Γ(x) ∕= ∅ and if
for every y ∈ Γ(x) and every sequence {xn} in X converging to x ∈ X there exists N ≥ 1 and a sequence
{yn} ∈ Y converging to y such that yn ∈ Γ(xn) for all n > N .
Definition. A compact-valued correspondence Γ : X 󰃃 Y is upper-hemicontinuous at a point x if Γ(x) ∕= ∅
and if for all sequences {xn} ∈ X converging to x ∈ X and for all sequences {yn} ∈ Y such that yn ∈ Γ(xn)
for all n, there exists a convergent subsequence of {yn} that converges to some y ∈ Γ(x).
Remark. A single-valued correspondence (i.e. a function) that is upper-hemicontinuous is continuous.
Definition. A correspondence Γ : X → Y is continuous if it is both upper- and lower-hemicontinuous.
Theorem 1.6. (Berge’s Theorem of the Maximum) Let X ⊆ RL and Y ⊆ RM , let f : X × Y → R
be a continuous function, and let Γ : X 󰃃 Y be a compact-valued and continuous correspondence. Then
h : X → R is continuous and G : X 󰃃 Y is nonempty, compact-valued, and upper-hemicontinuous.

Proof. (From SLP Theorem 3.6, pg. 62). Fix x ∈ X. The set Γ(x) is nonempty and compact, and f(x, ·)
is continuous, meaning that it attains a maximum over Γ(x), so the set of maximizers G(x) is nonempty.
Moreover, since G(x) ⊆ Γ(x), and Γ(x) is compact, it follows that G(x) is bounded. Suppose yn → y and
yn ∈ G(x) ∀ yn. Since Γ(x) is closed, y ∈ Γ(x). Also, since h(x) = f(x, yn) for all yn, since yn ∈ G(x), and
f is continuous, it follows that f(x, y) = h(x). Thus, y ∈ G(x), so G(x) is closed. It follows that G(x) is
nonempty and compact, for all x.

Next, we will show that G(x) is upper-hemicontinuous. Fix x, and let {xn} be a sequence converging to x.
Choose {yn} such that yn ∈ G(xn) for all n. Since Γ is upper-hemicontinuous, there exists a subsequence
{ynk

} converging to y ∈ Γ(x). Let z ∈ Γ(x). Since Γ is lower-hemicontinuous, there exists a sequence
{znk

} → z with znk
∈ Γ(xnk

) for all nk. Since f(xnk
, ynk

) ≥ f(xnk
, znk

) for all nk and f is continuous,
it follows that f(x, y) ≥ f(x, z). Since this holds for any z ∈ Γ(x), it follows that y ∈ G(x), and G is
upper-hemicontinuous.

Finally, we will show that h is continuous. Fix x, and let {xn} be any sequence that converges to x. Choose
{yn} such that yn ∈ G(xn) for all n. Let h = lim suph(xn) and h = lim inf h(xn). Then there exists
a subsequence {xnk

} such that h = lim f(xnk
, ynk

). But since G is upper-hemicontinuous, there exists a
subsequence of {ynk

}, call it {y′j}, converging to y ∈ G(x). Thus, h = lim f(xj , y
′
j) = f(x, y) = h(x). An

analogous argument establishes that h = h(x). Thus, h(xn) converges, and its limit is h(x).
Example.

(Tv)(k) := max
0≤k′≤f(k)

{U(f(k)− k′) + βv(k′)}

30

https://www.hup.harvard.edu/books/9780674750968


Then x = k, y = k′, X = Y = R+, f(x, y) = U(f(x)− y) + βv(y), and Γ : X 󰃃 Y is given by Γ(x) = {y ∈
R+ : 0 ≤ y ≤ f(x)}. Suppose that v is continuous, then the Theorem of the Maximum implies that Tv(·) is
a continuous function and that optimal policy g(·) is an upper-hemicontinuous correspondence. If g(·) is a
function, then it is continuous.
Example. Compare:

Functional Equation:
v(x) := sup

y∈Γ(x)

{F (x, y) + βv(y)}

This has a unique solution v󰂏 that is approached from any initial guess v0.

Sequential Problem:

w(x0) := sup
{xt+1}∞

t=0

∞󰁛

t=0

βtF (xt, xt+1)

subject to
xt+1 ∈ Γ(xt) and x0 ∈ X given

Questions: When does v = w? When is {xt+1}∞t=0 the same as y = g(x)?
Model. (Principle of Optimality Model) Define some notation. Let X be the set of possible values that the
state x can take, and let correspondence Γ : X 󰃃 X describes the feasible set of the next period state y
given that today’s state is x. The graph of Γ is defined as

A := {(x, y) ∈ X ×X : y ∈ Γ(x)}

We have a period return function f : A → R. The fundamentals of the analysis are the tuple (X,F,β,Γ).
For the neoclassical growth model, F and β describe preferences and X,Γ describe technology. Any sequence
of states {xt}∞t=0 is a plan. For a given x0, the set of feasible plans is

Π(x0) := {{xt}∞t=1 : xt+1 ∈ Γ(xt)}

We need some assumptions for the principle of optimality:
Assumption 1.1. Γ(x) is nonempty for all x ∈ X.
Assumption 1.2. For all initial x0 and all feasible plans x̄ ∈ Π(x0),

lim
n→∞

n󰁛

t=0

βtF (xt, xt+1)

exists (it may be ∞ or −∞).
Theorem 1.7. (Principle of Optimality) Suppose that (X,F,β,Γ) satisfy the two previous assumptions.
Then

1. The function w satisfies the functional equation

2. If for all x0 ∈ X and for all x̄ ∈ Π(x0) a solution v to the functional equation satisfies

lim
n→∞

βnv(xn) = 0

then v = w.

Proof. (From SLP Theorem 4.2 and Theorem 4.3, pg. 71-73). We will prove each part separately.

1. Fix β ∈ (0, 1), and choose some x0 ∈ X. First, suppose w(x0) is finite. Then w(x0) ≥ u(x) ∀ x ∈ Π(x0)
and for any ε > 0, w(x0) ≤ u(x) + ε for some x ∈ Π(x0), where u(c) =

󰁓∞
t=0 β

tF (ct, ct+1). To show
that w(x0) is a solution to the functional equation, it suffices to show that two conditions directly hold.
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First, fix some x1 ∈ Γ(x0) and ε > 0. Then there exists x′ ∈ Π(x1) such that u(x′) ≥ w(x1)− ε. Note
also that x = (x0, x

′) ∈ Π(x0). Thus, it follows that

w(x0) ≥ u(x) = F (x0, x1) + βu(x′) ≥ F (x0, x1) + βw(x1)− βε

Since ε and x1 were arbitrarily chosen, we have that w(x0) ≥ F (x0, y) + βw(y) ∀ y ∈ Γ(x0).

Second, fix some x0 ∈ X and ε > 0. We can choose x ∈ Π(x0) such that

w(x0) ≤ u(x) + ε = F (x0, x1) + βu(x1) + ε

It then follows that
w(x0) ≤ F (x0, x1) + βw(x1) + ε

and since x1 ∈ Γ(x0), we have that w(x0) ≤ F (x0, y) + βw(y) + ε for some y ∈ Γ(x0).

Thus, if w(x0) is finite, w satisfies the functional equation. It remains to show that it does when
w(x0) ∈ {−∞,∞}. Suppose that w(x0) = ∞. It follows that there exists a sequence {xk} ∈ Π(x0)
such that limk→∞ u(xk) = ∞. Since xk

1 ∈ Γ(x0) ∀ k, and

u(xk) = F (x0, x
k
1) + βu(x′k) ≤ F (x0, x

k
1) + βw(xk

1)

for all k, it follows that there exists a sequence xk
1 ∈ Γ(x0) such that limk→∞[F (x0, x

k
1)+βw(xk

1)] = ∞.

Finally, assume that w(x0) = −∞. We have that

u(x) = F (x0, x1) + βu(x′) = −∞ ∀ x ∈ Π(x0)

where x′ = (x1, x2, . . . ). Since F is real-valued, it follows that

u(x′) = −∞ ∀ x1 ∈ Γ(x0), ∀ x′ ∈ Π(x1)

Thus, w(x1) = −∞ ∀ x1 ∈ Γ(x0).

Thus, if w(x0) is not finite, w still satisfies the functional equation.

2. Fix some x0. First, assume that v(x0) is finite. We have that v(x0) ≥ F (x0, y) + βv(y) ∀ y ∈ Γ(x0),
and for all ε > 0, there exists y ∈ Γ(x0) such that v(x0) ≤ F (x0, y) + βv(y) + ε. We have that for all
x ∈ Π(x0),

v(x0) ≥ F (x0, x1) + βv(x1)

≥ F (x0, x1) + βF (x1, x2) + β2v(x2)

...
≥ u(x) + βnv(xn), n = 1, 2, . . .

Taking the limit as n → ∞, we get that for all x ∈ Π(x0), v(x0) ≥
󰁓∞

t=0 β
tF (xt, xt+1). Next,

fix some ε > 0 and choose {δt} ∈ R+ such that
󰁓∞

t=1 β
t−1δt ≤ ε/2. From above, we can choose

x1 ∈ Γ(x0), x2 ∈ Γ(x1), . . . such that

v(xt) ≤ F (xt, xt+1) + βv(xt+1) + δt+1, t = 0, 1, 2, . . .
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Then x = (x0, x1, . . . ) ∈ Π(x0), and

v(x0) ≤
n󰁛

t=0

βtF (xt, xt+1) + βn+1v(xn+1) + (δ1 + βδ2 + · · ·+ βnδn+1)

≤ u(x) + βn+1v(xn+1) + ε/2, n = 1, 2, . . .

Thus, for sufficiently large n, v(x0) ≤
󰁓∞

t=0 β
tF (xt, xt+1) + ε. Thus, v is a solution to the functional

equation, and since such solutions are unique, v = w.

Intuition: The supremum function from the sequential problem solves the functional equation. Result 2
is key. It states a condition under which a solution to the functional equation is a solution to the sequential
problem.
Theorem 1.8. (Principle of Optimality) Suppose that (X,F,β,Γ) satisfy the two previous assumptions.

1. Let x̄ ∈ Π(x0) be a feasible plan that attains the supremum in the sequential problem. Then for all
t > 0,

w(x̄t) = F (x̄t, x̄t+1) + βw(x̄t+1)

2. Let x̂ ∈ Π(x0) be a feasible plan satisfying, for all t > 0,

w(x̂t) = F (x̂t, x̄t+1) + βw(x̂t+1)

and
lim sup
t→∞

βtw(x̂t) ≤ 0

Then x̂ attains the supremum in the sequential problem for x0.

Proof. (From SLP Theorem 4.4 and Theorem 4.5, pg. 75-76). We will prove each part separately.

1. Since x̄ attains the supremum, we have that, defining u(c) =
󰁓∞

t=0 β
tF (ct, ct+1)

w(x̄0) = u(x̄) = F (x0, x̄1) + βu(x̄′) ≥ u(x) ∀ x ∈ Π(x0)

In particular, this inequality holds for all plans with x1 = x̄1. Since x̄1, x2, x3, · · · ∈ Π(x̄1) ⇒
x0, x̄1, x2, · · · ∈ Π(x0), it follows that u(x̄) ≥ u(x′) ∀ x ∈ Π(x̄1). Thus, u(x̄′) = w(x̄1). Substitut-
ing, we get that w(x̄t) = F (x̄t, x̄t+1) + βw(x̄t+1) for t = 0. Continuing by induction, it holds for all
t.

2. Suppose that x̂ ∈ Π(x0) satisfies w(x̂t) = F (x̂t, x̄t+1) + βw(x̂t+1) for all t > 0. Then it follows that

w(x0) = u(x̂) + βn+1w(x̂n+1) ∀ n = 1, 2, . . .

Then, taking the limit as n → ∞, we find that w(x0) ≤ u(x̂) =
󰁓∞

t=0 β
tF (x̂t, x̂t+1). Since x̂ ∈ Π(x0),

the reverse inequality holds, and x̂ attains the supremum in the sequential problem.

Model. (Dynamic Programming with Bounded Returns) Define the functional equation

v(x) = sup
y∈Γ(x)

{F (x, y) + βv(y)}
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with associated operator T : C(X) → C(X) such that

(Tv)(x) = max
y∈Γ(x)

{F (x, y) + βv(y)}

We will make a number of stronger assumptions on (X,F,β,Γ) to be able to characterize v and g, where

g(x) := {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}

is the policy correspondence associated with v.
Assumption 1.3. X is a convex subset of RL and the correspondence Γ : X 󰃃 X is nonempty, compact-
valued, and continuous.
Assumption 1.4. The function f : A → R is continuous and bounded, and β ∈ (0, 1)
Remark. Note that these two assumptions imply our first two assumptions.
Theorem 1.9. (Uniqueness of Solution) Under Assumptions 3 and 4, the operator T maps C(X) into itself.
T has a unique fixed point v and for all v0 ∈ C(X),

d(Tnv0, v) ≤ βnd(v0, v)

Further, the policy correspondence g is compact-valued and upper-hemicontinuous.

Proof. (From SLP Theorem 4.6, pg. 79). We have that for each v ∈ C(X) and x ∈ X, our problem
in defining the operator is to maximize the continuous function F (x, ·) + βv(·) over the compact set Γ(x).
Thus, the maximum is attained. Since F and v are bounded, clearly Tv is bounded, and since F and v are
continuous, and Γ is compact-valued and continuous, it follows from Theorem 1.6 (Berge’s Maximization
Theorem) that Tv is continuous. Thus, T : C(X) → C(X).

It then immediately follows that T satisfies the conditions of Theorem 1.5 (Blackwell’s Theorem), so it is a
contraction, and since C(X) is a Banach space, we have directly from Theorem 1.4 (Contraction Mapping)
that T has a unique fixed point v, and the necessary equation holds. The stated properties of g then follow
again from Theorem 1.6.
Assumption 1.5. For fixed y, F (·, y) is strictly increasing in each of its L components.
Assumption 1.6. Γ is monotone in the sense that x ≤ x′ implies that Γ(x) ⊆ Γ(x′)
Theorem 1.10. (Monotonicity of Value Function) Under Assumptions 3 to 6, the unique fixed point v of
T is strictly increasing.

Proof. (From SLP Theorem 4.7, pg. 80). Let C ′(X) ⊂ C(X) be the set of bounded, continuous, nonde-
creasing functions on X, and let C ′′(X) ⊂ C ′(X) be the set of strictly increasing functions. Since C ′(X) is a
closed subset of the complete metric space C(X), it suffices from Theorem 1.9 and the Contraction Mapping
Theorem (Theorem 1.4) to show that T (C ′(X)) ⊆ C ′′(X). The assumptions ensure this.
Assumption 1.7. F is strictly concave: for all (x, y), (x′, y′) ∈ A and θ ∈ (0, 1)

F [θ(x, y) + (1− θ)(x′, y′)] > θF (x, y) + (1− θ)F (x′, y′)

Assumption 1.8. Γ is convex in the sense that for θ ∈ [0, 1], x, x′ ∈ X, y ∈ Γ(x), y′ ∈ Γ(x′), then

θy + (1− θ)y′ ∈ Γ(θx+ (1− θ)x′)

Theorem 1.11. (Strict Concavity and Unique Policy) Under Assumptions 3-4 and 7-8, the unique fixed
point v is strictly concave and the optimal policy g is a single-valued continuous function.

Proof. (From SLP Theorem 4.8, pg. 81). Let C ′(X) ⊂ C(X) be the set of bounded, continuous, weakly
concave functionf on X, and let C ′′(X) ⊂ C ′(X) be the set of strictly concave functions. Since C ′(X) is a
closed subset of the complete metric space C(X), it suffices from Theorem 1.9 and the Contraction Mapping
Theorem (Theorem 1.4) to show that T (C ′(X)) ⊆ C ′′(X). To verify this, let v ∈ C ′(X) and let x0 ∕= x1,
θ ∈ (0, 1), and xθ = θx0 + (1− θ)x1.
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Let yi ∈ Γ(xi) attain (Tv)(xi) for i = 0, 1. Then by Assumption 8, yθ = θy0 + (1− θ)y1 ∈ Γ(xθ). It follows
that

(Tv)(xθ) ≥ F (xθ, yθ) + βv(yθ)

> θ[F (x0, y0) + βv(y0)] + (1− θ)[F (x1, y1) + βv(y1)]

= θ(Tv)(x0) + (1− θ)(Tv)(x1)

where the first line uses the fact that yθ ∈ Γ(xθ), the second uses the hypothesis that v is concave and the
concavity restriction on F (Assumption 7), and the last follows from how y0 and y1 were selected. Since x0 and
x1 were arbitrary, it follows that Tv is strictly concave, and since v was arbitrary, that T (C ′(X)) ⊆ C ′′(X).

Thus, the unique fixed point v is strictly concave. Since F is also concave by assumption, and, for each
x ∈ X, Γ(x) is convex, it follows that the maximum is attained by a unique y value. Thus, g is single-valued,
and its continuity follows from the fact that it is upper hemi-continuous.
Assumption 1.9. F is continuously differentiable
Theorem 1.12. (Benveniste-Scheinkman (an Envelope Theorem)) Under assumptions 3-4 and 7-9, if x0 ∈
int(X) and g(x0) ∈ int(Γ(x0)), then the unique fixed point v is continuously differentiable at x0 with

∂v(x0)

∂x0
=

∂F (x0, g(x0))

∂x0

Proof. (From SLP Theorem 4.10, pg. 84). Any subgradient p of v at x0 must satisfy

p · (x− x0) ≥ v(x)− v(x0) ≥ F (x)− F (x0)

for all x sufficiently close to x0, where the first inequality uses the definition of a subgradient and the second
uses the fact that F (x) ≤ v(x), with equality at x0. Since F is differentiable at x0, p is unique, and any
concave function with a unique subgradient at an interior point x0 is differentiable at x0.
Example. Solving Bellman Equations with Benveniste-Scheinkman:

We have the functional equation

v(k) = max
0≤k′≤f(k)

U(f(k)− k′) + βv(k′)

Taking the first order conditions with respect to k′ gives:

U ′(f(k)− k′) = βv′(k′)

Then with Benveniste-Schienkman, we have

v′(k) = U ′(f(k)− g(k))f ′(k)

and hence
U ′(f(k)− g(k)) = βf ′(g(k))U ′(f(g(k))− g(g(k)))

which is the Euler equation we found earlier.
Model. (Stochastic Growth Model (Markov Process)) Most of what we’ve done works in a stochastic en-
vironment as long as we can summarize the state of the world in a simple way. Here we specify a specific
structure to uncertainty that makes our models tractable: discrete time, discrete state, time homogeneous
Markov Processes. Let

π(j | i) = P{st+1 = j | st = i}

Conditional probabilities of st+1 only depend on the realization of st, not st−1 or any other past realization.
Time homogeneity means that π is not indexed by time.
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Given that st+1 ∈ S and st ∈ S and S is a finite set, the distribution π(·, ·) is an N ×N matrix of the form

π =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

π11 · · · π1j · · · π1N

...
...

...
πi1 · · · πij · · · πiN

...
...

...
πN1 · · · πNj · · · πNN

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄

where an element πij = π(j | i) = P{st+1 = j | st = i}. Since πij ≥ 0 and
󰁓

j πij = 1 for all i, matrix π is
called a stochastic matrix .

Suppose the probability distribution over states today is given by the N -dimensional column vector Pt =
(p1t , . . . , p

N
t )T where

󰁓
i p

i
t = 1. The probability of being in state j tomorrow is

pjt+1 =
󰁛

i

πijp
i
t ≡ Pt+1 = πTPt

Definition. A stationary distribution Π of the Markov chain π is

Π = πTΠ

A Markov process π has at least one stationary Π: the eigenvector (normalized to 1) of the eigenvalue λ = 1
of πT . If only one such eigenvalue exists, then this is a unique stationary distribution. If there are multiple,
then there are multiple stationary distributions.

If st is a Markov chain, we have

π(st+1) = π(st+1 | st)× π(st | st−1)× · · ·× π(s1 | s0)×Π(s0)

Example. Suppose

π =

󰀕
p 1− p

1− p p

󰀖

for some p ∈ (0, 1). The unique invariant distribution is Π(s) = 1/2 for both s.

Suppose

π =

󰀕
1 0
0 1

󰀖

then any distribution over the two states is an invariant distribution
Model. Stochastic Growth Model (Technology) We incorporate technology as

yt = eztF (kt, nt)

where zt is a technology stock that has unconditional mean 0 and follows an N -state Markov chain with
state space Z = {z1, z2, . . . , zN} and transition matrix π =

󰀅
πij

󰀆
. Let Π denote a stationary distribution. We

also have the standard evolution of capital stock kt+1 = (1− δ)kt + it, a resource constraint yt = ct + it, an
endowment k0 and one unit of time, information, where zt is publicly observable and z0 ∼ Π, and preferences:

E

󰀥 ∞󰁛

t=0

βtU(ct)

󰀦
=

∞󰁛

t=0

󰁛

zt∈Zt

βtπ(zt)U(ct(z
t))

We can use our new tools to solve this model, with state variables (k, z) and control variable k′ we have the
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Bellman equation

v(k, z) = max
0≤k′≤ezF (K,1)+(1−δ)k

󰀫
U(ezF (K, 1) + (1− δ)k − k′) + β

󰁛

z′

π(z′ | z)v(k′, z′)
󰀬

We can also add a labor-leisure choice: U(ct, 1− nt). Our new Bellman equation is

v(k, z) = max
k′,n

󰀫
U(ezF (K,n) + (1− δ)k − k′, 1− n) + β

󰁛

z′

π(z′ | z)v(k′, z′)
󰀬

subject to
0 ≤ k′ ≤ ezF (K,n) + (1− δ)k and 0 ≤ n ≤ 1

This is the benchmark model of modern business cycle research. See: Cooley and Prescott (1995), “Economic
Growth and Business Cycles”.

Solving the model: We have three conditions:

The intratemporal optimality condition:

ezFn(k, n) =
Ul(c, 1− n)

Uc(c, 1− n)

The intertemporal optimality condition:

Uc(c, 1− n) = β
󰁛

z′

π(z′ | z)v′(k′, z′)

The envelope condition:
v′(k, z) = (ezFk(k, n) + 1− δ)Uc(c, 1− n)

Combining, we get

Uc(c, 1− n) = β
󰁛

z′

π(z′ | z)(ezFk(k
′, n′) + 1− δ)Uc(c

′, 1− n′)

Definition. We pursue calibration in order to estimate (or choose) parameters of the model so that it could
be used for quantitative analysis of the real world and counterfactual analysis. The idea of calibration is:

1. We choose a set of empirical facts that the model should match

2. We choose parameters so that the equilibrium of the model matches the facts

Note: the fact that the model fits the facts cannot be used as a claim of success. We need to evaluate success
on other dimensions.
Example. We will calibrate a simple version of the deterministic neoclassical model with population and
technology growth. We have the following functional forms:

U(c) =
c1−σ − 1

1− σ

F (K,N) = Kα((1 + g)tN)1−α

Our parameters are technology (α, δ, g), demographics (n), and preferences (β,σ). We will attempt to choose
parameters such that the balanced growth path of the model matches long-run average facts for the U.S.
economy. Note that we need to decide on period length. Take the period to be one year.
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Recall the Kaldor (1961) facts:

1. Output per capita, Y/N , grows at a constant rate

2. The capital to labor ratio, K/N , grows at a constant rate

3. The interest rate, R, is fairly constant

4. The output to capital ratio, Y/K, is fairly constant

5. The share of value added going to labor and capital is fairly constant

6. There are wide dispersions in Yi/Ni across countries

We will take some parameters directly from the data. Population growth rate in the model is n, in the data
n = 1.1%. Growth rate of per-capita GDP in the model is g, in the data g = 1.8%. We can also exploit the
balanced growth path relationships:

wt = (1− α)Kα
t N

−α
t ((1 + g)t)1−α

wtNt

Yt
= (1− α)

In the U.S., the labor share of income has averaged about 2
3 , so we set α = 1

3 .

To calibrate the depreciation rate δ, we will start with the resource constraint, remembering that x̃t =
xt/(1 + g)t and xt = Xt/(1 + n)t. We get that

c̃+ (1− n)(1 + g)k̃ = F (k̃, 1) + (1− δ)k̃

c̃+ [(1− n)(1 + g)− (1− δ)] k̃ = F (k̃, 1)

In the model, investment is given by

ĩ = [(1− n)(1 + g)− (1− δ)] k̃

and so
I/Y

K/Y
=

I

K
=

ĩ

k̃
= (1− n)(1 + g)− (1− δ)

In the data, I/Y ≈ 0.2 and K/Y ≈ 3. Using our previous parameters, we find that δ ≈ 4%.

We need to pick parameters for the utility function. From the Euler equation with CRRA utility function,
we have that

(1 + n)(1 + g)(c̃t)
−σ = (1 + rt+1 − δ)β̃(c̃t+1)

−σ

On the balanced growth path,

(1 + n)(1 + g) = (1 + r − δ)β(1 + g)1−σ

β(1 + g)−σ =
1 + n

1 + r − δ

We need to find r. The rental rate of capital is

rt+1 = αKα−1
t

󰀅
(1 + g)tNt

󰀆1−α
= α

Yt

Kt

with K/Y ≈ 3 and α ≈ 1/3, we find r ≈ 0.11. Plugging this back into the first order conditions, we get

β(1.018)−σ = 0.944
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Note that without growth (i.e. when g = 0), this relationship pins down β but doesn’t tell us anything about
σ. With growth, the typical approach is to pick σ from information outside the model. One can estimate σ
by taking the log of

(1 + n)(1 + g)(c̃t)
−σ = (1 + rt+1 − δ)β̃(c̃t+1)

−σ

and do the estimation with consumption data. From macroeconomic data, by Hall (1982), we get that
1
σ = 0.1, and from microeconomic consumption data, by Attanasio & Browning (1993), Attanasio & Weber
(1995), we get that 1

σ ∈ [0.3, 0.8]. We will pick σ = 1.

Summarizing the parameters, we get:

Parameter Value Target
g 1.8% g in data
n 1.1% n in data
α 0.33 labor share
δ 4% I/Y

K/Y

σ 1 outside evidence
β 0.961 K/Y

Question. How doees the model fare on other moments? See Kydland & Prescott (1982). They found a
very solid level of correlation with most parameters, given how parsimonious the model is. However, their
estimates of investment were volatile, and their estimates of hours worked were solidly off. This is still an
open question – these models do not match fluctuations in employment particularly well.

We will come back to the growth model (in continuous time) later.
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1.5 Continuous-Time Growth Theory

I do not see how one can look at figures like these without seeing them as representing possibilities. Is there
some action a government could take that would lead the Indian economy to grow like Indonesia’s or Egypt’s?
If so, what exactly? If not, what is it about the nature of India that makes it so? The consequences for human
welfare involved in questions like these are simply staggering: Once one starts to think about them, it is hard
to think about anything else [Lucas (1988), pg. 5]

Back to the Kaldor (1961) facts (specifically, the first few):

1. Output per capita, Y/N , and capital per worker k = K/L, grows at a constant rate

2. The interest rate, R, is fairly constant

3. The output to capital ratio, Y/K, is fairly constant

4. The share of value added going to labor and capital is fairly constant

We have an additional set of stylized facts from Summers & Heston (1991), which are:

1. There is enormous variation of per capita income across countries. The poorest have 5% of per capita
income in the United States

2. There is enormous variation in the growth rate of per capita income across countries

3. Growth rate determines the economic fate of a country over long periods of time. How long does it
take for a country to double its per capita GDP if it grows at g% per year? About 70/g (Lucas (1988))

4. Countries change their relative position in the income distribution
Model. (The Solow Growth Model) [Solow 1956] Some preliminary assumptions: a single good and no
international trade; factors of production (labor and capital) are fully employed; labor force grows at a rate
n > 0 so that (with L(0) = 1):

L(t) = entL(0) = ent

Note that
L̇

L
≡ 1

L

∂L

∂t
= n

so that over one unit of time, ∂t = 1, we have L(t+ 1) = (1 + n)L(t).

Technology follows Y (t) = F (K(t), A(t)L(t)) with F having constant returns to scale, strictly increasing,
strictly concave, twice continuously differentiable, F (0, ·) = F (·, 0) = 0, and Inada conditions. We assume
that the labor augmenting technological progress grows at rate g > 0: A(t) = egt. We define

ξ(t) ≡ Y (t)

A(t)L(t)
=

F (K(t), A(t)L(t))

A(t)L(t)
= F

󰀕
K(t)

A(t)L(t)
, 1

󰀖
≡ F (κ(t))

where
κ(t) ≡ K(t)

A(t)L(t)

We have capital accumulation, where
K̇(t) = sY (t) + δK(t)

where 0 < s < 1 is the exogeneous saving rate and 0 < δ < 1 is the depreciation rate.

We have the resource constraint , where

K̇(t)− δK(t)󰁿 󰁾󰁽 󰂀
Investment

= Y (t)− C(t)
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We are basically done with the model. Note that we have no optimizing agents – instead, we have a behavioral
assumption on s. Also, technology grows exogenously.

Solving the Solow Model. From the capital accumulation equation, we have that

K̇

AL
= sξ − δκ

Also
K̇

AL
=

K̇

K

K

AL
=

K̇

K
κ

But
κ̇

κ
=

K̇

K
− L̇

L
− Ȧ

A
=

K̇

K
− n− g

so that
K̇

AL
=

K̇

K
κ =

󰀕
κ̇

κ
+ n+ g

󰀖
κ =⇒ κ̇+ κ(n+ g) = sξ − δκ

We have found the main equation of the Solow model.
Definition. The capital accumulation equation in per-effective worker terms is

κ̇ = sf(κ)− (n+ g + d)κ

It is a first order nonlinear ordinary differential equation, and it completely characterizes the economy for
any initial condition κ(0) = K(0)

Once we have the solution κ(t)t∈[0,∞), we can solve the rest of the model:

k(t) = κ(t)A(t) = egtκ(t)

K(t) = e(n+g)tκ(t)

y(t) = egtf(κ(t))

Y (t) = e(n+g)tf(κ(t))

C(t) = (1− s)e(n+g)tf(κ(t))

c(t) = (1− s)egtf(κ(t))

Example. Suppose that the production function is Cobb-Douglas: f(κ) = κα. The equation:

κ̇ = sκα − (n+ g + d)κ

There are two steady-states (where κ̇ = 0): k󰂏 = 0 and

k󰂏 =

󰀕
s

n+ g + δ

󰀖 1
1−α

To solve the equation, we define v(t) = κ(t)1−α. Then

v̇ =
(1− α)κ̇

κα
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Dividing both sides by κα/(1− α):

(1− α)
κ̇

κα
= (1− α)s− (1− α)n+ g + δ)κ1−α =⇒ v̇ = (1− α)s− (1− α)(n+ g + δ)v

The general solution to the homogeneous equation is

vg(t) = Ce−(1−α)(n+g+δ)t

for some constant C. A particular equation for the nonhomogeneous equation is

vp(t) =
s

n+ g + δ
≡ v󰂏 = (κ󰂏)1−α

Therefore, all solutions to this equation are of the form

v(t) = vg(t) + vp(t) = v󰂏 + Ce−(1−α)(n+g+δ)t

Using the initial condition v(0) = κ(0)1−α:

v(t) = v󰂏 + (v(0)− v󰂏)e−(1−α)(n+g+δ)t

Going back to the original notation, we have

κ =

󰀵

󰀹󰀹󰀷
s

n+ g + δ
+

󰀕
κ(0)1−α − s

n+ g + δ

󰀖
e−(1−α)(n+g+δ)t

󰁿 󰁾󰁽 󰂀
Goes →0 as t→∞

󰀶

󰀺󰀺󰀸

1
1−α

Notice that we will converge to the steady state regardless of the starting point of the economy.
Question. What do we do if we don’t have Cobb-Douglas? Graphical analysis.
Question. Does the Solow Model fit the data well? Let’s see.
Example. If the wage is per unit of labor L, we see that

r(t) = FK

󰀕
K(t)

L(t)A(t)
, 1

󰀖
= FK(κ(t), 1)

w(t) = A(t)FL

󰀕
K(t)

L(t)A(t)
, 1

󰀖
= A(t)FL(κ(t), 1)

At the balanced growth path (i.e. the steady state in κ), r is constant and w grows at the same rate as
technology. The capital share r(t)K(t)/Y (t) is constant since Y and K grow at the same rate n + g. The
balanced growth path of the Solow model represents the four Kaldor facts we talked about earlier. Solow
won the Nobel prize for this work in 1989.
Question. What about the Summers-Heston facts? Can we explain the large difference in per-capita income
across countries?
Answer. Suppose that all countries have the same technology, same population growth, and same savings
rate. Then they all converge to the same steady state and per-capita income converges to y(t) = A(t)f(κ󰂏).
If we observe y to be different across countries, some of them have not converged yet. This implies that
poorer countries should be growing faster than richer countries:

γy(t) =
ẏ(t)

y(t)
= g +

f ′(κ(t))κ̇(t)

f(κ(t))
= g +

f ′(κ(t))

f(κ(t))
(sf(κ(t))− (n+ g + δ)κ(t))

Since f ′(κ)
f(κ) and sf(κ) − (n + g + δ)κ are decreasing in κ, countries further away from the balanced growth
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path should converge faster. What do the data say? Not really!
Definition. The idea that countries should converge to the same path is called absolute convergence.
Question. Should we discard the Solow model? What if the parameters (s, n, δ) are different?
Definition. The idea that countries have different parameters that they converge under is called conditional
convergence. Now, the fast-growing countries are the ones farthest from their own balanced growth path.
The per-capita incomes should grow at the same rate once they reach their balanced growth path.

To test conditional convergence:

1. Compute the steady-state output per worker that a country should possess in an initial period (say,
1960) given (s, n, δ) observed in the country’s data

2. Then measure actual GDP per worker and build the difference. The difference indicates how far the
country is from its balanced growth path

3. Plot the difference against the growth rate of GDP per worker from the initial period to the current
period

4. Countries that are further away from their balanced growth path should grow faster

The data seem to confirm the Solow model (see Jones & Vollrath (1998) fig. 3.8). See Mankiw, Romer, &
Weil (1992) for a test of the Solow model.
Remark. Constant savings rate is a strong behavioral assumption that is not derived from maximizing
agents. Relaxing it leads to the Cass-Koopmans-Ramsey model.
Remark. Technological progress is modeled exogenously. Relaxing that leads to the endogenous growth
model.
Model. (Cass-Koopmans-Ramsey Growth Model) We carry over most of the assumptions from Solow: pop-
ulation grows at a rate n > 0, we have a production function F (K,AL), technology A grows at a rate g > 0,
and aggregate capital stock evolved according to K̇ = F (K,AL)−δK−C. Notice that we have consumption
here instead of an exogenous savings rate. We can write the equation in per-effective labor terms:

κ̇ = f(κ)− ζ − (n+ δ + g)κ

where ζ = C/(AL) and κ = K/(AL). We have a representative agent with utility

u(c) =

󰁝 ∞

0

e−ρt (c(t))
1−σ

1− σ󰁿 󰁾󰁽 󰂀
U(c)

dt

where ρ > 0 is a discount factor. By using our other notation:

e−ρtU(c(t)) = e−ρt (c(t))
1−σ

1− σ

= e−ρt (ζ(t)e
gt)1−σ

1− σ
= e−(ρ−g(1−σ))t (ζ(t))

1−σ

1− σ

We assume that ρ > g(1− σ) and define ρ̂ = ρ− g(1− σ):

u(c) =

󰁝 ∞

0

e−ρ̂tU(ζ(t))dt =

󰁝 ∞

0

e−ρ̂t (ζ(t))
1−σ

1− σ
dt
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The Social Planner Problem is

max
(κ,ζ)≥0

󰁝 ∞

0

e−ρ̂tU(ζ(t))dt

s.t. κ̇(t) = f(κ(t))− ζ(t)− (n+ δ + g)κ(t)

κ(0) = κ0

This problem can be solved using Pontryagin’s Maximum Principle (see Pontryagin (1962) or Intriligator’s
(2002) “Mathematical Optimization and Economic Theory”), where κ(t) is the state variable, ζ(t) is the
control, and λ(t) denotes the co-state variable associated with κ(t).

Solving the model. We write the Hamiltonian

H(t,κ, ζ,λ) = e−ρ̂tU(ζ(t)) + λ(t)[f(κ(t))− ζ(t)− (n+ δ + g)κ(t)]

Sufficient conditions for a solution are:

∂H(t,κ, ζ,λ)

∂ζ(t)
= 0 λ̇(t) = −∂H(t,κ, ζ,λ)

∂κ(t)
lim
t→∞

λ(t)κ(t) = 0

Plugging in we find the four equations:

e−ρ̂tU ′(ζ(t)) = λ(t)

λ̇(t) = −(f ′(κ(t))− (n+ δ + g))λ(t)

lim
t→∞

λ(t)κ(t) = 0

κ̇(t) = f(κ(t)− ζ(t)− (n+ δ + g)κ(t)

Differentiating with respect to t and combining it, we get

λ̇

λ
=

ζ̇U ′′(ζ)

U ′(ζ)
− ρ̂

Combining with the second equation:

ζ̇
ζU ′′(ζ)

U ′(ζ)
= −ζ(f ′(κ)− (n+ δ + g + p̂))

Because of CRRA, the first fraction on the left hand side is equal to −σ:

ζ̇(t) =
1

σ
ζ(t)(f ′(κ(t))− (n+ δ + g + ρ̂))

Therefore, any allocation (κ, ζ) that satisfies the following system is Pareto optimal:

ζ̇(t) =
1

σ
ζ(t)(f ′(κ(t))− (n+ δ + g + ρ̂)

κ̇(t) = f(κ(t))− ζ(t)− (n+ δ + g)κ(t)

with κ(0) = κ0 and the Transversality Condition. We have a steady state (ζ̇ = κ̇ = 0) at

f ′(κ󰂏) = n+ δ + g + ρ̂ ζ󰂏 = f(κ󰂏)− (n+ δ + g)κ󰂏

Question. How do we study the economy out of steady-state?
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Phase diagram. We have

ζ̇(t) =
1

σ
ζ(t) (f ′(κ(t))− (n+ δ + g + ρ̂))

κ̇(t) = f(κ(t))− ζ(t)− (n+ δ + g)κ(t)

We first find the two isocline:

ζ̇ = 0 ⇒ f ′(κ(t))− (n+ δ + g + ρ̂) = 0 and κ̇ = 0 ⇒ f(κ(t))− ζ(t)− (n+ δ + g)κ(t) = 0

In the (κ, ζ) plan, the first one is a vertical line at κ = constant. The second one is strictly concave in κ.

We have an initial condition κ(0) = κ0. We need in general two conditions to pin down a path for the
system. The question is how the planner should pick ζ(0). We argue two things:

1. For a given κ(0) > 0, any choice ζ(0) of the planner that leads to a path not converging to the steady
state (κ󰂏, ζ󰂏) cannot be optimal

2. There is a unique stable path leading to the steady state. This is called saddle-path stability of the
steady state and the unique stable path is called a saddle path

For point 1: Paths going toward point E lead to negative consumption in finite time, and paths converging
to north-west hit ζ = 0 which means κ = 0 forever. Because of Inada, this cannot be optimal.

For point 2: We would need to study the dynamics around the steady state by using local approximation
(we skip this here, but it is true).

Combining the results: Only the paths converging to the unique steady state can be optimal solutions.
Locally, around the steady state, the converging path is unique (the saddle path). Given an initial κ(0), the
planner picks the ζ(0) that puts the economy on the saddle path.

What is the behavior of the economy once it has reached the steady state? Per capita variables grow at rate
g, and aggregate variables grow at rate n:

c(t) = egtζ󰂏

k(t) = egtκ󰂏

y(t) = egtf(κ󰂏)

C(t) = e(g+n)tζ󰂏

K(t) = e(g+n)tκ󰂏

Y (t) = e(g+n)tf(κ󰂏)

The long-run behavior of this model is identical to the Solow model; where the economy converges to a
balanced growth path.
Remark. We can understand the Cass-Koopmans-Ramsey model as a micro foundation for the Solow model.

The second issue with the Solow model was the exogenous growth in technology. Here we can move away
from this with the basic AK endogenous growth model:
Model. (Endogenous Growth Model) There is no technological progress. Production function is Y (t) =
AK(t) with A fixed, and population grows at a rate n > 0. The preferences of the representative agent are
given by

U(c) =

󰁝 ∞

0

e−ρt c(t)
1−σ

1− σ
dt

with a budget constraint of c(t) + ȧ(t) + na(t) = w(t) + (r(t) + δ)a(t), where a = A/L is per capita asset
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holdings with a(0) = k0 given. We also need a no-ponzi-scheme condition. The firm’s problem is

max
K(t),L(t)≥0

AK(t)− r(t)K(t)− w(t)L(t)

Definition. A sequential markets equilibrium is a set of allocations for the household (c(t), a(t))t∈[0,∞),
allocations for the firm (K(t), L(t))t∈[0,∞), and prices (r(t), w(t))t∈[0,∞) such that

1. Given prices, the allocation (c(t), a(t))t∈[0,∞) solves the household’s problem

2. Given prices, the allocation (K(t), L(t))t∈[0,∞) solves the firm’s problem

3. L(t) = ent, L(t)a(t) = K(t), and L(t)c(t) + K̇(t) + δK(t) = AK(t)

Solving the model. We can solve the household’s problem like Cass-Koopman. We have solutions:

ċ =
1

σ
(r − (n+ δ + ρ)c) and γc =

ċ

c
=

1

σ
(A− (n+ δ + ρ))

Consumption per capita is always growing at the same rate (not just at the steady state!). Integrating, we
find

c(t) = c(0)e
1
σ (A−(n+δ+ρ))t

We make the following assumptions on the parameters: A− (n+ δ+ ρ) > 0 so that we have positive growth;
and 1−σ

σ

󰁫
A− (n+ δ)− ρ

1−σ

󰁬
≡ φ < 0 so that the integral of discounted consumption is finite.

What is the behavior of capital per capita? From the resource constraint, we have

K̇(t) + δK(t) + C(t) = AK(t) =⇒ c(t) + k̇(t) = Ak(t)− (n+ δ)k(t)

so that

γk(t) =
k̇(t)

k(t)
= A− (n+ δ)− c(t)

k(t)

In a balanced growth path, γk is constant so that c and k must grow at the same rate:

γk = γc = A− (n+ δ + ρ)

Question. What if we are not at the balanced growth path?

We have that
k̇(t) = −c(0)e

1
σ (A−(n+δ+ρ))t +Ak(t)− (n+ δ)k(t)

Exercise. Solve this equation! (Use the general and particular solution, and use the transversality condition
to pin down the constraint)
Solution. The solution is:

k(t) = −c(0)

φ
e

1
σ (A−(n+δ+ρ))t = −c(t)

φ

Remark. The capital stock is always proportional to consumption. Since consumption always grows at a
constant rate, so does capital. The initial condition k(0) = k0 pins down c(0) = −φk(0) and y(0) = Ak(0).
All variables grow at the same rate γc = γk = γy.
Question. Why do we care about this model?
Answer. In the Solow and Cass-Koopman model, parameters like s, n, and δ affect per capita income level
but not growth rate. In the AK model, the growth rate is determined by all of these parameters! There is
no convergence in the AK model, and (a key result), no decreasing returns to capital.
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2 Ryan Chahrour

Course Overview The optional text (which is extremely useful) is Applied Computational Economics
and Finance, by Mario Miranda and Paul Fackler. Ryan also has a set of materials on numerical methods
on his website, which is a great resource. This course will largely cover the same model the entire time, but
we will explore the techniques used to solve it very deeply.

We will cover the (tentative) topics:

1. A labor search model (with numerical introductions)

2. Perturbation techniques

3. The perfect-foresight shooting model

4. Interpolation and extrapolation

5. The value function iteration

6. Projection methods

7. Business Cycles

8. Modern Topics in Macroeconomics

In the last week, we will cover some topics on climate change in macroeconomics and neural networks and
machine learning.

The problem sets will be coding-based. In general, you should use Matlab, as it is the language Ryan is most
familiar with. Ryan does not want to see code, you should structure the answers like a technical appendix
rather than a codebase.

2.1 The Labor Search Model

This model can be thought about in both of the ways we tend to think about models – as a social planner
optimizing, and as firms and agents optimizing.
Model. (Planner’s Labor Search Model) The planner is optimizing over the following. We have a CRRA
utility function

U({Ct}) ≡
∞󰁛

t=0

βtC
1−σ
t

1− σ

where σ is the coefficient of relative risk aversion. We also have a Cobb-Douglas production function

Yt = AtK
α
t N

1−α
t (2)

where Nt is the number of people employed (note not hours!), and Kt is capital. We have a law of motion
for capital

Kt+1 = (1− δk)Kt + It (3)

Importantly, we have a new law of motion for labor:

Nt = (1− δn)Nt−1 +M(Vt, St) (4)

where M(Vt, St) is a matching function, where Vt are firm vacancy postings and St are searching workers. We
assume that M has constant returns to scale, and we define δn as the (exogenous) separation rate. Finally,
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we have an aggregate resource constraint (instead of firms making production decisions):

Yt = Ct + It + φnVt (5)

where φn is a parameter to constrain how valuable a unit of investment is relative to a single worker.
Specifically, φn could be thought of as the cost of posting an open position. The social planner solves the
following problem, subject to the above constraints (2) to (5):

max
{Ct,It,Vt,Yt,Nt,Kt+1}

E [U({Ct})] ≡ max
{Ct,It,Vt,Yt,Nt,Kt+1}

E

󰀥 ∞󰁛

t=0

βtC
1−σ
t

1− σ

󰀦

We could eliminate some variables and constraints from this problem, but we’ll wait to do that until later.

We will consider two methods for deriving the optimality conditions. These two methods will suggest different
approaches to a solution.

2.2 Lagrangian Approach (Social Planner)

The Lagrangian of this model is

L = E

󰀥 ∞󰁛

t=0

βt

󰀫
C1−σ

t

1− σ
+ λ1,t(AtK

α
t N

1−α
t − Yt)

+ λ2,t((1− δk)Kt + It −Kt+1)

+ λ3,t((1− δn)Nt−1 +M(Vt, St)−Nt)

+ λ4,t(Yt − Ct − It − φnVt)

󰀬󰀦

with choice variables {Ct, It, Vt, Nt,Kt+1}. The necessary first order conditions are:

(C) 0 = C−σ
t − λ4,t

(I) 0 = λ2,t − λ4,t

(V ) 0 = λ3,tMv(Vt, St)− φnλ4,t

(Y ) 0 = −λ1,t + λ4,t

(N) 0 = λ1,tAtK
α
t (1− α)N−α

t − λ3,t + β E[λ3,t+1(1− δn)]

(K) 0 = −λ2,t + E[λ1,t+1At+1αK
α−1
t+1 N1−α

t+1 + λ2,t+1(1− δk)]

Note that we’ve been careful to write these such that all Lagrange multipliers are positive. The first order
conditions imply that λ1,t = λ2,t = λ4,t = C−σ

t and λ3,t = C−σ
t φn/Mv(Vt, St). The simplified first order

conditions are

1 = β E

󰀥󰀕
Ct+1

Ct

󰀖−σ
󰀣
At+1α

󰀕
Kt+1

Nt+1

󰀖α−1

+ (1− δ)

󰀤󰀦
(6)

φn

Mv(Vt, St)
= Atα

󰀕
Kt

Nt

󰀖α

+ β E

󰀥󰀕
Ct+1

Ct

󰀖−σ
φn

Mv(Vt+1, St+1)
(1− δn)

󰀦
(7)

as well as the constraints (2) to (5).

Equation (6) is often called the capital Euler equation, or sometimes the intertemporal Euler equation. This
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equation equates the cost of one unit of investment with the benefits that it brings – notably, the benefits
in the next period.

Equation (7) is called the labor Euler equation, or sometimes the vacancy posting condition. It equates the
cost of hiring an additional worker (the cost of the additional posting φn divided by the marginal increase in
the number of jobs due to that posting, Mv(Vt, St) with the returns that that worker brings. Note that since
the worker starts producing in the current period, their marginal product is in terms of today’s technology.
The second term is the value they bring in the future, multiplied by the probability that they will not
separate.
Remark. These expectations are slightly odd objects. Specifically, we consider the expectation of the object
in the next period given everything that has happened in the current period. For a variable x, we can say
that

E[xt+1] ≡ E[xt+1 | everything denoted t or earlier]

In our case, we will have that E[x] = E[x | {At,Kt, Nt−1}]

In both (6) and (7), returns that happen in the future are discounted to be in terms of today’s consumption

by using Mt+1 ≡ β
󰀓

Ct+1

Ct

󰀔−σ

. We often call Mt+1 the stochastic discount factor. It is extremely important
in macroeconomics models, especially macrofinance. Note that Mt+1 is in no way related to the matching
function M(·). This notation is confusing, but it’s (annoyingly) standard in the literature.

The Matching Function We’ve left the matching function M(Vt, St) as an arbitrary function. Most of
the literature following Mortensen and Pissarides (1994) assumes that the matching function satisfies the
standard form of a neoclassical production function. From now on, we will assume that

M(Vt, St) = χV ε
t S

1−ε
t

This functional form is nice, but it has a massive annoyance: the probability that a worker ends up in a
given vacancy post is not necessarily in [0, 1] (or, relatedly, that the number of people hired is less than the
number of people looking for jobs). There are other examples of micro-founded matching functions in den
Haan, Ramey, & Watson (2000), though they are harder to work with.

With this functional form and our assumption that St = 1, we get that

Mv(Vt, St) = εχV ε−1
t

Exogenous Processes We finally need to make some assumptions on how the variables tend to move. We
could assume that any of the parameters are time-varying, and generally people have studied all of them in
DSGE models. For now, we’ll assume that technology is the only thing moving exogenously. We will assume
that

log(At+1) = ρ log(At) + σa󰂃t+1

Steady State We are almost always going to want to identify a steady state before solving the model
numerically. To find such a steady state, we can write our necessary equilibrium conditions again, dropping
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the subscripts. Our assumptions about the movement of technology imply that A = 1. We have that

Y = KαN1−α

I = δkk

N =
χ

δn
V ε

Y = C + I + φnV

(Kss) 1 = β

󰀣
α

󰀕
K

N

󰀖α−1

+ (1− δk)

󰀤

(V ss)
φn

εχV ε−1
= (1− α)

󰀕
K

N

󰀖α

+ β
φn

εχV ε−1
(1− δn)

Using Kss, we can get that the steady-state capital to labor ratio is

K

N
=

󰀕
β−1 − 1 + δk

α

󰀖 1
α−1

Using V ss, we can additionally get that

V =

󰀕
εχ

φn

(1− α)

1− β(1− δn)

󰀕
K

N

󰀖α󰀖 1
1−ε

Using these, along with the conditions above, lets us identify the steady state levels of capital and labor.
Remark. It’s always good to try and find the steady state. First, we can often catch mistakes in the dynamic
equations. Second, we can see peculiarities in the model that would be hard to see otherwise. For example,
in this model it’s possible to find values of the parameters that would lead to negative consumption. That’s
strange, and it’s worth thinking about whether it’s a fundamental issue with the model or only occurs at
strange parameter values so not worth worrying about.

2.3 Log-Linearization Method

Algorithm. (Log Linearization of the Model) Define: Xt = [Kt, Nt−1, At] and Yt = [GDPt, It, Ct, Vt]. We
have the model equation (in General Model Form)

E [F (Xt, Yt, Xt+1, Yt+1)] = 0

Remark. This essentially uses the Euler equations and the Law of Iterated Expectations to bring all of our
equations together into one.

We have a number of strategies for solving this model (where solving means finding policy functions Yt =
g(Xt) and Xt+1 = h(Xt, εt+1)). In general, these are called perturbation techniques, but we will think about
linearization.

Approximation with (first-order) Taylor Expansions We will generally linearize around the steady state –
since we have a non-stochastic steady state, it makes to linearize around that state. The naive version of
the first-order expansion about the steady state is

E[F (Xss, Y ss, Xss, Y ss)󰁿 󰁾󰁽 󰂀
=0

+FX(Xt −Xss

󰁿 󰁾󰁽 󰂀
x̂t

) + FY (Yt − Y ss

󰁿 󰁾󰁽 󰂀
ŷt

) + FX′(Xt+1 −Xss

󰁿 󰁾󰁽 󰂀
x̂t+1

) + FY ′(Yt+1 − Y ss

󰁿 󰁾󰁽 󰂀
ŷt+1

)] = 0
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So this simplifies to
E[FX x̂t + FY ŷt + FX′ x̂t+1 + FY ′ ŷt+1] = 0

We want to find solutions (called undetermined coefficients, i.e. guess and check)

ŷt = gx̂t ; x̂t+1 = hx̂t + ηεt+1

Remark. We are not thinking about g and h as functions anymore – since the model is linearized, we
consider only linear solutions to it (i.e. matrices).
Remark. We often log-linearize rather than just linearize. This is just for percentage analysis, it doesn’t
change the analysis. Consider defining ℓt ≡ log(Lt), so ℓ̂t = ℓt − ℓss. We then have that

Xt = [Kt, Nt−1, At] =⇒ Xt = [kt, nt−1, at]

As an example, consider the capital evolution equation Kt+1 = (1− δk)Kt + It. We want to log-linearize it.
First, we have that

exp(kt+1) = (1− δk) exp(kt) + exp(it)

At the steady state, we have that the first order Taylor approximation is

exp(kss)(kt+1 − kss) = (1− δk) exp(k
ss)(kt − kss) + exp(iss)(it − iss)

k̂t+1 = (1− δk)k̂t +
Iss

Kss
ît

and since δk = Iss

Kss , we have that
k̂t+1 = (1− δk)k̂t + δk ît

Going back to the general approximation, the general strategy is to plug a ‘guess’ into the linearized model
equations, and simplify. First, note that

ŷt+1 = gx̂t+1 = gh(x̂t + ηεt+1)

which implies that
FX x̂t + FY gx̂t + FX′hx̂t + FY ′ghx̂t = 0

Collecting like terms, we get that

(FX + FY g + FX′h+ FY ′gh)x̂t = 0

This is a matrix quadratic, and we are finding g, h such that this holds for all x̂t. We want solutions that
do not imply divergent behavior in the economy. Ryan will provide code (called gx_hx.m) that will select
solutions that don’t diverge.
Definition. This solution gives us the impulse responses: we can get the difference in expected variable
values conditional on a shock happening versus conditional on a shock not happening. Think of it mathe-
matically as

E[Yt+j | εit = 1]− E[Yt+j | εit = 0]

At j = 0, we call this the impact effect .
Example. Consider the following example, starting at j = 0:

g

󰀳

󰁃Xt−1 + η

󰀵

󰀷
0
1
0

󰀶

󰀸

󰀴

󰁄− g

󰀳

󰁃Xt−1 + η

󰀵

󰀷
0
0
0

󰀶

󰀸

󰀴

󰁄 =⇒ gη

󰀵

󰀷
0
1
0

󰀶

󰀸

Linearity implies that Xt−1 does not matter, εm ∕=i
t does not matter, and the response scales linearly with
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the shock size.

At j = 1, we have that this becomes:

Xt+1 = h

󰀳

󰁃hXt−1 + η

󰀵

󰀷
0
1
0

󰀶

󰀸

󰀴

󰁄+ ηεt+1

so we have that

E[Yt+1 | εit = 1]− E[Yt+1 | εit = 0] = ghη

󰀵

󰀷
0
1
0

󰀶

󰀸+ gh2ηXt−1 + gηεt+1 − ghη

󰀵

󰀷
0
0
0

󰀶

󰀸 = gh1η

󰀵

󰀷
0
1
0

󰀶

󰀸

In general, for arbitrary j, we have that

E[Yt+j | εit = 1]− E[Yt+j | εit = 0] = ghjη

󰀵

󰀷
0
1
0

󰀶

󰀸

Remark. Some coding notes, recalling that Xt = [Kt, Nt−1, At] and Yt = [Ct, . . . , Nt]. First, note that this
model contains all of Nt−1, Nt, and Nt+1. We will find it useful to define N = Nt and NL = Nt−1, and
impose the additional constraint that NL′ = N .

Next, note that it might be useful to split Xt into the endogenous states and the exogenous states. We have
that, defining X1

t as the endogenous states and X2
t as the exogenous states,

󰀗
X1

t+1

X2
t+1

󰀘
=

󰀗
h1,1 h2,2

0 ρ

󰀘 󰀗
X1

t

X2
t

󰀘
+

󰀗
0
σ

󰀘
εt

Finally, note that e−12 ≡ 0 for doubles in Matlab. e−8 or e−10 or such are not equivalent to zero.

Second Moments. We will often want to care about the variance of consumption / etc. We will as-
sume that cov(εt) = Σεt = I (i.e. that the covariance matrix is the identity matrix, since the shocks are
independent and identically distributed). We could consider the equation

X̂t+1 = hX̂t + ηεt+1 =⇒ cov(X̂t)

Note that covariance is unconditional in this model, so we have cov(X̂t+1) = cov(X̂t) = ΣX . Taking the
covariance of each side, we get that

ΣX = E[(hX̂t + ηεt+1)(hX̂t + ηεt+1)
′] = E[hX̂tX̂t

′
h′] + E[ηεt+1ε

′
t+1η

′]

thus,
ΣX = hE[X̂tX̂

′
t]h

′ + ηIη′ = hΣXh′ + ηη′

We have a recursive expression for the covariance matrix of X. If we can identify a fixed point, we can
identify the covariance.
Remark. We could simply set ΣX to 0 and iterate, and that method is actually fairly good. We could also
solve using the Matlab program mom.m, which speeds it up a fair bit. However, we can also solve this using
linear algebra.
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We can linearize this as follows:

vec(ΣX) = (h⊗ h)󰁿 󰁾󰁽 󰂀
Kronecker
Product

vec(ΣX) + vec(ηη′)

Thus,
vec(ΣX) = (I − h⊗ h)−1vec(ηη′)

What if we instead wanted ΣY ? We have that

ΣY = cov(Ŷt) = cov(gX̂t) = E[gX̂tX̂
′
tg

′] = gΣXg′

Suppose that we’re interested in the auto-covariance of a variable, defined as cov(Ŷt, Ŷt−1). We have that

cov(Yt, Yt−1) = cov(g(hXt−1 + εt), gXt−1) = E[g(hXt−1 + εt)(gXt−1)
′] = ghΣXg′

and following that,
cov(Yt, Yt−j) = ghjΣXg′

2.3.1 An Old Macro Definition

The following is a simplification of Klein (2000). Define X̂t+1,t ≡ E[Xt+1], for any variable X. We have that

󰀅
FX′ FY ′

󰀆
󰁿 󰁾󰁽 󰂀

A

󰀗
X̂t+1,t

Ŷt+1,t

󰀘
+
󰀅
FX FY

󰀆
󰁿 󰁾󰁽 󰂀

B

󰀗
X̂t

Ŷt

󰀘
= 0

Proposition 2.1. (Ordered QZ Decomposition) (Generalization of Eigenvalues / Eigenvectors). For any
A, B there exist some Q,Z, S, T such that

QAZ = S and QBZ = T

We will enforce the following forms in Matlab:

S =

󰀗
S11 S12

0 S22

󰀘
T =

󰀗
T11 T12

0 T22

󰀘
Z =

󰀗
Z11 Z12

Z21 Z22

󰀘

where the top row of each matrix is associated with eigenvalues less than 1, and the bottom row is associates
with eigenvalues greater than 1. There should be NX eigenvalues less than 1, and NY eigenvalues greater
than 1, where NX is the number of state variables and NY is the number of jump variables. The relevant
eigenvalues are diag(S)/diag(T ).

Define: 󰀗
X󰂏

t

Y 󰂏
t

󰀘
= Z−1

󰀗
X̂t

Ŷt

󰀘
=⇒

󰀗
Z11 Z12

Z21 Z22

󰀘 󰀗
X󰂏

t

Y 󰂏
t

󰀘
=

󰀗
X̂t

Ŷt

󰀘

Proposition 2.2. X󰂏
t = Z−1

11 X̂t − Z−1
11 Z12Y

󰂏
t

Proof. We have that
󰀅
Z11 Z12

󰀆 󰀗X󰂏
t

Y 󰂏
t

󰀘
= X̂t =⇒ Z11X

󰂏
t + Z12Y

󰂏
t = X̂t
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Substituting this back, we get that

AZ

󰀗
X󰂏

t+1,t

Y 󰂏
t+1,t

󰀘
+BZ

󰀗
X󰂏

t

Y 󰂏
t

󰀘
= 0

Then left-multiplying by Q, we get that

QAZ

󰀗
X󰂏

t+1,t

Y 󰂏
t+1,t

󰀘
+QBZ

󰀗
X󰂏

t

Y 󰂏
t

󰀘
= 0 =⇒

󰀗
S11 S12

0 S22

󰀘 󰀗
X󰂏

t+1,t

Y 󰂏
t+1,t

󰀘
+

󰀗
T11 T12

0 T22

󰀘 󰀗
X󰂏

t

Y 󰂏
t

󰀘
= 0

where the bottom block becomes:
Y 󰂏
t = −T−1

22 S22Y
󰂏
t+1,t

Note that this is recursive, and if the eigenvalues of the matrix −T22S22 are less than 1 (which is true since
they are the inverses of the eigenvalues greater than 1 above), then

Y 󰂏
t = −0 · Y 󰂏

t+n,t = 0

and thus, we have that
X󰂏

t = Z−1
11 X̂t

Now we have that S11X
󰂏
t+1,t = −T11X

󰂏
t , which implies that

X󰂏
t+1,t = −S−1

11 T11X
󰂏
t where eigs(−S−1

11 T11) < 1

and
Z−1
11 X̂t+1,t = −S−1

11 T11Z
−1
11 X̂t =⇒ X̂t+1,t = −Z11S

−1
11 T11Z

−1
11󰁿 󰁾󰁽 󰂀

h

X̂t

Ŷt = Z21X
󰂏
t = Z21Z

−1
11󰁿 󰁾󰁽 󰂀

g

X̂t

This is coded in gx_hx_alt.m.

2.4 Shooting Method

Remark. We are going to solve the exact equations of our non-linear model in this case (so no approxima-
tions). However, we do make a major assumption:
Assumption 2.1. Agents have perfect foresight
Definition. An MIT Shock is a sudden change that agents in the economy did not perceive as possible
ex ante. This being called an MIT shock is a reference to the saltwater-freshwater divide. It’s a stylized
experiment, and not micro-founded, but it allows us to approach non-linearities in a principled way.
Remark. This shooting method is very common in modern non-heterogenous agent models.
Model. Real Business Cycles (n.b. this is the model the example code all uses) We will approach a simplified
version of this model:

Yt = AtK
α
t ; U(Ct) = log(Ct)

We are in a perfect foresight world (meaning no uncertainty over states, and no expectations), so we get the
Euler equation

Ct+1

Ct
= β

󰀃
At+1αK

α−1
t+1 + (1− δk)

󰀄

and the resource constraint

AtK
α
t = Ct +Kt+1 − (1− δk)Kt =⇒ Kt+1 = AtK

α
t + (1− δk)Kt − Ct
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For now, we fix At = 1 ∀ t.
Definition. A phase diagram is a two-dimensional figure that describes the movement of a model. Figure 1
is a simple one in the RBC model:

K

C

Kss

∆Ct = 0

∆K = 0

ss

K0

C󰂏
0

Figure 1: Phase Diagram for RBC Model

The steps to generating this are:

1. Find the line where ∆Ct = 0, fix Kss at that level

2. Suppose that Kt+1 = Kt (∆Kt = 0), so Ct = Kα
t − δkKt

3. Fix K0, and see where the economy would go at any initial C0. There exists a unique C󰂏
0 such that

(K0, C
󰂏
0 ) is saddle path stable. It is the unique stable equilibrium.

Remark. Intuitively, we are thinking about testing every possible C0, and figuring out which paths end up
at the steady state (and satisfy the model equations). We can also work this out algorithmically.
Algorithm. (Shooting Method) Fix some K0. Guess C0, which gives you K1 and C1. Repeat this T times
for “fairly large” T , ending with KT , CT . We then check if the economy is close to the steady state. Imagine
that we are making a function KT (K0, C0), and checking whether

KT (K0, C0)−Kss ≡ 0

Note well the concept of “fairly large” – we need enough periods to get to the steady state, but not so many
that we end with Inf or NaN or something like that. We will use fsolve in Matlab to work through this.
This function implements Newton-Raphson to find the optimal guess of C0. It will have issues around T ,
and the usual numerical issues for nonlinear equations, but is fairly consistent.
Remark. “This is Angry Birds!” – Ryan Chahrour, Ph.D.

We can also implement the opposite method!
Algorithm. (Reverse Shooting Method) We will guess some (KT , CT ) close to the steady state, and reverse
the logical process – get (KT−1, CT−1), then (KT−2, CT−2), all the way to (K0, C0). We now have a function
C0(CT ), and solve the equation

Kα
0 − C0(CT ) +K1 − (1− δk)K0 ⇐= fzero

This algorithm is nice because you tend to not have the Inf / NaN issues that the normal shooting method
runs into.

However, Ryan has his own preferred approach to shooting.
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Algorithm. (Chahrour Shooting) Fix K0, and fix CT = Css (an initial and a terminal condition). We will
guess an entire sequence of K’s and C’s. We want to guess

󰀳

󰁅󰁃
C0 C1 C2 · · · CT

K0 K1 K2 · · · Kt

󰀴

󰁆󰁄

Where K0 and CT are fixed. We will check the Euler equation and the resource constraint at every time
t, and will solve F ({C}, {K}) using (something similar to) fsolve. Intuitively, we are pinning down the
starting and ending points, and we correct the path at every point – rather than going through the whole
path and seeing how correct it is, we make small changes every step. Since the starting point is precise, we
know that it will not go to infinity or zero. It is very numerically stable, though it is slow.

Matching Models with Data: a short, somewhat unrelated comment Imagine that you have a
spectrum of how related the model is with the data. This might look something like

Informal
Guesses Calibration

Bayesian
Estimation

Maximum
Likelihood
Estimation

Informal guesses are informal guesses. Calibration has some parameters based on outside evidence, and some
chance to match a few moments of the data. Bayesian Estimation is more formal, uses a likelihood function,
but naturally incorporates priors. Maximum likelihood estimation has no priors, and is all based on the
data.

2.5 Lagrangian Approach (Decentralized)

Model. (Decentralized Labor Search) Before this, we’ve been working on the social planner’s problem. Often,
we can reference the Welfare Theorems to say that this is equivalent to the decentralized model. We cannot
do this here, so we will work through the households, firms, and market clearing conditions to find a solution.

Households Our households are relatively simple, because they don’t make a labor choice. They solve
the Lagrangian

max
{Ct,Γt}

E
∞󰁛

t=0

βt

󰀝
C1−σ

t

1− σ
+ λt [WtNt + Γt−1(Dt + Pt)− Ct − ΓtPt]

󰀞

where Ct is consumption, σ is the coefficient of relative risk aversion, λt is the Lagrange multiplier on the
budget constraint, Wt is the wage rate, Nt is the amount of labor supplied by the household, Γt is the
number of shares of the company owned, Dt is the dividend per share, Pt is the price of a share, and β is
the discount factor. Everything is indexed to time t.

The household’s first order conditions are

C−σ
t = λt (C)

λtPt = β E [λt+1(Dt+1 + Pt+1)] (Γ)
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The second FOC becomes

Pt = β E

󰀵

󰀹󰀹󰀹󰀹󰀷

󰀕
Ct+1

Ct

󰀖−σ

󰁿 󰁾󰁽 󰂀
Stochastic

Discount Factor

(Dt+1 + Pt+1)

󰀶

󰀺󰀺󰀺󰀺󰀸

Note that Γt = 1 for a representative agent model.

Firms The firm’s problem assumes that they take wages and the probability that a vacancy gets filled as
given. They solve the Lagrangian

max
{Yt,It,Vt,Kt+1,Nt+1}

E
∞󰁛

t=0

βt

󰀫
λt

λ0
[Yt −WtNt − It − φnVt]

+
1

λ0
Γ1,t [(1− δn)Nt−1 + VtQt −Nt]

+
1

λ0
Γ2,t[(1− δk)Kt + It −Kt+1]

+
1

λ0
Γ3,t

󰀅
AKα

t N
1−α
t − Yt

󰀆
󰀬

The firm’s first order conditions are

λt = Γ3,t (Y )

λt = Γ2,t (I)

Γ1,t = λt
φn

Qt
(V )

Γ2,t

λ0
= β E

󰀥
Γ3,t+1

λ0
At+1α

󰀕
Kt+1

Nt+1

󰀖α−1

+
1

λ0
Γ2,t+1(1− δk)

󰀦
(K)

0 = −λt

λ0
Wt −

1

λ0
Γ1,t +

1

λ0
Γ3,tAt

󰀕
Kt

Nt

󰀖α

(α− 1) +
β

λ0
E[Γ1,t+1(1− δn)] (N)

We can reorganize these first order conditions as

φn

Qt󰁿󰁾󰁽󰂀
Cost

= At

󰀕
Kt

Nt

󰀖α

(1− α)−Wt

󰁿 󰁾󰁽 󰂀
Net Benefit, MPLt−Wt

+β E

󰀵

󰀹󰀹󰀹󰀷
λt+1

λt
(1− δn)

φn

Qt+1󰁿 󰁾󰁽 󰂀
Expected Savings Tomorrow

󰀶

󰀺󰀺󰀺󰀸
(Decentralized)

Recall that the Social Planner’s Problem gave:

φn

Mv(·)
= At

󰀕
Kt

Nt

󰀖α

(1− α) + β E
󰀗
λt+1

λt
(1− δn)

φn

Mv(·)

󰀘
(Social Planner)

where Mv(·) = χεV ε−1
t S1−ε

t . Consider the differences in these two equations. We have that the probability
of a vacancy being matched is defined as

Qt =
Matches
Vacancies

=
χV ε

t S
1−ε
t

Vt
= χ

󰀕
St

Vt

󰀖1−ε
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while the marginal increase in the number of jobs created by a marginal posting is

Mv(Vt, St) = χε

󰀕
St

Vt

󰀖1−ε

If we plug these into our above Euler equations, we get that

φn

χ

󰀕
Vt

St

󰀖1−ε

= MPLt−Wt + β E

󰀥
λt+1

λt
(1− δn)

φn

χ

󰀕
Vt+1

St+1

󰀖1−ε
󰀦

(Decentralized)

φn

χε

󰀕
Vt

St

󰀖1−ε

= MPLt + β E

󰀥
λt+1

λt
(1− δn)

φn

χε

󰀕
Vt+1

St+1

󰀖1−ε
󰀦

(Social Planner)

The first difference is that the social planner can internalize the fact that the probability of a successful
matching decreases when an additional vacancy is posted (ε), but the firm in the decentralized economy
cannot do that.

The second difference is that in the decentralized economy, the firm gets lower benefits than the marginal
social benefits (−Wt), as they only get to keep the marginal product after paying the wage, while the social
planner just experiences the entire marginal product as a benefit.

These two models coincide only if
εMPLt = MPLt −Wt

Market Clearing In a market clearing setting, we will necessarily have that for the shares, Γt = 1.
Treating Γt as a choice variable is useful only for pricing the firm’s shares. We will also have that the
matching function from before holds when the market clears – reprinting it, we have that

Qt =
Matches
Vacancies

=
χV ε

t S
1−ε
t

Vt
= χ

󰀕
St

Vt

󰀖1−ε

We also technically have that output clears, meaning that Yt = Ct + It + φnVt. The first and third of these
conditions are largely trivial, the real relevant one is Qt.

Nash Bargaining of Wages Above, we identified that the decentralized economy coincides with the
social planner’s problem only if εMPLt = MPLt −Wt. Let’s think more about when this might happen.
In general, in search models there is a surplus for a match, for both the worker and the firm. Let’s assume
that the worker gets zero earnings for not having a job. Any wage between 0 and MPLt (+ continuation)
would be consistent with equilibrium. We have that the continuum of possible wages is

0
MPLt

(+ continuation)

Household
outside
option

Firm value
before wage

payment

W

Split of
surplus

We will think of a particular wage paradigm, known as Nash bargaining , in which workers and firms bargain
over the current wage, taking as given the wage that will be realized in future periods.

First, we need to calculate the surplus that the firms and the workers receive for a given equilibrium wage.

58



Denote W̄t(wt) to be the workers’ surplus and Jt(wt) to be the firms’ surplus. Given relative bargaining
power η and (1− η) for both sides, the Nash bargaining solution maximizes:

max
wt

[W̄t(wt)]
η[Jt(wt)]

1−η

which captures the idea that firms and workers share the surplus of a match according to their bargaining
powers.

Let’s find closed forms for the worker and firm surplus. For the firm, their outside option is zero, because
they will pay no wage and earn no profit. If they do make an agreement, their value is

Jt(wt) = MPLt − wt󰁿 󰁾󰁽 󰂀
Today’s profits

+β(1− δn)E

󰀥󰀕
Ct+1

Ct

󰀖−σ

Jt+1

󰀦

󰁿 󰁾󰁽 󰂀
Future value if not separated

Note that the worker’s benefits of not being matched should be zero – we think that they get no wage and
no dividends. We are assuming that St = 1, so the additional unemployed worker does not affect the stock
tomorrow. Their benefits if they do get matched are

W̄t(wt) = wt󰁿󰁾󰁽󰂀
Today’s wage

+β(1− δn)E

󰀥󰀕
Ct+1

Ct

󰀖−σ

W̄t+1

󰀦

󰁿 󰁾󰁽 󰂀
Future value if not separated

+βδn E

󰀥󰀕
Ct+1

Ct

󰀖−σ

Ūt+1

󰀦

󰁿 󰁾󰁽 󰂀
Unemployment benefits; =0

Taking first order conditions of the problem with respect to wt, we get that

ηW̄t(wt)
η−1Jt(wt)

1−η + W̄t(wt)
η(1− η)Jt(wt)

−η = 0

which rearranges to
W̄t(wt) =

η

1− η
Jt(wt)

Substituting the analytic forms for W̄ and J , and using this equation again, we get that

η

1− η

󰀫
MPLt − wt + β(1− δn)E

󰀥󰀕
Ct+1

Ct

󰀖−σ

Jt+1(wt)

󰀦󰀬
= wt+β(1− δn)E

󰀵

󰀹󰀹󰀹󰀷

󰀕
Ct+1

Ct

󰀖−σ
η

1− η
Jt+1(wt)

󰁿 󰁾󰁽 󰂀
W̄t+1(wt)

󰀶

󰀺󰀺󰀺󰀸

Simplifying, we get that

η(MPLt − wt) = (1− η)wt =⇒ w󰂏
t = Wt = η ·MPLt + (1− η) · 0

which is the solution to the Nash bargaining problem. The decentralized problem and the social planner’s
problem coincide only if η = 1− ε, which we call the Hosios Condition (after Hosios (1990)).

Intuition. Remember that this is not a First Welfare Theorem (Theorem 1.1) economy. The fact that
there can be efficiency here is actually somewhat strange – we would not expect that. However, we can think
about this as a sort of balancing act between the private benefit of hiring a worker and the social benefit of
hiring a worker. We can think about the following conditions:
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Private Benefit = MPLt −Wt < Social Benefit = MPLt

Private Cost =
φn

χ

󰀕
Vt

St

󰀖1−ε

< Social Cost =
φn

χε

󰀕
Vt

St

󰀖1−ε

The first inequality would indicate that firms tend to under-hire, and the second would indicate that firms
tend to over-hire. The Hosios Condition is the exact point where they exactly cancel out, and the firm hires
at exactly at the social optimum. When η > 1− ε, firms under-hire (because worker bargaining power is too
high), and when η < 1− ε, firms over-hire (because firm bargaining power is too high).

2.6 Value Function Approach (Social Planner)

Roadmap. We have seen the same problem through the social planner’s perspective and the decentralized
perspective, using the same strategy – solving the Lagrangian. We will now move to the same problem(s),
solved through value function iteration. We’ve also seen two main techniques – log-linearization, which is
linear but allows for uncertainty, and the shooting method, which is nonlinear but assumes perfect foresight.
Both of these techniques can solve both the planner’s problem and the decentralized problem, but say nothing
about the value function.

Value function iteration is both nonlinear and allows for uncertainty, but can only solve the planner’s problem
– it works through the value function, which cannot be used in a decentralized way.

After value function iteration, we will explore projection methods, which are nonlinear, allow for uncertainty,
and work for both the planner’s problem and the decentralized problem; at the cost of time of implementation.
We will explore that through the Lagrangian approach.
Model. Value Function (Social Planner) The social planner has the Bellman Equation:

V (Kt, Nt−1, At) = max
Kt+1,Nt

Ut(Ct) + β E [V (Kt+1, Nt, At+1)]

subject to

Ct = Yt − It − φnVt

= AtK
α
t N

1−α
t − (Kt+1 − (1− δk)Kt)− φn

󰀕
Nt − (1− δn)Nt−1

χ

󰀖 1
ε

where the second equality uses the fact that Yt = AtK
α
t N

1−α
t , It = Kt+1 − (1 − δk)Kt, and rearranging

Nt = (1− δn)Nt−1 + χV ε
t S

1−ε
t , we get that

Vt =

󰀕
Nt − (1− δn)Nt−1

χ

󰀖 1
ε

Substituting into the planner’s Bellman equation, it becomes

V (Kt, Nt−1, At) = max
Kt+1,Nt

Ut

󰀣
AtK

α
t N

1−α
t − (Kt+1 − (1− δk)Kt)− φn

󰀕
Nt − (1− δn)Nt−1

χ

󰀖 1
ε

󰀤

+ β E [V (Kt+1, Nt, At+1)]
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The first order conditions are:

(Kt+1) 0 = −U ′(Ct) + β E[VK(Kt+1, Nt, At+1)]

(Nt) 0 = U ′(Ct)

󰀥
−φn

χε

󰀕
Nt − (1− δn)Nt−1

χ

󰀖 1−ε
ε

+At

󰀕
Kt

Nt

󰀖α

(1− α)

󰀦
+ β E[VN (Kt+1, Nt, At+1)]

Envelope Theorem Aside. We need to take the derivatives of VK(·) and VN (·). The Envelope Theorem
tells us that we can ignore the chain rule in taking these, and proceed with just the obvious terms. We will
do a quick proof for VK(·).

Suppose that we know the policy functions already, and call them Kt+1 = K(Kt, Nt−1, At) and Nt =
N(Kt, Nt−1, At). Our value function is now:

V (Kt, Nt−1, At) =U

󰀣
AtK

α
t N(·)1−α − (K(·)− (1− δk)Kt)− φn

󰀕
N(·)− (1− δn)Nt−1

χ

󰀖 1
ε

󰀤

+ β E[V (K(·),N(·), At+1)]

Note that we don’t have the max operator anymore! We can take the derivative with respect to Kt, using
all of the appropriate chain rules. We get that

VK(Kt, Nt−1, At) = U ′(Ct) ·
󰀥
At

󰀕
Kt

Nt

󰀖α−1

α+ (1− δk)

󰀦

− U ′(Ct) ·
∂K
∂Kt

+ β E [VK(Kt+1, Nt, At+1)]
∂K
∂Kt

+ U ′(Ct)

󰀥
φn

εχ

󰀕
Nt − (1− δn)Nt−1

χ

󰀖 1−ε
ε

+At

󰀕
Kt

Nt

󰀖α

(α− 1)

󰀦
∂N
∂Kt

+ β E [VN (Kt+1, Nt, At+1)]
∂N
∂Kt

However, from our first order conditions above, if we are at an optimum, we have that the second line should
evaluate to zero! Also, the third and fourth lines should evaluate to zero! We finally have that

VK(Kt, Nt−1, At) = U ′(Ct) ·
󰀥
At

󰀕
Kt

Nt

󰀖α−1

α+ (1− δk)

󰀦

Back to FOCs. Using the Envelope Theorem, we have that

VK(Kt, Nt−1, At) = U ′(Ct) ·
󰀥
At

󰀕
Kt

Nt

󰀖α−1

α+ (1− δk)

󰀦

VN (Kt, Nt−1, At) = U ′(Ct) ·
󰀥
φn

εχ

󰀕
Nt − (1− δn)Nt−1

χ

󰀖 1−ε
ε

(1− δn)

󰀦
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Combining the first order conditions and the Envelope Theorem results, we get that

U ′
t(·) = β E

󰀥
U ′
t+1(·)

󰀣
At+1

󰀕
Kt+1

Nt+1

󰀖α−1

α+ (1− δk)

󰀤󰀦

U ′
t(·)

󰀥
φn

εχ

󰀕
Nt − (1− δn)Nt−1

χ

󰀖 1−ε
ε

󰀦
= U ′

t(·)
󰀗
At

󰀕
Kt

Nt

󰀖α

(1− α)

󰀘

+ β E

󰀥
U ′
t+1(·)

󰀣
φn

εχ

󰀕
Nt+1 − (1− δn)Nt

χ

󰀖 1−ε
ε

(1− δn)

󰀤󰀦

Rearranging and imposing the functional form for the matching function, these clearly become the capital
and labor Euler equations we found above in the planner’s problem.

2.7 Mathieu Interlude (Labor Search Formalities)

Motivation. We spent a lot of time last quarter on the neoclassical growth model. It has some distinct
drawbacks: it assumes a unique labor market with a market clearing wage; it does not capture the process
of finding a job particularly well (think search, vacancy posting, matching, bargaining, etc.); and there is no
unemployment! We turn to a new class of models that take these details seriously, for which Peter Diamond,
Christopher Pissarides, and Dale Mortensen won the 2010 Nobel Prize.

For this section, we reference Ljundqvist and Sargent chapters 6 and 26, as well as Roger, Shimer, & Wright
(2005) and Pissarides (2000).

Math preliminaries Let p be a random variable with CDF F (P ) = P{p ≤ P}. Assume that F (0) = 0,
F (∞) = 1, and F continuous from the right. Assume that p is bounded above with probability 1 – so
∃ B s.t. F (B) = 1. Recall that the mean of p is given by

E[p] =
󰁝 B

0

pdF (p)

Letting u = 1− F (p) and v = p, we can integrate by parts and get that

E[p] =
󰁝 B

0

pdF (p) =

󰁝 B

0

(1− F (p))dp = B −
󰁝 B

0

F (p)dp

Now consider two independent random variables p1, p2 ∼ F and consider the event {(p1 ≤ p) ∩ (p2 ≤ p)}.
This event happens with probability (F (p))2, and this is equivalent to the event {max{p1, p2} ≤ p}. Using
our previous result, we have that

E[max{p1, p2}] = B −
󰁝 B

0

F (p)2dp

Generalizing with n independent draws, we get that

Mn ≡ E[max{p1, p2, . . . , pn}] = B −
󰁝 B

0

F (p)ndp

Stigler Model
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Model. Stigler Search Model (from Stigler (1961)) This is a partial equilibrium model of an agent looking
for a job. We have a risk-neutral agent who samples i.i.d. wages from some distribution F (w) with the
earlier assumptions. Their ex ante decision of how many wages to gather is n, and getting a wage offer has
cost c. How many offers should they ask for?
Definition. The expected gain from an additional draw is

Gn = Mn −Mn−1 = B −
󰁝 B

0

F (p)ndp−
󰀣
B −

󰁝 B

0

F (p)n−1dp

󰀤

=

󰁝 B

0

F (p)n−1dp−
󰁝 B

0

F (p)F (p)n−1dp

=

󰁝 B

0

F (p)n−1(1− F (p))dp

Note that Gn decreases with n, and limn→∞ Gn = 0. The optimal rule is to pick n such that Gn ≥ c > Gn+1.
Question. What’s weird with this model? Static search. We tend to think of searching for a job as a
sequential thing, not a single time drawing a large number of wages. McCall (1970) fixes this.

Consider a class of distributions F (p, r) = P{Pr ≤ p) indexed by r ∈ R. F (p, r) is differentiable with regard
to r for all p ∈ [0, B], and there exists B ∈ R such that F (B, r) = 1, and F (0, r) = 0 ∀ r ∈ R. Since
E[p] = B −

󰁕 B

0
F (p, r)dp, two distributions with the same

󰁕 B

0
F (p, r)dp have the same mean.

Definition. We say that a distribution r2 is a mean-preserving spread of a distribution r1 if

1. Identical means condition: 󰁝 B

0

(F (θ, r1)− F (θ, r2))dθ = 0

2. Single-crossing property: There exists θ̂ ∈ (0, B) such that

F (θ, r2)− F (θ, r1) ≤ 0 (≥ 0) when θ ≤ (≥) θ̂

This is illustrated in Figure 2.

F (θ, r)

θB

1

F (θ,r1)

F (θ,r2)

Figure 2: Mean-Preserving Spreads
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Properties 1 and 2 imply that
󰁝 y

0

(F (θ, r2)− F (θ, r1))dθ ≥ 0 ∀ y ∈ [0, B]

For infinitesimal changes in r, an increase in r is said to represent a mean-preserving increase in risk if
󰁝 B

0

Fr(θ, r)dθ = 0 and
󰁝 y

0

Fr(θ, r)dθ ≥ 0 ∀ θ ∈ [0, B]

where Fr(θ, r) =
∂F (θ,r)

∂r .
Model. McCall Labor Search (from McCall (1970)) An agent searches for a job, taking market conditions
as given. Each period the agent draws one offer w ∼ F (W ), where F (0) = 0 and F (B) = 1 for some B < ∞.
The agent can accept or reject the offer. If she rejects, she gets c today and draws another offer tomorrow.
If she accepts, she receives w per period forever.

The agent maximizes

E

󰀥 ∞󰁛

t=0

βtyt

󰀦

where yt = c if she is unemployed and yt = w if she is employed at wage w.

Solving the model. Denote by v(w) the expected value of an offer w for an agent who is deciding whether
or not to accept the offer or reject it. If she behaves optimally, we have

v(w) = max

󰀝
w

1− β
, c+ β

󰁝
v(w′)dF (w′)

󰀞

The solution of this Bellman equation is of the form

v(w) =

󰀫
w̄

1−β = c+ β
󰁕
v(w′)dF (w′) if w ≤ w̄

w
1−β if w > w̄

where w̄ is called the reservation wage. The agent’s value function is illustrated in Figure 3.

v

w̄
1−β = Q

w̄ w

1
1−β

v(w)

Reject the offer Accept the offer

Figure 3: Value per Wage Offer
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How do we find w̄? At w = w̄, the agent is indifferent, so

w̄

1− β
= c+ β

󰁝 w̄

0

w̄

1− β
dF (w′) + β

󰁝 B

w̄

w′

1− β
dF (w′)

or
w̄

1− β

󰁝 w̄

0

dF (w′) +
w̄

1− β

󰁝 B

w̄

dF (w′) = c+ β

󰁝 w̄

0

w̄

1− β
dF (w′) + β

󰁝 B

w̄

w′

1− β
dF (w′)

or

w̄

󰁝 w̄

0

dF (w′)− c =
1

1− β

󰁝 B

w̄

(βw′ − w̄)dF (w′)

Adding w̄
󰁕 B

w̄
dF (w′) to both sides, we get

w̄ − c =
β

1− β

󰁝 B

w̄

(w′ − w̄)dF (w′)

= β E
󰀗
w′ − w̄

1− β

󰀏󰀏󰀏󰀏w
′ ≥ w̄

󰀘
P {w′ ≥ w̄}

where the left hand side is the cost of searching one more time with offer w̄ in hand, and the right hand side
is the surplus from searching one more time and getting a better offer. These two things must be equal if
the agent is optimizing: MR = MC.

We can define the function

h(w) :=
β

1− β

󰁝 B

w

(w′ − w)dF (w′)

Note that:

h(0) = E
󰀗

βw

1− β

󰀘

h(B) = 0

h(w) is differentiable

h′(w) = − β

1− β
(1− F (w)) < 0

h′′(w) =
β

1− β
F ′(w) > 0

h(w) is illustrated in Figure 4.
Question. What happens when the environment changes? Let’s manipulate the equations a bit more.

w̄ − c =
β

1− β

󰁝 B

w̄

(w′ − w̄)dF (w′) +
β

1− β

󰁝 w̄

0

(w′ − w̄)dF (w′)− β

1− β

󰁝 w̄

0

(w′ − w̄)dF (w′)

=
β

1− β
E[w]−

β

1− β
w̄ − β

1− β

󰁝 w̄

0

(w′ − w̄)dF (w′)

or

w̄ − (1− β)c = β E[w]− β

󰁝 w̄

0

(w′ − w̄)dF (w′)
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E
󰁫

βw
1−β

󰁬

−c

w̄ w

h(w)

w − c

Figure 4: Finding the Reservation Wage, part 1

Integrating by parts, we get

w̄ − c = β(E[w]− c) + β

󰁝 w̄

0

F (w′)dw′ ≡ β(E[w]− c) + βg(w̄)

This relationship is illustrated in Figure 5.

β(E[w]− c)

−c

w̄ w

h(w)

w − c

β(E[w]−c)+βg(w)

Figure 5: Finding the Reservation Wage, part 2

Question. What happens when c increases? Both curves move to the right, the reservation wage increases.
Question. What happens when there is a mean-preserving increase in risk? g(w̄) increases, meaning that
the reservation wage increases. Intuition: there are more bad jobs, but we don’t care about those. Instead,
the agent sees the upside of the better jobs that are available.

Problems with the model. Firm behavior isn’t considered, but it gets weird. Workers follow a reservation
wage strategy, so firms do not gain anything for posting w > w̄. Firms also do not hire anyone when they

66



post w < w̄. Therefore, F (w) will have a unit mass at w̄ (Rothschild (1974)). Moreover, from Diamond
(1971),

w̄ − c = β(E[w]− c) + β

󰁝 w̄

0

F (w′)dw′

w̄ − c = β(w̄ − c)

w̄ = c

Intuition? Firms know that they can post at w̄ and get that everyone will accept. Then workers will re-
optimize, and w̄ will decrease, and the process will repeat. We will unravel, until w̄ = c, the theoretical
minimum.

2.8 Value Function Iteration

Numerically, we are going to be finding a value function (and associated policy functions) that satisfy

V (Kt, Nt−1, At) = max
Kt+1,Nt

Ut(Ct) + β E [V (Kt+1, Nt, At+1)]

We need to make some choices:

1. How should we summarize the state space? Traditionally, we use a discrete grid. We will use an
even grid for Kt and Nt−1, and will use either the Tauchen process (from Mathieu’s section) or the
Rouwenhorst Method (in the sample code, and see Kopecky and Suen (2009) for more).

2. How should we compute expectations? Using the Rouwenhorst approximation weights, essentially.

3. How do we solve for the maximum? We simply optimize over the discrete grid.

2.9 Projection Methods

We will begin talking about projection methods, a functional approximation of the problem. Projection
methods, as talked about above, are slow but very precise, and deal with nonlinearities nicely.

The theoretical object we are concerned with is h(x), the continuous policy function. We will approximate
it as

ĥ(x) =

N󰁛

n=1

an󰁿󰁾󰁽󰂀
Weights

bn(x)󰁿 󰁾󰁽 󰂀
Basis functions

These basis functions will end up being simple functions in the mathematical sense as well, which is lovely!
Mainly, we care about them being numerically simple. We will ideally solve the problem

min
{an}

󰁝

X
(h(x)− ĥ(x))2dx

Practically, we will minimize
min
{an}

󰁛

i∈X
wi(h(xi)− ĥ(xi))

2

Special Case. When |X | = N , we will often be able to find an exact solution, where the minimization
problem goes to zero. This is called interpolation.
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We will make two key choices: the basis functions and the loss function (or interpolation points). We are
assuming least squares above, but this would also include the weights wi.

Choosing Basis Functions. We have three common choices for basis function:

1. Taylor Polynomial. In the scalar case, we have:

a0 + a1x+ a2x
2 + · · ·+ aNxN

Positives: this is differentiable. Negative: slow-spanning.

2. Chebyshev Polynomials. These are polynomials which are composed of trigonometric transformations.
There’s not a nice closed form for arbitrary h, but they have some nice properties generally.

Positives: also differentiable, and quick-spanning. Negative: weird behavior off-grid.

3. Finite element basis functions. These only have local support, and are represented with linear ‘hat’
functions. They are functions which are linear, and a maximum of two of them are non-zero at any
one time. We can imagine that we know h(x) at x = {0, 1, 2, . . . , 6}, and we define h as a weighted
average of the relevant basis functions ωi with weights bi:

min
{bi}

󰁛

xj

󰀣
h(xj)−

6󰁛

i=0

aiωi(xj)

󰀤2

where
󰁓6

i=0 aiωi(xj) = ĥ(xj). It’s easiest to think of these graphically.

0
0

1

1 2 3 4 5 6

ω0 ω1 ω2 ω3 ω4 ω5 ω6

x

x

x

x
x

x
x h(x)

As you can see, with finite points we can easily solve the optimization problem by setting ai = h(xi).
Finding the weights {ai} for any basis function wi(x) on grid points x0, x1, . . . , xn, where n is not
necessarily equal to the number of basis functions. We want that

󰀵

󰀹󰀹󰀹󰀷

h(x0)
h(x1)

...
h(xn)

󰀶

󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀷

w0(x0) w1(x0) · · ·
w0(x1) w1(x1) · · ·

... · · ·
. . .

w0(xn) w1(xn) · · ·

󰀶

󰀺󰀺󰀺󰀸
·

󰀵

󰀹󰀹󰀹󰀷

a0
a1
a2
...

󰀶

󰀺󰀺󰀺󰀸
+

󰀵

󰀹󰀹󰀹󰀷

ε0
ε1
ε2
...

󰀶

󰀺󰀺󰀺󰀸

where εi represents the error. If this was an interpolation case, the matrix would be square and εi
would go to zero and we would have a unique fit. In the general case, this is a least squares problem.
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Remark. (1) and (2) are global basis functions, that are non-zero for all x. (3) is local, and will only be
non-zero for some x.
Remark. Ryan has a nice example in his sample code of doing this with a strange (sort of logistic?) function.

Some Thoughts on Projection. Recall our generic macro model function from before:

E [f(Xt, Yt, Xt+1, Yt+1)] = 0

Our goal is to find policy functions Yt = g(Xt), Xt+1 = h(Xt, εt+1). These functions are smooth, infinite-
dimensional (actually, uncountably dimensional) objects. However, they do satisfy

E [f(Xt, g(Xt), h(Xt, εt+1), g(h(Xt, εt+1)))] = 0

meaning that we can convert the model into terms of just the state variables and the shocks. The idea of
the projection strategy is that we will replace g(·) and h(·) with approximations:

ĝ(·) =
󰁛

agnbn(Xt) and ĥ(·) =
󰁛

ahnbn(Xt)

Thus,
E
󰁫
f(Xt, ĝ(Xt), ĥ(Xt, εt+1), (ĝ ◦ ĥ)(Xt, εt+1))

󰁬
= 0

Our goal is to find {agn, ahn} such that this is satisfied as well as possible.

We need to think about a few things:

1. Unlike above, we now do not know the true h(·), g(·). Instead, they are implicitly defined by the macro
model function above. We want to use that equation to get feedback on how good our approximations
are.

2. We need a metric to actually get any feedback. Ryan proposes least squares on some grid of states –
note that we need to declare a grid here! This choice of metric is where the term projection is coming
from.

(a) We can’t use OLS, since the problem is nonlinear. Instead we will use the function lsqnonlin in
Matlab.

(b) If n(states) = n(parameters), then this is often called collocation. Note that the states is the
number of grid points, and the number of parameters is the subscript on a.

3. Computing E[ · ] is hard. Ryan proposes we use Gaussian-Hermite Quadrature.

4. We know the part of h(·) that corresponds to exogenous processes (e.g. At). We will just use the “true”
exogenous process for At and only find ĥ(·) for endogenous states.

Definition. Gaussian-Hermite Quadrature (GHQ, link) is a method to compute expected values. Thinking
back, we would ideally want to integrate f with respect to the density of the exogenous shocks. However,
that would be incredibly hard to do – it’s a complicated object. GHQ is a way of approximating that integral,
especially when the density of the shocks is a Gaussian density. It will take a grid over ε, and evaluate the
integral over those points. Generically, the approximation for

󰁝
f(ε)φ(ε)dε

is essentially a Riemann sum, or a trapezoidal integration approximation. The Gaussian-Hermite strategy
will (cleverly) choose the grid such that the integral is exact for polynomials of order 2N − 1 (or less) if N
is the number of grid points. Ryan has code that does this.
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2.10 Projection Methods Application (RBC Model)

Recall that the Real Business Cycle model is described by log(Ct) − χht. This can be reduced to the
equations:

C−1
t = β E

󰀥
C−1

t+1

󰀣
At+1α

󰀕
Kt+1

ht+1

󰀖α−1

+ 1− δk

󰀤󰀦
(Capital FOC)

Ct = At(1− α)

󰀕
Kt

ht

󰀖α

χ−1 (Labor FOC)

Our goal is to find the policy functions h(At,Kt) and K(At,Kt). Consider the following (pseudocode)
algorithm:
Algorithm. The process is as follows:

1. Initialization: We first choose a grid on the state space {Ai} and {Ki}. We will use the basis
functions, and guess initial weights ahn, aKn to compute ĥ(·) =

󰁓
ahnbn(A,K) and K̂(·) =

󰁓
aKn bn(A,K).

We will then use Gaussian-Hermite Quadrature to get {εm} and weights {pm}.

2. Residual Function: We will introduce a function computing the residuals based on {ahn}, {aKn }, and
other fixed parameters.

(a) This function will loop over i, which indexes all possible combinations of A and K, and for each
point in the initial state grid we will compute hi = ĥ(Ai,Ki) and (Ki)′ = K̂(Ai,Ki).

(b) Then, we will compute Ci using the resource constraints, and we can move on to potential futures,
with our computed present values. Still in the initial loop, we will loop over m, which indexes the
integration nodes from GHQ. We will have (Ai,m)′ = exp(ρ log(Ai) + εm), (Ki,m)′ = (Ki)′, and
(hi,m)′ = ĥ((Ai,m)′, (Ki,m)′). Finally, we will compute (Ci,m)′ using the resource constraints, and
end the m loop.

(c) Now, back in the i loop, we will compute expectations from the Capital and Labor FOC. We will
compute the following:

RHSi
1 = β

󰁛

m

pm

󰀥
(Ci,m)′

󰀣
(Ai,m)′α

󰀕
(Ki,m)′

(hi,m)′

󰀖α−1

+ 1− δk

󰀤󰀦

and we have that the computed residuals are ri1 and ri2, which are defined as:

ri1 := (Ci)−1 − RHSi
1

ri2 := Ci −Ai(1− α)

󰀕
Ki

hi

󰀖α

χ−1

(d) Finally, we will end the loop, and return the vectors {ri1}, {ri2}.

3. Solve: Use a function solver (in Matlab, fsolve) to find the {ahn, aKn } that solve the residual function.

2.11 Business Cycles and Macroeconomic News

Consider the following quote, from Robert Lucas: “One is led by the facts to conclude that, with respect to
the qualitative behavior of comovements among series, business cycles are all alike.”
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Going back in time, for the 1980s and 1990s, ‘surprise technology’ was the main business cycle shock. Barro
& King (1984) consider the planner’s problem of the real business cycle model, and solve

maxE

󰀥 ∞󰁛

t=0

βt (log(Ct)− χLt + λt(rtKt + wtLt − Ct − It))

󰀦

The first order conditions give us

1

Ct
= λt (Ct)

χ = λtwt = λtAt(1− α)Kα
t L

−α
t (Lt)

Combining, we get

Ct =
1

χ
At(1− α)Kα

t L
−α
t (FOC Constraint)

This equation is a very powerful argument for considering technology shocks as business cycle shocks. Note
that Kt is predetermined. If we wanted Ct and Lt to go in the same direction is by changing At – everything
else is exogeneous. If At increases, then Lt could increase and Ct would still increase.

We want C and L to move together – from Lucas above (and also just qualitative intuition). The only way
to do that in rational expectations models is by technology changing.

In the 1980s and early 1990s, macroeconomics was mostly about calibrating the process by which At changed,
and seeing if that could explain elements such as the variance, covariance, etc. of Ct, Lt, and It. Breaking
the first order condition is hard, because we can’t do it in a microfounded way – this is our straitjacket, and
it very much limits how we think about business cycles.

In 1994, John Cochrane wrote Shocks, in which he talks about being unhappy with macroeconomics. His
argument is that (i) technology is precisely measurable, and there is no empirical evidence that At moves at
the same time as Ct, Lt, It; and (ii) all of the other candidate shocks (monetary policy, oil prices, government
spending, etc.) that we could measure have their own issues. His conclusion is that maybe something like
macroeconomic ‘news’ could do the trick – anticipation of future changes. There are two main issues with
this: it’s incredibly hard to measure the news, and doing so would still necessitate changing the models.

In the late 1990s, there is the development of New Keynesian Macroeconomics. The really big innovation
is that new Keynesianism breaks the FOC constraint in a (at least somewhat) micro-founded way: sticky
prices. In the New Keynesian literature, at least one of the following holds:

w ∕= marginal product of labor or w ∕= marginal disutility of labor

Sticky wages lead to the first, and sticky prices lead to the second. Next semester, Chris Neimark will go
through this. This literature tends to focus on monetary policy shocks which, ironically, means that surprise
At shocks generally do not give comovement the way we want. The culmination of this is Christiano,
Eichenbaum, and Evans (2005), which matched a lot of shocks and frictions. This paper is extremely
important and successful, and also a strawman for people arguing against this literature.

Another paper is Beaudry and Portier (2006), which uses structural autoregression to identify evidence of
news shocks. They are using stock prices, and essentially looking for news that moves stock prices today, as
evidence for macroeconomic movement tomorrow. This provides some optimism for Cochrane’s measurement
challenge.
Model. (Jaimovich and Rebelo Model) (Jaimovich and Rebelo (2009)) This model showed how to get
comovement from productivity news for the first time outside of the new Keynesian models – they show it
in a real model. They use Greenwood-Herkowitz-Huffman (like) preferences, which break the separability
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between labor and consumption as follows:

U(C,L) =
(C − ψL)1−σ

1− σ

They also include in their model variable capacity utilization, where they add a variable µt representing the
household’s choice of depreciation – essentially, you can work your capital harder, causing faster depreciation.
The production function becomes At(µtKt)

αL1−α
t .

Finally, they have investment adjustment costs, where

Kt+1 = (1− δk)Kt + It

󰀕
1− φ

󰀕
It
Kt

− δk

󰀖󰀖

Essentially, in this model we learn about productivity ahead of time, anticipate the technology growth, and
the economy responds.

Taking first order conditions, we get that

λt = (Ct − ψLt)
−σ (Ct)

λtwt = (Ct − ψLt)
−σ

󰁿 󰁾󰁽 󰂀
Marginal
disutility

of Lt

ψ (Lt)

Combining, using the marginal product of labor, we get

(Ct − ψLt)
−σψ = (Ct − ψLt)

−σAt(1− α)(µtKt)
αL−α

t =⇒ ψ = At(1− α)(µtKt)
αL−α

t

Since we are eliminating consumption, we are no longer in our straitjacket! Additionally, we can actually
change µt at time t, and we are no longer bound by our predetermined capital.

Intuition. We no longer have a direct inverse relationship between Ct and Lt. We hold At fixed today,
but imagine that at some point in the future it will increase. Suppose that At+h will increase, and further
suppose that this is public information. We will have Ct increase because of consumption smoothing. Can
we argue why Lt would also increase? Our investment adjustment costs do two things: they make It rise,
so that the increase in investment for time h is smooth rather than a large discrete jump; and they make
the value of existing capital Kt fall – since we will be raising investment in the future, people will be raising
investment today, but not storing more capital. Instead, they will raise the ‘burn rate’ of capital µt; making
it worth less today. Higher µt implies higher marginal product of labor, implies an increase in Lt.

Other ways productivity news shocks can matter. (in particular, drive a business cycle).

1. New Keynesian frictions can do this (talked about above)

2. Labor search model can also do this! Consider the model we’ve been thinking about this whole class:

φn

MV (Vt)
= MPLt + β E

󰀥󰀕
Ct+1

Ct

󰀖−σ
φn

MV (Vt+1)
(1− δn)

󰀦

This has some really nice features! Namely, there’s no straitjacket here. We could do recursive substi-
tution, and get that

φn

Mv(·)
=

∞󰁛

h=0

βt

󰀕
Ct+h

Ct

󰀖−σ

MPLt+h(1− δn)
h
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Instead of an impossibility theorem, we have a race: the discount factor will decrease as the marginal
product of labor (in the future) increases. Whether At+h drives Nt up depends on parameters. In
principle, this can absolutely work! Unfortunately, in most calibrations, it’s a very small effect.

3. Decentralized labor search model (with some source of sticky wage) can solve many of the above
problems – it can attain some fairly large effects from an expected productivity shock. To do this,
replace MPLt+h with MPLt+h − wt+h (i.e. internalize the externality). Ryan showed this recently in
Chahrour, Chough, and Potter (2023).

2.12 Modern Topics: Climate Change

Remark. Macroeconomics is really good at thinking about general equilibrium effects, and aggregate effects.
With regard to climate change, this should be extremely useful, but there hasn’t been much research on
climate change and macroeconomics.

First, just note that atmospheric carbon dioxide has increased rapidly recently (last ≈ 50− 100 years). This
is very correlated with emissions, and is a signal of human effects on climate change. We will focus on carbon
here.

A very relevant quote from Ryan: “When you have little data, you need more model.” Broadly, there are
three keys to evaluating the macroeconomic effects of climate change. We need (i) a model of how carbon
dioxide accumulates in the world, (ii) a damage function, and (iii) discounting (specifically, precise measures
of discounting). All of these things are controversial, especially (i) and (ii). Our goal is to provide some
evidence on each element.

First, we think about the carbon cycle. Like our unemployment model, we will think about flows (and
specifically sources and sinks). The path we will think about most is water – human activity sends water
into the atmosphere, which is then absorbed by plants, soil, and specifically water. There is some more
controversy here, people are not so convinced that water absorbs as much carbon as it once did – Ryan
believes it may be essentially saturated. We should, for our lifetimes, think about carbon released into the
atmosphere as being there (practically) forever.

The other key input into the classical model is a damage function, which maps carbon admissions into
economic outcomes. We will answer the broad question of how do changes in atmospheric carbon affect
global output (i.e. well-being). This admits two sub-questions: how does carbon affect temperature, and
how does temperature affect economic activity? There is an historical relationship for the first sub-question:

Tt = λ log2(St/S̄)

where λ ≈ 3.0◦C. The implications are that carbon has an immediate effect on temperature, where doubling
of atmospheric carbon will increase global temperature by 3.0◦C. There’s lots of uncertainty about this
relationship – Barnett, Brock, and Hansen (2021) talk about this uncertainty.

The second sub-question is very difficult. We’re fairly sure it’s convex, so the first degree increase is less
harmful than the fifth, for example. We will look at a basically linear damage function (really, an exponential
over a very small range, which is practically linear).

Finally, we will think about the discount rate. Today, we’ll set it to 0, so today and tomorrow are worth
the same. This is unusual, but thinking about the exact discount rate is kind of philosophical and not so
well-posed.
Model. Climate Change (from Golosov et al. (2014)) We have some assumptions: The usual utility function:
Et

󰁓∞
t=0 β

tU(Ct), intermediate goods E as well as one final good, and a standard resource constraint: Ct +
Kt+1 − (1− δ)Kt = Yt. We have sectors, with the final sector denoted by i = 0, so

Yt = F0,t(K0,t, N0,t,E0,t, St)
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where E0,t is a vector of energy use, and St is the temperature. For all i > 0 intermediate (or energy) sectors,
we split those sectors into groups i = 1, . . . , Ig − 1 ‘brown’ energy sectors and y = Ig, . . . , I ‘green’ energy
sectors. For all of the brown sectors, we will have a finite stock of that energy source, so Ri,t+1 = Ri,t−Ei,t ≥
0. Classically, this is a cake eating problem. For both sectors, we will have a production function where

Ei,t = Fi,t(Ki,t, Ni,t, Ei,t󰁿󰁾󰁽󰂀
{Eij,t}

, Ri,t)

In the green sectors, we have no dependence on Ri,t. The brown sectors use only Ri,t. Note that one baked-in
assumption is that there is no technological progress to creating green energy. As we use brown energy, it
will get relatively cheaper, but not absolutely cheaper. We have the following market clearing conditions:

I󰁛

i=0

Ki,t = Kt

I󰁛

i=0

Ni,t = Nt

I󰁛

i=0

Eij,t = Ej,t (an element of Ei,t)

We have some special assumptions for the applied version of this model. First, we assume that

F0(·) = [1−Dt(St)]F̃0(K0,t, N0,t,E0,t)

where 1−Dt(St) = exp(−γ(St − S̄)), where S̄ is the carbon concentrations pre-industry – think of it as the
carbon concentrations when we use no brown energy. We have a resource constraint for St:

St − S̄ =

t󰁛

i=0

(1− dt)

Ig−1󰁛

i=0

Ei,t

󰁿 󰁾󰁽 󰂀
Discounted sum of total

brown energy usage
until time t

Finally, we have that

Λt = Yt E

󰀵

󰀹󰀹󰀷
∞󰁛

j=0

βjγt+j (1− dj)󰁿 󰁾󰁽 󰂀
Decay rate of

emissions

󰀶

󰀺󰀺󰀸

where this equation captures the three key factors we talked about above. Λt is essentially the marginal cost
of additional pollution (in the paper, they call it the marginal externality). This is relevant to the social
planner, but not to the household. Imagine that we are not internalizing this externality today, but if the
economy were to decide to emit one more unit of carbon dioxide, what would that cost the social planner in
the future.

Conclusions of Golosov et al. The authors calibrated the model and identified / estimated parameters.
They conclude that (i) the Laissez-faire economy uses way too much carbon, (ii) coal is a bigger problem
than oil – there’s so much of it in stock!, and (iii) carbon tax is one solution ($25 per ton for a “standard”
discount, $220 for a “low” discount, and $2,000 for a “worst case” scenario). The second point is fascinating,
and it might be overstated by their model, but it should qualitatively hold.
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Note that with optimal taxes, the optimal taxed versus non-taxed is barely different. However, coal massively
rises when not taxed, while when taxed it is essentially zero. The damage path looks very similar to the
coal plot – if we take the optimal tax path it will cost ≈ 1.5% of GDP versus ≈ 10% of GDP in 100 years.
This seems low, and it might not be capturing the most relevant channels, but it does provide a sort of lower
bound.

There’s a lot more to be studied here. A big challenge is that energy producers actually stand to gain from
climate change – think Canada, Russia, northern European countries. Also, incorporating technological
change may boost the benefits of a carbon tax, but it may also reduce the costs of climate change. Interacting
those two seems interesting. Migration may also play a role. All in all, there’s a lot that economists can do
here.

2.13 Modern Topics: Machine Learning and Neural Networks

Definition. Ryan’s definition of what we can describe as artificial intelligence:

1. A particular approach to functional approximation. This approach is described below, but specifically
is extremely good at handling lots of states, and lots of parameters. This class of approximators is
called neural networks.

2. These procedures use some sort of stochastic optimization technique, meaning that they handle lots of
parameters well (and often are relatively fast). This is the training step.

Model. We have a true function h(x), which we will attempt to approximate with ĥ(x; θ). We define {xℓ}
as the set of points where we know h(xℓ)+εℓ, where εℓ represents observational noise. For now, assume that
εℓ = 0. We look to solve

min
θ

L󰁛

ℓ=1

󰀓
h(xℓ)− ĥ(xℓ; θ

󰀔2

󰁿 󰁾󰁽 󰂀
ε(θ)

In the basis function case, we could solve this solution using ordinary least squares. In general, we won’t have
the nice convexity features we need for that to hold. Most of the techniques we’d use to solve this involve
gradient descent3, on ∇ε(θ). Here, we will essentially take a subsample ℓ̃ from the ℓ’s, compute ∇εℓ̃(θ)
for the subsample, and update using that as an approximation for ∇ε(θ). Note that we have (necessarily)
randomization here.
Remark. Some advantages of this approach: It’s less likely to get stuck on local optima, as the randomization
will mean we try directions that do not ‘look’ optimal, but may be closer to global optima. When we have
lots of data, this approach can be significantly faster than computing the gradient at each point. However,
this approach can be ‘wobbly’ – hard to reproduce, sensitive to choice of ℓ̃.
Algorithm. We have h(X), where X = [X1, . . . , Xn, . . . , XN0

]. We have N0 state variables. Recall that in
the basis function approach, we had that

ĥ(x; a) =

I󰁛

i=1

aibi(x)

A challenge of that approach is coming up with good basis functions in a principled way. The neural network
approach is similar, but different – we will perform an affine transformation of X, plug it into an activation
function, and then repeat the process some number of times. Mathematically, for a single layer, we will have

ĥ(X; θ,β) = θ21 +

N1󰁛

n1=1

g(θ1n1
+Xβ1

n1
)

3See Boyd and Vandenberghe for extensive treatment of these techniques.
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where N12 is the number of nodes in the (hidden) layer. We can think of this like follows:

Node 1: g(θ11 +Xβ1
1)

Node n1: g(θ1n1
+Xβ1

n1
)

Node N1: g(θ1N1
+Xβ1

N1
)

In OLS, for example, Node 1 would be the only one, and g(·) would be he sum of squares function. Here is
an illustration of what a larger neural net would look like, in Figure 6

X1

...

Xn0

...

XN0

Layer 1

Node 11

...

Node n1

...

Node N1

Layer 2

Node 12

...

Node n2

...

Node N2

ĥ(X; θ,β)

Weights Weights

Weights

Figure 6: A Two-Layer Neural Network

Remark. Ryan has a really lovely example of this in the Real Business Cycle model, you can work through
the code yourself.
Remark. Andrew Ng’s CS 229 Lecture Notes have an excellent treatment of this in particular and machine
learning in general. See Chapter 7.2.
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