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Introduction

We are creating this set of unified notes for ECON 6090: Microeconomics I, as taught at
Cornell University in the Fall 2024 semester. Due to unforeseen departmental circumstances,
this course was taught by six different professors (David Easley, Philipp Kircher, Adam
Harris, Larry Blume, Levon Barseghyan, and Marco Battaglini). This structure necessarily
created some confusion in notation and material, so these notes function as my attempt to
create a universe of the material we learned.

We rely heavily on the notes created from Prof. Easley’s course, which were originally com-
piled by Julien Manuel Neves and subsequently updated by Ruqing Xu and Patrick Ferguson,
as well as the excellent TA Sections curated by Yuxuan Ma and Feiyu Wang. We addition-
ally rely on notes and slides provided by Prof. Harris, slides provided by Prof. Blume,
slides from Ted O’Donoghue provided by Prof. Barseghyan, and notes provided by Prof.
Battaglini. These notes are supplemented with the canonical Microeconomic Theory text-
book by Andreu Mas-Colell, Michael Whinston, and Jerry Green (hereafter, MWG); Utility
Theory for Decision Making by Peter Fishburn; a classic analysis textbook, Foundations of
Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger; and the excellent
Mathematics notes provided by Takuma Habu. All mistakes are our own.

We occasionally make reference to the Stanford ECON 202 notes, created by Jonathan Levin,
Ilya Segal, Paul Milgrom, and Ravi Jagadeesan. This will mainly be if there exists intuition
that we believe is helpful.

Thanks to our cohort for helping with this project, especially Robert Betancourt, and Addie
Sutton.

Notation. A large part of this project is an attempt to unify the notation used by our
separate professors. We default to the notation used in the Easley notes, then to MWG,
and then use our own judgement. New definitions will have a word highlighted in blue, and
certain (named) theorems will be denoted in red.

Structure. The course (and these notes) are organized as follows. Prof. Easley taught an
introduction to choice theory, Section 1. Prof. Kircher taught consumer theory, Section 2.
Prof. Harris taught producer theory, and some concepts of market failures, Section 3. Prof.
Blume introduced the theory of choice under uncertainty, Section 4, and Prof. Barseghyan
continued with theoretical applications for uncertainty and expected utility maximization,
Section 5. Prof. Battaglini taught on information theory, Section 6. We also include here
exercises with solutions, divided into the various sections and sources. This is Section 7.
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1 Choice (Easley)

1.1 Preference Theory

Assumption 1.1. Let X be a finite set of objects.
Definition. Define 󰃒, a preference relation on X, as x 󰃒 y ⇐⇒ x is at least as good as y,
for x, y ∈ X. 󰃒 is a binary relation.
Definition. x is strictly preferred to y, denoted as x ≻ y, if x 󰃒 y and y ∕󰃒 x.
Definition. x is indifferent to y, denoted as x ∼ y, if x 󰃒 y and y 󰃒 x.
Definition. A preference relation 󰃒 is complete if ∀ x, y ∈ X, either x 󰃒 y, y 󰃒 x, or both.
Definition. A preference relation 󰃒 is transitive if, ∀ x, y, z ∈ X where x 󰃒 y and y 󰃒 z,
x 󰃒 z.
Definition. A preference relation 󰃒 is rational if it is complete and transitive.
Remark. Prof. Easley takes some issues with this definition. The main issue is that there
is an English word ‘rational’ that has absolutely nothing to do with it. Hereafter, always
read rational as ‘complete and transitive’.
Remark. These are all of the abstract concepts in choice theory! From here, we will apply
them, and see what we can get.
Definition. (Informal) Define a choice structure C󰂏 over subsets B ⊆ X as C󰂏(B,󰃒) :=
{x ∈ B : x 󰃒 y ∀ y ∈ B}.
Remark. Some direct implications:

(i) If x ∈ C󰂏(B,󰃒) and y ∈ C󰂏(B,󰃒), then x ∼ y.

(ii) Suppose that x ∈ B, x ∕∈ C󰂏(B,󰃒), and C󰂏(B,󰃒) ∕= ∅. Then there exists y ∈ B such
that y ≻ x.

We will now formalize the above.
Definition. Let the power set of X, denoted P(X), be the set of all subsets of X. Note
that since X is finite, P(X) is finite.
Definition. (Formal) A correspondence C󰂏 : P(X) 󰃃 X is a choice correspondence for some
(not necessarily complete; not necessarily transitive) preference relation 󰃒 if C󰂏(B) ⊆ B for
all B ⊆ X.
Remark. This definition is from the Stanford notes – I find it more intuitive than defining
it the other way, but it requires divorcing the choice structure from the preference rela-
tion. Some intuition that’s helpful for me: Easley’s definition starts with the preference
relation and then defines the choice correspondence, while Segal’s definition starts with the
choice correspondence and then applies it to a preference relation. They will (as we will see
below) often be equivalent, but it’s a subtle distinction. I will denote an arbitrary choice
correspondence by C󰂏(·) and one connected with a preference relation 󰃒 by C󰂏(·,󰃒).
Proposition 1.1. If 󰃒 is a rational preference relation on X, then

C󰂏 : P(X) \∅ → P(X) \∅
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In words, the associated choice correspondence to a rational preference relation is nonempty
for nonempty inputs.
Remark. The Easley notes define power sets slightly differently. This is unnecessary and (I
feel) less intuitive.

Proof. Proof by induction on n = |B|. Suppose |B| = 1, so B = {x} for some x ∈ X. Then
by completeness, x 󰃒 x, and C󰂏(B,󰃒) = {x} ∈ P(X) \ ∅. Suppose next that for any Y
where |Y | = n, C󰂏(Y,󰃒) is nonempty. Take some arbitrary B, where |B| = n + 1. Define
B′ := B \ {x}, and let x′ be an element of C󰂏(B′,󰃒), which is nonempty by the inductive
hypothesis. By completeness, either x ≻ x′, x′ ≻ x, or x ∼ x′. Case by case, we would have
that C󰂏(B,󰃒) ∈ {{x}, C󰂏(B′,󰃒), C󰂏(B′,󰃒) ∪ {x}} ⊆ P(X), by transitivity.
Definition. C󰂏 satisfies Sen’s α, also known as independence of irrelevant alternatives , if
x ∈ A ⊆ B and x ∈ C󰂏(B,󰃒) implies that x ∈ C󰂏(A,󰃒).
Remark. The classical example of a preference relation that violates Sen’s α is ‘choosing
the second-cheapest wine.’ It should be fairly clear to see why this violates Sen’s α. Is it a
rational preference relation?
Proposition 1.2. If 󰃒 is a rational preference relation, then C󰂏(·,󰃒) satisfies Sen’s α.

Proof. The result is trivially true if A = B. Suppose that A ⊂ B. Let x ∈ C󰂏(B,󰃒). Then
x 󰃒 y for all y ∈ B. In particular, if y ∈ A ⊆ B, then x 󰃒 y. Thus, x ∈ C󰂏(A,󰃒).
Definition. C󰂏 satisfies Sen’s β, also known as expansion consistency , if x, y ∈ C󰂏(A,󰃒),
A ⊆ B, and y ∈ C󰂏(B,󰃒) implies that x ∈ C󰂏(B,󰃒).
Remark. I couldn’t find a classical example violating Sen’s β, but a simple one is as follows:
assume that the waiter offers you French or Italian wine. You are indifferent between them,
but then they remember that they also have California wine. You say ‘in that case, I’ll have
the French wine’. Again, this directly violate’s Sen’s β, but is it rational? Why or why not?
Proposition 1.3. If 󰃒 is a rational preference relation, then C󰂏(·,󰃒) satisfies Sen’s β.

Proof. Let x, y ∈ C󰂏(A,󰃒), A ⊆ B, and y ∈ C󰂏(B,󰃒). Since x ∈ C󰂏(A,󰃒), we have x 󰃒 y
since y ∈ A. Since y ∈ C󰂏(B,󰃒), we have y 󰃒 z for all z ∈ B. By transitivity, x 󰃒 y and
y 󰃒 z implies that x 󰃒 z for all z ∈ B, so x ∈ C󰂏(B,󰃒).
Definition. C󰂏 satisfies Houthaker’s weak axiom of revealed preference (often called either
HWARP or HARP) if for all A,B ∈ P(X) if x, y ∈ A ∩B, x ∈ C󰂏(A,󰃒) and y ∈ C󰂏(B,󰃒),
then x ∈ C󰂏(B,󰃒) and y ∈ C󰂏(A,󰃒).
Proposition 1.4. C󰂏 : P 󰃃 X satisfies Sen’s α and β if and only if it satisfies Houthaker’s
weak axiom of revealed preference.

Proof.

(i) (α+β =⇒ HWARP) Suppose x, y ∈ A∩B ⊆ P(X), x ∈ C󰂏(A,󰃒), and y ∈ C󰂏(B,󰃒).
By Sen’s α, both x and y are in C󰂏(A ∩ B,󰃒). Then by Sen’s β, x ∈ C󰂏(B,󰃒) and
y ∈ C󰂏(A,󰃒).

(ii) (HWARP =⇒ β) Say x, y ∈ C󰂏(A,󰃒), A ⊆ B and y ∈ C󰂏(B,󰃒). Because A = A∩B,
x, y ∈ C󰂏(A ∩B,󰃒). Applying HWARP, we have that x ∈ C󰂏(B,󰃒).
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(iii) (HWARP =⇒ α) Say x ∈ A ⊆ B and x ∈ C󰂏(B,󰃒). Suppose x ∕∈ C󰂏(A,󰃒). Then by
Proposition 1.1, there exists y ∈ C󰂏(A,󰃒). Note that x, y ∈ A = A∩B, x ∈ C󰂏(B,󰃒)
and y ∈ C󰂏(A,󰃒). By HWARP, x ∈ C󰂏(A,󰃒), which is a contradiction.

Proposition 1.5. The following are equivalent for C󰂏(·,󰃒), where C󰂏 : P(X) → P(X)

(i) 󰃒 is rational

(ii) C󰂏 satisfies Sen’s α and β

(iii) C󰂏 satisfies HWARP

Proof. (ii) and (iii) are equivalent by Proposition 1.4. (i) =⇒ (ii) is given by Propositions 1.2
and 1.3. Finally, (iii) =⇒ (i) is given below, in the proof of Proposition 1.6.

1.2 Observed Choice

Recall the formal definition of choice correspondences above. We will now add some more
structure to that definition.
Definition. For B a collection of subsets of X, (B, C) is called a choice structure if C(B) ⊆ B
and C(B) = ∅ ⇐⇒ B = ∅ for all B ∈ B.
Definition. The choice structure (B, C) satisfies the weak axiom of revealed preference
(WARP) if for all A,B ∈ B where x and y are in both A and B, x ∈ C(A), and y ∈ C(B),
then x ∈ C(B) and y ∈ C(A).1
Remark. When B = P(X), WARP is the same as HWARP.
Definition. Given a choice structure (B, C), the revealed preference relation 󰃒󰂏 is defined
such that x 󰃒󰂏 y if ∃ B ∈ B such that x, y ∈ B and x ∈ C(B).
Proposition 1.6. Suppose that X is finite and B = P(X). If (B, C) satisfies WARP then
the revealed preference relation that it induces, 󰃒󰂏 is rational and C(B) = C󰂏(B,󰃒󰂏) for all
B ∈ B.

Proof. If B = P(X) and (B, C) is a choice structure, then C(Y ) is defined as nonempty
for every Y = {x, y} ⊆ X. This implies that x 󰃒󰂏 y or y 󰃒󰂏 x for all x, y ∈ X, so 󰃒󰂏 is
complete.

Suppose x 󰃒󰂏 y and y 󰃒󰂏 z. Then there exists A ⊆ X containing x and y such that
x ∈ C(A); and B ⊆ X containing y and z such that y ∈ C(B). Moreover, {x, y, z} ⊆ B
and C({x, y, z}) is nonempty. Suppose y ∈ C({x, y, z}). Then by WARP, x ∈ C({x, y, z}).
Suppose z ∈ C({x, y, z}). Then again by WARP, y ∈ C({x, y, z}) and thus x ∈ C({x, y, z}).
In any case, x ∈ C({x, y, z}) implies that x 󰃒󰂏 z, so 󰃒󰂏 is transitive.

1Note the difference in wording from before – we cannot have as a condition that x, y ∈ A ∩B as A ∩B
is not necessarily in B.
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Let x be an element of C󰂏(B,󰃒󰂏). Then x 󰃒󰂏 y ∀ y ∈ B. Since C(B) is nonempty, we have
that z ∈ C(B) for some z. By x 󰃒󰂏 z, there exists A ∈ B such that x, z ∈ A and x ∈ C(A).
Therefore by WARP, x ∈ C(B). Conversely, suppose x ∈ C(B). Then x 󰃒󰂏 y for all y ∈ B,
and so x ∈ C󰂏(B,󰃒󰂏).
Remark. A stronger version of Proposition 1.6 exists, though we do not present the proof
here:
Proposition 1.7. Suppose that X is finite and for all Y ⊆ X where |Y | ≤ 3, Y ∈ B. If
(B, C) satisfies WARP then the revealed preference relation that it induces, 󰃒󰂏 is rational
and C(B) = C󰂏(B,󰃒󰂏) for all B ∈ B.
Remark. This does not hold for anything less strong than 3. Consider the following coun-
terexample: Suppose X = {x, y, z, w} and B = {{x, y}, {y, z}, {z, w}, {w, x}}. Let C be
defined by:

C({x, y}) = {x, y} ; C({y, z}) = {y, z} ; C({z, w}) = {z, w} ; C({w, z}) = {x}

Because no pair of elements of X are both in two elements of B, WARP is vacuously satisfied.
But neither x 󰃒󰂏 z or z 󰃒󰂏 x, so 󰃒󰂏 is incomplete. We can also show that it is intransitive
(how?). Moreover, if we extend C to the family of all two-element subsets of X, such that
everything except for {w, x} is mapped to itself (and C({w, z}) = {x}), 󰃒󰂏 is complete but
remains intransitive.

1.3 Incomplete Preferences

Definition. ≻ is a strict partial order if (i) for any x, y ∈ X, if x ≻ y, then y ∕≻ x, and (ii)
≻ is transitive.
Remark. Note that we are explicitly not defining ∼ as x ∼ y if x ∕≻ y and y ∕≻ x. The two
elements could be incomparable, we do not assume completeness here.
Proposition 1.8. Define choice by

C󰂏(A,≻) := {x ∈ A : ∀ y ∈ A, y ∕≻ x}

where ≻ is a strict partial order. Then C satisfies Sen’s α but not Sen’s β.

Proof.

(i) Suppose x ∈ A ⊆ B and x ∈ C(B,≻). Then there does not exist y ∈ B such that
y ≻ x. It follows that no such y exists in A ⊆ B either, so x ∈ C(A,≻).

(ii) Suppose that x, y ∈ C(A,≻), A ⊆ B, y ∈ C(B,≻), and there is some z ≻ x in B
such that y and z are incomparable. Then the hypotheses of Sen’s β are satisfied, but
x ∕∈ C(B,≻).
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1.4 WARP and the Slutsky Matrix

We will make the following assumptions throughout:
Assumption 1.2. We have (i) L commodities, x := (x1, . . . , xL) ∈ RL

+; (ii) prices p :=
(p1, . . . , pL) ∈ RL

++; (iii) wealth w > 0; and (iv) budget set Bp,w := {x ∈ RL
+ : p · x ≤ w}.

Definition. We define the Walrasian demand function (also sometimes called the Marshal-
lian demand function) by x : RL

++ × R++ → RL
+, where x(p, w) is the consumer’s choice at

prices p and wealth w. Note that (p, w) may not uniquely specify a value. In that case, we
have the Walrasian (Marshallian) demand correspondence, X : RL

++ × R++ 󰃃 RL
+.

Assumption 1.3. We will almost always make the following assumptions on x:

(i) x(p, w) is homogeneous of degree 0, meaning that

x(αp,αw) = x(p, w) for all (p, w) ∈ RL
++ × R++ and α > 0

(ii) x(p, w) satisfies Walras’ Law: p · x(p, w) = w for all (p, w) ∈ RL
++ × R++

Proposition 1.9. Let BW := {Bp,w : (p, w) ∈ RL
++ × R++} and Cx(Bp,w) := {x(p, w)},

and let x be homogeneous of degree 0 and satisfy Walras’ Law. Then (BW , Cx) is a choice
structure.

Proof. We want to show that Cx(Bp,w) is a uniquely-defined nonempty subset of Bp,w for
all Bp,w ∈ BW . That Cx(Bp,w) is nonempty follows from the definition of x as a function
(or correspondence). Homogeneity of degree 0 implies that for Bp,w = Bαp,αw, Cx(Bp,w) =
Cx(Bαp,αw). Walras’ Law implies that Cx(Bp,w) ⊆ Bp,w.
Definition. In the context of consumer choice, x(p, w) satisfies the weak axiom of revealed
preferences (WARP) if the following holds: If (p, w), (p′, w′) ∈ RL

++ × R++ are such that
p′ · x(p, w) ≤ w′ and x(p′, w′) ∕= x(p, w), then p · x(p′, w′) > w.
Remark. Basically, if the consumer ever chooses x′ when x is available, then there’s no way
that both x and x′ could be available and x would be chosen.
Definition. A Slutsky compensated price change is a price change from p to p′ accompanied
by a change in wealth from w to w′ that makes the old bundle just affordable. That is, such
that p′ · x(p, w) = w′.
Proposition 1.10. (Law of Compensated Demand) Suppose that consumer demand x(p, w)
is homogeneous of degree 0 and satisfies Walras’ Law. Then x(p, w) satisfies WARP if and
only if for any compensated price change from (p, w) to (p′, w′) := (p′, p′ · x(p, w)) we have

(p′ − p) · (x(p′, w′)− x(p, w)) ≤ 0

with strict inequality if x(p′, w′) ∕= x(p, w).

Proof. By WARP, p · x(p′, w′) ≥ p · x(p, w) = w, with strict inequality if and only if
x(p, w) ∕= x(p′, w′). By Walras’ Law, we have that p′·x(p′, w′) = p′·x(p, w) = w′. Subtracting,
we get

(p− p′) · x(p′, w′) ≥ (p− p′) · x(p, w) =⇒ (p′ − p) · (x(p′, w′)− x(p, w)) ≤ 0
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Conversely, say that (p′ − p) · (x(p′, w′)− x(p, w)) ≤ 0. Then we have that

p′ · x(p′, w′)− p′ · x(p, w)− p · (x(p′, w′)− x(p, w)) ≤ 0 =⇒ p · x(p′, w′) > w

since p′ · x(p′, w′) < p′ · x(p, w). The case of strict inequality is analogous.
Proposition 1.11. Let x : RL

+ × R+ → RL
+ be continuously differentiable. Then

∂xj(p, w)

∂pj
+ xj(p, w)

∂xj(p, w)

∂w
≤ 0

Proof. Assume that p changes solely in pj, by ∆pj > 0, and let ∆w be the compensating
change in wealth, as above. Let ∆x := x(p′, w′)−x(p, w). Then by the Law of Compensated
Demand, we have that

∆pj(xj(p
′, w′)− xj(p, w)) ≤ 0 =⇒ xj(p

′, w′)− xj(p, w)

∆pj
≤ 0

Adding and subtracting xj(p
′, w), this becomes

xj(p
′, w)− xj(p, w)

δpj
+

xj(p
′, w′)− xj(p

′, w)

∆pj
≤ 0

Using the fact that ∆w = ∆pjxj(p, w), we get that
xj(p

′, w)− xj(p, w)

δpj
+ xj(p, w)

xj(p
′, w′)− xj(p

′, w)

∆w
≤ 0

Taking the limit as ∆pj ↘ 0, which implies that ∆w ↘ 0 and p′ → p), and using the fact
that x is continuously differentiable, this becomes

∂xj(p, w)

∂pj
+ xj(p, w)

∂xj(p, w)

∂w
≤ 0

Definition. The Slutsky matrix is the matrix of the partials defined above:

S(p, w) := Dpx(p, w) +Dwx(p, w)x(p, w)
T

=

󰀵

󰀹󰀷

∂x1

∂p1
+ x1

∂x1

∂w
· · · ∂x1

∂pL
+ xL

∂x1

∂w
...

...
∂xL

∂p1
+ x1

∂xL

∂w
· · · ∂xL

∂pL
+ xL

∂xL

∂w

󰀶

󰀺󰀸

Proposition 1.12. S(p, w) is negative semi-definite.

Proof. Let dp := (dp1, . . . , dpL) be an arbitrary element of RL. Then for all i, we have that

dxi =
∂xi

∂p1
dp1 + · · ·+ ∂xi

∂pL
dpL +

∂xi

∂w
x1(p, w)dp1 + · · ·+ ∂xi

∂w
xL(p, w)dpL

=⇒ dx = (Dpx(p, w) +Dwx(p, w)x(p, w)
T )dp

By WARP, dp · dx ≤ 0, meaning that

dpT (Dpx(p, w) +Dwx(p, w)x(p, w)
T )dp ≤ 0

Thus, S(p, w) is negative semi-definite, since dp is arbitrary.
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1.5 Consumer Choice from 󰃒

Assumption 1.4. As before, let X := RL
+.

Definition. A utility function representing 󰃒 on X is a function u : X → R such that for
all x, y ∈ X:

x 󰃒 y ⇐⇒ u(x) ≥ u(y)

Proposition 1.13. If u : X → R represents 󰃒 on X and f : R → R is strictly increasing,
then f ◦ u represents 󰃒.

Proof.
x 󰃒 y ⇐⇒ u(x) ≥ u(y) ⇐⇒ (f ◦ u)(x) ≥ (f ◦ u)(y)

Remark. Lexicographic preferences, defined on R2 by

(x1, x2) 󰃒 (y1, y2) ⇐⇒ x1 > y1 or x1 = y1 and x2 ≥ y2

are rational but cannot be represented by a utility function. Why is that?
Definition. The following mathematical concepts will be useful to us:

(i) The upper contour set , R(x) := {y ∈ X : y 󰃒 x}, is the set of all bundles that are at
least as good as x. Denote its complement by P−1(x).

(ii) The lower contour set , R−1(x) := {y ∈ X : x 󰃒 y}, is the set of all bundles that x is
at least as good as. Denote its complement by P (x).

Definition. The preference relation 󰃒 on X is continuous if R(x) and R−1(x) are closed
subsets of X for all x ∈ X.
Remark. Lexicographic preferences are not continuous. Can you show why?
Proposition 1.14. (Debreu’s Theorem) Suppose a preference relation 󰃒 on X is rational
and continuous. Then there is a continuous utility function representing 󰃒.

Proof. (Sketch) We will sketch this proof assuming that 󰃒 satisfy strong monotonicity
(defined below), which is not necessary but makes the proof easier. Choose any x ∈ X. By
strong monotonicity, x 󰃒 0. Let e = (1, 1). By strong monotonicity, ∃ α ∈ R+ such that
αe ≻ x. By strong monotonicity, ∃ α : X → R+ such that α(x)e ∼ x ∀ x ∈ X.

We claim that α(·) represents 󰃒. First, suppose that α(x) ≥ α(y). Then α(x)e 󰃒 α(y)e by
strict monotonicity, and by transitivity we have that x ∼ α(x)e 󰃒 α(y)e ∼ y =⇒ x 󰃒 y.
Conversely, assume that x 󰃒 y. Then α(x)e ∼ x 󰃒 y ∼ α(y)e, so α(x)e 󰃒 α(y)e by
transitivity, and α(x) ≥ α(y) by strict monotonicity.
Definition. The preference relation 󰃒 is monotone if for all x, y ∈ X, x ≥ y =⇒ x 󰃒 y. It
is strictly monotone if x ≥ y and x ∕= y implies that x ≻ y. Note that the latter implies the
former.
Definition. The preference relation 󰃒 is locally non-satiated if for every x ∈ X and for every
ε > 0, there exists y ∈ X such that 󰀂x − y󰀂 ≤ ε and y ≻ x. Note that strict monotonicity
implies local non-satiation.
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Remark. We assumed earlier that X = RL
+. This concept can be extended to any metric

space, replacing the norm with the space’s distance function.
Definition. The preference relation 󰃒 on X is convex if for all x, y, z ∈ X and all α ∈ [0, 1],
y 󰃒 x and z 󰃒 x implies that αy + (1− α)z 󰃒 x.

It is strictly convex if for all x, y, z ∈ X and all α ∈ (0, 1), y ∕= z, y 󰃒 x, and z 󰃒 x imply
that αy + (1− α)z ≻ x.
Remark. Preferences are convex if and only if R(x) is convex for every x ∈ X. Can you
prove this?
Definition. The function u : X → R is quasiconcave if for all x, y ∈ X and any α ∈ [0, 1],

u(αx+ (1− α)y) ≥ min{u(x), u(y)}

The function u : X → R is concave if for all x, y ∈ X and any α ∈ [0, 1],

u(αx+ (1− α)y) ≥ αu(x) + (1− α)u(y)

Strict quasiconcavity and strict concavity are defined analogously, restricting α to (0, 1),
requiring that x ∕= y, and replacing weak inequalities with strict ones.
Proposition 1.15. u representing 󰃒 is quasiconcave if and only if 󰃒 is convex.

Proof. Assuming quasiconcavity, y, z 󰃒 z =⇒ u(y), u(z) ≥ u(x) implies that u(αy + (1 −
α)z) ≥ min{u(y), u(z)} ≥ u(x). Conversely, suppose WLOG that y 󰃒 z. Note also that
z 󰃒 z. Thus by convexity of preferences, αy+(1−α)z 󰃒 z, meaning that u(αy+(1−α)z) ≥
u(z) = min{u(y), u(z)}.

1.6 Consumer Optimization

Definition. The consumer’s problem is the optimization problem

max
x∈RL

+

u(x) s.t. p · x ≤ w

Proposition 1.16. (Properties of Walrasian Demand Correspondence) Let u be a continuous
utility function representing 󰃒 on RL

+.

(i) If p ∈ RL
++ and w ∈ R++, then there exists an x󰂏 ∈ RL

++ that solves the consumer’s
problem

(ii) If λ > 0, then x󰂏 also solves the consumer’s problem for λp and λw (homogeneity of
degree 0)

(iii) If in addition 󰃒 is locally non-satiated, then Walras’ Law holds, meaning that p ·x󰂏 = w

(iv) If in addition 󰃒 is strictly convex (equiv. u strictly concave) then x󰂏 is unique and the
Walrasian demand function x : RL

++ × R++ → RL
+ is well-defined and continuous.
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Proof.

(i) Bp,w is nonempty and compact and u is continuous, so conclusion follows from the
Extreme Value Theorem.

(ii) Observe that p · x ≤ w ⇐⇒ λp · x ≤ λw, so the constraint set is the same in both
problems.

(iii) Suppose not: p · x󰂏 < w. Choose ε > 0 such that p · y < w for all y ∈ Bε(x
󰂏). By local

non-satiation, there exists y ∈ Bε(x
󰂏) such that y ≻ x󰂏. This is a contradiction.

(iv) Suppose not: let x̂ be a distinct solution. Fix α ∈ (0, 1). By strict convexity of
preferences, αx̂ + (1 − α)x󰂏 ≻ x󰂏. By convexity of the budget set, αx̂ + (1 − α)x󰂏 is
affordable, contradicting that x󰂏 is a global maximum. Continuity of x is annoying but
proven elsewhere.

Proposition 1.17. (Necessary Conditions) Suppose that

(i) The consumer’s preferences on RL
+ can be represented by a twice continuously differen-

tiable utility function u.

(ii) The preferences are strictly monotone.

(iii) p ≫ 0 and w ≫ 0.

If x󰂏 is an interior solution to the consumer’s problem ( i.e. x󰂏 ≫ 0), then

MRSij(x
󰂏) :=

∂u(x󰂏)
∂xi

∂u(x󰂏)
∂xj

=
pi
pj

Proof. Strict monotonicity implies that p · x󰂏 = w and ∂u(x󰂏)
∂xj

> 0. We know that x󰂏 solves
the consumer’s problem, and the constraint qualification holds. By the Karush-Kuhn-Tucker
Theorem, there exists λ > 0 such that ∇u(x󰂏) = λp. Conclusion follows.
Proposition 1.18. (Sufficient Conditions) Suppose in addition to hypotheses (i) to (iii) of
Proposition 1.17, we have

(iv) 󰃒 are strictly convex.

If x󰂏 satisfies x󰂏 ≫ 0 and p · x󰂏 = w, and there exists λ > 0 such that ∇u(x󰂏) = λp, then x󰂏

is the unique solution to the consumer’s problem.

Proof. Omitted, but covered in detail in Part 6: Static Optimization of Tak’s lecture
notes.

Some Math Remarks. These last few sections make a number of extremely strong as-
sumptions on the shape and size of X. These assumptions are largely not necessary, and
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can trivially be relaxed as far as assuming that X is a metric space. They can be relaxed
significantly further than that, with difficulty. If you are interested in what that entails, I
can happily talk for hours about it. If you’re not a masochist, you can ignore this entire
note and assume we are in non-negative Euclidean space always. - Gabe
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2 Consumer Theory (Kircher)

2.1 Utility Maximization

Remark. We will carry forward the assumptions on model structure (Assumptions 1.2)
made above. We will also generally carry forward Assumptions 1.3, but not as strongly.
Definition. The indirect utility function, V : RL

++ × R++ → R is defined by

V (p, w) := max
x∈RL

+

u(x) s.t. p · x ≤ w

Remark. If x(p, w) is a solution to the consumer’s problem, then V (p, w) = u(x(p, w)).
Essentially, if the consumer solves the problem taking into account the constraints, then the
value function is their attained utility – it’s how much they get.
Assumption 2.1. We assume here that 󰃒 are locally non-satiated, that u is continuous,
and that p ≫ 0 and w > 0.
Proposition 2.1. V has the following properties:

(i) Continuous

(ii) Nonincreasing in pi for i ∈ {1, . . . , L}

(iii) Strictly increasing in w

(iv) Quasiconvex, meaning that {(p, w) : V (p, w) ≤ k} is a convex set ∀ k ∈ R

(v) Homogeneous of degree 0

Proof.

(i) In the case where the solution x is unique, V = u ◦ x. We assumed continuity of u
above, and continuity of x follows from Proposition 1.16, as long as u is continuous. A
full proof, when x is a correspondence, is omitted but follows from Berge’s Theorem.

(ii) Fix i and suppose that p′i ≥ pi. Then Bp′,w ⊆ Bp,w, so V (p′, w) ≤ V (p, w).

(iii) Suppose w′ > w. Then p · x(p, w) < w′, and by local non-satiation there exists x′ ≻ x
such that p · x′ < w′. Thus, V (p, w′) ≥ u(x′) > u(x(p, w)) = V (p, w).

(iv) Fix some α ∈ [0, 1] and some (p, w), (p′, w′) ∈ RL
++ × R++, and suppose that

x ∈ B(αp+ (1− α)p′,αw + (1− α)w′)

Then we have that

α(p · x− w) + (1− α)(p′ · x− w′) ≤ 0 =⇒ x ∈ Bp,w ∪Bp′,w′

Meaning that

B(αp+ (1− α)p′,αw + (1− α)w′) ⊆ Bp,w ∪Bp′,w′
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Which implies that

V (αp+ (1− α)p′,αw + (1− α)w′) ≤ max{V (p, w), V (p′, w′)}

So V is quasiconvex.

(v) This follows directly from x being homogeneous of degree 0 (Proposition 1.16).

Proposition 2.2. If u and x are continuously differentiable, then V is continuously differ-
entiable and

∂V

∂w
= λ

where λ is the Lagrange multiplier in L(λ, x) = u(x) + λ(w − p · x).

Proof. This follows directly from the Envelope Theorem (see Tak’s notes for a rigorous
definition):

∂V

∂w
=

∂u

∂w
+ λ

and since u is not a function of w, the result follows. A more direct proof could also use the
chain rule:

∂V

∂w
=

L󰁛

i=1

∂u

∂xi

∂xi

∂w
= λ

L󰁛

i=1

pi
∂xi

∂w
= λ

where the last equality uses Walras’ Law, differentiating both sides with respect to w.
Remark. We now have some economic intuition for the Lagrange multiplier: it is the
marginal utility attained from relaxing the budget constraint by one unit, or the increase in
utility from providing the consumer with one more unit of wealth.

2.2 Expenditure Minimization

Definition. The expenditure minimization problem is the optimization problem

min
x∈RL

+

p · x s.t. u(x) ≥ ū

Remark. ū is an arbitrary utility level, set as a precondition of the problem. Later, we will
see that we usually set ū as the attained value from the utility maximization problem, but
that’s actually not necessary for everything here to hold.
Definition. The associated value function, called the expenditure function, is defined by

e(p, ū) := min
x∈RL

+

p · x s.t. u(x) ≥ ū
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Definition. The Hicksian demand correspondence, H : RL
++ × R 󰃃 RL

+ gives solutions to
the expenditure minimization problem:

H(p, ū) := argmin
x∈RL

+

p · x s.t. u(x) ≥ ū

If H(p, ū) is singleton-valued for all p and ū, then we have the Hicksian demand function
h : RL

++ × R → RL
+, defined analogously.

Proposition 2.3. (Properties of Hicksian Demand Correspondence) Assume that prefer-
ences are continuous. Then:

(i) If u(0) ≤ ū ≤ supx∈RL
+
u(x), where the right hand side is possibly infinite, then there

exists x󰂏 ∈ RL
+ that solves the expenditure minimization problem.

(ii) If λ > 0, then this x󰂏 also solves the consumer’s problem for λp and λw (homogeneity
of degree 0).

(iii) If x󰂏 solves the expenditure minimization problem, then u(x󰂏) = ū.

(iv) If in addition, 󰃒 is strictly convex then x󰂏 is unique and the Hicksian demand function
h : RL

++ × R → RL
+ is well-defined and continuous.

Proof.

(i) By the continuity of u and the Intermediate Value Theorem, there exists x0 ∈ RL
+ such

that u(x0) = ū. We can then restrict the constraint set without changing the solution
to {x ∈ RL

+ : u(x) ≥ ū and p · x ≤ p · x0}. This set is nonempty and compact, so
conclusion follows from the Extreme Value Theorem.

(ii) This follows directly from the fact that p · x󰂏 ≥ p · x ⇐⇒ λp · x󰂏 ≥ λp · x.

(iii) Suppose FSOC that u(x󰂏) > ū. Then by continuity there exists x ∕= x󰂏 such that
x ≤ x󰂏 and ū ≤ u(x) < u(x󰂏). Since p ∈ RL

++, this implies that x is in the constraint
set and attains a lower cost than x󰂏, contradicting the fact that x󰂏 is a global minimum.

(iv) Suppose FSOC that there exist x󰂏
1 and x󰂏

2 both (distinct) global optima, implying that
p · x󰂏

1 = p · x󰂏
2. By linearity, this means that taking some α ∈ (0, 1), we have that

p · (αx󰂏
1+(1−α)x󰂏

2) = p ·x󰂏
1, but by strict convexity we have that u(αx󰂏

1+(1−α)x󰂏
2) >

u(x󰂏
1) ≥ ū, contradicting (iii). Continuity and existence follow from Berge’s Theorem.

Proposition 2.4. (Properties of e)

(i) Continuous

(ii) Nondecreasing in pi for i ∈ {1, . . . , L}

(iii) Strictly increasing in ū

(iv) Homogeneous of degree 1 in p

16



(v) Concave in p

Proof.

(i) Follows directly from Berge’s Theorem

(ii) Let p′ ≥ p and x′ ∈ H(p′, ū). Then e(p′, ū) = p′ · x′ ≥ p · x′ = e(p, ū)

(iii) Same as the proof of (iv) in Proposition 2.3 above.

(iv) Follows directly from H being homogeneous of degree 0

(v) Let p′′ := αp+ (1− α)p′ for some α ∈ [0, 1], p, p′ ∈ RL
++, and x′′ ∈ H(p′′, ū). Then

e(p′′, ū) = p′′ · x′′ = αp · x′′ + (1− α)p′ · x′′ ≥ αe(p, ū) + (1− α)e(p′, ū)

2.3 Welfare

Remark. We will carry Assumptions 2.1 through this section.
Remark. Consider a change in price and income from (p0, w0) to (p1, w1). We want to know
what effect this has on the consumer’s welfare. It might be useful to compare V (p0, w0) to
V (p1, w1), but V is dependent on the choice of u, which is unique only up to positive affine
transformation.
Remark. Note that for fixed p′, e(p′, V (p, w)) is a valid indirect utility function, as it is
strictly increasing in V . Moreover, it is invariant under positive affine transformation of u,
meaning that if V and V ′ are indirect utility functions derived from utility functions u and
u′ representing the same preference relation, then e(p′, V (p, w)) = e(p′, V ′(p, w)).
Definition. A money metric indirect utility function is an indirect utility function of the
form e(p′, V (p, w)) for some fixed p′.
Remark. Which p′ should we choose? Henceforth, we consider only a change in prices,
fixing wealth at w. Let prices change from p0 to p1. Let u0 := V (p0, w) and u1 := V (p1, w).
Definition. The compensating variation is the amount of money CV such that the consumer
is indifferent between having w at the old prices and having w − CV at the new prices.
Formally,

CV (p0, p1, w) := e(p1, u1)− e(p1, u0) = w − e(p1, u0)

Definition. The equivalent variation is the amount of money EV such that the consumer
is indifferent between having w at the new prices and w + EV at the old prices

EV (p0, p1, w) := e(p0, u1)− e(p0, u0) = e(p0, u1)− w

Remark. Note that each are positive when the price changes make the consumer better off
and negative when the price changes make the consumer worse off.
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Remark. It can be somewhat difficult to wrap your head around the difference between
compensating and equivalent variation. Consider the following example: The government is
considering implementing a price floor on wheat, and the relevant consumer likes to bake
bread. The government wants the consumer to be indifferent between the price floor being
implemented or not, and there are two ways to do that. First, they could implement the
price floor and then give the consumer money so that they can purchase the same amount
of wheat as before. That’s compensating variation – the consumer is compensated for the
price change occurring. They could also choose not to implement the price floor, but instead
tax the consumer so that they can buy as much wheat under the non-price-floor prices as
if the price floor was actually enacted. In both cases, the consumer is indifferent between
the price floor being implemented or not (or, indifferent under very strong assumptions on
preferences. This is a toy example), but the mechanism is different.
Proposition 2.5. Suppose the price of only one good changes. WLOG, let that good have
index 1. Then

EV (p0, p1, w) =

󰁝 p01

p11

h1(p1, p−1, u
1)dp1

and

CV (p0, p1, w) =

󰁝 p01

p11

h1(p1, p−1, u
1)dp1

Proof. We assume that h1 is well-defined and integrable with respect to p1 (this can be
proven, but we assume it for simplicity). Then we have that

EV (p0, p1, w) = e(p0, u1)− e(p0, u0) =

󰁝 p01

p11

h1(p1, p−1, u
1)dp1

CV (p0, p1, w) = e(p1, u1)− e(p1, u0) =

󰁝 p01

p11

h1(p1, p−1, u
1)dp1

Remark. p−1 is how we denote ‘all elements of p except for p1’. This will often be x−i

compared to xi or similar.

2.4 Duality (Additional)

Remark. Prof. Kircher didn’t directly go over this, and I didn’t find the way the TAs
presented it particularly intuitive. Here, I will present a few results (without proof) and
explain, as best I can, the intuition behind the relationships between profit maximization.
These results are discussed more in depth in Section 3, but it’s more intuitive to think of
them here.

These results are drawn from the Easley notes, the Stanford ECON 202 notes, and specifically
Ellie Tyger’s excellent TA sections.
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In general, the topline result we will be working with is the following:
Proposition 2.6. Assume 󰃒 is continuous and locally non-satiated. Then

(i) H(p, V (p, w)) = X(p, w)

(ii) X(p, e(p, ū)) = H(p, ū)

(iii) e(p, V (p, w)) = w

(iv) V (p, e(p, ū)) = ū

With some additional assumptions, we can get even stronger results:
Proposition 2.7. (Shephard’s Lemma) In addition to assuming continuity and local non-
satiation, assume that 󰃒 are strictly convex and that e is continuously differentiable. Then
for p ≫ 0 and for all i ∈ {1, . . . , L},

hi(p, ū) =
∂e(p, ū)

∂pi

Proposition 2.8. (Roy’s Identity) In addition to assuming continuity and local non-satiation,
assume that 󰃒 are strictly convex and that e and V are continuously differentiable. Then for
p ≫ 0 and for all i ∈ {1, . . . , L},

xi(p, w) = −
∂V (p,w)

∂pi
∂V (p,w)

∂w

Proposition 2.9. (The Slutsky Equation) Suppose that e and V are twice continuously
differentiable. Fix p and w, and let u󰂏 := V (p, w). Then

∂xi(p, w)

∂pj󰁿 󰁾󰁽 󰂀
Total Effect

=
∂hi(p, u

󰂏)

∂pj󰁿 󰁾󰁽 󰂀
Substitution Effect

− xj(p, w)
∂xi(p, w)

∂w󰁿 󰁾󰁽 󰂀
Income Effect

We can think of the properties of the utility maximization and expenditure minimization
problem by comparing the effects of different, equivalent assumptions, in Table 2.4.
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Assumptions Properties of UMP Properties of EMP
u represents continuous

preferences, feasible set is
non-empty

X(p, w) ∕= ∅ for
p ≫ 0, w > 0

H(p, ū) ∕= ∅ for all
p ≫ 0, ū ≥ u(0)

u represents convex
preferences X(p, w) is convex-valued H(p, ū) is convex-valued

u represents strictly convex
and continuous preferences

X(p, w) is single-valued for
p ≫ 0

H(p, ū) is single-valued

- V (p, w) and x(p, w) are
homogeneous of deg 0

e(p, ū) is homogeneous of
deg 1 in p, H(p, ū) is

homogeneous of deg 0 in p

- V (p, w) is nondecreasing in
p and nondecreasing in w

e(p, ū) is nondecreasing in
p and ū

UMP: locally non-satiated
≽ on X = RL

+

EMP: u represents
continuous ≽

p · x = w for x ∈ X(p, w)
(Walras’s Law)

u(x) = ū for all
x ∈ H(p, ū), w ≥ u(0)

UMP: locally non-satiated
≽ on X = RL

+

EMP: u represents
continuous ≽

V (p, w) is strictly
increasing in w

e(p, ū) is strictly increasing
in ū for p ≫ 0, ū ≥ u(0)

Table 1: Properties of Utility Maximization and Expenditure Minimization Problems

We can also examine the technical assumptions and which of the theorems we can obtain
from them, in Table 2.4.

Technical
Assumption

e(p, ū) = p ·H(p, ū)
differentiable

H(p, ū) continuously
differentiable in p

None

First Order
Condition

Shephard’s Lemma:
∇pe(p, ū) = H(p, ū)

Slutsky Matrix
Properties: DpH(p, u)

is symmetric and
DpH(p, u)p = 0

Compensated
Consumer Surplus

Formula: For all
smooth ρ : [0, 1] → RL

+

where ρ(0) = p and
ρ(1) = p′,

e(p′, ū)− e(p, ū) =󰁕 1

0
H(ρ(t), ū)ρ′(t)dt

Second Order
Condition

Concavity: e(p, ū) is
concave

Slutsky Matrix:
DpH(p, u) is negative

semidefinite

Law of Compensated
Demand: (p′ − p) ·

(H(p′, ū)−H(p, ū)) ≤ 0

Table 2: Technical Assumptions and Results

The most important thing to remember is the relationships between these separate objects,
which are illustrated in Figure 1.
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X(p, w)

H(p, ū) e(p, ū)

V (p, w)

Shephard: H = ∇pe

Adding-up: e = p ·H

V (p, e) = ū
e(p, V ) = w

Slutsky: ∂xi
∂pj

+ ∂xi
∂w

xj = ∂hi
∂pj

X = H(p, V )
H = X(p, e)

Roy: x =
−∇pV

∂V/∂w

V = u(X)

Figure 1: Relationships Between UMP and EMP

21



3 Producer Theory (Harris)

3.1 Classical Producer Theory

3.1.1 Setup

We will always assume the following:
Assumption 3.1. There are L commodities, with a production plan y ∈ RL. A net input
is an element i such that yi < 0, and a net output is an element j such that yj > 0. We have
a production possibilities set Y ⊆ RL, and we assume that prices p ≥ 0 that are unaffected
by the activity of the firm.

We will also often assume, for simplicity (and in order to work with functions rather than
correspondences):
Assumption 3.2. Y is nonempty, closed, and (strictly) convex, and (the free disposal prop-
erty) if y ∈ Y and y′ ≤ y, then y′ ∈ Y .
Definition. A production plan y ∈ Y is efficient if there does not exist y′ ∈ Y such that
y′ ≥ y and y′i > yi for some i.

In the case of a single output, we partition y into output q ∈ R+ and inputs z ∈ RL−1
+ . This

allows us to define the following:
Definition. The production function f : RL−1

+ → R+ is defined by

f(x) = max q s.t. (q,−z) ∈ Y

Definition. The input requirement set

V (q) := {z ∈ RL−1
+ : (q,−z) ∈ Y }

gives all of the input vectors that can be used to produce an output q.
Definition. The isoquant

Q(q) := {z ∈ RL−1
+ : z ∈ V (q) and z ∕∈ V (q′) for any q′ > q}

gives all the input vectors that can be used to produce at most q units of output.

3.1.2 Cost Minimization

We will make the following assumptions through this section:
Assumption 3.3. There are L − 1 inputs z, and one output q = f(z). The production
function f is twice continuously differentiable, and inputs have price w ∈ RL−1

+

Remark. If any input has price zero, the firm will obviously not consider it in its decision
making.
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Definition. The firm’s cost minimization problem is

min
z∈RL−1

+

w · z s.t. f(z) = q

The associated value function is called the cost function

C(w, q) := min
z∈RL−1

+

w · z s.t. f(z) = q

Proposition 3.1. (Properties of the Cost Function)

(i) C is homogeneous of degree 1 in w

(ii) C is concave in w

(iii) If we assume free disposal, C is nondecreasing in q

(iv) If f is homogeneous of degree k in z, C is homogeneous of degree 1
k

in q

Proof.

(i) Increasing w by α > 0 is a monotonic transformation and does not affect the choice of
z, but it does increase w · z by a factor of α.

(ii) Fix w,w′ ∈ RL−1
+ , and suppose C(w, q) = w · z and C(w′, q) = w′ · z′. Take α ∈ [0, 1]

and let w′′ = αw + (1− α)w′. Then for z′′ a cost minimizer at w′′, we have that

C(w′′, q) = w′′ · z′′ = αw · z′′ + (1− α)w′ · z′′

We also know that w · z′′ ≥ C(w, q) and w′ · z′′ ≥ C(w′, q), so we have that C(w′′, q) ≥
αC(w, q) + (1− α)C(w′, q).

(iii) Suppose that q′ > q. By free disposal, q can be produced using the same input vector
used to produce q′.

(iv) Homogeneity of degree k of f implies that

f(z) = q ⇐⇒ 1

q
f(z) = 1 ⇐⇒ f

󰀕
z

q1/k

󰀖
= 1

Thus, we get that

C(w, q) = min
z

w · z s.t. f
󰀕

z

q1/k

󰀖
= 1

= q1/k min
z

w · z

q1/k
s.t. f

󰀕
z

q1/k

󰀖
= 1

= q1/kC(w, 1)
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3.1.3 Homogeneous Functions (a brief aside)

Definition. A function f : X ⊆ Rn → R is homogeneous of degree k if

f(αx) = αkf(x) ∀ α > 0, x ∈ X

where k is a non-negative integer.
Proposition 3.2. If a function f is homogeneous of degree k, then any of its partial deriva-
tives are homogeneous of degree k − 1

Proof. Let fi =
∂f
∂xi

. We have that

f(αx) = αkf(x) =⇒ αfi(αx) = αkfi(x) =⇒ fi(αx) = αk−1fi(x)

Proposition 3.3. (Euler’s Formula) If f is homogeneous of degree k and differentiable, then
at any x

n󰁛

i=1

∂f(x)

∂xi

xi = kf(x)

Proof. Differentiating with respect to α and evaluating at α = 1, we get that

f(αx) = αkf(x) =⇒
n󰁛

i=1

fi(αx)xi = kαk−1f(x) =⇒
n󰁛

i=1

fi(x)xi = kf(x)

Proposition 3.4. If the production function f is homogeneous of degree k, then

MRTSij(z) :=

∂f(z)
∂zi

∂f(z)
∂zj

=

∂f(αz)
∂zi

∂f(αz)
∂zj

=: MRTSij(αz)

Proof.
fi(αz)

fj(αz)
=

αk−1fi(z)

αk−1fj(z)
=

fi(z)

fj(z)

3.1.4 Profit Maximization

Definition. The firm’s profit maximization problem is

max
y

p · y s.t. y ∈ Y

The associated value function is called the profit function:

π(p) := max
y

p · y s.t. y ∈ Y
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Remark. In the single output case, this becomes

π(p, w) := max
y

pf(z)− w · z

Henceforth, we consider only the single output case.
Remark. Note that profit maximization implies cost minimization.
Proposition 3.5. (Properties of the Profit Function)

(i) Homogeneous of degree 1

(ii) Nondecreasing in p

(iii) Nonincreasing in w

(iv) Convex in (p, w)

(v) Continuous

Proof.

(i) maxz α(pf(z)− w · z) = αmaxz pf(z)− w · z

(ii) p′ ≥ p =⇒ p′f(z) ≥ pf(z) ∀ z

(iii) w′ ≥ w =⇒ w′ · z ≥ w · z

(iv) Let (p′′, w′′) := α(p, w) + (1 − α)(p′, w′) and let z, z′, z′′ be the solution to the profit
maximization problem with the corresponding output prices and input price vectors.
Then by definition

π(p, w) = pf(z)− w · z ≥ pf(z′′)− w · z′′

π(p′, w′) = p′f(z)− w′ · z ≥ p′f(z′′)− w′ · z′′

which implies that

απ(p, w) + (1− α)π(p′, w′) ≥ α(pf(z′′)− w · z′′) + (1− α)(p′f(z′′)− w′ · z′′)
= (αp+ (1− α)p′)f(z′′)− (αw + (1− α)w′) · z′′

= π(p′′, w′′)

(v) Follows from Berge’s Theorem

Remark. π being convex in (p, w) implies that π is convex in p and w individually.
Definition. The unconditional input demand function

x(p, w) := argmax
z∈RL−1

+

pf(z)− w · z
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is the solution to the profit maximization problem. The output supply function

q(p, w) := f(x(p, w))

is the output level where the profit is being maximized.
Proposition 3.6. (Hotelling’s Lemma) If π is differentiable, then for (p, w) ∈ RL

++,

q(p, w) =
∂π(p, w)

∂p

xj(p, w) = −∂π(p, w)

∂wj

Proof. (Sketch) Apply the Envelope Theorem, and note that x(p, w) is the profit maximizing
bundle and q(p, w) is the production function evaluated at that bundle.
Remark. This condition can be relaxed from differentiability to the unconditional input
demand function and output supply function being well-defined functions.
Definition. The conditional input demand function

z(w, q) := argmin
z∈RL−1

+

w · z s.t. f(z) = q

is the solution to the cost minimization problem.
Proposition 3.7. (Shephard’s Lemma) If C is differentiable, then for w ∈ RL−1

++ ,

zi(w, q) =
∂C(w, q)

∂wi

Proof. (Sketch) Similarly, apply the Envelope Theorem to the cost minimization problem.

Proposition 3.8. Suppose the profit function is twice continuously differentiable. Then:

(i) ∂q(p,w)
∂pi

≥ 0

(ii) ∂xj(p,w)

∂wj
≤ 0

(iii) ∂xj(p,w)

∂wi
= ∂xi(p,w)

∂wj

Proof. Note that the profit function being twice continuously differentiable and convex
implies that its Hessian is positive semdefinite. Conclusion follows from applying Hotelling’s
Lemma
Proposition 3.9. Suppose the cost function is twice continuously differentiable. Then:

(i) ∂zi(w,q)
∂wi

≤ 0

(ii) ∂zj(w,q)

∂wi
= ∂zi(w,q)

∂wj
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(iii) ∂zi(w,q)
∂q

= ∂MC(w,q)
∂wi

=

󰀫
> 0 Normal Input
< 0 Inferior Input

Proof. (i) follows from C being concave in w. (ii) and (iii) follow from the symmetry of
second derivatives of C.

3.1.5 Comparative Statics

Remark. For a full treatment, including a few producer theory examples, see Tak’s notes
on Comparative Statics.
Assumption 3.4. Two inputs (x1, x2), one output q = f(x). f ∈ C2 and the Hessian Hf is
negative definite. f(0, x2) = f(x1, 0) = 0, so both inputs are necessary. Inada conditions on
x1, x2, output price p > 0, input prices w ≫ 0.

Consider the profit maximization problem

max
x∈R2

++

pf(x)− wx

Exercise. Prove that ∂x1(p, w)/∂w1 < 0. Taking FOC, we get

pf1(x)− w1 = 0 and pf2(x)− w2 = 0

We have that the Hessian of x, Hx, is

Hx = p

󰀗
f11 f12
f21 f22

󰀘
= pHf

Since Hf is negative definite, this matrix is invertible. By the Implicit Function Theorem,
FOCs implicitly define x(p, w) = (x1(p, w), x2(p, w)), and we can rewrite them as

pf1(x(p, w))− w1 = 0 and pf2(x(p, w))− w2 = 0

Taking derivatives with respect to w1, we get

pf11
∂x1

∂w1

+ pf12
∂x2

∂w1

= 1

pf21
∂x1

∂w1

+ pf22
∂x2

∂w1

= 0

which gives us

p

󰀗
f11 f12
f21 f22

󰀘 󰀗
∂x1/∂w1

∂x2/∂w1

󰀘
=

󰀗
1
0

󰀘
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We get that
󰀗
∂x1/∂w1

∂x2/∂w1

󰀘
=

1

p

1

f11f22 − f12f21

󰀗
f22 −f12
−f21 f11

󰀘 󰀗
1
0

󰀘

=
1

p

1

f11f22 − f12f21

󰀗
f22
−f21

󰀘

Note that f11f22−f12f21 > 0, because Hf is negative definite, and that f22 < 0, which means
that ∂x1

∂w1
< 0.

Question. Why is it worth studying cost minimization and profit maximization separately?
There are some settings where profit maximization might be unreasonable:

• Dynamics. For example, if there is learning by doing, this gives a firm incentives to
choose q > q(p, w) today in order to decrease tomorrow’s costs

• Managerial utility maximization. If a larger firm gives more prestige, might have
q > q(p, w)

3.2 Non-Price-Taking Firms

In our assumptions, we said that firms were unaffected by the firm’s activity. This leads to
the simple problem we’ve been working in:

max
z∈RL−1

pf(z)− wz

If their output has market power, then we have

max
z∈RL−1

p(f(z))f(z)− wz

And we assume that p′(q) < 0 ∀ q. They could also have input market power:

max
z∈RL−1

pf(z)− w(z)z

where we assume that ∂wi(z)
∂zi

> 0 and ∂wi(z)
∂zj

= 0 ∀ i ∕= j.

These problems imply that:

Statistic No MP Output MP Input MP
FOCs p∇f(z) = w [p(f(z)) + p′(f(z))f(z)]∇f(z) = w pfi(z) = w′

i(zi)zi + wi(zi)

MRTS fi(z)
fi′ (z)

= wi

wi′

fi(z)
fi′ (z)

= wi

wi′

fi(z)
fi′ (z)

=
w′

i(zi)zi+wi(zi)

w′
i′ (zi′ )zi′+wi′ (zi′ )
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We have that profit maximization implies cost minimization in each world, with slight dif-
ferences. We have that with no market power,

π(p, w) ≡ max
z∈RL−1

pf(z)− w · z

= max
q

󰀗
max

z∈RL−1
pq − w · z s.t. f(z) = q

󰀘

= max
q

p · q −
󰀗
min

z∈RL−1
w · z s.t. f(z) = q

󰀘

= max
q

p · q − C(w, q)

With output market power, this becomes

π(p, w) ≡ max
z∈RL−1

p(f(z))f(z)− w · z

= max
q

󰀗
max

z∈RL−1
p(q)q − w · z s.t. f(z) = q

󰀘

= max
q

p(q) · q −
󰀗
min

z∈RL−1
w · z s.t. f(z) = q

󰀘

= max
q

p(q) · q − C(w, q)

With input market power, we have

π(p, w) ≡ max
z∈RL−1

pf(z)− w(z) · z

= max
q

󰀗
max

z∈RL−1
pq − w(z) · z s.t. f(z) = q

󰀘

= max
q

p · q −
󰀗
min

z∈RL−1
w(z) · z s.t. f(z) = q

󰀘

= max
q

p · q − C(q)

Under perfect competition, there is no profit – the FOCs imply that

p =
∂

∂q
C(w, q) i.e. , price is marginal cost

With output market power, we have that

p(qm) + p′(qm)qm =
∂

∂q
C(w, qm)

which implies that

p(qm) =
∂

∂q
C(w, qm)− p′(qm)󰁿 󰁾󰁽 󰂀

<0

qm >
∂

∂q
C(w, qm)
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so there is positive profit. This with quantity choice. We can equivalently look at the price
choice problem. We have

max
p

pD(p)− c(w,D(p)) =⇒ [pmD′(pm) +D(pm)] =
∂

∂q
C(w,D(pm))D′(pm)

which implies that

pm − ∂

∂q
C(w, qm) = −D(pm)

D′(pm)

pm =

󰀕
ε

1 + ε

󰀖
∂

∂q
C(w,D(pm))

where ε is the negative inverse of the Lerner index.

With input market power (supposing for simplicity that there is only one input), we have

max
z

pf(z)− w(z)z

Since w(z) is increasing, we can write its inverse z(w), and get

max
w

pf(z(w))− wz(w)

and the FOC get us

pf ′(z(w))z′(w) = z′(w)w + z(w)

p
f ′(z(w))

w
=

z(w)

z′(w)w
+ 1

p
f ′(z(w))

w
=

1

εz,w
+ 1 =

1 + εz,w
εz,w

w =

󰀕
εz,w

1 + εz,w

󰀖
pf ′(z(w)) < pf ′(z(w))

where εz,w is the elasticity of input supply.
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4 Uncertainty Theory (Blume)

n.b. Prof. Blume did not prove any of the results presented here. It clearly matters more
that one understands the intuition rather than the exact proof structure. Proof sketches are
added wherever possible. I have relied on Fishburn (1970) for these proof sketches.

4.1 Models of Preferences

Remark. There are three main preference models that we will consider here: von Neu-
mann and Morgenstern (1947), where the objects of choice are probability distributions on
outcomes; Savage (1954), where the objects of choice are outcome-valued random variables
(formally, functions from states of the world to outcomes); and Anscombe and Aumann
(1963), where the objects of choice are functions from states of the world to probability
distributions over outcomes.
Model. von Neumann–Morgenstern We have X a set of outcomes (or prizes) and P the set
of probability distributions on X, called lotteries . For each p ∈ P , we define the support of
p as

supp p = {x ∈ X : p(x) > 0}
A preference relation 󰃒 on P has an expected utility representation if there is a real-valued
function u : X → R such that

p 󰃒 q ⇐⇒
󰁛

x∈supp p

u(x)p(x) ≥
󰁛

y∈supp q

u(y)q(y)

Remark. In general, people are inconsistent on what they call u. Here, we refer to it as
the Bernoulli Utility Function, following MWG. Prof. Blume also referred to it as the payoff
function.
Remark. In this model, whenever X is finite, indifference curves are linear in probabilities.
See Figure 2, where indifference curves are in red.

x3

x1x2

Figure 2: Indifference Curves Over Probability Distributions

Model. Savage We have X a set of outcomes, S a set of states of the world, and F the set
of Savage acts , where f ∈ F is a function f : S → X. A preference relation 󰃒 on F has an
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expected utility representation if there is a probability distribution p on S and a real-valued
function u : X → R such that

f 󰃒 g ⇐⇒
󰁛

s∈S

u(f(s))p(s) ≥
󰁛

s∈S

u(g(s))p(s)

Model. Anscombe–Aumann We have X a set of outcomes, S a set of states of the world,
P the set of probability distributions on X, and A the set of Anscombe–Aumann Acts ,
where a ∈ A is a function a : S → P . A preference relation 󰃒 on A has an expected
utility representation if there is a probability distribution p on S and a real-valued function
u : X → R such that

a 󰃒 b ⇐⇒
󰁛

s∈S

󰁛

x∈X

u(x) (a(s)(x)) p(s) ≥
󰁛

s∈S

󰁛

x∈X

u(x) (b(s)(x)) p(s)

4.2 von Neumann–Morgenstern

We first introduce a famous paradox:
Example. The St. Petersburg Paradox A fair coin is tossed until tails appears. How much
would you pay for a lottery ticket that paid off 2n dollars if the first tails appears on the nth
flip? The expected value of this lottery is

EV =
1

2
· 2 + 1

4
· 4 + · · · = 1 + 1 + · · · = ∞

However, clearly it’s not reasonable to pay a massive amount of money for this lottery ticket.
Why is this happening? There are a few explanations, and we’ll go through them in this
section.

We make the following assumptions on preferences:
Assumption 4.1. (referred to as the ‘Finite X Axioms’ by Prof. Blume)

(i) 󰃒 is complete and transitive

(ii) (Independence) For all 0 < α ≤ 1 and all r ∈ P ,

p 󰃒 q ⇐⇒ αp+ (1− α)r 󰃒 α1 + (1− α)r

(iii) (Archimedean) If p ≻ q ≻ r, then there exists α, β ∈ (0, 1) such that

αp+ (1− α)r ≻ q ≻ βp+ (1− β)r

Theorem 4.1. (von-Neumann–Morgenstern Theorem) If 󰃒 satisfies Assumptions 4.1, then
󰃒 has an expected utility representation; there is a function u : X → R such that

p 󰃒 q ⇐⇒
󰁛

x∈X

u(x)p(x) ≥
󰁛

x∈X

u(x)q(x)

Furthermore, if v : X → R is another expected utility representation, then there are constants
α > 0 and β such that v(x) ≡ αu(x) + β.
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Proof. (Very rough sketch) We will define the distance between two lotteries p and q as
a function over a subset of a convex cone in an arbitrary metric space, which exists due
to the fact that X is finite. This is mathematically tricky, but actually much easier in
low-dimensional Euclidean space. You can imagine what’s happening by considering the
positive-positive quadrant of R2, which is a convex cone. From there, the assumptions give
us that the cone is convex and compact, and the relationship we are looking for follows
directly from the Extreme Value Theorem, considering the roots of the distance function.
The second conclusion follows directly from the fact that affine transformations preserve
convexity and extrema.
Definition. A simple lottery is p := (p1 : x1, p2 : x2, . . . , pK : xK), where x1, . . . , xK are
outcomes in R and p1, . . . , pK are probabilities. Let L denote the set of simple lotteries, and
let u : X → R and U(p) =

󰁓
k u(xk)pk. Formally, this is the expectation of the random

variable u(x), itself a function of the random variable x, where x ∼ p.
Question. How do we see that this is linear in lotteries? How do we mix lotteries?

For lotteries with common support, mixing is just the convex combination of the probabilities.
But what happens when lotteries have different supports?
Example. Consider p := (p1 : x1, p2 : x2) and q := (q1 : y1, q2 : y2, q3 : y3). We can say that

p⊕α q = (αp1 : x1,αp2 : x2, (1− α)q1 : y1, (1− α)q2 : y2, (1− α)q3 : y3)

Remark. This is not a convex combination! It combines objects of different sizes. However,
expected utility is still linear:

U(p⊕α q) =
2󰁛

k=1

αpku(xk) +
3󰁛

k=1

(1− α)qku(yk)

= α
2󰁛

k=1

pku(xk) + (1− α)
3󰁛

k=1

qku(yk)

= αU(p) + (1− α)U(q)

Definition. (From Herstein and Milnor (1953)) A mixture space is a set of objects Π, with
typical elements π, ρ, µ, ν and a family of functions for 0 ≤ α ≤ 1, ⊕α : Π × Π → Π such
that

(i) π ⊕1 ρ = π

(ii) π ⊕α ρ = ρ⊕1−α π

(iii) (π ⊕β ρ)⊕α ρ = π ⊕αβ ρ

where β ∈ [0, 1].

Some examples:

• Convex sets with the operation of convex combinations
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• Simple probability distributions on convex sets

• S and X are sets, and let M denote the set of functions from S to probability distri-
butions on X. The ⊕α are the (pointwise) convex combinations of these functions

We can update Assumptions 4.1 with the mixture space definitions:
Assumption 4.2. (i) remains the same. The others:

(ii) (Independence) For all 0 < α ≤ 1 and all r ∈ P , p 󰃒 q =⇒ p⊕α r 󰃒 q ⊕α r

(iii) (Archimedean) If p ≻ q ≻ r, then there exist α, β ∈ (0, 1) such that p⊕α r ≻ q ≻ p⊕β r

We can also update Theorem 4.1 to generalize it:
Theorem 4.2. If M is a mixture space and 󰃒 satisfies Assumptions 4.2, then there ex-
ists a linear function U : M → R. Any other linear representation V is a positive affine
transformation of U .

Some Criticisms. First, the Archimedean property seems quite odd. What happens if
one outcome is infinitely preferred to another?
Example. Suppose that we have outcomes x, y, z occurring with probabilities ρx, ρy, ρz.
Further assume that x is infinitely better than y and z. We have the following (lexicographic,
so rational) preference relation: (ρx, ρy, ρz) ≻ (ρ′x, ρ

′
y, ρ

′
z) if ρx > ρ′x or if ρx = ρ′x and

ρy > ρ′y. These preferences lead to a counterexample. Let p = (1, 0, 0), r = (0, 3/4, 1/4), and
r = (0, 1/4, 3/4). Then p ≻ q ≻ r. For all α ∈ (0, 1), however,

αp+ (1− α)r = (α, (1− α)/4, 3(1− α)/4) ≻ q

To fix this, we will often assume that X has no infinitely large or small elements.

Another criticism is independence. Are preferences linear in probabilities? The following is
another famous paradox:
Example. The Allais Paradox (from Allais (1953)). Consider the following lotteries:

A =
󰁱
$1M p = 1 B =

󰀻
󰁁󰀿

󰁁󰀽

$1M p = 0.89

$5M p = 0.10

$0 p = 0.01

C =

󰀫
$1M p = 0.11

$0 p = 0.89
D =

󰀫
$5M p = 0.10

$0 p = 0.90

Most people prefer A to B, and prefer D to C. This violates the independence axiom.

This paradox can be resolved by strengthening the Archimedean assumption. This requires
some topological considerations beyond this course, but admits an expected utility represen-
tation such that u is now bounded and continuous.
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Remark. Thinking back to the St. Petersburg Paradox, we can now look at some solutions
posed.

1. Bernoulli suggested that people tend to disregard small probabilities, rounding them
to zero. This became, much later, the foundation of Prospect Theory.

2. Cramer suggested expected utility, the first time it was used! With some assumptions
(mainly, that u must be bounded), this resolves the paradox

4.3 Subjective Probability

We tend to think of three regimes for where probability comes from:

1. Frequentist : Probabilities exist, and can in principle be measured by repeated experi-
ments.

2. Logical: Probabilities are the weight that an event happens based on evidence. It
essentially generalizes truth from {0, 1} to [0, 1]

3. Bayesian: Probability is the degree of belief people have that an event will occur

Before thinking deeply about subjective expected utility theory, we need some mathematical
background. Here are presented some definitions and results, without proof.
Definition. Suppose that S is finite. Suppose that S is a collection of subsets of S such
that (i) ∅ ∈ S, (ii) if A ∈ S, then Ac ∈ S, and (iii) if A,B ∈ S, then A ∩ B ∈ S. S is a
(Boolean) algebra of events . When S is finite, we can take S = 2S. When S = R, we need
to take more care.
Definition. A probability on S is a function p : S → [0, 1] such that (i) p(S) = 1 and (ii) if
A ∩B = ∅, then p(A ∪B) = p(A) + p(B).
Definition. A qualitative probability is a binary relation ⊑ on S such that

(i) ⊑ is complete and transitive

(ii) S ⊐ ∅

(iii) for all A ∈ S, ∅ ⊑ A ⊑ S

(iv) If A,B,C ∈ S and A ∩ C = B ∩ C = ∅, then A ⊑ B ⇐⇒ A ∩ C ⊑ B ∩ C
Definition. Let A = {A1, . . . , Ak} and B = {B1, . . . , Bk} be lists of events, allowing repeti-
tions. The lists A and B are balanced if for each state s ∈ S, the number of events containing
s in A equals that in B.
Assumption 4.3. We have the following:

(i) 󰃒 on S is complete

(ii) (Positivity) for all A ∈ S, A 󰃒 ∅

(iii) (Non-triviality) S ≻ ∅
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(iv) (Finite Cancellation) For all pairs of balanced lists A and B, if for all 1 ≤ j ≤ k − 1,
Aj 󰃒 Bj, then Bk 󰃒 Ak.

Remark. Finite Cencellation implies transitivity.
Theorem 4.3. 󰃒 satisfies Assumptions 4.3 if and only if there is a probability ρ on S such
that A 󰃒 B ⇐⇒ ρ(A) ≥ ρ(B)

4.4 The Savage Framework

Recall that we are now in the Savage framework, defined in Section 4.1. First, some defini-
tions:
Definition. For an act h, define f |A h as getting f(s) for s ∈ A, otherwise getting h(s).
Let xAy denote the bet that pays off x on A and y otherwise.
Definition. We say that f 󰃒 g given A, denoted f 󰃒A g, if f ′ and g′ are actions such that
f ′ agrees with f on B, g′ agrees with g on B, and f ′ and g′ agree with each other outside of
A.
Definition. An event A is null if for all f and g, f 󰃒A g.
Definition. Sets are ordered A 󰃒 B if there are outcomes x ≻ y such that xAy 󰃒 xBy.

Now, we get the Savage Axioms:
Assumption 4.4. These are:

(i) 󰃒 is complete and transitive

(ii) if f |A h ≻ g |A h, then for all k, f |A k ≻ g |A k

(iii) For outcomes x, y and non-null A, x 󰃒A y if and only if x 󰃒 y

(iv) For outcomes x ≻ y and x′ ≻ y′, and sets A,B, xAy 󰃒 xBy if and only if x′Ay′ 󰃒 x′By′

(v) There exist outcomes x ≻ y

(vi) If f ≻ g, then for any consequence x there is a partition of S such that on each Si,
f |Si

h ≻ g and f ≻ g |Si
h

(vii) If f and g are acts and A is an event such that f(s) 󰃒A g for every s ∈ A, then f 󰃒A g;
and if f 󰃒A g(s) for every s ∈ A, then f 󰃒B g

Theorem 4.4. The Savage Axioms (Assumptions 4.4) imply Bayes’ Rule

Proof. From the assumptions, f ≻A g if and only if for any act h, f |A h ≻ g |A h. We have
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that

E
µ
[u(f |A h)] > E

µ
[u(g |A h)] ⇐⇒

󰁝

S

u(f |A h(s))dµ >

󰁝

S

u(f |A g(s))dµ ⇐⇒
󰁝

A

u(f(s))dµ+

󰁝

Ac

u(h(s))dµ >

󰁝

A

u(g(s))dµ+

󰁝

Ac

u(h(s))dµ ⇐⇒
󰁝

A

u(f(s))dµ >

󰁝

A

u(g(s))dµ ⇐⇒
󰁝

A

u(f(s))dµ/µ(A) >

󰁝

A

u(g(s))dµ/µ(A)

E
µ
[u(f) | A] > E

µ
[u(g) | A]

4.5 Anscombe–Aumann

Remark. Recall that we are now in the Anscombe–Aumann framework detailed in Sec-
tion 4.1, meaning that an expected utility representation is a function u : X → R and a
probability distribution µ on S such that

f 󰃒 g ⇐⇒
󰁛

S

󰁛

X

u(x)f(s)(x)µ(s) ≥
󰁛

S

󰁛

X

u(x)g(s)(x)µ(s)

To go towards an expected utility representation theorem, we need some further assumptions,
beyond Assumptions 4.1.
Assumption 4.5. In addition to Assumptions 4.1, we assume that

(iv) (non-triviality) For some f, g ∈ A, f ≻ g

(v) (state independence) If for some s ∈ S, a ∈ A, and p, q ∈ P , h |{s}c p ≻ p ≻ h |{s}c q,
then for all non-null states t, h |{s}c p ≻ h |{s}c q

Theorem 4.5. If 󰃒 satisfies Assumptions 4.1 and Assumptions 4.5, then there exists a
function u : X → R and a probability distribution ρ on S such that

f 󰃒 g ⇐⇒
󰁛

S

󰁛

X

u(x)f(s)(x)ρ(s) ≥
󰁛

S

󰁛

X

u(x)g(s)(x)ρ(s)

Proof. Complicated, and ommitted. Is in Fishburn (1970).

37

https://www.semanticscholar.org/paper/Utility-theory-for-decision-making-Fishburn/905a24a912171436e0abd3b5f1fdcb963e6f852f


4.6 Beyond Expected Utility

Remark. There are some big issues with expected utility theory in general. Here, some of
them are summarized and some possible solutions are presented.

Consider first a final famous paradox:
Example. The Ellsberg Paradox (from Ellsberg (1961)) There is a single urn with three
balls. One ball is red and the other two are either blue or green. One ball is drawn from
the urn, and the bettor bets on its color. Winning bets pay $100, losing bets pay nothing.
Available bets are red, blue, not red, and not blue.

Typical laboratory preferences are inconsistent with probabilistic beliefs – both red and not
red are preferred to blue and not blue. This is a major issue, with several proposed solutions
over the years.
Example. Weighted EU. One idea is that individuals overweight small-probability events.
Imagine a weighting function w : [0, 1] → [0, 1] with w(p) > p for small p and w(p) < p for
large p. One issue: weighted expected utility will not respect FOSD.
Example. Rank-Dependent Expected Utility. Instead of weighing probabilities, apply prob-
ability weights to the CDF:

U(p) =
󰁛

n

wn(p)u(xn)

where x1 ≤ x2 ≤ · · · ≤ xn and

wn(p) = q

󰀣
n󰁛

k=1

pk

󰀤
− q

󰀣
n−1󰁛

k=1

pk

󰀤

where q : [0, 1] → [0, 1] transforms probabilities and q(0) = 0 = 1 − q(1). If q is strictly
increasing, than 󰃒 respects FOSD.
Example. Maxmin EU. Ambiguity is the idea that individuals may be uncertain about what
probability distribution they face. If, for example, you bet as if the worse case scenario were
always the probability distribution for the current bet, the Ellsberg paradox would result.
Definition. Choquet Expected Utility is expected utility where the expectation is taken with
respect to a non-additive probability, also called a capacity . Suppose S is finite and S = 2S.
A function µ : S → [0, 1] is a capacity if (i) µ(∅) = 0, µ(S) = 1, and for all A ⊂ B ∈ S,
µ(B) ≥ µ(A).
Assumption 4.6. We have the following assumptions for Choquet Expected Utility over
Anscombe–Aumann acts:

(i) 󰃒 is complete and transitive

(ii) An Archimedean axiom

(iii) The independence axioms for all acts f, g, h which are comonotonic

(iv) There are f, g ∈ A such that f ≻ g
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(v) If for all s ∈ S, f(s) ≻ g(s), then f ≻ g
Theorem 4.6. If 󰃒 on A satisfies Assumptions 4.6, then there is a function u : X → R
and a capacity µ on S such that

f 󰃒 g ⇐⇒
󰁝 󰁛

x

u(x)f(s)(x)dµ ≥
󰁝 󰁛

x

u(x)g(s)(x)dµ

Proof. Technical, ommitted.
Definition. A capacity µ is convex if for all A,B ∈ S,

µ(A ∪B)− µ(A) ≥ µ(B)− µ(A ∩B)

The core of a capacity µ is C(µ) := {ρ ∈ P : ρ(A) ≥ µ(A)}
Lemma 4.1. Every convex capacity has a core.
Example. If S = {0, 1} and µ(0) = µ(1) = 0.3, then

C(µ) = {ρ : 0.3 ≤ ρ(0) ≤ 0.7}

Remark. If P is a convex set of probability distributions, then µ(A) = infρ∈P ρ(A) is a
capacity
Definition. Let 󰃒 be a binary relation on A. Then 󰃒 is said to be ambiguity-averse (also
called uncertainty-averse) if f, g 󰃒 h and α ∈ [0, 1] implies that αf + (1− α)g 󰃒 h
Theorem 4.7. Suppose that 󰃒 satisfies Assumptions 4.6. Then the following are equivalent:

1. 󰃒 is ambiguity-averse

2. µ is convex

3.
󰁕
fdµ = infρ∈C(µ)

󰁕
fdρ

Remark. This is a characterization of maxmin expected utility. Can you see how to obtain
the Ellsberg Paradox from this characterization?
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5 Uncertainty Applications (Barseghyan)

Remark. In light of the previous section, this is a slightly odd object. In short, we left
Prof. Blume’s section with significantly less understanding of uncertainty than we wanted
to have. Prof. Barseghyan attempted to correct this, but necessarily there was replication of
material. I include the entirety of his material here, for completeness, but the most relevant
new information are the examples.
Remark. Large thanks to Robert Betancourt, whose notes I extensively used in writing this
section.

5.1 Basics of (Subjective) Expected Utility Theory

The most important part of expected utility theory is the concept of states.
Definition. A state (of the world) is essentially an event. However, we make some additional
assumptions. States must be payoff relevant , meaning that the realization of the state affects
what the consumer gets, and states must be equipped with a probability p ∈ P such that󰁓N

i=1 pi = 1, pi > 0 for payoff-relevant states {s1, . . . , sN}.
Definition. The expected value of a lottery is the straightforward expectation. With finite
payoffs, we have that

EV =
N󰁛

i=1

pixi

Question. Say that the EV of some lottery is $72. How much are you willing to pay for it?
Specifically, how much you are willing to pay determines if you are risk averse.

First, note that we take forward the above Assumptions 4.1, and reprint them here:
Assumption 5.1. We say that 󰃒 over lotteries p and q is complete and transitive, contin-
uous, and independent.

We also will assume throughout that X and the associated states are fixed.
Definition. An expected utility representation is a function u such that

p 󰃒 q ⇐⇒
m󰁛

i=1

piu(xi) ≥
n󰁛

j=1

qju(xj)

When u is concave, we say that the consumer is risk-averse, and when it is convex we say
that the consumer is risk-loving . u is shape restricted because of patterns we see in the data,
and will often depend on wealth. We define an expected utility function U as

U(p) = EU =
m󰁛

i=1

piu(xi)
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5.2 Lotteries

Example. Comparing Lotteries. Assume that the lottery is the flip of a (not necessarily fair)
coin, where if heads appears you attain 0, if tails appears you attain −T . The probability of
heads is p1 and the probability of tails is p2. We also have utility u(x) = − exp(−γx). The
amount you would be willing to pay for this lottery is the x at which

− exp(−γx) = p1(− exp 0) + p2(− exp(γT )) ≡ −(p1 + (1− p1) exp(γT ))

Taking logs, we get that

x = −1

γ
log (p1 + (1− p1) exp(γT )) = CE

Definition. The certainty equivalent is the amount of money in a degenerate (certain)
lottery that would make that lottery equivalent to the lottery in question.
Remark. For a risk-averse expected utility maximizer, facing a lottery where they attain
x1 with probability 1/2 and x2 with probability 1/2, their certainty equivalent is illustrated
in Figure 3.

x

u
u(x)

x1 x2xCE

u1

u2

1
2
u(x1) +

1
2
u(x2) = u(xCE)

Figure 3: Risk-Averse Certainty Equivalent

The certainty equivalent allows you to evaluate any lottery in the world of outcomes by
which the lottery is realized – often, the dollar amount between certainty and lottery. For
a risk-averse expected utility maximizer, if they have a continuous utility function, it will
always be the case that by the Intermediate Value Theorem,

u

󰀣
N󰁛

i=1

pixi

󰀤
≥

n󰁛

i=1

piu(xi) =⇒ ∃ xCE s.t. u(xCE) =
n󰁛

i=1

piu(xi)

Remark. Note that in the continuous case, we have that

Expected Value =

󰁝

R
xdF (x) and Expected Utility =

󰁝

R
u(x)dF (x)
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5.3 Insurance

Example. Insurance. Let’s assume that there are two possible losses, against which the
decision maker can buy insurance. The losses are:

Outcome Payoff Probability Price How Much Purchased
Loss 1 w − L1 p1 q1 π1

Loss 2 w − L2 p2 q2 π2

No Loss w 1− p1 − p2 – –

We have that the attained wealth in each scenario is:

Loss 1 : w − L1 − q1π1 − q2π2 + π1

Loss 2 : w − L2 − q1π1 − q2π2 + π2

No Loss : w − q1π1 − q2π2

So we are solving the problem

max
π1,π2

p1u(w − L1 − q1π1 − q2π2 + π1) + p2u(w − L2 − q1π1 − q2π2 + π2)

+(1− p1 − p2)u(w − q1π1 − q2π2)

The first order conditions are

0 = p1(1− q1)u
′(·1) + p2(−q1)u

′(·2) + (1− p1 − p2)(−q1)u
′(·3) (π1)

0 = p1(−q2)u
′(·1) + p2(1− q2)u

′(·2) + (1− p1 − p2)(−q2)u
′(·3) (π2)

Combining, we get that
p1u

′(·1)
p2u′(·2)

=
q1
q2

Remark. This result required assuming that we know all of u, p, and w. That’s extremely
strong.

5.4 Trees and Floods

Example. Trees. You are a farmer deciding where to plant a grape tree. You can choose
either the left bank of a river, the right bank of a river, or on a mountain. We will denote
the returns as:

Choice Returns without flood Flood Probability
L ℓ = 200 fℓ
R r = 200 fr
M m = 50 0
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Remark. If L and R are divisible and the convex combination of their returns dominate
M , then M is useless.
Remark. Are the floods mutually exclusive? We need to answer this question.

We’ll say that the consumer can invest total wealth of 1 into the various locations, denoted
by xℓ, xr, xm. Our expected utility maximization problem is

max
xℓ+xr+xm≤1

󰁛

i∈{∅,ℓ,r,ℓr}

fiu(wi) where w∅ = xmm

Let’s assume that the floods are independent. Then we have that

P{no flood} = (1− fℓ)(1− fr) =⇒ w = xℓℓ+ xrr + xmm

P{ℓ flood} = fℓ(1− fr) =⇒ w = xrr + xmm

P{r flood} = (1− fℓ)fr =⇒ w = xℓℓ+ xmm

P{ℓr flood} = fℓfr =⇒ w = xmm

Suppose that preferences are CARA, so u(x) = − exp(−γx) for some γ. Our maximization
problem becomes

max
xℓ+xr+xm≤1

− (1− fℓ)(1− fr) exp(−γ(xℓℓ+ xrr + xmm))

− fℓ(1− fr) exp(−γ(xrr + xmm))− (1− fℓ)fr exp(−γ(xℓℓ+ xmm))

− fℓfr exp(−γxmm)

Note that since the utility function is increasing, the constraint will hold with equality. We
can substitute, and the problem becomes

−fℓ [fr exp(−γ(1− xr − xℓ)m) + (1− fr) exp(−γ(xrr + (1− xr − xℓ)m))]

−(1−fℓ) [(1− fr) exp(−γ(xℓℓ+ xrr + (1− xr − xℓ)m)) + fr exp(−γ(xℓℓ+ (1− xr − xℓ)m))]

Note that this is multiplicatively separable into terms with xℓ and xr. We can rewrite the
problem as
󰁫
−fℓ exp(γxℓm)−(1−fℓ) exp(−γxℓ(ℓ−m))

󰁬󰁫
fr exp(−γ(1−xr)m)+(1−fr) exp(−γ(xrr+(1−xr)m))

󰁬

Remark. This is a fairly deep result. We can think of it as essentially, since the events are
independent, ignoring whether or not the left (or right) bank will flood when considering
the optimal amount to invest in the other bank. This result generalizes, and is extremely
nice for the purposes of modeling. It means that we don’t need to consider, for example, the
probability that a random event in New York will happen or not when modeling something
in California, as long as the two aren’t dependent.
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5.5 Miscellanea

Some Nice Intuition.
Definition. The equity premium is the gain in expected value a risky asset gives over a
safe asset. This doesn’t need to hold, but in a world where we generally think people are
risk-averse, nobody would be interested in an asset that had both higher risk and less return
than a safe asset.
Remark. If two events are (perfectly) correlated, then one of them is irrelevant. Prof.
Barseghyan provided this intuition: If one event is whether the Kansas City Chiefs win and
another is whether people drink in Kansas City, owning one implicitly means you own the
other. Moreover, if someone benefits from one asset implicitly, they should bet against it to
hedge. A Ford employee with stock options should, with their own money, invest in Tesla,
if they assume it’s a zero-sum game.

Some Definitions.
Definition. Loss aversion is a behavioral result where someone will refuse a single lottery
but accept multiple independent draws of the lottery. This is intuitively rational, but doesn’t
actually make sense in expected utility theory.
Definition. Prospect Theory is another explanation for a behavioral result. Prof. Blume
talked about it a bit, but think about it as reweighting probabilities before evaluating ex-
pected utility.

Some Formality. (From Stanford E202 Uncertainty Notes, by Ilya Segal and Ravi Ja-
gadeesan)
Remark. I’m honestly not sure how much of this will be relevant, and I’m unsure if any of
it is examinable. However, I appreciate rigor when it’s available, so I figured I’d include this
for completeness and as a reference if nothing else.
Definition. A decision maker is (strictly) risk-averse if for any non-degenerate lottery F
with expected value EF , the decision maker (strictly) prefers δEF

, the degenerate lottery
that pays EF with probability 1, to F .
Proposition 5.1. A decision maker is risk-averse if and only if her Bernoulli utility function
is concave.
Definition. The certainty equivalent c(F, u) is the amount of dollars such that

u(c(F, u)) =

󰁝
u(x)dF (x)

The risk premium of lottery F for decision maker u is the difference EF [X]− c(F, u).
Definition. For a twice-differentiable Bernoulli utility function u(·), the Arrow-Pratt Coef-
ficient of Absolute Risk Aversion at x is A(x) = −u′′(x)

u(x)

Proposition 5.2. The following are equivalent for decision makers u and v:

(i) u is more risk averse than v

44



(ii) For every lottery F , c(F, u) ≤ c(F, v)

(iii) There exists an increasing concave function g such that u = g ◦ v

(iv) u′(x)
v′(x) is nondecreasing in x

(v) For every x, A(x, u) ≥ A(x, v)

(vi) Whenever u weakly prefers a lottery F to a certain outcome δx, then v does as well
Definition. The Bernoulli utility function u(·) has decreasing (constant, increasing) absolute
risk aversion if A(x, u) is a decreasing (constant, increasing) function of x.
Definition. For a Bernoulli utility function u(·), the coefficient of relative risk aversion at
x is R(x, u) = −xu′′(x)

u′(x) ≡ xA(x, u). u has decreasing (constant, increasing) relative risk
aversion if R(x, u) is a decreasing (constant, increasing) function of x.
Definition. The distribution G first order stochastically dominates (FOSD) the distribution
F if for every nondecreasing function u : R → R,

󰁕
u(x)dG(x) ≥

󰁕
u(x)dF (x).

Proposition 5.3. The distribution G first order stochastically dominates the distribution F
if and only if for every x, G(x) ≤ F (x).
Definition. Suppose that distributions G and F with common support have densities g and
f respectively. We say that G dominates F in the likelihood ratio order if g(x)

f(x)
is nondecreasing

in x.
Definition. G conditionally first order stochastically dominates F if the CDFs conditional
on any (positive-measure Borel) set A ⊆ R satisfy G(x | A) ≤ F (x | A) for all x
Proposition 5.4. G dominates F in the likelihood ratio order if and only if G conditionally
first order stochastically dominates F .
Definition. Consider two distributions G and F with the same mean. We say that G
second-order stochastically dominates (SOSD) F if for every concave function u : R → R,󰁕
u(x)dG(x) ≥

󰁕
u(x)dF (x).

Proposition 5.5. Consider two distributions G and F with the same mean. G second order
stochastically dominates F if and only if for every x,

󰁝 x

−∞
G(y)dy ≤

󰁝 x

−∞
F (y)dy

Remark. From Rothschild and Stiglitz (1970), there’s a really nice intuition for this. We can
think of adding random, mean zero noise to a distribution. This is called a ‘mean preserving
spread’ as the resulting distribution will have the same mean but will be more spread out.
Any distribution first order stochastically dominates its mean preserving spreads. To see
why, consider a lottery that pays $2 or $0 with probability 1/2 each. Now consider a lottery
that pays $3 or $-1 with probability 1/2 each. The second is a mean-preserving spread of
the first, but clearly a risk-averse person would prefer the first to the second. To prove this
in general is a fairly straightforward application of Jensen’s Inequality! It’s fun.
Remark. Another equivalent definition of SOSD, without restricting G and F from having
the same mean is that any von Neumann-Morgenstern decision maker with nondecreasing
and (not necessarily strictly) concave Bernoulli utility prefers G to F . You can probably
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show fairly easily that this is equivalent to the definition in Proposition 5.5. However, can
you explain why we no longer care about the means being equal? What would happen if the
means were not equal?
Proposition 5.6. If decision-maker u is less risk-averse than decision maker v, then u will
optimally choose to take more risk than v for any CDF G(·).
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6 Information Theory (Battaglini)

6.1 Asymmetric Information

Definition. We say that we have complete information if all agents know all of the rele-
vant information. We say that information is incomplete otherwise. We have two types of
incomplete information:

(i) Symmetric incomplete information: some variables are unknown, but no privileged
information

(ii) Asymmetric incomplete information: some players have more information than others
Remark. We have two broad categories of asymmetric information problems: (i) adverse
selection, when the asymmetric information concerns the characteristics of the agents (think
insurance, lending, selling, etc); and (ii) moral hazard when the information concerns the
action of some character (think work relations, also insurance, also lending, etc).
Model. (Lemons) (from Akerlof (1970)). Consider a labor market in which a worker pro-
duces θ units. θ has distribution F (θ) in [θ, θ], with 0 < θ < θ < ∞. Firms hire workers to
produce the good and sell it in a competitive market at price p = 1. The number of workers
is N , and firms are risk-neutral. Workers have a reservation value for their time r(θ), which
can be thought of as unemployment insurance, or the value of going to school, or whatever.
Employed workers receive a wage, which may or may not depend on θ.

Complete Information. In a competitive equilibrium with complete information, all
workers with r(θ) < θ are employed. w(θ) = θ for all employed workers, and w(θ) < θ
for the unemployed. Note that this market outcome is Pareto optimal: it is not possible to
make any worker strictly better off without making some agent strictly worse off. Aggregate
surplus in this model is:

W 󰂏 =

󰁝 θ

θ

N [1θ · θ + (1− 1θ)r(θ)] dF (θ)

where 1θ = 1 if r(θ) < θ and 0 otherwise.

Asymmetric Information. Since worker types are unobservable, there will only be one
market here, with price w. Supply in this market is Θ(w) := {θ : r(θ) < w}, so S(w) =
F (r−1(w)). For simplicity, let’s assume that indifferent workers will choose to work. Demand
is:

D(w) =

󰀻
󰁁󰀿

󰁁󰀽

0 E θ < w

[0,∞] E θ = w

∞ E θ > w
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It is clear that S(w) = D(w) only when E θ = w. At the same time, E θ must be consistent
with supply, so we must have that w = E [θ : r(θ) ≤ w]. This condition is called rational
expectations .
Definition. Ina. competitive market model with unobservable worker’s productivity, a
competitive equilibrium is a wage rate w󰂏 and a set of workers Θ󰂏 such that

Θ󰂏 = {θ : r(w) ≤ w} and w󰂏 = E [θ : θ ∈ Θ󰂏]

Remark. The rational expectation requirement is well-defined only if Θ󰂏 is non-empty. If
Θ󰂏 is an empty set, we need to specify off-path beliefs, since the firms expect no supply of
labor. For now, we have the following, which is as good as anything else:
Assumption 6.1. If Θ󰂏 = ∅, then w󰂏 = E θ, the unconditional expectation.
Remark. In general, with imperfect information, a competitive equilibrium is Pareto inef-
ficient.
Example. To see this point, assume r(θ) = r for some constant. The Pareto optimal
allocation requires that all workers with θ > r to work, and all types with θ < r to not work.
But this is impossibly in a competitive equilibrium: if w > r, everyone works, and if w < r,
nobody works. If w = r, the types are indifferent, but there’s no reason they should sort the
way we want. The problem is that firms are unable to distinguish types, so there’s no way
to sort the workers.
Example. (Adverse Selection and Market Unraveling) We now consider the more realistic
case where r(θ) is increasing in θ. For simplicity, we assume that r(θ) ≤ θ for all θ, so it is
efficient to have full employment. Further, we assume that r(θ) is strictly increasing in θ.
Now we have that E[θ : r(θ) ≤ w] is continuous in w, as long as F has a density f , and is
increasing in w.

Note some implications: (i) E[θ : r(θ) ≤ r(θ)] = θ ≥ r(θ), and (ii) E[θ : r(θ) ≤ r(θ)] = E θ <
θ. Thus, we have Figure 4, where E[θ : r(θ) ≤ w] is above the 45◦ line at w = r(θ), and
below at w = r(θ).

45◦
θ

θr(θ) θ w󰂏
r(θ)

E[θ]

w󰂏

θ

E[θ : r(θ) ≤ w]

Figure 4: Single Equilibrium
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We must have at least one w󰂏 ∈ (θ, θ) such that w󰂏 = E[θ : r(θ) ≤ w󰂏], by Kakutani’s Fixed
Point Theorem.

This characterization immediately shows that the equilibrium is inefficient. It would be
optimal to have all types employed, but only types θ ≤ r−1(w󰂏) < θ are employed here.
Remark. We may have multiple equilibria. See Figure 5 for an illustration. If we have
multiple equilibria, they can be Pareto ranked – recall that all profits are zero, but workers
do better as w󰂏 increases.

45◦
θ

θr(θ) r(θ)

E[θ]

w󰂏

θ

w󰂏
1w

󰂏
2w

󰂏
3

E[θ : r(θ) ≤ w]

Figure 5: Multiple Equilibria

Remark. The classic point made by Akerlof is that the market may totally collapse. See
the following example.
Example. Assume that r(θ) = αθ for some α < 1, and that θ ∼ U [0, 2]. We have that

E[θ : r(θ) ≤ w] = E[θ : αθ ≤ w] = E
󰁫
θ : θ ≤ w

α

󰁬
=

w

2α

In this case, when α > 1
2
, the market collapses to zero. See Figure 6.

Question. Could this be fixed with public intervention? A case is possible where there are
multiple equilibria. In this case, the government could shift the equilibrium to the maximum
equilibrium wage.

Could the government do better than that? If they could see the types, but that’s implau-
sible.
Definition. A Constrained Pareto Optimum is a Pareto Optimum achievable by a planner
with no informational advantage.

Is there a constrained Pareto optimum that is better than the competitive equilibrium? The
answer is no.
Example. The planner chooses we and wu (employed and unemployed). Given this, all
workers of type θ ≤ θ̂ will work, where wu + r(θ̂) = we. So the government can only choose
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w

E[θ]
45◦

w
2α

w󰂏

Figure 6: Collapse In the Market for Lemons

θ̂, we, and wu such that the budget balance is satisfied:

weF (θ̂) + wu[1− F (θ̂)] ≤
󰁝

θdF (θ)

Substituting, we get that

wu(θ̂) =

󰁝
θdF (θ)− r(θ̂)F (θ̂)

we(θ̂) =

󰁝
θdF (θ)− r(θ̂)[1− F (θ̂)]

meaning that

wu(θ̂) = F (θ̂)
󰁫
E[θ : θ ≤ θ̂]− r(θ̂)

󰁬

we(θ̂) = F (θ̂)
󰁫
E[θ : θ ≤ θ̂]− r(θ̂)

󰁬
+ r(θ̂)

Let θ󰂏 be the highest type employed in the highest competitive equilibrium, so:

r(θ󰂏)E[θ : θ ≤ θ󰂏] = w󰂏

If the government selects θ̂ = θ󰂏, we have we(θ̂) = w󰂏, and wu(θ̂) = 0. So the outcome is the
competitive equilibrium. There are two other possibilities: θ̂ > θ󰂏 and θ̂ < θ󰂏. If θ̂ < θ󰂏, we
have that

we(θ̂) = F (θ̂)
󰁫
E[θ : θ ≤ θ̂]− r(θ̂)

󰁬
+ r(θ̂)

< F (θ̂)
󰁫
E[θ : θ ≤ θ̂]− r(θ󰂏)

󰁬
+ r(θ󰂏)
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since r(θ󰂏) > r(θ̂). We also have that

we(θ̂)− r(θ󰂏) ≤ F (θ̂)
󰁫
E[θ : θ ≤ θ̂]− r(θ󰂏)

󰁬

= F (θ̂)
󰁫
E[θ : θ ≤ θ̂]− E[θ : θ ≤ θ󰂏]

󰁬
< 0

It follows directly that we(θ̂) < r(θ󰂏) = w󰂏. Low types were working in the competitive
equilibrium for a higher wage, and they are now worse off.

The other case assumes that θ̂ > θ󰂏. We must have that E[θ : r(θ) ≤ w] < w for all w ≥ w󰂏,
otherwise w󰂏 would not be the highest competitive equilibrium. Since w󰂏 = r(θ󰂏) and r(θ)
is increasing, r(θ̂) > r(θ󰂏) = w󰂏, so

E
󰁫
θ : r(θ) ≤ r(θ̂)

󰁬
< r(θ̂)

for θ̂ ≥ θ󰂏. So wu(θ̂) = F (θ̂)
󰁫
E[θ : θ ≤ θ̂]− r(θ̂)

󰁬
≤ 0, implying that the high types that

remain unemployed are worse off now.

6.2 Separating and Pooling Equilibria

Example. One way the market might bypass the information asymmetry is by allowing
workers to signal their type. Assume here that there are two types, 0 < θL < θH , with
P{θH} = λ. We now assume that workers can get some education e. To make the point
more striking, education is unproductive.

The cost of education is C(e, θ) with (i) the usual technological assumptions, so C(0, θ) = 0,
Ce(e, θ) > 0, and Cee(e, θ) > 0; and (ii) we assume that Cθ(e, θ) < 0 and Ceθ(e, θ) < 0. Note
that these are the Single Crossing Property we saw in Math.

Note that now the wage depends on the observable e, so the wage is a function w(e). Utility
is now

U(w, e; θ) = w(e)− c(e, θ)

We assume that r(θ) = 0, so in a competitive market with no signaling all types are employed
at wage E[θ]. A competitive equilibrium with signaling is now a competitive equilibrium for
each e, meaning a Θ(e), w(e) such that

w(e) = E[θ : θ ∈ Θ(e)] and Θ(e) = {θ : e ∈ argmax
e

U(w(e), e; θ)}

We can plot indifference curves in the (w, e) space. Indifference curves for high and low types
will typically cross only once, and the indifference curves for high types are less steep, since

∂w(e)

∂e
= Ce(e, θ) and Ce(e, θH) < Ce(e, θL)
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This is illustrated in Figure 7.

e

w

ê

ŵ

θH

θL

Figure 7: Indifference Curves for High and Low Types

The wage function can be represented as

w(e) = µ(e)θH + (1− µ(e))θL

where µ(e) is the posterior probability of observing a high type. This function is illustrated
in Figure 8.

e

w

θL

θH

w(e)

Figure 8: Wage Function on Education

Remark. We haven’t explicitly discussed Bayesian posterior probabilities before. These are
directly derived from Bayes’ Rule. Formally, in this example, we have that

µ(e) = P{θ = θH |e = 1} =
P{e = 1|θ = θH}

P{e = 1|θ = θH}+ P{e = 1|θ = θL}
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Definition. In a separating equilibrium, the two types choose different actions: e󰂏(θH) ∕=
e󰂏(θL). This immediately implies two facts: (i) In a separating equilibrium, we must have
that w(e󰂏(θH)) = θH and w(e󰂏(θL)) = θL; and (ii) we must have that e󰂏(θL) = 0. Why is
this? The low type gets no benefit from e󰂏(θL), so by choosing e󰂏(θL) = 0, she gets the same
wage and lower costs.

Starting from here, we will construct a separating equilibrium. We need that e󰂏(θL) = 0 and
e󰂏(θH) such that

U(w(e󰂏(θH)), e
󰂏(θH); θH) ≥ U(w(e), e; θH) ∀ e

U(w(e󰂏(θL)), e
󰂏(θL); θL) ≥ U(w(e), e; θL) ∀ e

these are called our incentive compatability constraints , and they guarantee that neither high
nor low types are incentivized to deviate from what we think they should do.

An example of this equilibrium is illustrated in Figure 9.

e

w

w󰂏(e󰂏(θL)) = θL

w󰂏(e󰂏(θH)) = θH

ẽ

w󰂏(e)

e󰂏(θL)

e󰂏(θH)
󰃿

θH
θL

Figure 9: A Separating Equilibrium

Note that here we have that (i) e󰂏(θL) = 0, (ii) U(w(e󰂏(θL)), e
󰂏(θL); θL) = U(w(e󰂏(θH)), e

󰂏(θH); θL),
and (iii) U(w(e󰂏(θH)), e

󰂏(θH); θH) ≥ U(w(e󰂏(θL)), e
󰂏(θL); θH).

Remark. We need here to specify wages for all e, even though only two will be chosen. This
is because w(e) = µ(e)θH + (1− µ(e))θL, meaning that

µ(e) =
w(e)− θL
θH − θL

Remark. We can have other equilibria, but (referring back to Figure 9), the educational
level for the high type cannot be lower than ẽ, otherwise we would violate the incentive
compatibility constraint for the low type (they would pay to get the higher wage). The
educational level of the high type cannot be higher than e1, otherwise we would violate
incentive compatibility for the high type (they would rather not pay and not get hired).
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Remark. The equilibria can be Pareto ranked: profits are always zero in a competitive
equilibrium, and effort is a net loss, so the lower e the better.
Question. Are the players better off with signaling? The low type is always worse off – before
signaling, he was hired at w = E[θ], now he is either hired at w = 0 or unemployed. The high
type may or may not be better off – before signaling, her utility is w = E[θ] = U(E[θ], 0; θH),
and with signaling her utility is U(w(e󰂏(θH)), e

󰂏(θH); θH) = w(e󰂏(θH))− e󰂏(θH). She may be
better off or worse off depending on the expectation of θ – which comes entirely from the
Bayesian prior λ.
Definition. In a pooling equilibrium, the two types choose the same action, so they are
indistinguishable: e󰂏(θH) = e󰂏(θL) = e󰂏. It follows that w(e󰂏) = λθH + (1− λ)θL = E[θ].
Remark. Again in this equilibrium, we need to define the wage for e ∕= e󰂏. We need incentive
compatibility again, meaning that for any e:

U(E[θ], e󰂏; θH) ≥ U(w(e), e; θH)

U(E[θ], e󰂏; θL) ≥ U(w(e), e; θL)

An example of this equilibrium is illustrated in Figure 10.

e

w

θL

θH

E[θ]

e′

w󰂏(e)

0

e󰂏(θ)
󰃿

θH

θL

Figure 10: A Pooling Equilibrium

Remark. Multiple levels of effort can be sustained in a pooling equilibrium, as long as there
are ‘punishments’ for lower levels of effort. In this way, we can sustain positive effort even
for low types.
Remark. The highest level of education corresponds to U(E[θ], e1; θL) = U(θL, 0; θL) = θL.
Anything higher violates incentive compatibility. The lowest pooling equilibrium is, of course
e = 0.
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6.3 Separating and Pooling Refinements

Example. Consider an e′ such that

E[θ]− C(e󰂏, θL) ≥ θH − C(e′, θL) and E[θ]− C(e󰂏, θH) < θH − C(e′, θH)

where e󰂏 is a pooling equilibrium. Since a low type is worse off if believed and a high type
is better off, a receiver would believe that a deviator is a high type.
Remark. Such a point e′ always exists. We can conclude that no pooling equilibria exist.
To see why, consider that if everyone else is pooling, and you are a low type, you can deviate
and be considered the only high type. By doing so, you would attain the highest salary, and
do better! Thus, incentive compatibility is never satisfied for all low types.
Example. Consider now a separating equilibrium with eL = 0, eH . In such an equilibrium,
in order for incentive compatibility to hold, we need that θH − C(eH , θH) ≥ θL. Assume
that θH − C(eH , θL) < θL. Then if the receiver sees a deviation e′ < eH , but still has that
θH − C(e′, θL) < θL, knowing that a high type benefits from being believed and a low type
does not, the receiver will assume that the deviator is a high type.
Remark. Such an e′ exists in all cases except when eL = 0 and θH − C(eH , θL) = θL. This
is the only separating equilibrium that survives refinement.

6.4 Screening Games

Remark. In the previous analysis, informed agents chose education to self-select, and to try
and signal their types. If we flipped the game so it’s uninformed agents trying to screen the
informed agents, then we have screening.
Model. Let’s assume the same environment as before: we have two types 0 < θL < θH ,
with P{θH} = λ, and now assume that r(θ) = 0. We will assume that (unproductive) tasks
can be assigned to the agents. These tasks cost effort C(t, θ) with the same assumptions as
before: C(0, θ) = 0, Ct(t, θ) > 0, Ctt(t, θ) > 0, Cθ(t, θ) < 0, and Ctθ(t, θ) < 0.
Definition. A contract is a pair (t, w(t)), where t is a task and w(t) is the associated wage
if that task is completed.

Let Θ(t) := {θ : t ∈ argmaxt u(w(t), t; θ)} be the set of all agents who complete a task t.
Definition. A family of contracts (t, w(t))t is a competitive equilibrium if (i) w(t) = E[θ :
θ ∈ Θ(t)], and (ii) profits are zero for all contracts (t, w(t)).
Remark. With observable types, (t, w(t, θ)) = (0, θ). With unobservable types, we have
three cases: perfectly separating equilibria, pooling equilibria, and partially separating equi-
libria. We will not really study the third.

Our first result is that no pooling equilibrium can exist. See Figure 11. The high type would
always deviate from (wp, tp) to (w̃, t̃), and this necessarily follows from the single crossing
assumptions.
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t

w

θL

θH

E[θ]

θH

θL

(w̃, t̃)

(wp, tp)

Figure 11: A Potential Pooling Equilibrium

Our second result is that if wL, tL, wH , tH are equilibrium contracts in a separating equilib-
rium, then (wL, tL) = (θL, 0) and (wH , tH) = (θH , t

󰂏
H) such that

θH − C(t󰂏H , θL) = θL − C(0, θL)

so that the low type is indifferent between (wL, tL) and the contract for the high type. The
intuition is in Figure 12.

t

w

t̂H

θL

θH
θH

θL

(w̃, t̃)

(wH , tH)

(wL, tL)

Figure 12: A Pooling Equilibrium

Our final result is that an equilibrium may not exist in pure strategies. It may instead exist
in mixed strategies, but that requires a lot more work.

Similarly to signaling, the low type is worse off with screening than without. High types,
however, are always better off in a separating equilibrium. The issue is that a separating
equilibrium may not exist.
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Remark. To see why, note that since separating equilibria are unique, under certain condi-
tions the agents will want to deviate to a pooling equilibrium, from which they again want
to deviate. It’s a cycle.

6.5 Mechanism Design

Definition. A mechanism is a message space M and a mapping h(·) from M to the space
of outcomes which can be written as h(m) = (Q(m), t(m)), an allocation and a transfer, for
all m ∈ M . In a typical case like above, a mechanism will set an allocation and a transfer
for the high-skill and low-skill types.
Remark. We can think of the message space as the controls the agent has on the mechanism
– Marco used “a big table with lots of buttons” – each of which matches to an allocation.
Proposition 6.1. Any mechanism induces an allocation rule
Example. Assume here quasilinear preferences θv(Q)− t), and let

m󰂏(θ) ∈ argmax
m∈M

θv(Q(m))− t(m)

Then the induced allocation rule is

a(θ) = Q(m󰂏(θ)), t(m󰂏(θ)))

Definition. A direct mechanism is a mechanism in which Mi = Θi, meaning that the
message space for i is i’s type space.
Question. Is there loss of generality in restricting attention to only direct mechanisms? We
will see that the answer is no.
Definition. A direct revelation mechanism is a mapping g(·) from the space of types to
the space of outcomes which is written as g(θi) = (q(θi), T (θi)). Essentially, the principal
commits to offer q(θi) at a price T (θi) if the agent reports type θi.
Definition. An agent θ finds it incentive compatible to announce their type truthfully if and
only if

θv(q(θ))− T (θ) ≥ θv(q(θ′))− T (θ′) ∀ θ′

A direct revelation mechanism is truthful if it is incentive compatible for any agent to an-
nounce their true type.
Definition. A direct revelation mechanism g is individually rational if θv(q(θ))− T (θ) ≥ ū
where ū is the reservation utility.
Theorem 6.1. (The Revelation Principle) Any possible allocation rule a(θ) obtained with a
mechanism {M,h(·)} can also be implemented with a truthful direct revelation mechanism.
Remark. This is shockingly powerful and useful! It gives us a way to directly characterize
an optimal mechanism. Essentially, we can use a direct revelation mechanism to find what
allocation is optimal, and then find a simple mechanism that attains that optimal allocation.
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Proof. Assume that we can obtain an allocation a(θ) with mechanism {M,h(·)}. This
mechanism induces an outcome function

g(θ) = (Q(m󰂏(θ)), T (m󰂏(θ)))

We can construct the functions Q̂ = Q ◦m󰂏 and T̂ = T ◦m󰂏. Is this mechanism truthful?
Since

m󰂏(θi) ∈ argmax
m

θiv(Q(m))− t(m)

it must be the case that

θiv
󰀓
Q̂(θi)

󰀔
− T̂ (θi) ≥ θiv

󰀓
Q̂(θ′)

󰀔
− T̂ (θ′) ∀ θ′

Thus, this direct mechanism is incentive compatible. The proof for individual rationality
follows from the same argument.
Example. The optimal direct mechanism with two types. The principal is a monopolist,
trying to sell a good to a buyer. The seller’s problem can be written as

max
Ti,qi

β(TL − cqL) + (1− β)(TH − cqH)

subject to incentive compatibility and individual rationality. To find a mechanism that
maximizes the monopolist’s profits, we proceed in steps. The standard approach is to first
note that the individual rationality of the low type and incentive compatibility of the high
type imply individual rationality of the high type. We can eliminate the individual rationality
of the high type constraint. Next, we can consider a relaxed version of this problem where
the incentive compatibility constraint of the low type does not bind. If we find a solution of
this problem that also satisfies incentive compatibility of the low type, then we will have a
solution to the original problem.

Now we have a simple problem with two constraints, which must both hold with equality.
We can substitute, and get an unconstrained optimization problem in just qL, qH which is
easy to solve with first order conditions. We will find that solution, and then verify that
incentive compatibility for the low type is satisfied. If it is, we have a solution to the original
problem.
Remark. We don’t necessarily have concavity here – be careful with corners!
Remark. The solution here will tell us that high types buy more than low types; high types
will buy efficiently and low types will be less than efficient; and the low types will have a
surplus of zero, high types receive a positive surplus. This result is very generalizable! It
holds with multiple types, and even under continuous types – in those cases, the highest
type will be efficient, and everyone else will be less than efficient.
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7 Exercises

7.1 Choice (Easley)

7.1.1 Easley Homework

Problems

1. Economists have observed that the default setting in retirement plans seems to affect
employees’ choices about retirement savings. Using the language from class here is
how the observations occur. In each scenario presented to the employee, there are two
alternatives: a default percentage of the employee’s salary to be deducted and placed
in a retirement plan and another percentage of the employee’s salary to be deducted
and placed in a retirement plan if the employee objects to the default option. So the
employee can choose “not object” and get the default percentage deducted or “object”
and get the other percentage deducted. In the following, each scenario is described
by a pair consisting of object or not object and the percentage deducted in each case.
In scenario I, the alternatives are: “not object” and 5 percent; and, “object” and 0
percent. In scenario II, the alternatives are: “object” and 5 percent; and, “not object”
and 0 percent.

(a) Many people choose the default (the alternative with not objecting) in both sce-
narios. This is often said to be inconsistent with rational choice. Setup a model
of a rational decision maker and show that these choices are inconsistent with
rational choice in your model.

(b) In this part of the question, we want to ask if the conclusion in part (a), that
the choices are inconsistent with rational choice, necessarily follows from the de-
scription of the decision problem as it is presented to the employee. To ask this
question you need to describe a set of items, X, that is being considered by the
employee and ask if there is a rational preference relation on X that could yield
these choices. There are two possible answers. First, there does not exist an X
and a rational preference relation on X consistent with these choices. Second,
there does exist such an X and a rational preference relation on X consistent with
these choices. If you believe that the first is true then prove it; if you believe that
the second is true provide an example and show that it works.

(c) In this part of the question we want to ask what happens if additional scenarios
are introduced. In scenario III, the alternatives are: do not object and 10 percent;
and, object and 5 percent. In scenario IV, the alternatives are: do not object and
10 percent; and object and 20 percent. In scenario V, the alternatives are: do
not object and 0 percent; and object and 20 percent. The employee’s choices are
observed to be: In III—object and 5 percent; In IV—do not object and 10 percent;
and, In V—object and 20 percent. Is there a set of alternatives, X, and a rational
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preference relation on X that could yield all of the choices we observe in the five
scenarios? Again, there are two possible answers. First, there does not exist an
X and a rational preference relation on X consistent with these choices. Second,
there does exist such an X and a rational preference relation on X consistent with
these choices. If you believe that the first is true then prove it; if you believe that
the second is true provide an example and show that it works.

2. A consumer has preference relation 󰃒 on R+ of the form x 󰃒 y if and only if x ≥ 2y.
Is 󰃒 a rational preference relation? Explain briefly.

3. Let X be a finite set of alternatives. Suppose 󰃒 is a rational preference relation on
X and let C󰂏(·,󰃒) be the choice function on X. Suppose that there are alternatives
x, y ∈ X such that y ≻ x.

(a) Compare C󰂏(B,󰃒) and C󰂏(B \{x},󰃒) for a set of alternatives B containing both
x and y.

(b) Compare C󰂏(B,󰃒) and C󰂏(B \ {x},󰃒) for a set of alternatives B containing x
but not y.

4. Let X = {a, b, c} be a set of alternatives and suppose that (B, C(·)) is a choice structure
for which B is all non-empty subsets of X. Suppose that the choice structure satisfies
WARP. You know that C({a, b, c}) = {a} but have no other information about C(·).
What can you say about C(A) for the remaining A ∈ B?

5. Let X be a finite, nonempty set and let B be all non-empty subsets of X, i.e. B = P(X).
Prove that any choice structure (B, C(·)), with B = P(X), that satisfies WARP satisfies
Sen’s β.

6. A consumer has preferences 󰃒 on Rn
+ that can be represented by a quasi-concave utility

function u : Rn
+ → R+. You have been asked to describe the effect of a small tax on good

one on the consumer’s demand for good one. To do this you plan to start by solving
the consumer’s maximization problem. However, you don’t like solving maximization
problems with quasi- concave objective functions and so you plan to use a monotonic
transformation f : R+ → R+ of the utility function to replace u : Rn

+ → R+ by
v(x) = f(u(x)) in the maximization problem. Is this valid? Will it give you the same
demand as you would have found with the original utility function? Explain.

7. A consumer purchases goods x ∈ RL
+ with L ≥ 2 at prices p using wealth w. Let x󰂏 be

the consumer’s chosen bundle of goods. You know that this consumer’s choices satisfy
Walras’ Law and WARP. Local authorities plan to use a tax on good 1 to discourage
the consumption of good 1. Local authorities do not want the consumer to be harmed
by this tax so they plan to give the consumer a subsidy that is just enough to make x󰂏

affordable at the new prices p = (p1 + t, p2, . . . , pL), where t is the tax on good 1. The
consumer treats this subsidy as a fixed number R that increases wealth to w +R.

(a) What happens to the amount of good 1 the consumer purchases? Explain briefly.

60



(b) What would happen to the amount of good 1 the consumer purchases if there was
no subsidy, i.e. R = 0? Explain briefly.

8. A consumer has preference relation 󰃒 on [0, 1] that is represented by the utility function
U(x) = x2 − x. Is this consumer’s preference relation convex? Explain briefly.

9. In year 0, a consumer has wealth w0 = 1, 000, prices are (p01, p
0
2) = (10, 10) and the

consumer chooses (x0
1, x

0
2) = (50, 50). In year 1, the consumer has wealth w1 = 1, 250

and prices are (p11, p
1
2) = (15, 9). For what range of choices of x2 can you conclude that

the consumer’s choices are inconsistent with the weak axiom? You can assume that
the consumer’s choices satisfy Walras’ Law.

10. One of your colleagues is interested in comparing the welfare of two people who live
in locations where there are different prices for goods and where the two individuals
have different wealths. Your colleague believes that these two people have common
preferences. Specifically, he assumes that there are two consumers, 1 and 2, with
rational and locally non-satiated preferences 󰃒 over consumption goods in RL

+. The
prices and wealths for consumers 1 and 2 are (p1, w1) and (p2, w2) respectively. Each
consumer selects a bundle of goods in their budget set that is best according to their
preferences. Let these bundles be x1 and x2.

(i) Your colleague asks you to suggest how to interpret data that he might find about
prices, wealths and choices. Specifically, he asks for each case below whether you
can say that consumer 1 is better off than consumer 2 or consumer 2 is better off
than consumer 1

a. p1x2 < w1 and p2x1 > w1

b. p1x2 > w1 and p2x1 > w1

c. p1x2 < w1 and p2x1 < w1

For each of these cases, what can you say about who is better off? Explain briefly.

(ii) Another colleague argues that this entire project (inferring who is better off from
these choices) is flawed. This colleague makes the following argument:

a. These two people choose where to live

b. Suppose that they each were free to choose either location (there is no cost
associated with this choice) and that all attributes of the locations that these
people care about are reflected in the consumption goods

c. Thus, each person prefers (at least weakly) the location they are in to the
other location

d. Then as they made different location choices either they have different pref-
erences or at least one of them is indifferent between the locations
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e. Thus, the assumption of common preferences is flawed, and if they don’t have
common preferences nothing, other than the fact that each consumer prefers
their own consumption bundle to the one chosen by the other consumer, can
be inferred from the choices over consumption bundles given locations.

Briefly evaluate this argument.

Solutions. (From Gabe’s solutions, where he worked with Sara Yoo, except for Problem
7b which are from the given solutions.)

1. Objecting and rational choice

(a) Consider a decision-maker i, deciding between alternatives xi
5 and xi

0, which rep-
resent the plans that have five percent and zero percent deducted respectively.
Define ≻ such that x ≻ y if i would choose x if given the option. In this model,
we have that xi

5 ≻ xi
0 in Scenario I, which from our definition of preference rela-

tions implies that xi
5 󰃒 xi

0, and xi
0 ∕󰃒 xi

5. However, we have in Scenario II that
xi
0 ≻ xi

5, which implies that xi
0 󰃒 xi

5. However, this is a contradiction of the
preferences implied earlier, so this decision-maker is not rational.

(Note that this model assumes that the decision-maker cannot be indifferent be-
tween the two options. This fits the empirical results, as it appears that the
majority of people prefer not objecting. However, this may be a stronger assump-
tion than is warranted.)

(b) Consider the following set of objects:

X = {(x0, o), (x0, n), (x5, o), (x5, n)}

where o denotes objecting and n denotes not objecting. Define the following pref-
erence relation over these alternatives, which mirrors the Lexicographic preference
relation:

x ≽ x′ if x2 = n and x′
2 = 0, or x2 = x′

2 and x1 ≥ x′
1

where we (arbitrarily) assume that x0 > x5. This rationalizes the choices made by
the decision-maker, where (x0, n) ≽ (x5, o) and (x5, n) ≽ (x0, o). This preference
relation is additionally complete and transitive over X – indeed, all relationships
are strict and ordered, so we have

(x0, n) ≻ (x5, n) ≻ (x0, o) ≻ (x5, o)

(c) These preferences are not rationalizable, as the observed preferences violate tran-
sitivity. Taking the new set of objects, and making no assumptions about the
form of the revealed preference relation:

X = {(x0, o), (x0, n), (x5, o), (x5, n), (x10, o), (x10, n), (x20, o), (x20, n)}
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our observed preferences are, in scenario order:

(x5, n) ≻ (x0, o)

(x0, n) ≻ (x5, o)

(x5, o) ≻ (x10, n)

(x10, n) ≻ (x20, o)

(x20, o) ≻ (x0, n)

We can construct the following chain:

(x5, o) ≻ (x10, n) ≻ (x20, o) ≻ (x0, n) ≻ (x5, o)

which is a contradiction of transitivity. Since the revealed preferences are not
transitive, they are not rationalizable.

2. ≽ is not a rational preference relation. Consider x = 2, and y = 3. x ∕≽ y, as 2 ∕≥ 6,
but y ∕≽ x, as 3 ∕≥ 4. Thus, ≽ is not complete, and so is not rational.

3. We will examine C󰂏(·,≽).

(a) For B ∋ x, y, C󰂏(B,≽) = C󰂏(B \ {x},≽). To see why, note that the only
possible difference between them would require x ∈ C󰂏(B,≽). However, from the
definition of choice functions, that would require x ≽ z ∀ z ∈ B, but y ∈ B and
y ≻ x ⇒ x ∕≽ y. Thus, x ∕∈ C󰂏(B,≽), so C󰂏(B,≽) = C󰂏(B \ {x},≽).

(b) For B ∋ x where y ∕∈ B, it may be the case that C󰂏(B,≽) ∕= C󰂏(B \ {x},≽).
That would require that x ≽ z ∀ z ∈ B, which would mean that x ∈ C󰂏(B,≽)
and x ∕∈ C󰂏(B \ {x},≽). However, if ∃ z ∈ B s.t. z ≻ x, it will be the case that
C󰂏(B,≽) = C󰂏(B \ {x},≽).

4. X = {a, b, c}, and (B,C(·)) is a choice structure where B = P(X), and C({a, b, c}) =
{a}. We can say that if a ∈ A, C(A) = {a}. This is because the fact that a ∈
C({a, b, c}), and b, c ∕∈ C({a, b, c}) together imply that a ≻ b and a ≻ c. Thus, for
A ∈ {{a}, {a, b}, {a, c}, {a, b, c}}, C(A) = {a}. Also, trivially, C({b}) = {b}, and
C({c}) = {c}, from the definition of the choice correspondence that C(X) ⊆ X and
C(X) ∕= ∅ ∀ X. We can say nothing about C(A) when A = {b, c}, as we have no
information about whether b ≽ c or c ≽ b.

5. (WARP ⇒ Sen’s β)

Proof. We have that (β, C(·)) satisfies WARP. Take some x, y ∈ A ⊂ B, and assume
that x, y ∈ C(A) and y ∈ C(B). These are the necessary conditions for Sen’s β. By
WARP, since x, y ∈ A∩B, x ∈ C(A), and y ∈ C(B), x ∈ C(B). Thus, since x ∈ C(B)
whenever x, y ∈ A ⊂ B, x, y ∈ C(A), and y ∈ C(B), (β, C(·)) satisfies Sen’s β.

6. From Proposition 2.16, we have that for strictly increasing f , if there exists u such
that x 󰃒 y ⇔ u(x) ≥ u(y), then x 󰃒 y ⇔ f(u(x)) ≥ f(u(y)). Thus, this is a
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valid transformation – if a bundle x ∈ Rn
+ is preferred to y ∈ Rn

+, so x 󰃒 y, then
v(x) ≥ v(y), where v(x) = f(u(x)). This transformation will give the same demand
as with the original utility function, in terms of bundles of items demanded. To see
this, consider that the maximization problem is equivalent to finding an ideal bundle,
x󰂏 ∈ argmaxx∈Rn

+
u(x) ≡ argmaxx∈Rn

+
v(x). Since the set of maximizers of each function

are the same, as u(x) ≥ u(y) ⇔ v(x) ≥ v(y), the demand will be the same.

7. (Compensating Demand)

(a) First, note that by assumption the consumer’s demand x(p, w) is homogeneous of
degree 0. Thus, the conditions of the law of compensated demand hold, and since
the consumer’s demand satisfies Walras’ law, we have that for their new bundle
of goods x′

(p′ − p) · (x′ − x󰂏) ≤ 0 =⇒ t(x′
1 − x󰂏

1) ≤ 0

Thus, since the tax is strictly positive, x′
1 ≤ x󰂏

1, so their consumption of good 1
weakly decreases.

(b) If R = 0, we do not have a compensated price change, so we can no longer affirm
what will happen with the amount of good 1 the consumer purchases, since it will
depend on the type of good it is. For instance, if it is a Giffen good, an increase
in its price would generate an increase in its consumed amount

8. These preferences are convex. By Proposition 2.32, a utility function representing a
preference relation ≽ is quasiconcave if and only if ≽ is convex. Taking the derivatives
of u, we get that u′(x) = 1 − 2x, and u′′(x) = −2. Since u′′(x) < 0 ∀ x ∈ [0, 1], u is
strictly concave, and by implication quasiconcave, and thus the preferences ≽ that it
represents are convex.

9. Note first that since 15 · 50 + 9 · 50 = 1, 200 < 1, 250, the bundle x0 is available in the
consumer in year 1. Thus, their chosen bundle in year 1 must not have been available
to them in year 0. Otherwise, their preferences would violate WARP. In other words,
the bundles that violate WARP satisfy:

15x1 + 9x2 ≤ 1, 250 and 10x1 + 10x2 ≤ 1, 000

Assuming that Walras’ Law holds, we have that any amount not spent on x2 is spent
on x1, so these equations should hold with equality. Solving them, we get that the
minimum number of x1

2 that would not violate WARP is 41.67. If they choose a
bundle that contains less x2, it would have been attainable under the year 0 prices, so
the choice of (50, 50) in year 0 would violate WARP.

10. (Identifying whether consumers are better off)

(i) We consider the three cases:
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(a) p1x2 < w1 and p2x1 > w2: In this case, we can say that consumer 1 is better
off than consumer 2. Specifically, we can see that the bundle x2 is attainable
under (p1, w1). Since x2 is attainable, it must be that x1 ≽ x2.

(b) p1x2 > w1 and p2x1 > w2: In this case, we cannot say whether either consumer
is better off, as neither of their bundles are attainable to the other.

(c) p1x2 < w1 and p2x1 < w2: These choices are inconsistent with rationality. To
see why, note that ∃ ε1 > 0 s.t. Bε1(x2) is entirely contained in the feasible
set. By local non-satiation, we have that ∃ x′ ∈ Bε1 s.t. x′ ≻ x2. However,
since consumer 1 chooses x1, we have that x1 󰃒 x′ ≻ x2 ⇒ x1 ≻ x2. This
implies that consumer 2’s choice of x2 violates rationality of their common
preferences, as x2 ∕󰃒 x1 and x1 is feasible. The same argument applies in
reverse, so the choices violate rationality.

(ii) This argument makes sense. If we consider the location as another element of
their preferences, it would violate WARP for consumer 2 to choose to live in their
current location instead of (costlessly) moving to consumer 1’s location and being
able to attain their better bundle. This argument, and the fact that moving is
costless, entirely undermines the assumption that their preferences are identical.

7.1.2 Outside Questions

The following are from Stanford ECON 202 Problem Set 1. Questions written by Ilya Segal,
answers by Gabe along with Shiqi Yang. Answers not necessarily correct.

Problem 1: Prove the following statements about preference relations:

(a) If 󰃒 is transitive, then ≻ is also transitive.

(b) If 󰃒 is transitive, then ∼ is also transitive.

(c) If 󰃒 is complete and transitive, then 󰃒 is negatively transitive: if x 󰃒 y then for any z
either x 󰃒 z or z 󰃒 y or both.

(a) Proof. Take some x, y, z ∈ X such that x ≻ y and y ≻ z. Since ≻ implies 󰃒, we
have that x 󰃒 y and y 󰃒 z, and since 󰃒 is transitive, x 󰃒 z. To show that x ≻ z,
it suffices to demonstrate that z ∕󰃒 x. Towards a contradiction, assume that z 󰃒 x.
Then we would have that x 󰃒 y, y 󰃒 z, and z 󰃒 x. This holds only when x ∼ y ∼ z.
However, we assumed earlier that x ≻ y, meaning that x ∕∼ y. This is a contradiction,
so z ∕󰃒 x. Since x 󰃒 z, we have that x ≻ z, and since x ≻ y and y ≻ z ⇒ x ≻ z, ≻ is
transitive.

(b) Proof. Take some x, y, z ∈ X such that x ∼ y and y ∼ z. Since ∼ implies 󰃒, we have
that x 󰃒 y and y 󰃒 z, and since 󰃒 is transitive, x 󰃒 z. To show that x ∼ z, it suffices
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to demonstrate that z 󰃒 x. From the definition of ∼, we have that z 󰃒 y and y 󰃒 x.
Since 󰃒 is transitive, z 󰃒 x. Thus, we have that x 󰃒 z and z 󰃒 x, so x ∼ z, and since
x ∼ y and y ∼ z ⇒ x ∼ z, ∼ is transitive.

(c) Proof. Take some z. Since 󰃒 is complete, either y 󰃒 z or z 󰃒 y or both. If y 󰃒 z,
then we have that x 󰃒 y and y 󰃒 z, which means that x 󰃒 z because 󰃒 is transitive.
Thus, if x 󰃒 y, either x 󰃒 z or z 󰃒 y or both for all z.

Problem 2: (Kreps) Two friends, Larry and Moe, wish to go on vacation together. Indi-
vidually, they are standard preference maximizers – their preferences 󰃒Larry and 󰃒Moe are
complete and transitive. They attempt to form a joint preference relation, as follows:

x 󰃒∗ y if x 󰃒Larry y or x 󰃒Moe y

That is, they jointly prefer x to y if either Larry or Moe prefer x to y.

Prove that 󰃒∗ is complete. Show by example that it may not be transitive.

Proof. Take some x, y ∈ X. Since 󰃒Larry and 󰃒Moe are both complete, they will each have
preferences over x and y. Consider three cases. First, if x 󰃒Larry y and x 󰃒Moe y, then
x 󰃒∗ y. Next, if y 󰃒Larry x and y 󰃒Moe x, then y 󰃒∗ x. Finally, if x 󰃒Larry y and y 󰃒Moe x
(or vice versa), then x 󰃒∗ y and y 󰃒∗ x. Thus, 󰃒∗ is complete, because for arbitrary
x, y ∈ X, either x 󰃒∗ y or y 󰃒∗ x or both. Note that if either x ∼Larry y or x ∼Moe y, then
x ∼∗ y, though that case is captured by the above.

Take as an example the case where z 󰃒Larry x 󰃒Larry y and y 󰃒Moe z 󰃒Moe x. Further,
assume that x ∕󰃒Larry z and x ∕󰃒Moe z, so those preferences are strict (i.e. , z ≻Larry x and
z ≻Moe x). We have that x 󰃒Larry y, so x 󰃒∗ y and we have that y 󰃒Moe z, so y 󰃒∗ z.
However, we also have that z ≻Larry x and z ≻Moe x, meaning that z 󰃒∗ x and x ∕󰃒∗ z, so
z ≻∗ x. Since x 󰃒∗ y and y 󰃒∗ z ∕⇒ x 󰃒∗ z, in this case 󰃒∗ is not transitive.

Problem 3: A “problem” with Proposition 2 in the notes is that it assumes we have the
entire choice rule C. If we are trying to test the preference-based model of choice, we will
typically have less data than all of C in two respects. First, for sets A ⊆ X where C(A)
contains more than one element, we are likely to see only one element of C(A). Second, we
will typically see C(A) for some, but not all, subsets A ⊆ X

(a) Show that the first problem is virtually unresolvable. Assume that when we see x ∈ A
being chosen from A, this doesn’t preclude y ∈ A being just as good as x. Prove that
in this case, no data we see will ever contradict the preference-based model. (This is a
trick question – if you see the trick, it takes about two lines to answer.)

(b) Suppose that we observe C(A) for some, but not all, subsets A ⊆ X. That is, we
observe a choice rule C : A → B, where A ⊂ B is the set of feasible sets the agent
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is offered. Show that these partial data may satisfy Houthakker’s axiom of revealed
preference and still be inconsistent with the standard preference-based model.

(c) Say that the choice rule C : A → B satisfies the General Axiom of Revealed
Preference (GARP) if, for any sequence A1, . . . , An and xi ∈ Ai for each i, xi+1 ∈
C(Ai) for all i = 1, . . . , n − 1, and x1 ∈ C(An) imply that xi ∈ C(Ai) for all i.
(That is, it rules out revealed preference cycles except for revealed indifference.) Show
that if the set X of choices is finite, a nonempty-valued choice function C : A → B
is rationalizable by a complete transitive preference if and only if it satisfies GARP.
(Note: the “if” part is hard.)

(a) Proof. Note first that proving that a set of preferences violates transitivity requires
proving that at least one preference is strict, in order to rule out transitive indifference.
Under these conditions, if x ≻ y, then C({x, y}) = x, but it is impossible to rule out
that y 󰃒 x. Thus, no data will ever contradict the preference-based model.

(b) Take some x, y, z ∈ X such that x ≻ y, y ≻ z, and z ≻ x. Also assume that A = {x, y},
so we only observe C(A) = x and no other choices. HARP is vacuously true, but the
preferences as stated clearly violate transitivity.

(c) Proof. (=⇒) We have that a nonempty-valued choice function C : A → B is ratio-
nalizable by a complete transitive preference. Towards a contradiction, assume that
GARP is not satisfied, so there exists a sequence A1, . . . , An, xi ∈ Ai for each i,
xi+1 ∈ C(Ai) for all i = 1, . . . , n − 1, and x1 ∈ C(An) but there is some xi ∕∈ C(Ai).
Since xi+1 ∈ C(Ai), xi+1 ≻ xi. However, note that xi ∈ C(Ai−1), so xi 󰃒 xi−1, and
xi−1 ∈ C(Ai−2), so xi−1 󰃒 xi−2, and so on. Since x1 ∈ C(An), x1 󰃒 xn. Thus, we have

xi 󰃒 xi−1 󰃒 · · · 󰃒 x1 󰃒 xn 󰃒 xn−1 󰃒 · · · 󰃒 xi+1

Since transitivity extends to all n-cycles, and xi+1 ≻ xi (which implies that xi ∕󰃒 xi+1,
this violates transitivity. This contradicts the earlier assumption that C is rationaliz-
able by a complete transitive preference, so GARP must be satisfied.

(⇐=) We have that C : A → B satisfies GARP, so for any sequence A1, . . . , An and
xi ∈ Ai for each i, xi+1 ∈ C(Ai) for all i = 1, . . . , n − 1, and x1 ∈ C(An) imply
that xi ∈ C(Ai) for all i. We will demonstrate that it is rationalizable by a complete
transitive preference.

Define x 󰃒r y if x ∈ C(A) and y ∈ A. Say that a sequence x1, . . . , xn is a chain if
xi+1 󰃒r xi for all i. Say that a cycle is a chain where x1 = xn. Note that a cycle
can be contained in a chain. Also note that 󰃒r is not complete (if the only A where
x, y ∈ A is such that x, y ∕∈ C(A), we can say nothing about their relationship) nor
necessarily transitive (we cannot say whether x 󰃒r z if there is no A such that z ∈ A
and x ∈ C(A), no matter if x 󰃒r y and y 󰃒r z).

Define x 󰃒t y if either x 󰃒r y or there exists a chain containing both x and y where
x 󰃒r · · · 󰃒r y. Note that if x and y are in a cycle, then x ∼t y.
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Define a cycle C as a complete cycle if there exists no y ∕∈ C where x 󰃒t y or y 󰃒t x
for any x ∈ C. Note that all elements which are not comparable to any other elements
are singleton complete cycles.

Begin with a sequence A = A1, . . . , An where xi ∈ Ai and xi+1 ∈ C(Ai) for each i, so
it is a chain C. We say that this chain can be extended downward if ∃ A0 such that
x1 ∈ C(A0) and x0 ∈ A0 for some x0 ∕= x1. We say that this chain can be extended
upward if ∃ An+1 where xn+1 ∈ C(An) for some xn+1 ∈ An+1. All chains which cannot
be extended we call maximal chains. We call a chain C a complete chain if that chain
is maximal and if xi ∈ C is also in a cycle, all other elements xi+1, . . . of the cycle are
also in the chain.

Note that all elements of X are also elements of either a complete chain or a complete
cycle. Next, we will demonstrate that the elements can be ordered by a utility function,
so they can be compared. Define a length function l such that for a complete chain
C = x1, . . . , xn, l(c) = n − 1 − nc + Nc, where n is the number of elements in the
chain, nc is the number of elements of the chain which are also in a cycle, and Nc is the
number of cycles in the chain. Note that l(C) = 0 whenever C is a complete cycle. This
definition is only possible because GARP ensures that there are no revealed preference
cycles except for revealed indifference – if there existed x ≻ y ≻ z ≻ x, there would
exist non-cyclical chains of infinite length. Since we assumed GARP held, l has finite
range.

Construct a utility function as follows. All elements which are part of a complete chain
have minimal utility (they are assigned utility of −∞). Define the set of complete
maximal chains C = {C1, . . . , Cn}. This will be a finite set because X is finite, so the
length function l : C → Z+ attains a maximum over it. Take all the chains for which l is
maximized, and assign their maximal elements utility of 0 (an element x of a complete
chain C is maximal if x 󰃒t y for all y ∈ C). Then remove all of those elements from the
chains and find the new chains over which l attains a maximum. Assign their maximal
elements utility of −1, and continue this process until all elements of all complete
chains are assigned. (The process will end because X is finite.)

We have now assigned a utility to every element of X, and the process guarantees we
have not assigned two utilities to the same element. Let 󰃒󰂏 be the preference relation
generated by this utility relation, so x 󰃒󰂏 y if the utility assigned to x is greater than
or equal to the utility assigned to y. It remains to show that 󰃒󰂏 is complete and
transitive, and that it generates the choice rule C we began with.

First, as stated above each element is assigned a utility, so the completeness of ≥ on
R ensures that 󰃒󰂏 is complete. The same argument applies to transitivity, where since
≥ is transitive on R, x 󰃒󰂏 y and y 󰃒󰂏 z imply that u(x) ≥ u(y) and u(y) ≥ u(z), so
u(x) ≥ u(z) and x 󰃒󰂏 z.

Finally, we will show that C󰃒󰂏 , the choice rule generated by 󰃒󰂏, is equivalent to C, our
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initial choice rule. It suffices to show that C󰃒󰂏(A) ⊆ C(A) and that C󰃒󰂏(A) ⊇ C(A).

(⊆) Suppose that x ∈ C󰃒󰂏(A). Then for each y ∈ A, u(x) ≥ u(y). Towards a
contradiction, assume that x ∕∈ C(A). Then there must exist y ∈ A such that y 󰃒r x.
By construction, u(y) ≥ u(x) because there exists at least one chain where y 󰃒r x.
This implies that y 󰃒󰂏 x, meaning that u(y) ≥ u(x). However, this implies that
u(y) = u(x), which can only be the case when x and y are in a cycle, so by GARP,
x ∈ C(A). This is a contradiction of the assumption that x ∕∈ C(A), so x must be in
C(A).

(⊇) Suppose that x ∈ C(A), and y ∈ A. Then it must be true that x 󰃒r y, and by
construction u(x) ≥ u(y) because there exists at least one chain where x 󰃒r y. Since
u(x) ≥ u(y), x 󰃒󰂏 y and x ∈ C󰃒󰂏(A).

Problem 4: Is the lexicographic preference relation (a) complete, (b) transitive, (c) strictly
monotone, (d) convex, (e) continuous?

(a) The lexicographic preference relation is complete.

Proof. Consider x, y ∈ X = [0, 1]2, where x = (x1, x2) and y = (y1, y2). Since the real
numbers are an ordered field, we know that for a, b ∈ R, either a > b, b > a, or a = b.
Thus, either x1 > y1, in which case x ≻ y, y1 > x1, in which case y ≻ x, or x1 = y1.
In this final case, either x2 > y2, in which case x ≻ y, y2 > x2, in which case y ≻ x, or
x2 = y2, in which case y ∼ x. Thus, the lexicographic preference relation is complete,
because ≻ and ∼ each individually imply 󰃒.

(b) The lexicographic preference relation is transitive.

Proof. Consider x, y, z ∈ X = [0, 1]2 such that x 󰃒 y and y 󰃒 z. Consider first the
case where those relations are both indifferent, so x ∼ y and y ∼ z. From the definition
of the lexicographic preference relation, that means that x1 = y1 and x2 = y2, as well
as y1 = z1 and y2 = z2. Since equality is transitive over R, that means that x1 = z1
and x2 = z2, so x ∼ z ⇒ x 󰃒 z. Next, consider the case where one of those relations is
strict. Without loss of generality, assume that x ≻ y. This implies that either x1 > y1
or x1 = y1 and x2 > y2. We also have that y1 ≥ z1, so if x1 > y1, x1 > z1 and x ≻ z.
If x1 = y1, then either y1 > z1 (which implies that x1 > z1 ⇒ x ≻ z) or y1 = z1 and
y2 ≥ z2. Since x2 > y2, x2 > z2 by transitivity of the reals and x ≻ z. Thus, since ≻
and ∼ each individually imply 󰃒, whenever x 󰃒 y and y 󰃒 z, x 󰃒 z and lexicographic
preference relation is transitive.

(c) The lexicographic preference relation is strictly monotone.

Proof. Take x, y ∈ X such that x ≫ y. This means that x1 > y1, so x ≻ y.
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(d) The lexicographic preference relation is convex.

Proof. Take x, x′, y ∈ X such that x 󰃒 y and x′ 󰃒 y. This means that x1 ≥ y1 and
x′
1 ≥ y1. Thus, tx1 + (1− t)x′

1 ≥ y1 for all t ∈ (0, 1), because the affine combination of
two real numbers will be greater than the smaller of the two (unless they are equal),
which is itself at least as large as y1. If the combination is strictly greater, than
tx + (1 − t)x′ ≻ y. If it is equal, then both x1 and x′

1 must be equal to y1. Since
x 󰃒 y and x′ 󰃒 y, that means that x2 ≥ y2 and x′

2 ≥ y2, and by the same logic
tx2+(1−t)x′

2 ≥ y2 for all t ∈ (0, 1). If that is a strict difference, then tx+(1−t)x′ ≻ y.
If they are equal, then both x2 and x′

2 must be equal to y2, and tx+(1−t)x′ ∼ y. Since
≻ and ∼ each individually imply 󰃒, x 󰃒 y and x′ 󰃒 y implies that tx + (1− t)x′ 󰃒 y
for all t ∈ (0, 1), and the lexicographic preference relation is convex.

(e) The lexicographic preference relation is not continuous.

Take as a counterexample the sequences xn = (0.5 + 1
n
, 0) and yn = (0.5 − 1

n
, 1), for

n = 2, . . . . By inspection, xn → x = (0.5, 0) and yn → y = (0.5, 1). The first term of
each element of xn, xn

1 , is strictly greater than 0.5, and the first term of each element
of yn, yn1 , is strictly less than 0.5, since 1

n
> 0. This means that xn

1 > yn1 for all n, so
xn ≻ yn for all n. However, x1 = y1 = 0.5, and since y2 = 1 > x2 = 0, y ≻ x. This
contradicts the definition of continuity, so the lexicographic preference relation is not
continuous.

Shorter Answer: Yes, yes, yes, yes, no.

Problem 5: Prove that if u : X → R is a continuous utility function representing 󰃒, then
󰃒 is continuous.

Proof. Recall the definition of a continuous real-valued function: such a function is contin-
uous if for any sequence xn where xn → c, f(xn) → f(c). Also recall that if u represents
󰃒, then x 󰃒 y ⇐⇒ u(x) ≥ u(y). Take sequences xn → x and yn → y, where xn 󰃒 yn

for all n. We know from above that u(xn) ≥ u(yn) for all n, and u(xn) → u(x) as well as
u(yn) → u(y). We will demonstrate that u(x) ≥ u(y), which suffices to show that x 󰃒 y and
that 󰃒 is continuous.

Towards a contradiction, assume that u(y) > u(x). For some ε > 0, u(y) = u(x) + ε. Take
δ = ε/3. From the definition of the limit of a sequence, there exists Nx such that ∀ n > Nx,
u(xn) ∈ (u(x) − δ, u(x) + δ), and there exists Ny such that ∀ n > Ny, u(yn) ∈ (u(y) −
δ, u(y) + δ). However, since u(y) = u(x) + ε, u(y)− δ > u(y)− ε/2 = u(x) + ε/2 > u(x) + δ.
This means that the two sets are disjoint, where the δ-ball around u(y) lies above the δ-
ball around u(x). This implies that, for all n > max{Nx, Ny}, u(yn) > u(xn). This is a
contradiction, since that means that yn ≻ xn for some n, contradicting the assumption that
xn 󰃒 yn for all n. Thus, u(x) ≥ u(y), meaning that x 󰃒 y, and 󰃒 is continuous.
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Problem 6: A preference relation 󰃒 on Rn
+ is called homothetic if for all x, y ∈ Rn

+ and
all λ > 0, x 󰃒 y if and only if λx 󰃒 λy. Show that a continuous strictly monotone
preference relation on Rn

+ is homothetic if and only if it can be represented by a utility
function u : Rn

+ → R+ with the property u(λx) = λu(x) for all x ∈ Rn
+ and all λ > 0. (This

property is known as homogeneity of degree one.)

Proof. (⇐=) We have that a continuous strictly monotone preference relation can be rep-
resented by a utility function u : Rn

+ → R+ with the property u(λx) = λu(x) for all x ∈ Rn
+

and all λ > 0. That means that x 󰃒 y ⇐⇒ u(x) ≥ u(y). Take some x, y ∈ Rn
+ such

that x 󰃒 y, which implies that u(x) ≥ u(y). Fix some λ > 0. Multiplying by λ and using
homogeneity of degree one, we get that λu(x) ≥ λu(y) =⇒ u(λx) ≥ u(λy) =⇒ λx 󰃒 λy, so
x 󰃒 y =⇒ λx 󰃒 λy. Going the other direction, take some x, y ∈ Rn

+ such that λx 󰃒 λy,
which implies that u(λx) ≥ u(λy). Using homogeneity, we have that λu(x) ≥ λu(y), and
dividing out the λ, we have u(x) ≥ u(y), which implies that x 󰃒 y. Thus, we have that
x 󰃒 y ⇐⇒ λx 󰃒 λy, and 󰃒 is homothetic.

(=⇒) Take a homothetic preference relation 󰃒 on Rn
+, so for all x, y ∈ Rn

+ and all λ > 0,
x 󰃒 y ⇐⇒ λx 󰃒 λy. An extension of this property is that x ∼ y ⇐⇒ λx ∼ λy. (This holds
because y 󰃒 x ⇐⇒ λy 󰃒 λx.) Note that we are assuming that 󰃒 is complete and transitive,
as Ilya said in office hours.2 As such, we assume that 󰃒 is transitive. Define e = (1, 1, . . . , 1).
From the proof of Proposition 4, for all x there exists a certain αx ∈ R+ such that αxe ∼ x.
Define u(y) = {α : αe ∼ y}. From the proof of Proposition 4, this set will be a singleton for
all y ∈ Rn

+, so u is well-defined, and u(x) = αx. Since 󰃒 is homothetic, λαxe ∼ λx. This
means that u(λx) = λαx = λu(x), so u is homogeneous of degree one.

Problem 7: Suppose the agent lives for T periods, and he chooses a consumption stream
(x1, . . . , xT ) ∈ X1×· · ·×XT . Suppose that the agent’s preferences over consumption streams
do not change over time (this is known as “time-consistency”), and that they are represented
by a utility function u : X1 × · · ·×XT → R. Derive a necessary and sufficient condition on
u for the agent’s preferences over future consumption (xt, . . . , xT ) ∈ Xt × · · · × XT at any
time t = 2, . . . , T to be independent of past consumption (x1, . . . , xt−1) ∈ X1 × · · · ×Xt−1.
Give examples of utility functions that do and do not satisfy this condition.

Solution: To define a necessary and sufficient condition such that preferences over future
consumption are independent of past consumption at any time, we will apply Proposition
6 for all t = 2, . . . , T − 1. Assume that preferences over future consumption at t = 2 are
independent of past consumption, so (x2, . . . , xT ) are independent of x1. By Proposition 6,

2This direction of the proof does not work if we cannot assume transitivity, because any utility represen-
tation would violate the inherent transitivity of ≥ over the reals, and it does not work without completeness
because there would have to be undefined elements in the domain of u.
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there must exist functions v1 : X2 × · · · × XT → R and U1 : R × X1 → R such that U1 is
increasing in its first argument and u(x1, . . . , xT ) = U1(v1(x2, . . . , xT ), x1).

Fix some x1. We have that (x1, x2, . . . , xT ) 󰃒 (x1, x
′
2, . . . , x

′
T ) if and only if u(x1, x2, . . . , xT ) ≥

u(x1, x
′
2, . . . , x

′
T ), which is equivalent to the statement U1(v1(x2, . . . , xT ), x1) ≥ U1(v1(x

′
2, . . . , x

′
T ), x1).

Since U1 is increasing in its first argument, (x1, x2, . . . , xT ) 󰃒 (x1, x
′
2, . . . , x

′
T ) if and only if

v1(x2, . . . , xT ) ≥ v1(x
′
2, . . . , x

′
T ), so v1 represents preferences over (x2, . . . , xT ) which are in-

dependent of x1.

Now consider preferences over (x3, . . . , xT ). Since those preferences are independent of x2,
from the logic above there exist functions v2 : X3× · · ·×XT → R and U2 : R×X2 → R such
that U2 is increasing in its first argument and u(x1, . . . , xT ) = U1(U2(v2(x3, . . . , xT ), x2)x1).

We will continue this argument for all t = 3, . . . , T −1. We arrive at the following condition:
there must exist functions Ut : R2 → R for each t = 2, . . . , T − 1 and vT−1 : XT → R such
that

u(x1, . . . , xT ) = U1(U2(U3(. . . UT−1(vT−1(xT ), xT−1) . . . , x3)x2)x1)

for all x ∈ Rn
+, where each Ut is increasing in its first argument.

By Proposition 6, this condition is necessary to show that preferences on (xt, . . . , xT ) do
not depend on (x1, . . . , xt−1) at any time t = 2, . . . , T . To demonstrate that it is sufficient,
assume that there exist functions Ut : R2 → R for all t = 2, . . . , T − 1 and vT−1 : R → R
such that each Ut is increasing in its first argument and

u(x1, . . . , xT ) = U1(U2(U3(. . . UT−1(vT−1(xT ), xT−1) . . . , x3)x2)x1)

For each period 1 < t < T , define ṽt : RT−t+1 → R, where

ṽt(xt, . . . , xT ) = Ut(Ut+1(Ut+2(. . . UT−1(vT−1(xT ), xT−1) . . . , xt+2)xt+1)xt)

Also define Ũt : Rt → R, where

Ũt(vt(xt, . . . , xT ), x1, . . . , xt−1) = U1(U2(U3(. . . UT−1(ṽt(xt, . . . , xT ), xt) . . . , x3)x2)x1)

From above, we have that u(x1, . . . , xT ) = Ũt(vt(xt, . . . , xT ), x1, . . . , xt−1), and since the
implied first argument of Ũt is Ut+1 which is increasing in its first argument means that Ũt

is increasing in its first argument, by Proposition 6, preferences over future consumption do
not depend on past consumption.

Thus, we have derived a necessary and sufficient condition that preferences over future
consumption do not depend on past consumption at any time t = 2, . . . , T .

As an example of a utility function which does satisfy this condition, consider a linear utility
function that is a sum over all consumption, so u(x1, . . . , xT ) =

󰁓T
i=1 xi. For a utility

function which does not satisfy this condition, consider a utility function which depends
on the difference between consumption in period i and period i − 1, so u(x1, . . . , xT ) =󰁓T

i=1(xi − xi−1), fixing x0 = 0.
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7.2 Consumer (Kircher)

7.2.1 Kircher Homework

Problems

1. Study Berge’s Maximum Theorem, and make a short video (no longer than 2 minutes)
in which you explain its basic insight and intuition in your own words using a single
graph that you share on screen

2. Imagine a worker who chooses how much to work (t) and how much to consume (x),
where each of them is a non-negative scalar. The worker earns a wage normalized to
1 per hour worked, but only has w hours available. The consumers utility function of
work and consumption is given by u(x, t) =

󰀃
x1/2 + (w − t)

󰀄2. Assume that the hours
budget w and the price of the consumption good p are the only free variables in the
model (i.e., no changes in the wage rate).

(a) Write the workers problem in a more conventional way by writing his utility
function in terms of consumption x and leisure l, given a budget constraint.

(b) Find the worker’s Walrasian demand functions for goods x and l.

(c) Find the worker’s indirect utility function using the utility function given in the
statement of this problem.

(d) Suppose that time endowment w and price p are such that the worker chooses
some strictly positive level of leisure. Find the worker’s Hicksian demand function
for good x for price and utility levels consistent with strictly positive purchases
of leisure.

3. Consider a consumer with an expenditure function e(p, u) that is multiplicatively sep-
arable in the sense that e(p, u) = g(u)r(p) for some strictly increasing function g(u)
and strictly increasing function r(p).

(a) Find this consumer’s Walrasian demand function.

(b) Exploit Walras’ Law to show that r(p) =
󰁓L

i=1 pi
∂r(p)
∂pi

. Do you need to make any
assumptions on g(u) to arrive at this equality?

(c) Now suppose there is a finite number M of consumers in the economy that all
share this expenditure function but that might not have the same budget. Does
the distribution of budgets matter for aggregate demand? (If not, it means that
you created a representative agent economy)

4. Consider a consumer that makes choices how much to buy of two different products
given a budget constraint. You happen to know that the expenditure function of the
consumer it is of form e(p, U) = Upα1p

β
2
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(a) What restrictions (if any) on the parameters α and β are required to ensure that
e(.) constitutes a valid expenditure function. Assume that the restriction(s) are/is
satisfied.

(b) Find the indirect utility function, the Hicksian demand functions, and the un-
compensated demands. Carefully list the correct arguments for each function.

(c) Use an alternative approach — i.e. different to what you did in b) — to calculate
the uncompensated demand functions.

(d) Assume the consumer has α = β = 1/2, and a budget of 512. Assume environ-
mental legislation increases prices from p1 = p2 = 1 to p1 = p2 = 16. One way to
think about how to assess the loss of welfare for this consumer due to the price
increase is to ask how much money would one have to give this consumer to be
equally well off. There are two ways of doing this.

i. What is the compensating variation for this consumer? What is the equivalent
variation for this consumer?

ii. If compensating variation and equivalent variation differ, explain why one is
higher than the other in an intuitive way. Which one would you think is more
reasonable if one intended to pay this consumer for his consent to agree to
the price increase?

5. Evaluate the following (explain your answer):

(a) Consider utility function u(x) = 2 ln(x1) + 2 ln(x2) and associated expenditure
function e(u, p1, p2). Now consider the utility function u󰂏(x) = x1x2 with asso-
ciated expenditure function e󰂏. Claim to evaluate: e(u, p1, p2) = e󰂏(u󰂏, p1, p2) if
u󰂏 = exp(u/2).

(b) Consider a consumer with continuous and locally non-satiated preferences and
income w who consumes strictly positive amounts of all goods at a given price
vector p ≫ 0. Now the price of good i increases from pi to p′i, while all other
prices stay the same. Assume his income increases by (p′i − pi)xi(p, w). Claim
to evaluate: this consumer always purchases less of good i under the new prices
compared to the old prices, and obtains a higher utility under the new prices.

(c) A consumer who will live for T ≥ 2 periods has utility function
󰁓

βtu(ct) for
consumption path c = (c1, . . . , cT ). Assume that 0 < β < 1, u′(c) > 0 and
u′′(c) < 0 for all c ≥ 0, and limc→0 u

′(c) = ∞. Consumption in each period must
be non-negative and total consumption can be no more than wealth w > 0, i.e.󰁓

ct ≤ w. Claim to evaluate: Optimal consumption c󰂏t can increase under some
utility functions.

6. Find an (interesting?) research paper in industrial organization, labor economics,
health economics, or some other area of economics that relies on the insights from
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consumer theory that we discussed in class. Which insights in particular are they
using?

Solutions. (Gabe’s solutions, completed with Sara Yoo and Omar Andujar. Corrected
original answers to 2c and 5b after TA feedback)

1. I’m not posting a video here LMAO

2. We have a consumer whose utility function is u(x, t) =
󰀓
x

1
2 + (w − t)

󰀔2

(a) We have that the consumer is solving

max
x,l∈R+

u(x, l) =
󰀓
x

1
2 + l

󰀔2

subject to
px ≤ w − l ≡ px+ l ≤ w

i.e. , they are maximizing consumption and leisure subject to consumption not
exceeding their wage for the total hours worked.

(b) Our Lagrangian is

L =
󰀓
x

1
2 + l

󰀔2

+ λ(w − l − px)

For the first order conditions, we get

∂L
∂x

=
x1/2 + l

x1/2
− pλ = 0 =⇒ λ =

x1/2 + l

p · x1/2

∂L
∂l

= 2x1/2 + 2l − λ = 0 =⇒ λ = 2x1/2 + 2l

∂L
∂λ

= w − l − px = 0 =⇒ px+ l = w

Setting them equal and solving, we get that

x1/2 + l

p · x1/2
= 2x1/2 + 2l =⇒ 2px1/2(x1/2 + l) = x1/2 + l

so we get that the Walrasian demand for x is

x󰂏 =
1

4p2

and inputting into the budget constraint, we get

p

4p2
+ l = w =⇒ l󰂏 = w − 1

4p
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Note that this might create a corner solution – if w < 1
4p

, then the consumer
always work. Formally, our Walrasian demand functions are

x󰂏(p, w) =

󰀫
1

4p2
w ≥ 1

4p

w otherwise

and

l󰂏(p, w) =

󰀫
w − 1

4p
w ≥ 1

4p

0 otherwise

(c) Going back to the originally stated utility function, the indirect utility function
is defined by

V (p, w) := max
x,t∈R+

󰀓
x

1
2 + (w − t)

󰀔2

subject to
px ≤ t

We first solve for the Walrasian demand functions. Our Lagrangian is

L =
󰀓
x

1
2 + (w − t)

󰀔2

+ λ(t− px)

and our first order conditions are

∂L
∂x

=
x1/2 + w − t

x1/2
− pλ = 0 =⇒ λ =

x1/2 + w − t

px1/2

∂L
∂t

= −2
󰀃
x1/2 + w − t

󰀄
+ λ = 0 =⇒ λ = 2

󰀃
x1/2 + w − t

󰀄

∂L
∂λ

= t− px = 0 =⇒ t = px

Which implies that

2
󰀃
x1/2 + w − t

󰀄
=

x1/2 + w − t

px1/2
=⇒ x󰂏 =

1

4p2

and
t󰂏 = px󰂏 =

1

4p

which is the same as above, a confirmation that this formulation also works. As
above, we have admitted a corner, where the worker will not take any time off if
1
4p

> w. Formally, our Walrasian Demand is

x󰂏(p, w) =

󰀫
1

4p2
w ≥ 1

4p

w otherwise
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and

t󰂏(p, w) =

󰀫
1
4p

w ≥ 1
4p

w otherwise

From the definition of the indirect value function, we have that in the interesting
case,

V (p, w) = u(x󰂏, t󰂏) =

󰀣󰀕
1

4p2

󰀖 1
2

+

󰀕
w − 1

4p

󰀖󰀤2

=

󰀕
1

2p
+ w − 1

4p

󰀖2

=

󰀕
1

4p
+ w

󰀖2

so our final attained value function is

V (p, w) =

󰀻
󰀿

󰀽

󰀓
1
4p

+ w
󰀔2

w ≥ 1
4p

w otherwise

(d) For leisure to be strictly positive, we will assume that w ≥ 1
4p

. We can find the
expenditure function by inverting the value function, since e(p, V (p, w)) = w. We
get that

ū =

󰀕
1

4p
+ e(p, ū)

󰀖2

=⇒ e(p, ū) =
√
ū− 1

4p

From Shephard’s Lemma, since u′′ = − 1
x3/2 < 0, the implied preferences 󰃒 are

strictly convex, we have that

hx(p, ū) =
∂e(p, ū)

∂p
=

1

4p2

3. We have that e(p, u) = g(u)r(p) for some strictly increasing g, r

(a) From Shephard’s Lemma, we have that hi(p, u) = g(u)∂r(p)
∂pi

. Since e is two
strictly increasing functions multiplied, we can say that hi(p, V (p, w)) = xi(p, w)

which means that xi(p, w) = g(V (p, w))∂r(p)
∂pi

. It remains to find a form for
g(V (p, w)). From the expenditure function we have that e(p, V (p, w)) = w, so
g(V (p, w))r(p) = w which implies that V (p, w) = g−1(w/r(p)), where g−1 exists
because g is strictly increasing. Thus, we have that x󰂏

i (p, w) =
w

r(p)
∂r(p)
∂pi

.

(b) If Walras’ Law holds, we have that p · x = w, which implies that

L󰁛

i=1

pixi(p, w) = w =⇒
L󰁛

i=1

pi
w

r(p)

∂r(p)

∂pi
= w

Which means that
L󰁛

i=1

pi
∂r(p)

∂pi
= r(p)
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We don’t need to make any assumptions on g(u) for this to hold, as it was elim-
inated before considering Walras’ Law. For Walras’ Law to hold, we need local
non-satiation of the utility function itself.

(c) The distribution of budgets does not matter for aggregate demand! Because
󰁓I

i=1 x
i(p, wi) =

󰁓I
i=1

wi

r(p)
r′(p) =

󰁓I
i=1 w

i

r(p)
r′(p) = x(p,

󰁓I
i=1 w

i), we can construct
a representative agent with total wealth who has the same preferences as all of
the agents.

4. We know that the expenditure function of the consumer is e(p, U) = Upα1p
β
2

(a) We need to know that the expenditure function is (i) continuous, (ii) nondecreas-
ing in each pi, (iii) strictly increasing in U , (iv) homogeneous of degree 1 in p,
and (v) concave in p. Parts (i) and (iii) are satisfied immediately. For e to be
nondecraesing in each pi, it must be the case that α, β ≥ 0. For them to be
homogeneous of degree 1 in p, it must be the case that e(λp, U) = λe(p, U), which
requires that

e(λp, U) = λα+βe(p, U)

be equal to λe(p, U), meaning that α + β = 1. Finally, e must be concave in p,
meaning that e′′(p, U) < 0. This is satisfied as long as α, β ≤ 1.

Thus, we must have that α, β ∈ [0, 1] and α + β = 1.

(b) From Shephard’s Lemma, we have that the Hicksian demand functions are

h1(p, U) =
∂e(p, U)

∂p1
= αUpα−1

1 pβ2

and
h2(p, U) =

∂e(p, U)

∂p2
= βUpα1p

β−1
2

To find the indirect utility function, we will use the identity that e(p, V (p, w)) = w,
so we have that

w = V (p, w)pα1p
β
2 =⇒ V (p, w) = wp−α

1 p−β
2

Finally, the uncompensated demand is found using Roy’s Identity, where we have
that

x1(p, w) = −
∂V (p,w)

∂p1
∂V (p,w)

∂w

= −−αwp−α−1
1 p−β

2

p−α
1 p−β

2

=
αw

p1

and

x2(p, w) = −
∂V (p,w)

∂p2
∂V (p,w)

∂w

= −−βwp−α
1 p−β−1

2

p−α
1 p−β

2

=
βw

p2
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(c) From Corollary 2.57, we have that hi(p, V (p, w)) = xi(p, w). From there, we have
that

x1(p, w) = h1(p, V (p, w)) = αV (p, w)pα−1
1 pβ2 = αwp−1

1 p02 =
αw

p1

and
x2(p, w) = h2(p, V (p, w)) = βV (p, w)pα1p

β−1
2 = βwp−1

2 p01 =
βw

p2

(d) We have that α = β = 1
2
, w = 512, and an increase in prices from p = (1, 1) to

p′ = (16, 16).

i. We have that the utility attained under the original prices is

V (p, w) = 512 · 1−α · 1−β = 512

and that the utility attained under the new prices is

V (p′, w) = 512 · 16−α · 16−β =
512

16
= 32

We have that the compensating variation is

CV (p, p′, w) = w − e(p′, V (p, w)) = 512− 512 · 16α · 16β = −7, 680

and that the equivalent variation is

EV (p, p′, w) = e(p, V (p′, w))− w = 32 · 1α1α − 512 = −480

ii. The absolute value of the compensating variation is significantly higher than
the absolute value of the equivalent variation, because the amount required
to pay the consumer so that they will be able to afford their old consumption
under the new prices is a lot higher than the amount their attained utility
actually changes under the new prices.

It seems more reasonable to pay the consumer their compensating variation.
The equivalent variation is the amount they would take from the consumer
instead of changing prices, but in order for the consumer to agree to the price
change, they would need to pay him the compensating variation.

5. Evaluate the following claims:

(a) We have that u(x) = 2 ln(x1) + 2 ln(x2) = 2 ln(x1x2) and u󰂏(x) = x1x2. We have
that the first expenditure function is

e(u, p1, p2) := min
x∈R+

p1x1 + p2x2 s.t. 2 ln(x1x2) ≥ u

and the second expenditure function is

e(u󰂏, p1, p2) := min
x∈R+

p1x1 + p2x2 s.t. x1x2 ≥ u󰂏
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If u󰂏 = exp(u/2), we have that the conditions here become

x1x2 ≥ exp
󰀓u
2

󰀔
=⇒ 2 ln(x1x2) ≥ u

So since the optimizing function and the feasible set are the same, we have that

e(u, p1, p2) = e(u󰂏, p1, p2)

(b) We have that the price of good i changes from pi to p′i > pi, and that the con-
sumer’s wealth increases from w to w′ = w + (p′i − pi)x

󰂏
i (p, w). First, note that

the consumer will always attain weakly higher utility under the new prices and
wealth. Considering their old optimal bundle x󰂏, because of local non-satiation
we have that p · x󰂏 = w. This means that, since no other prices changed,

p′ · x󰂏 = p · x󰂏 + (p′i − pi)x
󰂏
i (p, w) = w + (p′i − pi)x

󰂏
i (p, w) = w′

Since the old bundle is attainable under the new prices and wealth, the consumer
will always attain weakly higher utility, as u(x󰂏) ≤ maxx∈Γ(X) u(x) by definition.

Since this is a compensated price change, they will choose weakly less of good i
after the price change. Unless they choose the exact same bundle this will be a
strict inequality.

(c) This claim is false. To see why, we will solve the consumer’s maximization prob-
lem. The KKT conditions hold, so we can solve it from the first order conditions.
The Lagrangian is

L =
T󰁛

t=1

βtu(ct) + λ

󰀣
w −

T󰁛

t=1

ct

󰀤

the first order conditions for arbitrary t, t+ 1 are:

∂L
∂ct

= βtu′(ct)− λ = 0 =⇒ λ = βtu′(ct)

∂L
∂ct+1

= βt+1u′(ct+1)− λ = 0 =⇒ λ = βt+1u′(ct+1)

These combine to get the Euler Equation

u′(ct) = βu′(ct+1)

Since this applies for all t, and assuming arbitrary utility functions, we can say
that the ratio of optimal consumption in period t and period t+1 is constant for
all utility functions. Since we also have that

󰁓T
t=1 ct = w, it must be that optimal

consumption does not depend on the utility function at all.
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7.2.2 Outside Questions

The following are from Stanford ECON202 Problem Set 3. Questions written by Ilya Se-
gal, answers by Gabe along with Asia-Kim Francavilla and Monia Tomasella. Answers not
necessarily correct.

Problem 1: For each of the following utility functions, draw the indifference curves, com-
pute the Marshallian demand, Hicksian demand, indirect utility function and expenditure
function:

(a) u(x, y) = xαy1−α (Cobb-Douglas utility function)

(b) u(x, y) = max{ax, ay}+min{x, y}, where 0 ≤ a ≤ 1.

Solutions:

(a) The indifference curves are:

10

10

Figure 13: Indifference Curves for u(x, y) = xαy1−α at u = {2, 3, 4, 5} and α = 0.5

First, note that if a bundle (x, y) maximizes u(x, y), it would also maximize ln u(x, y),
so we will deal with the second problem. We have that ln u(x, y) = α ln x+(1−α) ln y.
The Lagrangian is

L = α ln x+ (1− α) ln y + λ(w − pxx− pyy)

The first order conditions are

Lx =
α

x
− pxλ = 0 ⇒ px =

α

λx
⇒ x =

α

pxλ

Ly =
1− α

y
− pyλ = 0 ⇒ py =

1− α

λy
⇒ y =

1− α

pyλ
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Substituting into the budget constraint, we get

α

λx
x+

1− α

λy
y =

α

λ
+

1− α

λ
=

1

λ
= w ⇒ λ =

1

w

Plugging this result back in, we get the Marshallian demand functions

x∗(p, w) =
wα

px
; y∗(p, w) =

w(1− α)

py

Substituting these into the utility function will give us the indirect utility function

v(p, w) = u(x∗(p, w), y∗(p, w)) = w

󰀕
α

px

󰀖α 󰀕
1− α

py

󰀖1−α

To find the expenditure function, we substitute into the indirect utility function

u = e(p, u)

󰀕
α

px

󰀖α 󰀕
1− α

py

󰀖1−α

and get

e(p, u) = u
󰀓px
α

󰀔α
󰀕

py
1− α

󰀖1−α

Finally, by Shephard’s Lemma we know that ∇pe = h. By taking the partial deriva-
tives, we get that

hx(p, u) = αu
󰀓px
α

󰀔α−1
󰀕

py
1− α

󰀖1−α

hy(p, u) = (1− α)u
󰀓px
α

󰀔α
󰀕

py
1− α

󰀖−α

(b) The indifference curves are:
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10

10

Figure 14: Indifference Curves for u(x, y) = max{ax, ay}+min{x, y} at u = {2, 3, 4, 5} and
a = 0.5

Without loss of generality, assume that px ≤ py. Note that u(x, y) = u(y, x) for all
x, y, which means that hx(p, u) ≥ hy(p, u). To see why, consider that if x < y and
u(x, y) ≥ u, then u(y, x) ≥ u, but since pxx + pyy > pxy + pyx, the expenditure
function would not be minimized. Thus, hx(p, u) ≥ hy(p, u). This means that the
expenditure minimization problem will be

minx,y≥0;x≥y pxx+ pyy
subject to ax+ y ≥ u

Since the objective and constraint are both linear, we will always have a corner solution:

If a > px
py

, the optimal solution will have y = 0, so hx(p, u) = u
px

, hy(p, u) = 0, and
e(p, u) = upx

a
. Additionally, x∗(p, w) = w

px
and y∗(p, w) = 0, meaning that v(p, w) = aw

px
.

If a < px
py

, the optimal solution will have x = y, so hx(p, u) = hy(p, u) = u
a+1

, and

e(p, u) = upx+py
a+1

. Additionally, x∗(p, w) = w
px+py

= y∗(p, w), so v(p, w) = w(a+1)
px+py

.

If a = px
py

, any solution where x ≥ y ≥ 0 will be optimal as long as ax + y = u. This
means that h(p, u) = {(x, y) : x ≥ y ≥ 0 and ax+ y = u}, and e(p, u) = upx+py

a+1
= upx

a
.

Additionally, (x∗(p, w), y∗(p, w)) = {(x, y) : x ≥ y ≥ 0 and ax+ y = aw
px
}, so v(p, w) =

aw
px

.

All of these results of course hold in the other direction if px > py.

Problem 2: Consider an expenditure function of the following form:

e(p, u) = exp

󰀣
󰁛

l

αl log pl + u
󰁜

l

pβl

l

󰀤
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(a) What conditions must parameters α1, . . . ,αn, β1, . . . , βn satisfy for this expenditure
function to be rationalizable?

From now on, assume the restrictions in (a) are satisfied

(b) Derive the consumer’s Hicksian and Marshallian demand functions.

(c) Check whether the different goods are substitutes or complements, and whether they
are gross substitutes or gross complements. Interpret.

(d) What utility function rationalizes this expenditure function? [Hint: for an inner bound
on an indifference curve you can combine the Hicksian demands for the different goods
in a way that eliminates the prices.]

Solutions:

(a) For this expenditure function to be rationalizable, it suffices to show that it meets
three conditions: nondecreasing in p, homogeneous of degree 1 in p, and concave in p.
We will address these conditions in order.

For e(p, u) to be nondecreasing in p, the partial derivative ∂e(p, u)/∂pi must be non-
negative for each pi. Taking the derivative, we get

∂e(p, u)

∂pi
=

󰀣
αi

pi
+ uβip

βi−1
i

󰁜

l ∕=i

pβl

l

󰀤
e(p, u)

As the expenditure function is positive, for this to be true for all i, p, u it must be the
case that βi ≥ 0 and αi ≥ 0 for all i.

For e(p, u) to be homogeneous of degree 1 in p, it must be the case that e(λp, u) =
λe(p, u). Expanded, this is

e(λp, u) = exp

󰀣
󰁛

l

αl log λpl + u
󰁜

l

(λpl)
βl

󰀤

= λ
󰁓

l αl exp

󰀣
󰁛

l

αl log pl + λ
󰁓

l βlu
󰁜

l

pβl

l

󰀤

which equals λe(p, u) only when
󰁓

l αl = 1 and
󰁓

l βl = 0. Since βl ≥ 0 for all l, βl = 0
for all l. This means that the expenditure function simplifies to

e(p, u) = exp

󰀣
󰁛

l

αl log pl + u

󰀤
= eu

󰁜

l

pαl
l

Our final condition is that e(p, u) is concave. It suffices to show that ∂2e(p, u)/∂p2i ≤ 0
for all pi, which is equivalent to the elements of the diagonal of the Slutsky matrix
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being non-positive. We have

∂2e(p, u)

∂p2i
= euαi(αi − 1)pαi−2

i

󰁜

l ∕=i

pαl
l

All of the terms are nonnegative by assumption except for αi − 1. Since αi ≥ 0 for all
i, for e(p, u) to be concave, it must be the case that αi ∈ [0, 1] for all i.

Thus, the conditions for the expenditure function to be rationalizable are that βi = 0
for all i, that αi ∈ [0, 1] for all i, and that

󰁓
i αi = 1.

(b) Since the restrictions are satisfied, we will use the more simple form for the expenditure
function. Using Shephard’s Lemma, we find that the Hicksian demand functions are

hi(p, u) = ∇pie(p, u) = euαip
αi−1
i

󰁜

l ∕=i

pαl
l =

euαi

pi

󰁜

l

pαl
l

To find Marshallian demand, we use the identity that hi(p, u) = xi(p, e(p, u)). Note
that hi(p, u) =

αi

pi
e(p, u). Thus, xi(p, w) =

αiw
pi

.

(c) To find whether two goods are substitutes of complements, we take the partial of the
Hicksian demand for one good with respect to the price of the other:

∂hi(p, u)

∂pj
= eu

αiαj

pipj

󰁜

l

pαl
l

Since all terms are non-negative, two different goods are substitutes.

To find whether two goods are gross substitutes or gross complements, we take the
partial of the Marshallian demand for one good with respect to the price of the other:

∂xi(p, w)

∂pj
= 0

Since the total effect is 0, the goods are neither strict gross complements nor strict
gross substitutes. This means that when the price of one good increases, the consumer
will substitute away from that good to others, but this substitution will be offset by a
wealth effect, so the total effect on demand will be nothing.

(d) Note first that the Marshallian demand function looks exactly the same as the Marhsal-
lian demand developed from a Cobb-Douglas utility function in Problem 1. A reason-
able choice of utility function is

u(x) =
󰁛

l

αl(ln xl + lnαl)
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To check that this utility function rationalizes the expenditure function, we will use it
to derive Hicksian demand. Our expenditure minimization problem is

min󰁓
l αl(lnxl+lnαl)≥u

󰁛

i

pixi

The first order conditions imply that −λ = pixi

αi
. Fixing i = 1, note that we can now

write xi =
p1x1αi

α1pi
, and solve for the Hicksian demand:

u =
󰁛

l

αl(ln
p1x1αi

α1pi
+ lnαl)

=⇒ eu =
x1p1
α1

󰁜

l

pαl
l

=⇒ h1(p, u) =
euα1

p1

󰁜

l

pαl
l

Since that is the Hicksian demand found above, the utility function that rationalizes
the expenditure function is

u(x) =
󰁛

l

αl(ln xl + lnαl)

Problem 3: Let the consumption set be R×Rn−1
+ , and suppose that preferences are strictly

convex and quasi-linear in the first good (“numeraire”). (Note that negative consumption of
numeraire is allowed.) Fix the numeraire’s price p1 = 1.

(a) Show that the Marshallian demand functions for goods 2, . . . , n are independent of
wealth.

(b) Show that the Hicksian demand functions for goods 2, . . . , n are independent of target
utility.

(c) What does this imply about the relationship between Marshallian and Hicksian demand
for goods 2, . . . , n?

(d) Argue that the consumer’s preferences over (p, w) can be represented by an indirect
utility function that is quasilinear in w. What is the form of the corresponding expen-
diture function?

(e) Compare (i) compensating variation, (ii) equivalent variation, and (iii) consumer sur-
plus calculated from Marshallian demand to each other.

Solutions:

(a) Recall that if a consumer is maximizing a quasilinear utility function, there exists a
utility representation U such that U(x) = x1 + u(x2, . . . , xn). Note that since utility is
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increasing in x1, the budget constraint will hold with equality by Walras’ Law. Solving
for x1 in the budget constraint, we get x1 = w − p2x2 − · · · − pnxn. The consumer’s
utility maximization problem

max
x1+p2x2+···+pnxn=w

U(x)

Is equivalent to the unconstrained problem

max
x2,...,xn

w + u(x2, . . . , xn)− p2x2 − · · ·− pnxn

Which is equivalent to

w + max
x2,...,xn

u(x2, . . . , xn)− p2x2 − · · ·− pnxn

Since the solutions to this problem, which are the Marshallian demand functions,
are independent of wealth, the Marshallian demand functions for goods 2, . . . , n are
independent of wealth.

(b) From the definition of the indirect utility function and part (a), we know that

v(p, w) = w + max
x2,...,xn

u(x2, . . . , xn)− p2x2 − · · ·− pnxn

To find the expenditure function, we set v(p, e(p, u)) = u

u = e(p, u) + max
x2,...,xn

u(x2, . . . , xn)− p2x2 − · · ·− pnxn

Thus, the expenditure function is

e(p, u) = u− max
x2,...,xn

u(x2, . . . , xn)− p2x2 − · · ·− pnxn

From Shephard’s Lemma, the Hicksian demand is

hi(p, u) = ∇pie(p, u) = − ∂

∂pi

󰀕
max

x2,...,xn

u(x2, . . . , xn)− p2x2 − · · ·− pnxn

󰀖

Thus, Hicksian demand is independent of target utility.

(c) Since Marshallian demand is independent of wealth, the Slutsky Equation is

∂xi(p, w)

∂pj
=

∂hi(p, u)

∂pj

Since xi(p, 0) = 0, hi(p, v(p, 0)) = 0. Since the two forms of demand have the same
starting condition and the same slope at every point, we can say that xi(p, w) = hi(p, u)
for all i ≥ 2.
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(d) Define a function

ψ(p) = max
x2,...,xn

u(x2, . . . , xn)− p2x2 − · · ·− pnxn

We have already shown in part (b) that

v(p, w) = w + ψ(p)

and
e(p, u) = u− ψ(p)

The functions are quasilinear in w and u by inspection.

(e) From the definitions of compensating and equivalent variation, it is clear to see that

CV = e(p, u)− e(p′, u) = ψ(p′)− ψ(p) = e(p, u′)− e(p′, u′) = EV

Since the Marshallian consumer surplus is bounded by compensating variation and
equivalent variation, it is equal to both, and the three quantities are equal.

Problem 4: Suppose that instead of a fixed wealth, the consumer starts with a bundle of
goods z (not necessarily her optimal bundle) and can buy and sell goods at prices p. Suppose
that all goods are regular. Explain why (or give an example of how) the consumer’s demand
for good 1 might be higher at prices p′ = (p′1, p2, . . . , pn) than at prices p, with p′1 > p1.
What is required for this to happen?

Solutions: Assume that the consumer starts with a positive amount of good 1. Since
good 1 is regular, an increase in the price of good 1 while holding wealth constant will
decrease demand for good 1. However, since she starts with a positive amount of good 1, the
increasing price of good 1 is effectively increasing her wealth, since w = p · z in this example,
and p′ · z > p · z. She will increase her demand for good 1 if good 1 is normal as well as
regular, and if the wealth effect is greater in magnitude than the substitution effect.

For an example, consider u(x1, x2) = min{x1, x2}, z = (3, 0), p = (1, 1), and p′ = (2, 1). Her
demand under p will be (1.5, 1.5), and her demand under p′ will be (2, 2).

Problem 5: A consumer in a three-good world faces prices p1 = p2 = p3 = 1. She buys
x1 = x2 = x3 = 2. Prices change, and next year she faces prices p1 = p3 = 4 and p2 = 2.
She buys x1 = 1, x2 = 2, and x3 = 10.

(a) Construct the Paasche and Laspeyres price indices for this consumer.

(b) What can you say about the change in this consumer’s welfare?

Solutions:
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(a) The Paasche index is
p′ · x′

p · x′ =
4 + 4 + 40

1 + 2 + 10
=

48

13
≈ 3.69

The Laspeyres index is

p′ · x
p · x =

8 + 4 + 8

2 + 2 + 2
=

20

6
≈ 3.33

(b) We can see that the consumer spent 48 in the second year, so her wealth must be at
least 48. Since the first year’s consumption bundle costs 20, it must have been feasible,
yet she chose to consume the second year’s bundle. This indicates that u(x′) > u(x),
which means that her welfare increased despite the price indices both indicating that
it would require a wealth increase to keep her utility the same. This indicates that her
wealth increased from year 1 to year 2, and that increase made her better off despite
the price increases.

Problem 6: Suppose there are m consumers, and that the indirect utility function of each
consumer i = 1, . . . ,m takes the form

vi(p, wi) = ai(p) + b(p)wi

for some differentiable functions ai(·) (i = 1, . . . ,m) and b(·).

(a) Show that this form of indirect utility function obtains (for some utility representation
of preferences) when either (i) all consumers have quasilinear preferences or (ii) all
consumers have identical homothetic preferences.

(b) Show that the consumers’ aggregate demand

X(p, w1, . . . , wm) =
m󰁛

i=1

xi(p, wi)

can be written as X(p,W ), where W =
󰁓m

i=1 wi is the aggregate wealth.

(c) Show, moreover, that X(p,W ) can arise as the Marshallian demand function of a single
utility-maximizing consumer (interpreted as the “positive representative consumer”).
[Hint: show that the demand can be derived from an expenditure function that is
rationalizable.]

(d) Show that a change in prices makes the “representative consumer” better off if and only
if there exists an accompanying redistribution of the aggregate wealth that would make
each consumer i = 1, . . . ,m better off. (Thus we also have a “normative representative
consumer.”)

Solutions:
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(a) First, assume that all consumers have quasilinear preferences. Normalize p1 = 1. From
Problem 3, we know that our value function becomes

vi(p, wi) = max
x−1≥0

wi − p−1 · x−1 + u(x−1)

where x−1 = (x2, . . . , xn). Since demand does not depend on wi, we can define x∗
−1(p)

as the demand for all non-numeraire goods. Because Walras’ Law holds, our budget
constraint is an equality constraint, so we have x∗(p, w) = w − p−1 · x∗

−1(p). Finally,
our value function becomes vi(p, wi) = wi− p−1 ·x∗

−1(p)+u(x∗
−1(p)). This matches the

form above, where b(p) = 1 and ai(p) = −p−1 · x∗
−1(p) + u(x∗

−1(p)).

Next, assume that all consumers have identical homothetic preferences. From the first
problem set, there exists u(x) that is homogeneous of degree 1. Using that function,
which is identical across all consumers, the value function is

vi(p, wi) = max
x;x·p≤wi

u(x)

= max
z;z·p≤1

u(wiz) for z =
x

wi

= wi max
z;z·p≤1

u(z)

= wiv(p, 1)

Thus, setting ai(p) = 0 and b(p) = v(p, 1), we have a solution.

(b) From Roy’s Identity, we have that ∇vi(p, wi) = xi(p, wi). Using that, we get

X(p, w1, . . . , wn) =
m󰁛

i=1

xi(p, wi)

= ∇
m󰁛

i=1

vi(p, wi)

= ∇
m󰁛

i=1

ai(p) + b(p)wi

= W∇b(p) +
m󰁛

i=1

∇ai(p)

= X(p,W )

(c) We begin by calculating the individual expenditure functions using the identity v(p, e) =
u:

vi(p, ei(p, ui)) = ui = ai(p) + b(p)ei(p, ui) =⇒ ei(p, ui) =
ui − ai(p)

b(p)
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We then aggregate, defining a(p) =
󰁓

i a
i(p) and U =

󰁓
i u

i, and get

e(p, U) =
U − a(p)

b(p)

To find the aggregate Marshallian demand, we first find the aggregate indirect utility
function

W =
v(p,W )− a(p)

b(p)
=⇒ v(p,W ) = a(p) +Wb(p)

Finally, using Roy’s Identity we can identify the representative consumer’s aggregate
demand

X(p,W ) = − −∇pv(p,W )

∂v(p,W )/∂W
= −∇pa(p) +W∇pb(p)

b(p)

X(p,W ) =
󰁛

i

−∇pai(p) + wi∇pb(p)

b(p)

This represents the Marshallian demand for a rational representative consumer.

(d) Proof. (⇒): Assume that we have a price change p → p′ which makes the representa-
tive agent better off, meaning that v(p′,W ) > v(p,W ), and we have a possible wealth
redistribution w → w′. For each agent to be better off, we need

vi(p
′, w′

i) = ai(p
′) + b(p′)w′

i ≥ ai(p) + b(p)wi = vi(p
′, wi)

This means the redistribution must be

w′
i ≥

ai(p)− ai(p
′) + b(p)wi

b(p′)

Assume that this holds with equality, meaning that each agent is compensated so that
they are the same as before the price change. To find if this is feasible, using the fact
that the representative consumer is better off, we find

󰁛

i

w′
i =

v(p,W )− ai(p
′)

b(p′)
≤ v(p′,W )− ai(p

′)

b(p′)
=

󰁛

i

wi = W

Thus, since a redistribution making each agent better off is feasible, a change in prices
which makes the representative consumer better off implies that there exists an ac-
companying redistribution of the aggregate wealth that makes each consumer better
off.

(⇐): Assume that we have a price change p → p′ and an accompanying wealth redis-
tribution wi → w′

i such that each agent is better off. That implies that

vi(p
′, w′

i) = ai(p
′) + b(p′)w′

i ≥ ai(p) + b(p)wi = vi(p, wi)

Summing as in part (c), and recalling that
󰁓

i wi =
󰁓

i w
′
i = W , since we are redis-

tributing, we get

v(p′,W ) = a(p′) + b(p′)W ≥ a(p) + b(p)W = v(p,W )

Since v(p′,W ) ≥ v(p,W ), the representative agent is better off.
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7.3 Producer (Harris)

7.3.1 Harris Homework

Problems.

1. Consider the production possibilities set

Y =

󰀝
(q,−z) ∈ R2

+ × R2
− : zα1 z

β
2 ≥ q21 + q22

2

󰀞

where α, β > 0.

(a) Find the conditional input demand function z(w1, w2, q1, q2).

(b) What is the marginal rate of transformation between output 1 and output 2?
That is, given w1, w2, q1, q2, what is the proportional decrease in q1 required to
marginally increase q2 while holding cost constant?

2. Consider a single-output firm with technology that can transform inputs z ∈ R3
+ into

output according to the production function

f(z) = z
1
2
1 z

1
4
2 z

1
8
3

(a) This production function is homogeneous degree α. Find α. What does this
imply about the firm’s cost function? Is the firm’s marginal cost of production
increasing or decreasing in q?

(b) Derive the conditional input demand function z(w, q).

(c) Derive an expression for the firm’s marginal cost of production, i.e., the derivative
of the cost function with respect to q.

3. Consider a single- output firm which takes as input a continuum of inputs rather than
a discrete set of inputs. We now denote the quantity input of commodity j as z(j)
(rather than zj as we did in the discrete-inputs cases). The production function is

f(z) =

󰀗󰁝 1

0

a(j)z(j)
σ−1
σ dj

󰀘 σ
σ−1

where a(j) is a continuous function integrable on [0, 1] that reflects the relative pro-
ductivities of the various inputs.

(a) Derive the conditional input demand function z(j, w, q). The price for input j is
given by w(j), where w is a continuous function integrable on [0, 1].

(b) How is the conditional input demand for input j affected by a(j), the productivity
of input j?
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(c) N0w suppose that the firm has market power in input markets. If the firm uses
z(j) units of input j, the per-unit input price is w(j, z(j)) = 1

2
z(j). Find the

cost-minimizing choice of inputs to produce q = 1 units of output.

4. Consider a single-output firm with technology that can transform inputs z ∈ RN
+ into

output according to the production function

f(z) = 2
󰁳

min{z1, 2z2, 3z3, . . . , NzN

(a) Derive the unconditional input demand function.

(b) ow suppose that the firm has market power in the output market. If the firm
produces quantity q, the per-unit price is P (q) = q−ε where ε ∈ (1,∞). Derive
the firm’s choice of inputs z1, . . . , zN .

5. De Loecker, Eeckhout, and Unger (QJE, 2020) is an influential paper on measuring
market power. The approach described in this paper takes the cost minimization
problem as a starting point. Read the first 11 pages of this article (through the end of
Section II.B) paying particular attention to Sections II.A and II.B.

(a) In going from equation (6) to (7), the authors assert that “The La- grange multi-
plier λ is a direct measure of marginal cost.” Give a justification for this assertion.

(b) The authors’ starting point in Section II.B is the cost minimiza- tion problem.
However, the output price (the key component of the markup) does not feature
in the CMP (recall that the only arguments of the cost function and conditional
input demand function are w and q). Given this, why can the authors claim that
this starting point leads to some insight about markups? Wouldn’t it be more
natural to use the profit maximization problem as a starting point?

Solutions. (Gabe’s solutions, collaborated with Sara Yoo)

1. Production possibilities set

(a) We have that the cost minimization problem is

min
z∈R2

+

w1z1 + w2z2 s.t. zα1 z
β
2 ≥ q21 + q22

2

Which has the Lagrangian

L = w1z1 + w2z2 + λ

󰀕
q21 + q22

2
− zα1 z

β
2

󰀖

Taking first order conditions, we get

∂L
∂z1

= w1 − λαzβ2 z
α−1
1 = 0 =⇒ λ =

w1

αzβ2 z
α−1
1
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∂L
∂z2

= w2 − λβzα1 z
β−1
2 = 0 =⇒ λ =

w2

βzα1 z
β−1
2

∂L
∂λ

=
q21 + q22

2
− zα1 z

β
2 = 0 =⇒ q21 + q22

2
= zα1 z

β
2

Combining, we get that

w1

αzβ2 z
α−1
1

=
w2

βzα1 z
β−1
2

=⇒ w1z1
α

=
w2z2
β

=⇒ z1 =
w2α

w1β
z2

Substituting into the constraint, we get that
󰀕
w2α

w1β
z2

󰀖α

zβ2 =
q21 + q22

2

zα+β
2 =

󰀕
w1β

w2α

󰀖α
q21 + q22

2

z󰂏2(w1, w2, q1, q2) =

󰀕
w1β

w2α

󰀖 α
α+β

󰀕
q21 + q22

2

󰀖 1
α+β

Substituting back into the equation for z1, we get that

z1 =
w2α

w1β

󰀕
w1β

w2α

󰀖 α
α+β

󰀕
q21 + q22

2

󰀖 1
α+β

z󰂏1(w1, w2, q1, q2) =

󰀕
w2α

w1β

󰀖 β
α+β

󰀕
q21 + q22

2

󰀖 1
α+β

(b) We can find the Marginal Rate of Transformation by implicitly differentiating the
border of the production possibilities set. More specifically, since we have that
price must remain constant, we have that

0 = 2q1∂q1 + 2q2∂q2 =⇒ MRTq1,q2 =
∂q1
∂q2

= −q2
q1

2. Cost minimization

(a) We have that the production function is homogeneous of degree α, meaning that
f(βz) = βαf(z). We have that

f(βz) = (βz1)
1
2 (βz2)

1
4 (βz3)

1
8 = β

7
8 z

1
2
1 z

1
4
2 z

1
8
3 = β

7
8f(z)

so α = 7
8
. This implies that the firm’s cost function is homogeneous of degree 8

7

in q, which implies that the firm faces increasing marginal cost of production in
q.
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(b) We have that the cost minimization problem is

min
z∈R3

+

w · z s.t. z
1
2
1 z

1
4
2 z

1
8
3 ≥ q

which admits the Lagrangian

L = w · z + λ
󰀓
q − z

1
2
1 z

1
4
2 z

1
8
3

󰀔

Our first order conditions are

∂L
∂z1

= w1 −
λ

2
z
− 1

2
1 z

1
4
2 z

1
8
3 = 0 =⇒ λ =

2w1

z
− 1

2
1 z

1
4
2 z

1
8
3

∂L
∂z2

= w2 −
λ

4
z

1
2
1 z

− 3
4

2 z
1
8
3 = 0 =⇒ λ =

4w2

z
1
2
1 z

− 3
4

2 z
1
8
3

∂L
∂z3

= w3 −
λ

8
z

1
2
1 z

1
4
2 z

− 7
8

3 = 0 =⇒ λ =
8w3

z
1
2
1 z

1
4
2 z

− 7
8

3

∂L
∂λ

= q − z
1
2
1 z

1
4
2 z

1
8
3 = 0 =⇒ q = z

1
2
1 z

1
4
2 z

1
8
3

Equating the first two conditions, we get that

2w1

z
− 1

2
1 z

1
4
2 z

1
8
3

=
4w2

z
1
2
1 z

− 3
4

2 z
1
8
3

=⇒ z1w1 = 2w2z2 =⇒ z2 =
w1

2w2

z1

Equating the first and third conditions, we get that

2w1

z
− 1

2
1 z

1
4
2 z

1
8
3

=
8w3

z
1
2
1 z

1
4
2 z

− 7
8

3

=⇒ z1w1 = 4w3z3 =⇒ z3 =
w1

4w3

z1

Combining into the constraint, we get that

q = z
1
2
1

󰀕
w1

2w2

z1

󰀖 1
4
󰀕

w1

4w3

z1

󰀖 1
8

=⇒ z
7
8
1 = q

󰀕
2w2

w1

󰀖 1
4
󰀕
4w3

w1

󰀖 1
8

Which implies that

z󰂏1(w, q) = q
8
7

󰀕
2w2

w1

󰀖 2
7
󰀕
4w3

w1

󰀖 1
7

Substituting back, we get that

z2 =
w1

2w2

q
8
7

󰀕
2w2

w1

󰀖 2
7
󰀕
4w3

w1

󰀖 1
7
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and

z3 =
w1

4w3

q
8
7

󰀕
2w2

w1

󰀖 2
7
󰀕
4w3

w1

󰀖 1
7

which imply that

z󰂏2(w, q) = q
8
7

󰀕
w1

2w2

󰀖 5
7
󰀕
4w3

w1

󰀖 1
7

z󰂏3(w, q) = q
8
7

󰀕
2w2

w1

󰀖 2
7
󰀕

w1

4w3

󰀖 6
7

(c) We have that the cost function of the firm is C(w, q) = w1z
󰂏
1 + w2z

󰂏
2 + w3z

󰂏
3 , so

substituting:

C(w, q) = w1q
8
7

󰀕
2w2

w1

󰀖 2
7
󰀕
4w3

w1

󰀖 1
7

+w2q
8
7

󰀕
w1

2w2

󰀖 5
7
󰀕
4w3

w1

󰀖 1
7

+w3q
8
7

󰀕
2w2

w1

󰀖 2
7
󰀕

w1

4w3

󰀖 6
7

which equals

C(w, q) = q
8
7

󰀥
w1

󰀕
2w2

w1

󰀖 2
7
󰀕
4w3

w1

󰀖 1
7

+ w2

󰀕
w1

2w2

󰀖 5
7
󰀕
4w3

w1

󰀖 1
7

+ w3

󰀕
2w2

w1

󰀖 2
7
󰀕

w1

4w3

󰀖 6
7

󰀦

so we have that the marginal cost of production is

∂C(w, q)

∂q
=

8

7
q

1
7

󰀥
w1

󰀕
2w2

w1

󰀖 2
7
󰀕
4w3

w1

󰀖 1
7

+ w2

󰀕
w1

2w2

󰀖 5
7
󰀕
4w3

w1

󰀖 1
7

+ w3

󰀕
2w2

w1

󰀖 2
7
󰀕

w1

4w3

󰀖 6
7

󰀦

3. Cost minimization with a continuum of inputs

(a) We have that the continuous cost minimization problem is

min
z(j)

󰁝 1

0

w(j)z(j)dj s.t. q =
󰀗󰁝 1

0

a(j)z(j)
σ−1
σ dj

󰀘 σ
σ−1

which admits the Lagrangian

L =

󰁝 1

0

w(j)z(j)dj + λ

󰀣
q −

󰀗󰁝 1

0

a(j)z(j)
σ−1
σ dj

󰀘 σ
σ−1

󰀤

The first order condition with respect to some z(j) is

∂L
∂z(j)

= w(j)− λ
σ

σ − 1

󰀕󰁝 1

0

a(i)z(i)
σ−1
σ di

󰀖 1
σ−1 σ − 1

σ
a(j)z(j)−

1
σ = 0
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and using the fact that q =
󰁫󰁕 1

0
a(j)z(j)

σ−1
σ dj

󰁬 σ
σ−1 in equilibrium, we get that this

simplifies to

w(j)− λa(j)z(j)−
1
σ q

1
σ = 0 =⇒ z(j) =

󰀣
λa(j)q

1
σ

w(j)

󰀤σ

We can find λ by substituting back into the budget constraint:

q =

󰀵

󰀷
󰁝 1

0

a(j)

󰀣
λa(j)q

1
σ

w(j)

󰀤σ−1

dj

󰀶

󰀸

σ
σ−1

=⇒ q =

󰀗
λσ−1q

σ−1
σ

󰁝 1

0

a(j)σw(j)1−σdj

󰀘 σ
σ−1

and we get that

λ󰂏 =

󰀗󰁝 1

0

a(j)σw(j)1−σdj

󰀘− 1
σ−1

Thus, we have that

z󰂏(j, w, q) =

󰀕
a(j)

w(j)

󰀖σ

q ·
󰀗󰁝 1

0

a(i)σw(i)1−σdi

󰀘− σ
σ−1

(b) The conditional input demand for input j is increasing in the productivity of
input j, as long as σ ∈ (0, 1):

∂z󰂏(j, w, q)

∂a(j)
= σa(j)σ−1w(j)−σq

󰀗󰁝 1

0

a(i)σw(i)1−σdi

󰀘− σ
σ−1

+
σ

1− σ

󰀕
a(j)

w(j)

󰀖2σ−1

q ·
󰀗󰁝 1

0

a(i)σw(i)1−σdi

󰀘 1−2σ
1−σ

> 0

(c) We have that the new cost minimization problem is

min
z(j)

󰁝 1

0

1

2
z(j)2dj s.t. 1 =

󰀗󰁝 1

0

a(j)z(j)
σ−1
σ dj

󰀘 σ
σ−1

which admits the Lagrangian

L =

󰁝 1

0

1

2
z(j)2dj + λ

󰀣
1−

󰀗󰁝 1

0

a(j)z(j)
σ−1
σ dj

󰀘 σ
σ−1

󰀤

The first order condition with respect to some z(j) is

∂L
∂z(j)

= z(j)− λ
σ

σ − 1

󰀕󰁝 1

0

a(i)z(i)
σ−1
σ di

󰀖 1
σ−1 σ − 1

σ
a(j)z(j)−

1
σ = 0
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and again using the fact that q = 1 =
󰁫󰁕 1

0
a(j)z(j)

σ−1
σ dj

󰁬 σ
σ−1 in equilibrium, we

get that
z(j)− λa(j)z(j)−

1
σ q

1
σ = 0 =⇒ z(j) = (λa(j))

σ
σ+1

We substitute back into the budget constraint to get λ:

1 =

󰀗󰁝 1

0

a(j) (λa(j))
σ−1
σ+1 dj

󰀘 σ
σ−1

=⇒ λ
σ+1
σ =

󰀗󰁝 1

0

a(j)
2σ
σ+1dj

󰀘 σ
σ−1

=⇒ λ󰂏 =

󰀗󰁝 1

0

a(j)
2σ
σ+1dj

󰀘 σ2

σ2−1

so we get that

z󰂏(j, w, 1) = a(j)
σ

σ+1

󰀗󰁝 1

0

a(i)
2σ
σ+1di

󰀘 σ3

(σ2−1)(σ+1)

4. Profit maximization with a non-smooth production function

(a) We have that the profit maximization problem is

max
z∈RN

+

2p
󰁳

min{z1, 2z2, 3z3, . . . , NzN}− w · z

Note that the goods in this case are (transformations of) perfect complements.
Define a variable as follows: ζi = i · zi, which admits the maximization problem

max
ζ∈RN

+

2p
󰁳

min{ζ1, ζ2, . . . , ζN}−
N󰁛

i=1

ζi
wi

i

Since the inputs are now truly perfect complements, we can say that ζ1 = ζ2 =
· · · = ζN = ζ, and the maximization problem becomes

max
ζ∈R+

2p
󰁳

ζ − ζ
N󰁛

i=1

wi

i

The first order conditions are

p√
ζ
−

N󰁛

i=1

wi

i
= 0 =⇒ ζ󰂏 =

p2
󰀓󰁓N

i=1
wi

i

󰀔2

Converting back into our original variables, we get that the unconditional input
demand function for input i is:

z󰂏i (p, w) =
p2

i
󰀓󰁓N

i=1
wi

i

󰀔2
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(b) We now assume that the firm has output market power, so P (q) = q−ε. Our new
maximization problem is

max
z∈RN

+

f(z)−εf(z)− w · z ≡ max
z∈RN

+

f(z)1−ε − w · z

Using the same change of variable as in part (a), and recalling that goods are still
perfect complements, we get that with ζi = izi, the maximization problem is

max
ζ∈RN

+

󰀓
2
󰁳

min{ζ1, ζ2, . . . , ζN}
󰀔1−ε

−
N󰁛

i=1

ζi
wi

i
≡ max

ζ∈R+

󰀓
2
󰁳

ζ
󰀔1−ε

− ζ
N󰁛

i=1

wi

i

The first order conditions are

2−ε(1− ε)ζ−
(ε+1)

2 −
N󰁛

i=1

wi

i
= 0 =⇒ ζ󰂏 =

󰀣
1− ε

2ε
󰁓N

i=1
wi

i

󰀤 2
ε+1

So we get the unconditional input demand function given input prices w is

z󰂏i (w) =
1

i

󰀣
1− ε

2ε
󰁓N

i=1
wi

i

󰀤 2
ε+1

5. Producer theory in action (De Loecker, Eeckhout, and Unger 2020)

(a) When the authors assert that “The Lagrange multiplier λ is a direct measure
of marginal cost,” they are using the implicit structure of the cost minimization
problem. Formally, we have that the Lagrangian in the cost minimization problem
is

L = w · z − λ(q − f(z))

Since the objective is minimized, the Lagrange multiplier measures how much the
minimum (cost) increases for an increase in the output level. This is precisely the
definition of marginal cost – when output increases by 1 unit, total cost (from the
cost function) will increase by λ units.

(b) The authors start with the cost minimization problem despite it not featuring
price because they are not assuming that firms are price-takers. If they were, and
firms were in perfect competition, then it would make a lot more sense to work
under the profit maximization problem. However, since they are assuming that
firms have output market power, they would need to estimate a demand function.
By working with the cost minimization problem, they can simply estimate the
cost function and then calculate the markup from the output price, which is
public information. They are assuming that firms are profit maximizing, but
since the profit maximization problem implies the cost minimization problem,
they can reach the cost function by solving the cost minimization problem and
then divide the price (observable) by the cost function (calculated) to get the value
of the markup. In this way, they sidestep the (extremely hard, often intractable)
problem of calculating the demand function.
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7.3.2 Outside Questions

The following are from Stanford ECON202 Problem Set 2. Questions written by Ilya Se-
gal, answers by Gabe along with Asia-Kim Francavilla, Monia Tomasella, and Juan David
Torres.
Remark. The Stanford course was structured somewhat oddly – we actually did Producer
Theory first, and focused a lot on Topkis Theorem and Robust Monotone Comparative
Statics. I’m not sure how much of this relates to what we did in 6090, but here it is.

Problem 1:

(a) If production set Y has nondecreasing returns to scale and has the shutdown property,
what can you say about the possible values of π(p) at a given price vector p?

(b) If we strengthen (a) to require constant returns to scale, what can you say about the
shape of the set Y ∗(p)?

(c) If we instead strengthen (a) to require strictly increasing returns to scale (i.e. , y ∈ Y
and α ≥ 1 ⇒ αy is in the interior of Y ), what can you say about the shape of the set
Y ∗(p)?

(d) What do you conclude about the possible existence of price-taking profit-maximizing
firms with the the production set described in part (b)? What about the production
set in part (c)? What do you expect such firms to do in reality?

Solutions:

(a) If the production set has nondecreasing returns to scale and a shutdown property, we
can say that at a certain p, π(p) is either 0 or +∞. This is stated in Remark 1 in the
notes. To show this, first assume that there exists some y ∈ Y such that p · y > 0.
Since the production set has nondecreasing returns to scale, αy ∈ Y for all α > 1. As
α → ∞, p · (αy) = α(p · y) → ∞, so π(p) = +∞. If p · y ≤ 0 for all y, then π(p) = 0,
because the firm can achieve no more profit than shutting down. Thus, for any p, π(p)
equals either 0 or +∞.

(b) If the production set has constant returns to scale and a shutdown property, the shape
of the set Y ∗(p) can be any of three cases, depending on p. From part (a), we know
that π(p) ∈ {0,∞}. If π(p) = +∞, then Y ∗(p) = ∅, because there is no y ∈ Y ⊂ Rn

for which p · y = +∞. If π(p) = 0, there are two cases. Either p · y < 0 for all y ∈ Y ,
in which case Y ∗(p) = {0}. This is true because the maximal point will be precisely
at the shutdown point, as all other feasible production plans lead to negative profits.
The second case is when there exists some y ∈ Y such that p · y = 0. In this case,
p ·αy = α(p ·y) = 0 for all α > 0, which points we know are feasible because of constant
returns to scale. Thus, Y ∗(p) = {y : p · y = 0}. Note that the shutdown point 0 is also
included in this case.
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(c) If the production set has strictly increasing returns to scale, then the set Y ∗(p) is either
{0} or ∅. As in part (b), if π(p) = +∞, Y ∗(p) = ∅. Also as in part (b), if p · y < 0
for all y ∈ Y , y∗(p) = {0}. Unlike part (b), however, there is no other case. To see
why, assume that there exists some y ∈ Y \ {0} such that p · y = 0. Then p · (αy) = 0
for some large α > 1. However, since αy is in the interior of the production set, there
exists ε > 0 such that αy + εp ∈ Y . Then p · (αy + εp) = αp · y + ε󰀂p󰀂2 = ε󰀂p󰀂2 > 0,
so since αy + εp is such that p · (αy + εp) > 0, π(p) = ∞, and we are in the first case
where Y ∗(p) = ∅.

(d) With constant returns to scale, a firm with features as in part (b) would be indifferent
between different levels of production – they would either be indifferent between shut-
ting down and producing bundles at zero profit, or indifferent between producing more
and more output, or they would prefer shutting down to anything else. In reality, I
would expect firms in the first and third cases to shut down, and I would expect firms
in the second case to produce as much as possible, until they become price-setters,
which this model does not cover.

With increasing returns to scale, a firm with features as in part (c) would either shut
down or produce more and more. The first case seems reasonable, but the second runs
into the same property where they would eventually stop being price-takers.

Problem 2: Suppose that production set Y is closed and that at some price vector p,
π(p) < +∞ (i.e. , the profits are bounded). Does this imply that Y ∗(p) ∕= ∅ (i.e. , a
profit-maximizing plan exists)?

Solution: No. Consider the production set Y = {(y1, y2) ∈ (−∞, 1) × R : y2 ≤ 1
y1−1

+ 1},
with the price vector (0, 1). Since the first good (the input) is costless, the firm only cares
about how much of the second good (the output) they can produce. As y1 → −∞, y2 → 1,
so π(p) = 1 < +∞. However, there is no finite bundle which produces a profit of 1. Thus,
Y ∗(p) = ∅. The production set is closed because it contains its border ({(y1, y2) : y2 =

1
y1−1

+ 1}), so this serves as a counterexample.

Problem 3: (MWG) Derive the profit function π(p) and the supply correspondance Y ∗(p)
for a single-output two-input firm with production function

(a) f(z) = 2
√
z1 + z2

(b) f(z) = 2
󰁳

min(z1, z2)

(c) f(z) = (zρ1 +zρ2)
1/ρ for ρ ≤ 1. (This is known as a “Constant Elasticity of Substitution”

production function, with the elasticity of substitution s = 1/(1− ρ).)

Solutions:

Let y = (q,−z1,−z2) ∈ R3
+ and p = (p, w1, w2) ∈ R3

++.
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(a) Note first that the inputs are perfect substitutes, so if w1 > w2, z∗1 = 0 and if w2 > w1,
z∗2 = 0. Without loss of generality, we assume that if w1 = w2, z∗1 = 0. Assume first
that w2 > w1. Then the firm’s maximization problem is

max
z1∈R+

p(2
√
z1)− w1z1

The first order conditions are:
p

√
z1

− w1 = 0

z∗1 =

󰀕
p

w1

󰀖2

Thus, q∗ = f(z∗1 , 0) = 2 p
w1

, and π(p) = pq∗−w1z
∗
1 = p2

w1
. Finally, Y ∗(p) = (2 p

w1
,− p2

w2
1
, 0).

Following the same logic, if w2 ≤ w1, π(p) = p2

w2
and Y ∗(p) = ( 2p

w2
, 0,− p2

w2
2
).

(b) Note first that inputs are perfect compliments, so if z1 > z2, profit could be strictly
increased by setting z1 = z2, because the firm would produce the same output at
decreased cost. Define z = z1 = z2, and we solve the resulting profit maximization
problem:

max
z∈R+

p(2
√
z)− w1z − w2z

Taking first order conditions:

0 =
p√
z
− w1 − w2

z∗ =

󰀕
p

w1 + w2

󰀖2

= z∗1 = z∗2

Thus, q∗ = f(z∗1 , z
∗
1) = 2 p

w1+w2
, and π(p) = pq∗ − w1z

∗
1 − w2z

∗
1 = p2

w1+w2
. Finally,

Y ∗(p) = (2 p
w1+w2

,−
󰀓

p
w1+w2

󰀔2

,−
󰀓

p
w1+w2

󰀔2

).

(c) Note that f has constant returns to scale, so by Problem 1 (b), π(p) ∈ {0,+∞}.
This means that if there exists any z1, z2 such that p(zρ1 + zρ2)

1/ρ − w1z1 − w2z2 > 0,
π(p) = +∞ and Y ∗(p) = ∅. We need to check if such vectors exist along any arbitrary
curve where (zρ1 + zρ2)

1/ρ equals the same number. If all vectors along that curve are
weakly negative, then π(p) will equal 0. If any are positive, then π(p) will equal +∞.
Since the supply function exhibits constant returns to scale, this suffices to identify
conditions under which a positive profit will exist. For simplicity, choose the curve
zρ1 + zρ2 = 1. Our maximization problem is

max p(zρ1 + zρ2)
1/ρ − w1z1 − w2z2

subject to zρ1 + zρ2 = 1
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Our Lagrangian simplifies to

L = p− w1z1 − w2z2 + λ(zρ1 + zρ2 − 1)

Taking first order conditions, we get

Lz1 = −w1 + λρzρ−1
1 = 0 → z1 =

󰀕
w1

λρ

󰀖 1
ρ−1

Lz2 = −w2 + λρzρ−1
2 = 0 → z2 =

󰀕
w2

λρ

󰀖 1
ρ−1

Plugging into the constraint, we get
󰀕
w1

λρ

󰀖 ρ
ρ−1

+

󰀕
w2

λρ

󰀖 ρ
ρ−1

= 1 → λρ =
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ

Plugging back into the first order conditions, we get

z∗1 =

󰀳

󰁅󰁅󰁃
w1

󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ

󰀴

󰁆󰁆󰁄

1
ρ−1

=
w

1
ρ−1

1
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 1
ρ

and

z∗2 =
w

1
ρ−1

2
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 1
ρ

Now we have that the maximum value of π on the curve zρ1 + zρ2 = 1 is

p− w1
w

1
ρ−1

1
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 1
ρ

− w2
w

1
ρ−1

2
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 1
ρ

= p−
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ

Thus, we can characterize the profit function and supply correspondence as:

π(p) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0 p ≤
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ

+∞ p >
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ

Y ∗(p) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

{0} p <
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ

{(αz∗1 ,αz∗2) : α ≥ 0} p =
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ

∅ p >
󰀓
w

ρ
ρ−1

1 + w
ρ

ρ−1

2

󰀔 ρ−1
ρ
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Problem 4: Suppose that we do not observe a firm’s supply choices but observe its attained
profits π(p) for all price vectors p in a convex open set P ⊆ R. Prove that a differentiable
function π can be rationalized as the firm’s maximal profits on some production set if and
only if it is convex and homogeneous of degree 1. (You can use any theorems from the lecture
notes.)

Proof. (⇒): We have that a differentiable function π can be rationalized as the firm’s
maximal profits on some production set, meaning that π(p) = supy∈Y p · y for all p ∈ P .
Since P is convex and open and π is differentiable, π is convex by Proposition 3. Further, π
is homogeneous of degree 1 by Proposition 5.

(⇐): We have a differentiable function π that is convex and homogeneous of degree 1. Since
π is convex, by Proposition 3 to show that it rationalizes the firm’s maximal profits on some
production set it suffices to show that Hotelling’s Lemma holds. Since π is differentiable,
we can take the gradient at every p, and define y(p) = ∇π(p). By Euler’s Law, since π is
homogeneous of degree 1, π(p) = p ·∇π(p), which means that π(p) = p · y(p). Thus, since π
is convex and Hotelling’s Lemma holds, by Proposition 3 π can be rationalized as the firm’s
maximal profits on some production set.

Problem 5: Consider a single-output firm with production function f .

(a) Show that if f has nondecreasing [nonincreasing] returns to scale, then the “average
cost function” c(q, w)/q is nonincreasing [resp. nondecreasing] in q.

(b) Show that if f is concave, then the cost function c(q, w) is convex in output q.

(c) Is the converse to (a) true? Is the converse to (b) true?

Solutions:

(a) We have that f has nondecreasing returns to scale, meaning that f(αz) ≥ αf(z)
for all α ≥ 1. Fix some z ∈ Rn

+ and α ≥ 1. Also define z′ = z/α. Recall that
c(q, w) = inf{z · w : f(z) ≥ q}, meaning that the average cost function is c(q, w)/q =
(1/q) inf{z · w : f(z) ≥ q}. Now consider:

c(αq, w)/(αq) =
1

αq
inf{z · w : f(z) ≥ αq}

=
1

αq
inf{z · w : f(z) ≥ αq}

Note that since f has nondecreasing returns to scale, f(z) ≥ αf(z/α). This means
that

1

αq
inf{z · w : f(z) ≥ αq} ≤ 1

αq
inf{z · w : αf(z/α) ≥ αq}
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Because the right set is smaller, meaning that the infimum is larger. Thus, we have

c(αq, w)/(αq) =
1

αq
inf{z · w : f(z) ≥ αq}

≤ 1

αq
inf{z · w : αf(z/α) ≥ αq}

=
1

q
inf{ z

α
· w : f(

z

α
) ≥ q}

=
1

q
inf{z′ · w : f(z′) ≥ q} = c(q, w)/q

Therefore, c(αq, w)/(αq) ≤ c(q, w)/q, which means that the average cost function is
nonincreasing in q. The exact same argument with α < 1 and the ≤ signs reversed
demonstrates that the property holds such that whenever f has nonincreasing returns
to scale, the average cost function is nondecreasing in q.

(b) We have that f is concave, meaning that for any θ ∈ [0, 1] and x, y in the domain
of f , f(θx + (1 − θ)y) ≥ θf(x) + (1 − θ)f(y). Take two bundles of inputs, z and z′.
Define f(z) = q and f(z′) = q′. To show that the cost function is concave in q, it
suffices to show that c(θq + (1 − θ)q′, w) ≤ θc(q, w) + (1 − θ)c(q′, w). First, note that
c(q, w) = infz{z ·w : f(z) ≥ q}. Fix some θ ∈ [0, 1]. Consider θc(q, w)+ (1− θ)c(q′, w).
Using the properties of infimum and of set containment, we have

θc(q, w) + (1− θ)c(q′, w) = θ inf{z · w : f(z) ≥ q}+ (1− θ) inf{z′ · w : f(z′) ≥ q′}
= inf{(θz + (1− θ)z′) · w : f(z) ≥ q , f(z′) ≥ q′}

(because f is concave) ≥ inf{(θz + (1− θ)z′) · w : f(θz + (1− θ)z′) ≥ θq + (1− θ)q′}
= c(θq + (1− θ)q′, w)

Thus, c(q, w) is convex in q whenever f is concave.

(c) The converse to neither statement is true. For part (a), consider the piecewise produc-
tion function

f(z1, z2) =

󰀫
z1 + z2 z1 + z2 ≤ 2

2z1 + 2z2 z1 + z2 > 2

As the two goods are perfect substitutes, costs are minimized by choosing whichever of
the inputs has lower cost, as in Problem 3 (a). Thus, the cost function is c(q, w1, w2) =
qmin{w1, w2}, so the average cost function is c(q, w1, w2)/q = min{w1, w2} which is
constant in q and therefore nonincreasing. However, taking z = (2, 2) and α = 1/2, we
have that αf(z) = (1/2)(4 + 4) = 4, but f(αz) = 1 + 1 = 2. Since αf(z) > f(αz), f
has does not have nonincreasing returns to scale. An analogous piecewise function with
a higher slope for lower z and a lower slope for higher z would not have nondecreasing
returns to scale, so the converse is not true.

For part (b), consider the production function f(z1, z2) = max{z1, z2}. As above,
the cost function is c(q, w1, w2) = qmin{w1, w2}, so the average cost function is
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c(q, w1, w2)/q = min{w1, w2} which is constant in q and therefore convex. However,
taking as an example the points z = (2, 1) and z′ = (1, 2), f(z) = f(z′) = 2, so
θf(z) + (1 − θ)f(z′) = 2 for all θ. However, taking θ = 1/2, f(θz + (1 − θ)z′) =
f(1.5, 1.5) = 1.5 < 2, so f is not concave.

Problem 6: A single-output two-input firm’s cost function is given by c(w1, w2, q) = (wδ
1+

wδ
2)

1/δq.

(a) What values can δ take?

(b) What can you infer about the firm’s conditional factor demands and production func-
tion?

(c) Answer question (b) for the cost function c(w1, w2, q) = min{w1, w2} · q (which corre-
sponds to the limiting case δ = −∞).

Solutions:

(a) For the cost function to be rationalizable, it must fulfill three conditions: it must be
nondecreasing in prices, homogeneous of degree one in prices, and concave in prices.
We will check each condition in order.

First, we will determine at what values of δ the cost function is nondecreasing in prices.
To do so, we will take the partial derivative with respect to each price, noting that
w1, w2, q ∈ R+.

∂

∂w1

c(w1, w2, q) = wδ−1
1 (wδ

1 + wδ
2)

1−δ
δ q

∂

∂w2

c(w1, w2, q) = wδ−1
2 (wδ

1 + wδ
2)

1−δ
δ q

Since w1, w2, q ∈ R+, these are nonnegative for any δ ∈ R, meaning that the cost
function is nondecreasing in price at any δ.

Next, we will determine at what values of δ the cost function is homogeneous of degree
one. Fix some α > 0.

c(αw1,αw2, q) = ((αw1)
δ + (αw2)

δ)1/δq

= (αδ(wδ
1 + wδ

2)
1/δq

= α(wδ
1 + wδ

2)
1/δq = αc(w1, w2, q)

Since c(αw1,αw2, q) = αc(w1, w2, q) for α > 0 at any δ ∈ R, the cost function is
homogeneous of degree one for any δ ∈ R.
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Finally, we will check at what values of δ the cost function is concave in prices. To
do so, we will find the Hessian with regard to prices and ensure that it is negative
semi-definite. We used Wolfram Alpha to take the Hessian, and found that the only
eigenvalues are 0 and (δ − 1)wδ−2

1 wδ−2
2 (w2

1 + w2
2)(w

δ
1 + wδ

2)
1
δ
−2. The second is ≤ 0

only when δ ≤ 1, as all other variables are nonnegative. Thus, we have that the cost
function is rationalizable only when δ ≤ 1.

(b) We can find the firm’s conditional factor demands by taking the gradient with respect
to the cost of each input (as in part (a)). We get that

z∗(q, w) = (wδ−1
1 (wδ

1 + wδ
2)

1−δ
δ q, wδ−1

2 (wδ
1 + wδ

2)
1−δ
δ q)

To find the production function, we will eliminate the input prices from the conditional
factor demand equations

z1
z2

=
wδ−1

1 (wδ
1 + wδ

2)
1−δ
δ q

wδ−1
2 (wδ

1 + wδ
2)

1−δ
δ q

=

󰀕
w1

w2

󰀖δ−1

This means that
w1

w2

=

󰀕
z1
z2

󰀖 1
δ−1

Reformulating our earlier expression for z2 (again using Wolfram Alpha), we get

z2 =

󰀥󰀕
w1

w2

󰀖δ

+ 1

󰀦 1−δ
δ

q

Replacing, we get

z2 =

󰀕
z

δ
δ−1

1 + z
δ

δ−1

2

󰀖 1−δ
δ

z2q → q =

󰀕
z

δ
δ−1

1 + z
δ

δ−1

2

󰀖 δ−1
δ

Thus, our production function is

f(z1, z2) =

󰀕
z

δ
δ−1

1 + z
δ

δ−1

2

󰀖 δ−1
δ

(c) First consider the case when w1 > w2. In that case, ∇w1c(w1, w2, q) = 0 and ∇w2c(w1, w2, q) =
q, so z∗(q, w1, w2) = (0, q). In the case when w2 > w1, ∇w1c(w1, w2, q) = q and
∇w2c(w1, w2, q) = 0, so z∗(q, w1, w2) = (q, 0). In the case where w1 = w2, the condi-
tional factor demand is indeterminate, because the cost function is not differentiable.
One possible solution would be z∗(q, w1, w2) = (q/2, q/2), which would minimize costs
with the production function discussed below. However, with other production func-
tions other conditional factor demands would themselves minimize costs.
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To find the production function, we take the limit as δ → −∞. Since δ
δ−1

→ 1
as δ → ∞, f(z1, z2) = z1 + z2. This production function does correspond to the
conditions described above. However, this is not the only possible production function,
because the identified conditional factor demands can still appear for other production
functions. For example, when f(z1, z2) = max{z1, z2}, it is still optimal to only use
the cheaper input. Thus, the production function is also indeterminate.

Problem 7: For a single-output firm with the shutdown property, we observe that at the
output prices p1, . . . , pK the firm chooses outputs q1, . . . , qK respectively. (The firm’s input
choices are not observed, but we know that all input prices stay the same for all observations.)
Order the observations so that 0 < p1 < · · · < pK .

(a) What conditions on the observations are necessary and sufficient for the observations
to be consistent with profit-maximizing choices by a price-taking firm?

From now on, assume that the firm is indeed a profit-maximizing price-taking firm.

(b) What bounds on the change in the firm’s profits as output price increases from pk to
pk+1 are implied by the observations?

(c) What bounds on the firm’s profits achieved at price pK are implied by the observations?

Solutions:

(a) From Proposition 7, for the observations to be consistent with profit-maximizing
choices by a price-taking firm, showing that the Producer Surplus Formula and the
Law of Supply suffices. Note that since we do not observe profit, the Producer Surplus
Formula holds vacuously, as it is never violated by any observations. Thus, the Law of
Supply is both necessary and sufficient. For the Law of Supply to hold, it must be the
case that for all p, p′ ∈ P , (p− p′) · (y(p′)− y(p)) ≥ 0. Since input prices are the same
across all observations, this simplifies to the condition that (pi − pj) · (qi − qj) ≥ 0.

(b) Since the producer surplus formula must hold, meaning that p, p′ ∈ P , π(p′)− π(p) =󰁕
ρ
y(p)dp. Since only the price of the output good is changing, we have π(pk+1) −

π(pk) =
󰁕 pk+1

pk
q(p)dp. Note that we ignore the prices of inputs, as they do not change.

By the law of supply, qk ≤ q(p) ≤ qk+1 for all p ∈ [pk, pk+1]. Thus, we have that
π(pk+1)− π(pk) ∈ [qk(pk+1 − pk), qk+1(pk+1 − pk)].

(c) Note first that the minimum possible value for π(p1) is 0, as the firm has the shutdown
property. Note also that the maximum possible value for π(p1) is p1 · q1, when input
prices are 0. To find the bounds on the profits at price pK , we simply induct from p1,
using the bounds from part (b). We get

πmin(pK) = 0 +
K−1󰁛

k=1

qk(pk+1 − pk)
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πmax(pK) = p1q1 +
K−1󰁛

k=1

qk+1(pk+1 − pk)

Thus,

π(pK) ∈
󰀥
K−1󰁛

k=1

qk(pk+1 − pk), p1q1 +
K−1󰁛

k=1

qk+1(pk+1 − pk)

󰀦

Problem 8: Consider a profit-maximizing price-taking single-output firm with two inputs:
labor (l) and capital (k). This question asks you to use monotone comparative statics
techniques to establish sufficient conditions for the firm’s output to be nonincreasing in the
price of the labor input (wage) w.

(a) Show that a sufficient condition for this is that labor is a “normal” input, i.e. , the
optimal labor choice in the cost-minimization problem is nondecreasing in the target
output level.

(b) Derive a sufficient condition for this in terms of the firm’s production function f ,
assuming it to be sufficiently smooth. (Hint: it may be convenient to represent the
isoquants of f by means of the function k(l, q) = k s.t. f(k, l) = q.)

Solutions:

(a) The firm’s profit maximization problem is maxq∈R+ pq − c(q, w). We assume that c is
differentiable. From Shephard’s Lemma, we know that cw(q, w) = l∗(q, w), and since
labor is a normal input, the derivative of the firm’s objective function with regard to
wage (which is just −cw(q, w)) is nonincreasing in output. This means that the firm
has increasing differences in (q,−w). By Topkis’ Theorem, the optimal output q∗(w)
is nonincreasing in w.

(b) Define the isoquants of f as k(l, q) = k s.t. f(k, l) = q. By the Implicit Function
Theorem

−∂k(l, q)

∂l
=

∂f(k(l, q), l)/∂l

∂f(k(l, q), l)/∂k

Note that the right hand side is the marginal rate of technical substitution between l

and k. This means that −∂k(l,q)
∂l

must be nondecreasing in q, which means that −k(l, q)
has increasing differences in l and q.

Note also that the firm’s cost minimization problem is solved when k∗ = k(l∗, q). We
can rewrite the problem as

l∗(q) = argmin
l∈R+

wl + rk(l, q) = argmax
l∈R+

−wl − rk(l, q)

where r is the cost of capital. Since −k(l, q) has increasing differences in l and q, the
objective function −wl − rk(l, q) has increasing differences in l and q, and by Topkis’
Theorem, the firm’s choice of l is increasing in q.

109



7.4 Uncertainty (Blume)

7.4.1 Blume Homework

Problems.

1. Suppose an investor with initial wealth w0 has a payoff function of the form

u(w) = − exp(−raw)

with ra > 0. There are two investment opportunities: a risk-free asset and a risky asset
whose payoff is normally distributed with mean µ and variance σ2. The investor can
allocate her wealth between the two opportunities. What share of her wealth should
go into the risky asset?

2. Suppose that ≽ satisfies the Savage axioms with state space S and outcome space
X, and suppose that it has an SEU representation with payoff function u and belief
distribution µ. Prove that for every non-null event A the preference order σA has an
SEU representation. What is it?

3. Let M denote the right triangle in the plane with vertices x = (0, 1), y = (0, 0), and
z = (1, 0). Each m ∈ M can be written uniquely as αmx+(1−αm)(βmy+(1− βm)z).
Define the mixture operators

m⊗λn =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

z if m = n = z;m = z & λ = 1; or n = z & λ = 0

(λαm + (1− λ)αn)x+ otherwise
(1− (λαm + (1− λ)αn))y

(a) Show that this is a mixture space.

(b) Suppose the preference relation satisfies axioms A1-3 for mixture spaces. Describe
what indifference sets must look like.

4. Random variable X is distributed with density f(x) = x−6/5/5 and Y is distributed
with density g(x) = x−3/2/2.

(a) Which is bigger with respect to first order stochastic dominance?

(b) Suppose a decision maker maximized expected utility with payoff function u(x) =√
x. Which does he prefer?

5. Suppose an expected utility maximizer faces a decision problem in which there are two
states of nature and three choices a1, a2, a3. Utility payoffs are described in the following
table: The true probability distribution is p = (p1, p2), where ps is the probability of
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state s.
s1 s2

a1 0 −8
a2 −10 0
a3 −4 −3

(a) The DM does not know p, and believes that it is equally likely that p1 = 1/4 and
p1 = 3/4. Given these a priori beliefs about the models, what probability does
she assign to the event s1?

(b) Which ai will she choose?

(c) Before she chooses, she is told that the previous draw from the current distribution
was s1. Draws are independent, and her a priori belief is, as before, that the
models are equally likely. What will she choose?

(d) Suppose instead that she is told that s2 was drawn. What will she choose?

(e) How much is it worth to her, in utility terms, to know the value of the last draw
(given that her prior beliefs are that both modes are equally likely). (Hint: In part
(c) you computed her expected utility if she is told s2. In part (b) you computed
her expected utility if she is told s1. Before you are told anything, you have beliefs
about how likely you are to be told s1 and s2. So you can compute your expected
expected utility [this is not a typo; it really is “expected expected utility”] before
you are told anything. From this, you can compute the value of information—the
value of knowing the value of the last draw. This notion of value of information
is widely used.

6. In the three-color Ellsberg paradox, which of Savage’s axioms P1-5 (not 6 or 7) fail to
hold?

Solutions. (Gabe’s solutions, not yet graded by time of writing.)

1. We have that u(w) = − exp(−raw), for ra > 0. First, note that the decision maker
is risk-averse, as this Bernoulli utility function is concave in w. Furthermore, her
coefficient of absolute risk aversion is

A(w) = −u′′(w)

u′(w)
=

r2a exp(−raw)

ra exp(−raw)
= ra

which is constant, meaning that the decision maker has constant absolute risk aversion,
so we may feel free to ignore wealth effects. Saying that the agent invests x in the risky
asset, which has (random) gross return ε ∼ N (µ, σ), and w0 − x in the risk-free asset,
where the risk-free asset has a gross return of rf , her wealth is

w = xε+ (w0 − x)rf = xµ+ x(R− µ) + (w0 − x)rf
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with first and second moments

E[w] = xµ+ (w0 − x)rf and Var(w) = x2σ2

Using the moment generating function for X ∼ N (µ, σ2), we get that

E[exp(tX)] = exp

󰀕
tµ+

t2σ2

2

󰀖

So her expected utility under CARA utility is

E[u(w)] = − exp

󰀕
−ra E[w] +

r2a
2
Var(w)

󰀖
= − exp

󰀕
−raxµ− rarf (w0 − x) +

r2ax
2σ2

2

󰀖

Maximizing this function is equivalent to maximizing the exponent. The first order
condition with respect to x gives

−raµ+ rarf + r2axσ
2 = 0

Thus, we have that
x󰂏 =

µ− rf
raσ2

Taking into account corners, we get that the optimal level of investment is

x󰂏 =

󰀫
0 rf ≥ µ

max
󰁱

µ−rf
raσ2 , w0

󰁲
otherwise

(note that this is in real dollar values – to get the share of wealth, simply divide
everything by w0)

2. Prove that the preference order has an SEU representation.

Proof. We will define the preference order σA as follows:

f ≽A g if and only if f |A≽ g |A

(intuitively, f is weakly preferred to g conditional on A if and only if the restriction of
f to A is preferred to the restriction of g to A under the global preference relation)

Since ≽ has an SEU representation, the expected utility of f is

E
µ
[u ◦ f ] =

󰁝

s∈S
u(f(s))dµ(s)

To construct the SEU representation of σA, we need a conditional utility function and
a conditional belief distribution. The conditional utility function is over outcomes, and
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will coincide with u. Define the conditional belief distribution µ(· | A) as follows, using
the definition of conditional probabilities:

µ(B | A) = µ(B ∩ A)

µ(A)

Thus, we can show that σA has an SEU representation as follows. Consider two acts
f, g ∈ F . From above, we have that

f ≽A g ⇐⇒ E
µ
[u ◦ f | A] ≥ E

µ
[u ◦ g | A]

Expanding, we get that

f ≽A g ⇐⇒
󰁝

s∈A
u(f(s))dµ(s | A) ≥

󰁝

s∈A
u(g(s))dµ(s | A)

The SEU representation for σA is

E
µ
[u ◦ f | A] =

󰁝

s∈A
u(f(s))dµ(s | A)

3. (Fake) mixture space

(a) This is not a mixture space. Consider the following counterexample, showing that
it violates the first axiom of mixture spaces:

Counterexample. This is not a mixture space. Consider m = (0.5, 0.5), which
admits the unique coordinates αm = 0.5, βm = 0. For arbitrary n, we have that
m⊗1 n = αmx+ (1− αm)y = (0, 0.5) ∕= m.

(b) It doesn’t. It admits no indifference curves.

4. Densities and FOSD.

(a) Note first that neither of the functions are densities over the domains (−∞,∞) or
(0,∞), as they are (respectively) not well-defined over the negative real numbers
and diverge on (0, 1). However, if we consider the domain [1,∞), we have that

󰁝 ∞

1

f(x)dx =

󰁝 ∞

1

g(x)dx = 1

Thus, we will restrict them each to the domain [1,∞).

Recall that a distribution X first order stochastically dominates Y if their CDFs
are ordered FX(x) ≤ FY (x) for all x, with strict inequality holding for at least
one x. We construct the CDFs by integrating the densities. Formally, we have
that

F (x) =

󰁝 x

1

f(t)dt =

󰀕
− 1

t1/5

󰀏󰀏󰀏󰀏
x

1

= 1− 1

x1/5
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and
G(x) =

󰁝 x

1

g(t)dt =

󰀕
− 1

t1/2

󰀏󰀏󰀏󰀏
x

1

= 1− 1

x1/2

Since x ∈ [1,∞), we can say that for any x, F (x) ≤ G(x). Additionally, taking
x = 2, we have that F (x) ≈ 0.13 < 0.29 ≈ G(x). Thus, X first-order stochasti-
cally dominates Y .

(b) We have that u(x) =
√
x. Since this function is strictly increasing, the decision

maker will always prefer a lottery that first-order stochastically dominates, so they
will always prefer X. To see why concretely, consider that the decision maker will
prefer X to Y if

󰁝 ∞

1

u(x)f(x)dx >

󰁝 ∞

1

u(x)g(x)dx =⇒
󰁝 ∞

1

u(x)d(F (x)−G(x)) > 0

Note that, integrating by parts, we have that for some CDF F ,
󰁝 ∞

1

u(x)dF (x) = u(x)F (x)|x=∞
x=1 −

󰁝 ∞

1

u(x)F (x)dx

Thus, since F (1) = G(1) = 0 and F (∞) = G(∞) = 1, we have that
󰁝 ∞

1

u(x)d(F (x)−G(x)) = −
󰁝 ∞

1

u(x)(F (x)−G(x))dx =

󰁝 ∞

1

u(x)(G(x)−F (x))dx > 0

since G(x) ≥ F (x) ∀ x.

5. Expected Utility

(a) If the decision maker believes that p1 = 1/4 and p1 = 3/4 with equal probability,
her expectation is that

p1 =
1

2
· 1
4
+

1

2
· 3
4
=

1

2

(b) Given that E[p1] = 1
2
, we have that E[a1] = −4, E[a2] = −5, and E[a3] = −3.5.

She will choose a3.

(c) Define p′ as the decision maker’s posterior belief over the probability that the
probability of state 1 is 3/4. Her prior belief is that p′ = 1/2. Having been told
that the previous draw was of s1, we have that by Bayes’ Rule

p′ = P
󰀝
p1 =

3

4

󰀏󰀏󰀏󰀏s−1 = s1

󰀞
=

P{s−1 = s1 | p1 = 3/4}
P{s−1 = s1 | p1 = 3/4}+ P{s−1 = s1 | p1 = 1/4}

p′ =
3/4

3/4 + 1/4
=

3

4
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Thus, her expectation is that

E[p1] = p′
3

4
+ (1− p′)

1

4
=

9

16
+

1

16
=

5

8

Her expected utilities from each choice are:

E[a1] =
5

8
· 0 + 3

8
·−8 = −3

E[a2] =
5

8
·−10 +

3

8
· 0 = −6.25

E[a3] =
5

8
·−4 +

3

8
·−3 = −3.625

Thus, she will choose a1

(d) Again define p′ as the posterior that the probability of state 1 is 3/4. Again by
Bayes’ rule, we have that

p′ = P
󰀝
p1 =

3

4

󰀏󰀏󰀏󰀏s−1 = s2

󰀞
=

P{s−1 = s2 | p1 = 3/4}
P{s−1 = s2 | p1 = 3/4}+ P{s−1 = s2 | p1 = 1/4}

p′ =
1/4

1/4 + 3/4
=

1

4

Thus, her expectation is that

E[p1] = p′
3

4
+ (1− p′)

1

4
=

3

16
+

3

16
=

3

8

Her expected utilities from each choice are

E[a1] =
3

8
· 0 + 5

8
·−8 = −5

E[a2] =
3

8
·−10 +

5

8
· 0 = −3.75

E[a3] =
3

8
·−4 +

5

8
·−3 = −3.375

Thus, she will choose a3

(e) From part (b), we know that the decision maker’s expected utility when she has
no information is −3.5. From part (c), we know that her expected utility when
she is told s1 is −3 and from part (d), her expected utility when she is told s2 is
−3.375. She has prior expectation that the probability of s1 is 1

2
, so we have that

her expected expected utility is

1

2
·−3 +

1

2
·−3.375 = −3.1875

so she gains, in expectation, −3.1875 − (−3.5) = 0.3125 from knowing the value
of the state in the previous period.
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6. In the three-color Ellsberg paradox, we have that R = 30 and B + G = 60. We also
have that, under the generally accepted results,

R ≻ B and B +G ≻ R +G

Note first that we do have complete preferences, over the acts that we have been given,
despite the fact that we do not know how they rank, for example, G and B. Since we
have that the act f (pay $100 if Red, nothing if Green or Blue) is preferred to g (pay
$100 if Blue, nothing if Red or Green). Define h as “pay nothing if Green” and k as
“pay $100 if Green”. Then we have that f |A h ≻ g |A h, where A = {Red or Blue},
but f |A k ≺ g |A k. Thus, the second Savage axiom is violated. The Savage axioms
three through five concern outcomes. None of them are violated, as long as we make
the (reasonable) assumption that people prefer $100 to $0.

So the three-color Ellsberg paradox violates Savage P2.

7.4.2 Outside Questions

The following are from Stanford ECON202 Problem Set 4. Questions written by Ravi Ja-
gadeesan, answers by Gabe along with Asia-Kim Francavilla and Monia Tomasella. Answers
not necessarily correct.

Problem 1: (Kreps) This question asks you to examine the demand for imperfect insur-
ance. Imagine a consumer with wealth W −∆, where ∆ is a lottery whose support includes
zero and a finite number of strictly positive amounts. Let π be the probability that a loss
is incurred, i.e. that ∆ > 0, so 1 − π is the probability of no loss. An insurance policy is
available that pays a dollar in the event of any loss – i.e. if ∆ > 0. The policy is not specifi-
cally tailored to reimburse the exact amount of the loss. The per-unit cost of the policy is p.
The price is actuarily fair, so p = π. Suppose that conditional on a loss being incurred, the
expected value of the loss is B, i.e. B = E[∆|∆ > 0]. We say that the consumer buys full
insurance if she purchases B units of insurance and covers her full expected loss. Assuming
the consumer has a differentiable concave Bernoulli utility function, for what kinds of utility
functions will she buy full insurance, less than full insurance, or more than full insurance?
(Give a simple example with parameters if you can’t prove the general case.)

Answer: Define θ as the number of units of insurance the consumer purchases. The con-
sumer’s maximization problem is

max
θ≥0

π E [u(W + (1− π)θ −∆|∆>0)] + (1− π)u(W − πθ −∆|∆=0)

Taking the first order conditions, we get

π(1− π)E [u′(W + (1− π)θ −∆|∆>0)]− π(1− π)u′(W − πθ) = 0

E [u′(W + (1− π)θ −∆|∆>0)] = u′(W − πθ)
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We now split into cases. First consider the case where u′′′ = 0, so E[u′(x)] = u′(E[x]) (which
we know from the second-order Taylor expansion). We have that

u′(W + (1− π)θ − E[∆|∆>0)]) = u′(W − πθ)

W + (1− π)θ − B = W − πθ

θ = B

Thus, in the case where u′′′ = 0, the consumer will purchase full insurance. Next, consider
the case where u′′′ > 0, so E[u′(x)] > u′(E[x]). This means that, using the fact that u is
strictly concave which implies that u′ is strictly decreasing,

u′(W + (1− π)θ − B) < E [u′(W + (1− π)θ −∆|∆>0)] = u′(W − πθ)

W + (1− π)θ − B > W − πθ

θ > B

Thus, in the case where u′′′ > 0, the consumer will purchase more than full insurance. Finally,
consider the case where u′′′ < 0, so E[u′(x)] < u′(E[x]). This means that, again using the
fact that u′ is strictly decreasing,

u′(W + (1− π)θ − B) > E [u′(W + (1− π)θ −∆|∆>0)] = u′(W − πθ)

W + (1− π)θ − B < W − πθ

θ < B

Thus, in the case where u′′′ < 0, the consumer will purchase less than full insurance.

Problem 2: Consider an agent who is a risk-averse expected-utility maximizer with a
Bernoulli utility function u defined and increasing for all nonnegative levels of wealth. This
agent makes the following statement:

“I will be risk averse no matter how rich I become. In fact, at any level of initial wealth
of at least $100, if you offered me a gamble that would increase my wealth by $100 with
probability 0.51, or decrease it by $100 with probability 0.49, I would rather not take this
gamble”

(a) Write down the constraints imposed by this statement on the agent’s Bernoulli utility
function.

(b) Normalize without loss of generality u(3000) = 0 and u(3100) = 1. Use your answer to
part (a) to derive an upper boud on the difference u(3000+100(k+1))−u(3000+100k)
for each k = 1, 2, . . . .

(c) The same agent is now offered the choice between

(i) getting wealth $3,000 for sure, and
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(ii) a 50/50 coin flip in which the prize is nothing if the coun lands heads, and
$10,000,000,000,000,000,000,000,000,000 if the coin lands tails.

Use your answer to part (b) to predict the decision maker’s choice between (i) and (ii).

(d) Read “Risk Aversion and Expected-Utility Theory: A Calibration Theorem” by M.
Rabin, published in Econometrica 68(5): 1281-92, 2000. (You can skip the appendix.)
Write one paragraph explaining the general principle underlying your conclusion in
part (c).

Solutions:

(a) From the statement, we know that the agent has either constant or decreasing absolute
risk aversion. This means that A(x, u) is a nondecreasing function of x by Definition
7, so the ratio −u′′(x)

u′(x) is nondecreasing. Finally, we know explicitly that for all x ≥ 100

u(x) ≥ 0.51u(x+ 100) + 0.49u(x− 100)

(b) From part (a), we have that u(x) ≥ 0.51u(x+ 100) + 0.49u(x− 100). Rearranging, we
get

0.49u(x) + 0.51u(x) ≥ 0.51u(x+ 100) + 0.49u(x− 100)

0.49(u(x)− u(x− 100)) ≥ 0.51(u(x+ 100)− u(x))

u(x+ 100)− u(x) ≤ 49

51
(u(x)− u(x− 100))

Since u(3000) = 0 and u(3100) = 1, we get that for k = 1,

u(3200)− u(3100) ≤ 49

51
(1− 0)

For k = 2, we get that

u(3300)− u(3100) ≤ 49

51
(u(3200)− u(3100)) ≤

󰀕
49

51

󰀖2

Following this pattern, we get that for all k = 1, 2, . . . ,

u(3000 + 100(k + 1))− u(3000 + 100k) ≤
󰀕
49

51

󰀖k

(c) First, note that the long number in (ii) is 1028. We know that u(3000) = 0. We will
place bounds on the values for u(1028) and u(0), so that we can compare the expected
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utility of (i), which is 0, to the expected utility of (ii), which is 1
2
u(1028) + 1

2
u(0). We

have that

u(1028) = u(3000) + u(3100) +
1026−30󰁛

k=1

u(3000 + 100(k + 1))− u(3000 + 100k)

< 1 +
∞󰁛

k=1

u(3000 + 100(k + 1))− u(3000 + 100k)

≤ 1 +
∞󰁛

k=1

󰀕
49

51

󰀖k

=
51

2

Next, we have that

u(3000)− u(0) =
29󰁛

k=0

u(3000− 100k)− u(3000− 100(k + 1))

≥
29󰁛

k=0

󰀕
51

49

󰀖k

≈ 56.856

=⇒ u(0) ≤ −56.856

These bounds mean that the utility for lottery (ii) is

1

2
u(1028) +

1

2
u(0) ≤ 1

2

51

2
+

1

2
(−56.856) = −15.678 < 0

Thus, the consumer will choose lottery (i), the guaranteed wealth of $3,000.

(d) Rabin (2000) presents a ‘Calibration Theorem’ which serves to demonstrate some
ridiculous elements of expected utility theory. In the paper, using only the assumption
of an expected utility maximizer with a concave utility function, he shows that if such
an agent would turn down a small bet with positive expected value at all levels of
initial wealth, they would also turn down bets with any possible gain, if the possibility
of loss is even a little bit higher. Part (c) serves as a specific example of this. We have
an agent who would turn down a small gamble with positive expected value at any
initial wealth level, which we can show means that she would avoid a lottery which
would provide a ridiculous amount of money for a relatively tiny loss. In fact, the given
gamble that the agent would turn down corresponds to approximately g = 104 in Ra-
bin’s model. This means that the agent we are studying would choose (i) no matter
what the payoff for (ii) is – the possibility of losing $3,000 means that she would turn
down any possible gain. This result is clearly ridiculous, and Rabin uses it to highlight
that the assumption of risk aversion over small gambles, which is on its face entirely
reasonable, can lead to absurd conclusions.
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Problem 3: Let S be a finite set of states and let X be a finite set of consequences. Suppose
that |S| > 1 and |X| > 1. A preference ≻ over Anscombe-Aumann acts is ambiguity-averse
if there exists preference ≻′ with a subjective expected utility representation such that:

• for all Anscombe-Aumann acts f and all lotteries p ∈ ∆X, if f ≻ p, then f ≻′ p.

(Here, we identify p with the state-independent act g defined by g(s) = p.)

(a) Let P ⊆ ∆S be a closed set of priors and let u be a Bernoulli utility function. Define
a max-min expected utility function over Anscombe-Aumann acts by

U(f) = min
π∈P

󰁛

s∈S

π(s)
󰁛

x∈X

f(s)xux

Prove that the preference relation represented by U is ambiguity-averse.

(b) Let π ∈ ∆S be a prior that assigns nonzero probabilities to all states, and let u be
a Bernoulli utility function. Define a robust control utility function over Anscombe-
Aumann acts by

U(f) = min
π′∈∆S

󰀣
󰁛

s∈S

π′(s)
󰁛

x∈X

f(s)xux +R(π′󰀂π)
󰀤

where
R(π′󰀂π) =

󰁛

s∈S

π′(s) log
π′(s)

π(s)

Prove that the preference relation represented by U is ambiguity-averse.

(c) Read Section IV (titled “Uncertainty and Decision Theory”) in “Nobel Lecture: Un-
certainty Outside and Inside Economic Models” by L. P. Hansen, published in Journal
of Political Economy 122(g):945-987, 2014. (You can skip Section VI.B.) Write one
paragraph interpreting the issues discussed in the article using the formal concept of
ambiguity aversion.

Solutions:

(a) Take some π ∈ P , and denote it π0. Consider the function

U0(f) =
󰁛

s∈S

π0(s)
󰁛

x∈X

f(s)xux

Note that we can represent U0 in subjective expected utility form, because it contains
only a single prior. We have

U0(f) =
󰁛

s∈S

󰁛

x∈X

π0(s)f(s)xux
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This means that U0 represents a preference relation which we denote ≻′. Further, for
any g(s) = p, and using the separability of subjective expected utility functions over
state-independent acts, we have that

U0(p) =
󰁛

s∈S

󰁛

x∈X

π0(s)g(s)ux =
󰁛

x∈X

pux =

󰀣
min
π

󰁛

s∈S

π(s)

󰀤
󰁛

x∈X

pux = U(p)

From the definition of minimum, U0(f) = U(f) if and only if

π0 ∈ argmin
π∈P

󰁛

s∈S

π(s)
󰁛

x∈X

f(s)xux

Otherwise, U0(f) > U(f). Thus, if U(f) > U(p) for some f, p, then U0(f) ≥ U(f) >
U(p). This means that if f ≻ p, U(f) > U(p) ⇒ U0(f) ≥ U(f) > U(p) = U0(p),
which implies that f ≻′ p. Thus, the preference relation represented by the max-min
expected utility function is ambiguity-averse.

(b) Note first that R(π′󰀂π) ≥ 0 for all π′, π by Gibbs’ Inequality.3 Fix π0 = π ∈ ∆S.
Consider the function

U0(f) =
󰁛

s∈S

π0(s)
󰁛

x∈X

f(s)xux +R(π0󰀂π)

Since π0 = π, R(π0󰀂π) =
󰁓

s∈S π0(s) log
π0(s)
π(s)

= 0, so

U0(f) =
󰁛

s∈S

π0(s)
󰁛

x∈X

f(s)xux

As in part (a), U0 can be represented in subjective utility form (in fact, the same form
as part (a)) because it contains only a single prior. We have

U0(f) =
󰁛

s∈S

󰁛

x∈X

π0(s)f(s)xux

This means that U0 represents a preference relation which we denote ≻′. Note that
since π0 ∈ ∆S, U(f) ≤ U0(f) for all f , from the definition of minimum. It remains to

3For a quick proof, note that since log is a strictly concave function, by Jensen’s Inequality we have that
for all indices s′ where π′(s′) is nonzero,

󰁓
s′∈S π′(s′) log π(s′)

π′(s′) ≤ log
󰁓

s′∈S π′(s′) π(s′)
π′(s′) = log

󰁓
π′(s′) ≤

log 1 = 0 ⇒
󰁓

s′∈S π′(s′) log π(s′)
π′(s′) ≤ 0 ⇒

󰁓
s′∈S π′(s′) log π′(s′)

π(s′) ≥ 0, and since all other values are 0, we have
that R(π′󰀂π) ≥ 0 for all π′,π.
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demonstrate that U(g) = U0(g) for all g where g(s) = p constant. Take U(g):

U(g) = min
π′∈∆S

󰀣
󰁛

s∈S

π′(s)
󰁛

x∈X

g(s)ux +R(π′󰀂π)
󰀤

= 1 ·
󰁛

x∈X

pux + min
π′∈∆S

(R(π′󰀂π))

=
󰁛

x∈X

pux + 0 from Gibbs’ Inequality

=

󰀣
󰁛

s∈S

π0(s)

󰀤
󰁛

x∈X

pux

= U0(g)

Thus, for any g where g(s) = p constant, U(g) = U0(g). Thus, if f ≻ p, U(f) > U(p).
Then, we have that U0(f) ≥ U(f) > U(p) = U0(p), which means that f ≻′ p. Thus,
the preference relation represented by the robust control utility function is ambiguity-
averse.

(c) Hansen (2014) discusses the generation of models through the lens of ambiguity and
risk aversion. Specifically, he makes the comparison between unknown models (in
our case, states) and unknown parameters (in our case, the lotteries themselves). He
describes in general terms ambiguity aversion, making specific reference to the max-
min expected utility function which we proved was ambiguity averse in part (a). He
also notes that ambiguity aversion is a way to model what might initially look like
misspecified beliefs – we discussed this in class, referring to Ellsberg’s (1961) paradox.
Hansen concludes by noting that ambiguity aversion provides a tool for under- and
overconfidence, the former especially prevalent in the functions described in (a) and
(b), where agents assume that the worst case scenario will always happen.

Problem 4: Suppose the prize space in dollars is X = {1, 2, 3, 4, 5}.

(a) Suppose a risk-averse expected utility maximizer has to compare the following two
gambles:

p = (1/5, 1/5, 1/5, 1/5, 1/5) q = (2/5, 0, 1/5, 0, 2/5)

Can you say unambiguously which one she would prefer?

(b) Suppose a risk-averse expected utility maximizer has to compare the following two
gambles:

p′ = (1/5, 1/5, 1/5, 1/5, 1/5) q′ = (2/5, 0, 0, 1/5, 2/5)

Can you say unambiguously which one she would prefer?

(c) Consider a decision-maker with a utility function u(x) = x− ax2, defined on x ∈ [1, 5],
where 0 < a < 1/5. How will this decision-maker rank p vs. q and p′ vs. q′?
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Solutions:

(a) Call the CDF for p G, and call the CDF for q F . Both CDFs are illustrated in Figure 15

0
0

1

1/2

1 2 3 4 5

Figure 15: The cumulative distributions for p and q . When the lines coincide, they are
purple.

Areas under both curves are lightly shaded in their color.

By inspection, neither gamble first-order stochastically dominates the other, as their
CDFs cross. From Proposition 7, since the two gambles have the same mean, we can
use the area under their CDFs to find out whether one second-order stochastically
dominates the other. We will show that

󰁝 x

−∞
G(y)dy ≤

󰁝 x

−∞
F (y)dy

Since the distributions are discrete, we simply compare the values of the integral over
distinct areas

x
󰁕 x

−∞ G(y)dy
󰁕 x

−∞ F (y)dy

< 1 0 0
< 2 1/5 2/5
< 3 3/5 4/5
< 4 6/5 7/5
< 5 10/5 10/5

This extends to all other values of y by inspection. Since
󰁕 x

−∞ G(y)dy ≤
󰁕 x

−∞ F (y)dy
for all y, G second-order stochastically dominates F , so the agent will prefer p to q

(b) No. We can see that, by comparing two different risk-averse expected utility functions,
she may sometimes prefer one or the other. First, take the Bernoulli utility function
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u(x) =
√
x. The associated expected utility functions are

U(p′) =
1

5

√
1 +

1

5

√
2 +

1

5

√
3 +

1

5

√
4 +

1

5

√
5 ≈ 1.68

U(q′) =
2

5

√
1 +

1

5

√
4 +

2

5

√
5 ≈ 1.69

So with the concave Bernoulli utility function u(x) =
√
x, the agent would prefer q′

to p′. However, with the Bernoulli utility function u(x) = ln x, the expected utility
functions are

U(p′) =
1

5
ln 1 +

1

5
ln 2 +

1

5
ln 3 +

1

5
ln 4 +

1

5
ln 5 ≈ 0.96

U(q′) =
2

5
ln 1 +

1

5
ln 4 +

2

5
ln 5 ≈ 0.92

So with the concave Bernoulli utility function u(x) = ln x, the agent would prefer p′ to
q′. Thus, we cannot say unambiguously which one she would prefer.

(c) To find how the decision maker will rank p vs q, we simply find a measure for the
expected utility in terms of a:

U(p) =
1

5
(1− a) +

1

5
(2− 4a) +

1

5
(3− 9a) +

1

5
(4− 16a) +

1

5
(5− 25a) = 3− 11a

U(q) =
2

5
(1− a) +

1

5
(3− 9a) +

2

5
(5− 25a) = 3− 61

5
a < 3− 11a

Thus, the decision maker would prefer p to q, because 61
5

> 11. One could also find
this by noting that u is strictly concave, so the decision-maker is risk-averse and so
would unambiguously prefer p from part (a).

To find how the decision maker will rank p′ vs q′, we similarly find a measure for the
expected utility in terms of a:

U(p′) = U(p) = 3− 11a

U(q′) =
2

5
(1− a) +

1

5
(4− 16a) +

2

5
(5− 25a) =

16

5
− 68

5
a

Thus, when a = 1/13, U(p′) = U(q′), so p′ ∼ q′. When a < 1/13, U(q′) > U(p′), so
q′ ≻ p′, and when a > 1/13, U(p′) > U(q′), so p′ ≻ q′.

Problem 5: Consider the portfolio problem discussed in class: there is an investor with
wealth w, who has to choose how to allocate this wealth between a riskless asset that pays
gross return r for sure and a risky asset whose gross return as a cdf F . The investor has a
“well-behaved” (differentiable, concave, increasing) utility function. This problem asks you
to consider the effect on investment of a change in the distribution of the risky asset.
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(a) Suppose that the return on the risky asset improves so that its cdf if now G, where
G first-order stochastically dominates F . Construct a simple example (the simpler
the better) where such a change could nevertheless lead the investor to decrease the
amount he invests in the risky asset.

(b) Show that if G dominates F in the likelihood ratio order, then the consumer will invest
more in the risky asset if it has distribution G than if it has distribution F . (Hint: try
to mimic the proof in the lecture notes that less risk-averse consumers invest more in
a given risky asset.)

Solutions:

(a) Assume that the risky asset assumes value a with probability 0.5 and 0 with prob-
ability 0.5. If G has value a′ and F has value a, where a′ > a, that is a first-order
stochastic domination by inspection. Take as an example a consumer with Bernoulli
utility function u(x) = x− 1

2
x2. The consumer’s maximization problem, where x is the

amount invested in the risky asset and w is initial wealth, is

max
x∈[0,w]

1

2
u(r(w − x)) +

1

2
u(ax+ r(w − x))

Taking first-order conditions, we get

−1

2
ru′(r(w − x)) +

1

2
(a− r)u′(ax+ r(w − x)) = 0

Solving for x, noting that u′(x) = 1− x, we get

x∗ =
1− rw

a− 2r

Taking the derivative with respect to a, we get

∂x∗

∂a
=

rw − 1

(a− 2r)2

With some assumptions (rw < 1, a > 2r), we get that this derivative is negative,
meaning that the amount invested in the risky asset will go down, even if the new cdf
first-order stochastically dominates the old.

(b) Proof. Assume that the gross return of the risky asset is ε. Also denote y = r(w−x).
The consumer’s maximization problem for cdf F is

maxx,y≥0 EF [u(εx+ y)]
s.t. x+ y

r
= w

Call the objective function V (x, y;F ) (analogously, for cdf G it is V (x, y;G)). The
marginal rate of substitution between x and y is

∂V (x, y;F )/∂x

∂V (x, y;F )/∂y
=

EF [εu′(εx+ y)]

EF [u′(εx+ y)]
=

󰁝
εR(ε, x, y;F )dε
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where
R(ε, x, y;F ) =

u′(εx+ y)

EF [u′(εx+ y)]
f(ε)

where f(ε) is the pdf of ε. We view R(·, x, y;F ) as the pdf of some random variable,
as

󰁕
R(ε, x, y;F )dε = 1. Define R(·, x, y;G) analogously. To compare the consumer’s

choice under the two distributions, note that

R(ε, x, y;G)

R(ε, x, y;F )
=

g(ε)

f(ε)

EF [u′(εx+ y)]

EF [u′(εx+ y)]

Since G dominates F in the likelihood ratio order, g(ε)
f(ε)

is nondecreasing in ε, which
means that R(ε,x,y;G)

R(ε,x,y;F )
is nondecreasing in ε. This means that R(ε, x, y;G) dominates

R(ε, x, y;F ) in the likelihood ratio order, meaning that it first order stochastically
dominates it. Thus, we have that

∂V (x, y;G)/∂x

∂V (x, y;G)/∂y
=

󰁝
εR(ε, x, y;G)dε ≥

󰁝
εR(ε, x, y;F )dε =

∂V (x, y;F )/∂x

∂V (x, y;F )/∂y

This means that V (x, y;G) has the Spence-Mirrlees single-crossing property, meaning
that the consumer will take more risk under G than under F .
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7.5 Uncertainty (Barseghyan)

7.5.1 Barseghyan Homework

Problems. MWG Chapter 6C. Problems 9, 14, 15, 16, 17, 18 and 19.

9. The purpose of this problem is to examine the implications of uncertainty and precau-
tion in a simple consumption-savings decision problem.

In a two-period economy, a consumer has first-period initial wealth w. The consumer’s
utility level is given by u(c1, c2) = u(c1) + v(c2), where u(·) and v(·) are concave
functions and c1 and c2 denote consumption levels in the first and second period re-
spectively. Denote by x the amount saved by the consumer in the first period (so that
c1 = w − x and c2 = x), and let x0 be the optimal value of x in this problem.

We now introduce uncertainty in this economy. If the consumer saves an amount x in
the first period his wealth in the second period is given by x+y, where y is distributed
according to F (·). In what follows, E[·] always denotes expectation with respect to
F (·). Assume that the Bernoulli utility function over realized wealth levels in the two
periods (w1, w2) is u(w1) + v(w2). Hence, the consumer now solves

max
x

u(w − x) + E[v(x+ y)]

Denote the solution to this problem by x󰂏.

(a) Show that if E[v′(x0 + y)] > v′(x0), then x󰂏 > x0.

(b) Define the coefficient of absolute prudence of a utility function v(·) at wealth
level x to be −v′′′(x)/v′′(x). Show that if the coefficient of absolute prudence of
a utility function v1(·) is not larger than the coefficient of absolute prudence of
utility function v2(·) for all levels of wealth, then E[v′1(x0 + y)] > v′1(x0) implies
E[v′2(x0 + y)] > v′2(x0). What are the implications of this fact in the context of
part (a)?

(c) Show that if v′′′(·) > 0 and E[y] = 0, then E[v′(x+ y)] > v′(x) for all values of x.

(d) Show that if the coefficient of absolute risk aversion of v(·) is decreasing in wealth,
then −v′′′(x)/v′′(x) > −v′′(x)/v′(x) for all x, and hence v′′′(·) > 0.

14. Consider two risk-averse decision makers (i.e., two decision makers with concave Bernoulli
utility functions) choosing among monetary lotteries. Define the utility function u󰂏(·)
to be strongly more risk-averse than u(·) if and only if there is a positive constant k
and a nonincreasing and concave function v(·) such that u󰂏(x) = ku(x) + v(x) for all
x. The monetary amounts are restricted to lie in the interval [0, r].

(a) Show that if u󰂏(·) is strongly more risk-averse than u(·), then u󰂏(·) is more risk-
averse than u(·) in the usual Arrow-Pratt sense.
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(b) Show that if u(·) is bounded, then there is no u󰂏(·) other than u󰂏(·) = ku(·) + c,
where c is a constant, that is strongly more risk-averse than u(·) on the entire
interval [0,∞) .

(c) Using (b), argue that the concept of a strongly more risk-averse utility function is
stronger (ie more restrictive) than the Arrow-Pratt concept of a more risk-averse
utility function.

15. Assume that, in a world with uncertainty, there are two assets. The first is a riskless
asset that pays 1 dollar. The second pays amounts a and b with probabilities π and
1− π, respectively. Denote the demand for the two assets by (x1, x2).

Suppose that a decision maker’s preferences satisfy the axioms of expected utility
theory and that he is a risk averter. The decision maker’s wealth is 1, and so are the
prices of the assets. Therefore, the decision maker’s budget constraint is given by

x1 + x2 = 1, x1, x2 ∈ [0, 1]

(a) Give a simple necessary condition, involving (a and b only) for the demand for
the riskless asset to be strictly positive.

(b) Give a simple necessary condition, involving (a, b, and π only) for the demand
for the risky asset to be strictly positive.

In the next three parts, assume that the conditions obtained in (a) and (b) are satisfied.

(c) Write down the first order conditions for utility maximization in this asset demand
problem.

(d) Assume that a < 1. Show by analyzing the first order conditions that ∂x1/∂a ≤ 0.

(e) Which sign do you conjecture for ∂x1/∂π? Give an economic interpretation.

(f) Can you prove your conjecture in (e) by analyzing the first order conditions?

16. An individual has Bernoulli utility function u(·) and initial wealth w. Let lottery L
offer a payoff of G with probability p and a payoff of B with probability 1− p.

(a) If the individual owns the lottery, what is the minimum price he would sell it for?

(b) If he does not own it, what is the maximum price he would be willing to pay for
it?

(c) Are buying and selling prices equal? Give an economic interpretation for your
answer. Find conditions on the parameters of the problem under which buying
and selling prices are equal.

(d) Let G = 10, B = 5, w = 10, and u(x) =
√
x. Compute the buying and selling

prices for this lottery and this utility function.
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17. Assume that an individual faces a two-period portfolio allocation problem. In period
t = 0, 1, his wealth wt is to be divided between a safe asset with return R and a risky
asset with return x. The initial wealth at period 0 is w0. Wealth at period t = 1, 2
depends on the portfolio αt−1 chosen at period t − 1 and on the return xt realized in
period t, according to

wt = ((1− αt−1R + αt−1xt)wt−1

The objective of this individual is to maximize the expected utility of terminal wealth
w2. Assume that x1 and x2 are independently and identically distributed. Prove that
the individual optimally sets α0 = α1 if his utility function exhibits constant relative
risk aversion. Show that this fails to hold if his utility function exhibits constant
absolute risk aversion.

18. Suppose that an individual has a Bernoulli utility function u(x) =
√
x.

(a) Calculate the Arrow-Pratt coefficients of absolute and relative risk aversion at the
level of wealth w = 5.

(b) Calculate the certainty equivalent and the probability premium for a gamble
(16, 4; 1

2
, 1
2
).

(c) Calculate the certainty equivalent and the probability premium for a gamble
(36, 16; 1

2
, 1
2
). Compare this result with the one in (b) and interpret.

19. Suppose that an individual has a Bernoulli utility function u(x) = −e−αx where α > 0.
His (nonstochastic) initial wealth is given by w. There is one riskless asset abd there
are N risky assets. The return per unit invested on the riskless asset is r. The returns
of the risky assets are jointly normally distributed random variables with means µ =
(µ1, . . . , µN) and variance covariance matrix V . Assume that there is no redundancy
in the risky assets, so that V is of full rank. Derive the demand function for those
N + 1 assets.

Solutions. (Gabe’s solutions. Not graded, there may exist mistakes)

9. The consumer solves the problem

max
x

u(w − x) + E[v(x+ y)]

where y ∼ F (·). Denote the solution to this problem as x󰂏 and the solution to the
problem where y is degenerate with mean 0 as x0.

(a) Recall that in the degenerate problem, since u and v are concave, we have that
v′(x0)−u′(w−x0) = 0. If E[v′(x0+y)] > v′(x0), we have that E[v′(x0+y)]−u′(w−
x0) > 0, so x0 is not a maximizer of the problem. It remains to show that the
true maximizer is greater than x0. At x0, we have that E[v′(x0+y)] > u′(w−x0).
At the true maximizer x󰂏, we have that E[v′(x󰂏 + y)] = u′(w − x󰂏). Conclusion
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follows by noting that u and v are concave, so u′ and v′ are decreasing in the
argument. Thus, x󰂏 > x0.

(b) We have that for v1 and v2, −v′′′1 (x)/v
′′
1(x) ≤ −v′′′2 (x)/v

′′
2(x) for all x, and that

E[v′1(x0 + y)] > v′1(x0). Note that the coefficient of absolute risk aversion of v′i is
equivalent to the coefficient of absolute prudence of vi. Thus, from Proposition
6.C.2 in Mas-Colell, we have that since v′1 has a coefficient of absolute risk aversion
that is not greater than v′2, v′2 has a greater certainty equivalent than v′1, meaning
that E[v′2(x0 + y)] > v′2(x0). In the context of part (a), this implies that if one
individual decides to invest in a risky lottery, a second individual with a not-
greater coefficient of absolute prudence will also invest, and they will not invest
less.

(c) We have that v′′′(x) > 0 for all x, then v′ is convex, meaning that v′ exhibits
risk-loving behavior. Since E[y] = 0, we have that E[v′(x+ y)] > v′(x) for all x.

(d) We have that the coefficient of absolute risk aversion is decreasing in wealth,
meaning that

∂

∂w

󰀗
−v′′(x)

v′(x)

󰀘
< 0 =⇒ −v′′′(x)v′(x)− (v′′(x))2

(v′(x))2
=

v′′(x)

v′(x)

󰀕
v′′(x)

v′(x)
− v′′′(x)

v′′(x)

󰀖
< 0

Thus, we have that −v′′(x)
v′(x) < −v′′′(x)

v′′(x) .

14. We have that u󰂏(·) is strongly more risk-averse than u(·) if and only if there exists
a positive constant k and a nonincreasing, concave function v(·) such that u󰂏(x) =
ku(x) + v(x) for all x.

(a) We have that the coefficient of absolute risk aversion for u󰂏 at some x is

r(x, u󰂏) = −ku′′(x) + v′′(x)

ku′(x) + v′(x)

we want to show that

−ku′′(x) + v′′(x)

ku′(x) + v′(x)
≥ −u′′(x)

u′(x)
=⇒ u′(x)(ku′′(x) + v′′(x)) ≤ u′′(x)(ku′(x) + v′(x))

This simplifies to

ku′(x)u′′(x) + u′(x)v′′(x) ≤ ku′(x)u′′(x) + u′′(x)v′(x) =⇒ u′(x)v′′(x) ≤ u′′(x)v′(x)

Which holds as long as

−v′′(x)

v′(x)
≥ −u′′(x)

u′(x)

Since, by assumption, u is increasing and concave, and v is non-increasing and
concave, the left side is non-negative and the right side is non-positive. Conclusion
follows.
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(b) Suppose FSOC that there exists u󰂏(x) = ku(x) + v(x), where v is non-constant,
non-increasing, and concave. Define M such that M = inf{C ∈ R : u(x) ≤
C ∀ x}. Since u is increasing, as x → ∞, u(x) → M . However, since v is non-
constant and non-increasing, ∃ x ∈ R sufficiently large such that u󰂏(x) > u󰂏(x+ε)
for some ε > 0. This contradicts the assumption that u󰂏 must be increasing.

(c) We have from (a) that strong risk aversion implies Arrow-Pratt risk aversion. It
remains to show that the converse is not true. Consider the functions u(x) =
− exp(−αx) and v(x) = − exp(−βx), where β > α. Both functions exhibit
constant absolute risk aversion, so v is more risk-averse than u in the Arrow-
Pratt sense. However, since they are each bounded above, by (b) v is not strongly
more risk-averse than u.

15. We have a risk-averse decision maker, investing x1 in a riskless asset and x2 in a risky
asset that pays a with probability π and b with probability 1 − π. They begin with
w = 1.

(a) Since the decision-maker is risk-averse, they will invest strictly positive levels in
the riskless asset if there is a probability of loss with respect to the risky asset.
Thus, the necessary condition is that at least one of a, b is strictly less than 1.

(b) Again, since the decision-maker is risk-averse, they will invest in the risky asset
only if its expected value is greater than that of the riskless asset, i.e. when
πa+ (1− π)b > 1.

(c) The decision-maker is maximizing the problem

max
x1,x2

πu(x1 + ax2) + (1− π)u(x1 + bx2) s.t. x1, x2 ∈ [0, 1], x1 + x2 = 1

The first condition falls away because we’re assuming that the conditions from
(a) and (b) hold, so the Lagrangian this admits is

L = πu(x1 + ax2) + (1− π)u(x1 + bx2) + λ(1− x1 − x2)

The first order conditions are

∂L
∂x1

= πu′(x1 + ax2) + (1− π)u′(x1 + bx2)− λ = 0

∂L
∂x2

= aπu′(x1 + ax2) + b(1− π)u′(x1 + bx2)− λ = 0

which, combining, get

πu′(x1 + ax2) + (1− π)u′(x1 + bx2) = aπu′(x1 + ax2) + b(1− π)u′(x1 + bx2)

which imply

π(1− a)u′(x1 + ax2) + (1− π)(1− b)u′(x1 + bx2) = 0
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The final first order condition is

∂L
∂λ

= 1− x1 − x2 = 0 =⇒ x1 + x2 = 1

(d) Using the implicit function theorem, and holding b constant, define

g(x1, a, π) = π(1− a)u′(x1 + a(1− x1)) + (1− π)(1− b)u′(x1 + b(1− x1))

We have that

∂x1

∂a
= −

∂g
∂a
∂g
∂x1

= − −πu′(x1 + a(1− x1)) + π(1− a)(1− x1)u
′′(x1 + a(1− x1))

π(1− a)(1− a)u′′(x1 + a(1− x1)) + (1− π)(1− b)(1− b)u′′(x1 + b(1− x1))

where all terms in the numerator and denominator are negative, so ∂x1

∂a
≤ 0.

(e) If we are assuming, like in (d), that a < 1, it follows that b > 1. Thus, as π
increases, the lottery gets worse, so the decision maker would invest more in the
riskless asset. Thus, I conjecture that ∂x1

∂π
> 0.

(f) From the first order conditions and the implicit function theorem, we have that

∂x1

∂π
= − ∂g/∂π

∂g/∂x1

We know that the denominator is negative, from part (d). It remains to show
that the numerator is positive, and conclusion will follow. We have that

∂g

∂π
= (1− a)u′(x1 + a(1− x1))󰁿 󰁾󰁽 󰂀

>0

− (1− b)u′(x1 + b(1− x1))󰁿 󰁾󰁽 󰂀
<0

> 0

16. An individual has Bernoulli utility function u(·) and initial wealth w. Let lottery L
offer a payoff of G with probability p and a payoff of B with probability (1− p).

(a) The individual would sell the lottery for no less than the amount that would
guarantee the same expected utility – i.e. , a price y such that

pu(w +G) + (1− p)u(w +B) = u(w + y)

(b) They would purchase the lottery for an amount x such that they would have the
same expected utility whether they had the lottery or not – i.e. , a price x such
that

pu(w − x+G) + (1− p)u(w − x+B) = u(w)
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(c) In general, x ∕= y, as the different levels of wealth will change how much the lottery
is ‘worth’ to the decision maker. However, if u exhibits constant absolute risk
aversion, then they will coincide. If u exhibits CARA, then the above conditions
imply that

w − cw = (w − x)− cw−x

where cw is the certainty equivalent of the lottery with wealth w and cw−x is the
certainty equivalent of the lottery with wealth w − x.

(d) Directly calculating (using Wolfram), we get that y solves

p
√
20 + (1− p)

√
15 =

󰁳
10 + y =⇒ y = −5

󰀓
4
√
3p2 − 7p2 − 4

√
3p+ 6p− 1

󰀔

and x solves

p
√
20− x+(1−p)

√
15− x =

√
10 =⇒ x =

5
󰀓
2p3 + 7p2 ± 2

√
2
󰁳

−2p5 + 7p4 − 8p3 + 3p2 − 8p+ 1
󰀔

4p2 − 4p+ 1

17. We have that an individual faces a two-period portfolio allocation problem, dividing
her wealth between a risky asset with return x and a safe asset with return R. They
have initial wealth w0, and in period t ∈ {1, 2} their wealth depends on the portfolio
αt−1 chosen previously, defined by

wt = ((1− αt−1)R + αt−1xt)wt−1

The individual is maximizing w2, where we assume that x1, x2 are i.i.d.

Proof. First, assume that u has CRRA preferences. The wealth at the end of each
period is

w1 = ((1− α0)R + α0x1)w0 and w2 = ((1− α1)R + α1x2)w1

Combining, we get that

w2 = ((1− α1)R + α1x2)((1− α0)R + α0x1)w0

Since CRRA preferences are scale-invariant, for any λ we have that u(λx) = λ1−σu(x),
where σ is the coefficient of relative risk aversion. When the consumer is maximizing
the expected utility, we have that

E[u(w2)] = E
󰀅
((1− α1)R + α1x2)

1−σu(w1)
󰀆
= E[u(w1)] · ((1− α1)R + α1 E[x2])

1−σ

Thus, the choice of α that maximizes w1 will also maximize w2, since xi are i.i.d., and
α0 = α1.
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Next, assume that u has CARA preferences. We know that u has the form u(x) =
− exp(−γx), where γ > 0 is the coefficient of absolute risk aversion. Thus,

E[u(w2)] = E [u(w1) exp(−γ(((1− α1)R + α1x2)))]

However, we cannot split the expectation here as above, since we do not know that the
relevant moments for x necessarily exist. Thus, the choice of α1 depends on x1, so it
will not necessarily hold that α0 = α1.

18. Suppose that a decision maker has utility u(x) =
√
x.

(a) We have that wealth w = 5. The coefficient of absolute risk aversion is

−u′′(w)

u′(w)
= −(−0.25)w−1.5

(0.5)w−0.5
=

1

2

√
5√
125

=
1

2
· 1
5
= 0.1

The coefficient of relative risk aversion is

−w
u′′(w)

u′(w)
= 5 · 1

10
= 0.5

(b) The certainty equivalent of this lottery is

u−1(0.5u(16) + 0.5u(4)) = u−1(2 + 1) = u−1(3) = 9

The probability premium is π such that

u(10) = (0.5+π)u(16)+(0.5−π)u(4) =⇒
√
10 = 2+4π+1−2π =⇒ π =

√
10− 3

2

(c) The certainty equivalent of this lottery is

u−1(0.5u(36) + 0.5u(16)) = u−1(3 + 2) = u−1(5) = 25

The probability premium is π such that

u(26) = (0.5+π)u(36)+(0.5−π)u(16) ⇒
√
26 = 3+6π+2−4π ⇒ π =

√
26− 5

2

The probability premium is higher in the first lottery, which implies that u has
decreasing absolute risk aversion, implied by the fact that it has constant relative
risk aversion.

19. We have that an individual has utility u(x) = − exp(−αx) with α > 0, and initial
wealth w. He invests in a riskless asset with return r and N jointly normally distributed
random assets with means µ = (µ1, . . . , µN) and variance V . We assume that V is full
rank.
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Denote by xi the amount invested in risky asset i, and by yi its return. The agent’s
realized wealth is

w′ =

󰀣
w −

N󰁛

i=1

xi

󰀤
r +

N󰁛

i=1

xiyi

By the properties of jointly normal distributions, w′ ∼ N
󰀓󰀓

w −
󰁓N

i=1 xi

󰀔
r +

󰁓N
i=1 xiµi, x

TV x
󰀔
.

The expected utility of this is

E[u(w′)] = E[− exp(−αw′)]

Using the properties of the moment generating function of a normal random variable,
we have that

E[u(w′)] = − exp

󰀥󰀣󰀣
w −

N󰁛

i=1

xi

󰀤
r +

N󰁛

i=1

xiµi

󰀤
(−α)− (xTV x)

α2

2

󰀦

Monotonically transforming this by ln(·), we get that expected utility is maximized
when

−α(µ− r)− α2V x = 0 =⇒ x =
µ− r

αV

where the − in the numerator denotes elementwise subtraction.

7.5.2 Outside Questions

See the outside questions in Section 7.4.3, on the same topics. We also had two questions
for a quiz in TA section, which I include here:

1. An investor with initial wealth ω can invest only in the two following assets: a risk-
free asset with return R, and a risky asset with return x, drawn from a distribution
F (·) with positive support. The average return on this asset is higher than R. For
emphasis, storage is not available. Suppose the investor has CARA preferences, with
the preference parameter γ. Prove that the fraction of investment allocated to the
risky asset (call it α) is inversely proportional both to γ and to ω.

2. Now suppose the investor has CRRA preferences, with the preference parameter σ > 0,
σ ∕= 1. Prove that the fraction of investment allocated to the risky asset (call it α) is
independent of ω.

3. A risk-averse agent possesses a productive asset (tree, factory, etc...) that generates a
risky return distributed according to some F (·) with mean R.

(a) If such assets are tradable and there is a continuum of perfectly competitive risk-
neutral agents (bankers) in the market, what would you expect the price of the
productive asset to be?
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(b) Suppose now the economy consists of a continuum of risk-averse agents each
possessing one productive asset. These assets generate returns distributed i.i.d.
according to some F (·) with mean R. Assuming perfect competition and that all
assets are tradable, what is the risk-free return in this economy?

(c) How much risk does each agent face?
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7.6 Information (Battaglini)

7.6.1 Battaglini Homework

1. A monopolist can produce goods in different qualities. The cost of producing a good of
quality s is 5s2. Consumers with type θ buy at most one unit and have utility function

u(s | θ) =
󰀫
θ · s if the consume one unit of quality s

0 if they do not consume

The monopolist decides on the quality (or qualities) s it is going to produce and price
T . Consumers observe qualities and prices and decide which quality to buy if at all.

(a) Characterize the first-best solution

(b) Suppose that the seller cannot observe θ, and suppose that

θ =

󰀫
θH with probability 1− β

θL with probability β

with θH > θL > 0. Characterize the second-best solution and consumers’ infor-
mational rents.

2. Consider a government contracts with a monopolist to construct a bridge. The govern-
ment is interested in choosing a contract that minimize the cost of such construction.
The overall cost is c = θ − e, which is observable to both the government and the
monopolist. θ is the type of the monopolist; with probability β the monopolist is an
efficient type for θ = 5, and with probability 1−β the monopolist is an inefficient type
for θ = 8. The monopolist can exert effort to reduce costs by paying private cost e2

2
.

The government pays the monopolist t + c where t is a transfer. The monopolist has
reservation utility at ū.

(a) Suppose the government could observe both the type θ and the effort e of the
monopolist. Characterize the first best effort eFB and transfer tFB.

(b) From now on, assume that the government cannot observe the type θ and effort
e of the monopolist. Write down the optimal contract which minimizes the cost,
and is incentive compatible and individually rational.

(c) Characterize the second-best effort eSB and transfer tSB under such contract.
Show each step clearly. Are first best effort eFB implementable for both types?

3. (MWG 13.C.5) Assume a single firm and a single consumer. The firm’s product may
be of either high or low quality and is of high quality with probability λ. The consumer
cannot observe quality before purchase and is risk neutral. The consumer’s valuation
of a high-quality product is vH ; her valuation of a low-quality product is vL. The costs
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of production for high (H) and low (L) are cH and cL respectively. The consumer
desires at most one unit of the product. Finally, the firm’s price is regulated and set
at p. Assume that vH > p > vL > cH > cL.

(a) Given p, under what conditions will the consumer buy the product?

(b) Suppose that before the consumer decides to buy, the firm (which knows its type)
can advertise. Advertising conveys no information directly, but consumers can
observe the total amount of money the firm is spending on advertising, denoted by
A. Can there be a separating perfect Bayesian equilibrium, that is, an equilibrium
where the consumer rationally expects firms with different quality levels to pick
different levels of advertising?

4. (MWG 13.C.6) Consider the market for loans to finance investment projects. All
investment projects require an outlay of 1 dollar. There are two types of projects:
good and bad. A good project has a probability pG of yielding profits of Π > 0
and a probability (1 − pG) of yielding profits of zero. For a bad project, the relative
probabilities are pB and (1− pB) respectively, where pG > pB. The fraction of projects
that are good is λ ∈ (0, 1).

Entrepreneurs go to banks to borrow cash to make the initial outlay (assume for now
they borrow the entire amount). A loan contract specifies an amount R that is supposed
to be repaid to the bank. Entrepreneurs know the type of project they have, but the
banks do not. In an event that a project yields profits of zero, the entrepreneur defaults
on her loan and the bank receives nothing. Banks are competitive and risk-neutral.
The risk-free rate of interest (the rate the banks pay to borrow funds) is r. Assume
that

pGΠ− (1 + r) > 0 > pBΠ− (1 + r)

(a) Find the equilibrium level of R and the set of projects financed. How does this
depend on pG, pB,λ,Π, and r?

(b) Now suppose that the entrepreneur can offer to contribute some fraction x of
the 1 dollar initial outlay from her own funds (x ∈ [0, 1]). The entrepreneur is
liquidity constrained, however, so that the effective cost of doing so is (1 + ρ)x,
where ρ > r.

i. What is the entrepreneur’s payoff as a function of her project type, her loan-
repayment amount R, and her contribution x?

ii. Describe the best (from a welfare perspective) separating perfect Bayesian
equilibrium of a game in which the entrepreneur first makes an offer of the
amount of x she is willing to put into a project, banks then respond by making
offers specifying the level of R they would require, and finally the entrepreneur
accepts a bank’s offer or decides not to go forward with the project. How
does the amount contributed by entrepreneurs with good projects change
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with small changes in pB, pG,λ,Π, and r?

iii. How do the two types of entrepreneurs do in the separating equilibrium of
(b)(ii) compared with the equilibrium in (a)?

Solutions. (Gabe’s solutions, not graded, not including Problem 2 (b) and (c), which we
did not learn)

1. Monopolists and quality

(a) In this case, where there is full information, the monopolist can choose a different
quality level for each consumer type θ, and maximize profit for that consumer
type. Fix some θ > 0. The consumer’s utility from purchasing a good of quality
s at price T is

u(s, T ; θ) = s · θ − T

and the monopolist’s profit is

πθ(s, T ) = T − 5s2

Note that if we were being precise here, these would be defined piecewise, if the
consumer purchases the good or not. This is not necessary now, as we will show
that the consumer θ will always purchase the good. The monopolist will ensure
this by ensuring that s · θ− T ≥ 0. In fact, to maximize profit, we will have that
s · θ − T = 0 =⇒ T = s · θ. This implies that profit is

πθ(s, T ) = s · θ − 5s2

Taking first order conditions, we get that the optimal quality is where

θ − 10s = 0 =⇒ s󰂏 =
θ

10

Substituting back, we get that the optimal price is

T 󰂏 = θ · θ

10
=

θ2

10

The monopolist will extract all of the surplus of each consumer, so u(s󰂏, T 󰂏; θ) = 0
for all θ, and for a certain θ,

πθ(s
󰂏, t󰂏) = T 󰂏 − 5(s󰂏)2 =

θ2

10
− θ2

20
=

θ2

20

(b) Now, we suppose that the seller cannot observe θ. We will assume that they
produce goods of two qualities, sH and sL, designated for each type of θ, and priced
at TH , TL. We will need the classic two constraints to hold: individual rationality
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and incentive compatibility. First, for the choice of each type of consumer to
purchase to be rational, we need that

θLsL − TL ≥ 0 and θHsH − TH ≥ 0

Next, for the consumers to want their designated good rather than the other’s,
we need that

θLsL − TL ≥ θLsH − TH and θHsH − TH ≥ θHsL − TL

The monopolist maximizes profit subject to these constraints, where expected
profit is

Π = β(TL − 5s2L) + (1− β)(TH − 5s2H)

We will make the standard assumptions that the individual rationality constraint
for the low type and the incentive compatibility constraint for the high type each
hold with equality. This implies that

TL = θLsL and TH = θH(sH − sL) + θLsL

Substituting, the monopolist’s profit becomes

Π = β(θLsL − 5s2L) + (1− β)(θH(sH − sL) + θLsL − 5s2H)

To find the optimal choice of sL and sH , we take first order conditions, and get
that

∂Π

∂sL
= β(θL − 10sL) + (1− β)(θL − θH) = 0 =⇒ s󰂏L =

θL − (1− β)θH
10β

and
∂Π

∂sH
= (1− β)θH − (1− β)10sH = 0 =⇒ s󰂏H =

θH
10

From the binding constraints, we can calculate the optimal prices. We have that

T 󰂏
L = θL · θL − (1− β)θH

10β
=

θ2L − (1− β)θHθL
10β

and

T 󰂏
H = θH

󰀕
θH
10

− θL − (1− β)θH
10β

󰀖
+

θ2L − (1− β)θHθL
10β

=
θ2H − (2− β)θHθL + θ2L

10β
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Note that these solutions admit a corner. We have that the fully described solution
is:

s󰂏L =

󰀫
θL−(1−β)θH

10β
θL ≥ (1− β)θH

0 otherwise

s󰂏H =

󰀫
θH
10

θ2H + θ2L ≥ (2− β)θHθL

0 otherwise

T 󰂏
L =

󰀫
θ2L−(1−β)θHθL

10β
θL ≥ (1− β)θH

0 otherwise

T 󰂏
H =

󰀫
θ2H−(2−β)θHθL+θ2L

10β
θ2H + θ2L ≥ (2− β)θHθL

0 otherwise

The informational rents are as follows. Since the low types’ individual rationality
constraint binds, they will attain no utility in equilibrium, which is the same as
in the full information case. The high types, meanwhile, will (when we are not in
the corner) attain utility:

u(s󰂏H | θH) = θH ·s󰂏H−T 󰂏
H =

θ2H
10

−θ2H − (2− β)θHθL + θ2L
10β

=
θ2L − (1− β)θ2H − (2− β)θLθH

10β

This is the informational rent the monopolist pays.

2. Constructing a bridge

(a) The government is attempting to minimize the cost, subject to the monopolist
attaining their reservation utility. They will ensure that the monopolist’s utility
is exactly equal to their reservation, which functions as in individual rationality
constraint. We need that

ū = t− e2

2
= t− e2

2
=⇒ t = ū+

e2

2

The government is minimizing the total cost, which is the cost function t + c,
subject to the constraint. Recalling that c = θ − e, we get that they minimize

C = ū+
e2

2
+ θ − e

Taking first order conditions to find the ideal induced effort, we get that

∂C

∂e
= e− 1 = 0 =⇒ eFB = 1

The transfer that induces eFB is tFB = ū + 1
2
. Note that the costs are different

for each type. We have that CFB(5) = ū+ 4.5, and CFB(8) = ū+ 7.5.
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(b) (Not able to figure out)

3. MWG 13.C.5

(a) Since the consumer is risk-neutral, they will buy the product if and only if its
expected valuation is greater than its price. Mathematically, they will buy if and
only if

p ≤ λvH + (1− λ)vL

(b) There can be no separating equilibrium. To see why, assume that we do have a
separating equilibrium, in which high-quality firms spend A on advertising and
low-quality firms spend 0. Low-quality firms will spend 0 because in a separating
equilibrium they will be immediately identified, so it is better to spend nothing
than to advertise at all, since because p > vL, nobody will buy their product. For
incentive compatibility to hold for the high quality firms, it must be the case that
p − cH − A > 0. However, since cL < cH , in this case it would improve a low-
quality firm’s outcomes to deviate and spend A pretending to be a high-quality
firm, since p− cL −A > p− cH −A > 0. Thus, there will be deviation, so this is
not a separating equilibrium.

4. MWG 13.C.6

(a) Note first that since banks are risk-neutral and competitive, the equilibrium level
of R will be the actuarily fair level of R. The expected payout to the bank for a
funded project will be equal to (1+r), the cost to fund a project. For an arbitrary
project, funded at rate R, the expected payout means that

λ (pGR + (1− pG)0) + (1− λ) (pBR + (1− pB)0) = 1 + r

which implies that

λpGR + (1− λ)pBR = 1 + r =⇒ R =
1 + r

λpG + (1− λ)pB

A good entrepreneur will pursue a project if

pG(Π−R) ≥ 0 =⇒ Π ≥ 1 + r

λpG + (1− λ)pB

and a bad entrepreneur will pursue a project if

pB(Π−R) ≥ 0 =⇒ Π ≥ 1 + r

λpG + (1− λ)pB

Thus, if R is low enough (meaning if the proportion of good projects is high
enough), every entrepreneur’s project will be both funded and pursued. If not,
nobody’s project will go forward.
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(b) Suppose that the entrepreneur can contribute some of their own funds.

i. A good entrepreneur’s expected payout is

pG(Π− (1− x)R) + (1− pG)0− x(1 + ρ) = pG(Π−R) + x(pGR− (1 + ρ))

A bad entrepreneur’s expected payout is

pB(Π− (1− x)R) + (1− pB)0− x(1 + ρ) = pB(Π−R) + x(pBR− (1 + ρ))

ii. Note first that since the rate that entrepreneurs borrow money is higher than
banks, the best separating Bayesian equilibrium will be the one with the
minimal x that separates the good and bad entrepreneurs. In a separating
equilibrium, banks will offer good entrepreneurs the actuarily fair rate R =
1+r
pG

< Π, and will offer bad entrepreneurs the actuarily fair rate R = 1+r
pB

> Π.
In this equilibrium, no bad entrepreneurs will accept this rate. We can find x
by identifying the level above which a bad entrepreneur will attain negative
utility if offered the good entrepreneurs’ rate (rather than 0 from offering
x = 0 and not pursuing the project). This will be the case if

pB

󰀕
Π− 1 + r

pG

󰀖
+ x

󰀕
pB

1 + r

pG
− (1 + ρ)

󰀖
= 0

This implies that

x󰂏 =
pBΠ− pB

1+r
pG

(1 + ρ)− pB
1+r
pG

=
pGpBΠ− pB(1 + r)

pG(1 + ρ)− pB(1 + r)

which is less than 1 since pBΠ < 1 + r < 1 + ρ. Thus, our perfect separating
Bayesian equilibrium is:

Bad entrepreneurs will contribute x = 0 and accept the bank’s offer if R ≤ Π.
Good entrepreneurs will contribute x = pGpBΠ−pB(1+r)

pG(1+ρ)−pB(1+r)
= x󰂏 and accept the

bank’s offer if R ≤ 1+r
pG

. The bank will offer R = 1+r
pB

if the entrepreneur
contributes 0 and R = 1+r

pG
if the entrepreneur contributes x󰂏. All good

projects will be funded, all bad projects will be abandoned.

iii. Bad entrepreneurs will be (weakly) worse off in the separating equilibrium,
since they were sometimes funded previously (depending on λ) and are never
funded now. Good entrepreneurs will be better off for small λ, since they
now get funded, but worse off for large λ since contributing their own funds
is costly.

8 TA Sections

TA Sections written by Feiyu Wang and Yuxuan Ma. Solutions written by Omar Andújar.
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ECON 6090 - TA Section 1

Feiyu Wang & Yuxuan Ma∗

August 30, 2024

Exercises

Rational Preference Relations

1. Suppose ≜ is a rational preference relation on a set X. Let x and y be elements of X. We define

equivalence, denoted x ∈ y, by x ≜ y and y ≜ x. Is ∈ transitive?

2. Are the following preference relations ≜ rational?

(a) Let ≜ be defined on R by: y ≜ x i! y ∋ x + ω, ω is a positive number.

(b) Let ≜ be defined on R by: y ≜ x i! y ∋ x ⌐ ω, ω is a positive number.

(c) X = {a, b, c}.C⨼({a, b},≜) = {b}.C⨼({b, c},≜) = {c}.C⨼({a, b, c},≜) = {c}.
(d) Agents 1 and 2 are facing the same choice set X. Agent 1 has a rational preference relation

≜1, consumer 2 ’s preference relation is given by ≜2⨽=<1. Is consumer 2 ’s preference

rational?

(e) Consider the lexicographic preference relation ≜ on R2
+ ⨽ (x1, x2) ≜ (y1, y2) if and only if

x1 > y1 or x1 = y1 and x2 ∋ y2. Is ≜ a rational preference relation?

3. (2022 Q)

(a) Consider a finite set of alternatives A = {a1, a2, . . . , aN} and a decision maker with rational

preferences > on A. An alternative a⨼ ≤ A is said to be a best alternative if a⨼ > ai

for all ai ≤ A. Show that a best alternative exists for this decision maker and this set of

alternatives A.

(b) Consider the set of alternatives A⋋ = {a1, a2, . . . , aN⌐1}; A with the alternative aN deleted.

Let a⋋ be a best alternative in the set A⋋ for the decision maker from part (a) with preferences

>. Show that a⨼ > a⋋. We can interpret this result as showing that deleting an alternative

from a finite set of alternatives cannot make a decision maker with rational preferences

better o!.
∗We appreciate the e!orts of Jaden Chen and Tianli Xia, Deborah Doukas and Yujie Feng, and all the other TAs

who contributed to the past section notes.

1



Choice rules

1. (2008 Final) Let the set of alternatives be X = {a, b, c, d} and let B be the set of all nonempty

subsets of X. Suppose we have a choice function such that C({a, b, d}) = {a, b} and C({a, b, c}) =
{b}. Is there a rational preference relation ≜ on X such that C(⋌) = C⨼(⋌,≜) for all elements in

B and C⨼(.,≜) is consistent with the information given about C(⋌) ? Explain briefly.

2. Suppose instead of the data above, we have a choice function such that C({a, b, c}) = {a, b}, C({b, c}) =
{b}, C({c, d}) = {c} and C({a, d}) = {a, d}. Is there a rational preference relation ≜ on X such

that C(⋌) = C⨼(⋌,≜) for all elements in B and C⨼(⋌,≜) is consistent with the information given

about C(⋌) ? Explain briefly.

2
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Preference
↭ rational →↑ ↭ complete and transitive

Indi!erence relation
x ↓ y →↑ x ↭ y and y ↭ x

Strictly preferred relation
x ↔ y →↑ x ↭ y and ¬[y ↭ x]

1. From preference we have C→(B,↭)

↭ is rational →↑ C→(B,↭) satisfies HWARP for B ↗ P (x)

→↑ Sen’s ω,ε

2. From choice structure
(B, C(.)) =↑ ↭→ revealed preference

If

(a) (B, C(.)) satisfies WARP

(b) B is the power set of X1

Then we have that ↭→ is rational

Exercises

Rational Preference Relations

1. Yes.
↘x, y, z ↗ X

x ↓ y, y ↓ z

=↑ x ↭ y, y ↭ x and y ↭ z, z ↭ y

=↑ x ↭ y ↭ z and by transitivity z ↭ y ↭ x

=↑ x ↓ z

2. (a) Since x ↭ x =↑ x ≃ x+ ϑ, which is a contradiction, it is not complete, therefore not rational.

(b) Let y = x⇐ ϑ, z = x+ ϑ
=↑ y ↭ x, x ↭ z

By transitivity,
y ↭ z

Which is a contradiction. Therefore, not rational.

1We can weaken the claim by B only being all subsets of X up to 3 elements

1



(c) Rational.
↭: c ↔ b ↔ a

(d) We check if reflexivity holds,
x ↭2 x =↑ x ↔1 x

Which is a contradiction. Not complete. Not rational.

(e) Let (x1, x2) ↭ (y1, y2) and (y1, y2) ↭ (z1, z2).We do an analysis by cases:

i. If x1 > y1 and [(y1 > z1) or (y1 = z1 and y2 ≃ z2)] we have (x1, x2) ↭ (z1, z2)

ii. If x1 = y1 and x2 ≃ y2 and [(y1 > z1) or (y1 = z1 and y2 ≃ z2)] we have (x1, x2) ↭ (z1, z2).

So it is transitive.
Now to prove completeness we check if (x1, x2) ↭ (y1, y2) or (y1, y2) ↭ (x1, x2) or both hold.

i. If x1 = y1 either x2 ≃ y2 or x2 ⇒ y2
ii. If x1 ⇑= y1 either x1 > y1 or x1 < y1

So it is complete.

3. (2022 Q)

(a) We proceed by induction.

i. Let A1 = {a1}. Then a1 is the best alternative (BA).

ii. Let A2 = {a1, a2}. Then by completeness, either a1 or a2 or both are BA.

iii. Now assume that for AN↑1 = {a1, a2, ..., aN↑1} there exist a→ ↗ AN↑1 that is BA. Then for
AN = a1, a2, ..., aN , we have

1) a→ ↭ aN , and then a→ is BA in AN

2) aN ↭ a→, and then by transitivity aN ↭ a→ ↭ aj for all j = 1, ..., N ⇐ 1

=↑ aN is BA

(b) By definition of BA, a↓ ↗ A↓ ⇓ A. Again by definition of BA, a→ ↭ a ↘a ↗ A which implies that a→ ↭ a↓.

Choice Rules

1. Observe that
C→({a, b, c},↭) = {a, b} =↑ a ↓ b

C→({a, b, c},↭) = {b} =↑ b ↔ a

And we get a contradiction. Not rational.

2. There is no rational preference relation consistent with the information given about C(.). Observe that,

C→({a, b, c},↭) = a, b =↑ a ↓ b ↔ c

C→({b, c},↭) = {b} =↑ b ↔ c

C→({c, d},↭) = {c} =↑ c ↔ d

C→({a, d},↭) = {a, d} =↑ a ↓ d

Combining this information,
=↑ a ↓ b ↔ c ↔ d

=↑ a ↔ d

Which is a contradiction.
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Exercises

WARP and Consumer Choice

1. (2004 Prelim 1) In year 0 , a consumer has wealth w0 = 1, 000, prices are ⌊p0x, p0y⌊ = (10, 10) and

the consumer chooses ⌊x0, y0⌊ = (50, 50). In year 1 , the consumer has wealth w1 = 1, 250 and

prices are ⌊p1x, p1y⌊ = (15, 9). Suppose the consumer’s demand satisfies HOD0 and Walras Law.

For what range of choices of y1 can you conclude that the consumer’s choices are inconsistent

with the weak axiom?

2. (2016 Prelim 1) A consumer makes choices of the amounts of three goods, x = (x1, x2, x3), to
purchase at prices p = (p1, p2, p3), using wealth w. You observe the choices of good 1 and 2, all

prices and wealth. You do not observe the quantity of good 3 that the consumer purchases. You

do know that the consumer’s demands satisfy homogeneity of degree 0 and Walras Law.

(a) In observation a, prices are pa = (1, 1, 2), wealth is wa = 13 and you observe ⌊xa
1 , x

a
2⌋ = (2, 3).

In observation b, prices are pb = (2, 1, 1), wealth is wb = 12 and you observe ⌊xb
1, x

b
2⌊ = (1, 2).

Are these choices consistent with WARP? Explain.

(b) Now, you can no longer observe purchases of good 2. You only observe prices, wealth and

purchases of good 1 . In observation a, prices are pa = (1, 1, 1), wealth is wa = 20 and

you observe xa
1 = 10. In observation b, prices are pb = (2, 1, 2), wealth is wb = 30 and you

observe xb
1 = 5. What restrictions on the purchases of goods 2 (in observation a and b)

must be satisfied for the information you have to be consistent with WARP?

1
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In Section notes

Consumer Choice Theory
Model:

(.) Goods: x = (x1, x2, ..., xL) → RL
+

(.) Price: p = (p1, p2, ..., pL) → RL
++

(.) Wealth: w → R++

(.) Budget Set: Bp,w = {x → R+, p · x ↑ w}

(.) Choice (Walrasian Demand): x : RL
++ ↓ R++ ↔ RL

+

Assumptions:

1. x(p, w) is HoD 0 in (p, w)

2. Walras Law: p · x(p, w) = w

Remark: (B, x(.)) will be the choice structure, where B := {Bp,w : (p, w) → RL
++ ↓ R++}.

Weak Axiom of Revealed Preference (WARP):
↗(p, w), (p→, w→

), if p · x(p→, w→
) ↑ w and x(p, w) ↘= x(p→, w→

), then p→ · x(p, w) > w→
.

This is equivalent, under assumptions 1 and 2, when w→
= p→ · x(p, w) (Compensated price change), to saying,

(p→ ≃ p)(x(p→, w→
)≃ x(p, w)) ↑ 0 (< 0 if x(p, w) ↘= x(p→, w→

))

Exercises

WARP and Consumer Choice

1. (2004 Prelim 1)

(a) By Walras Law,

p→xx
→
+ p→yy

→
= w→

=⇐ x→
=

1250≃ 9y→

15

And notice,

p→xx
0
+ p→yy

0
= 1200 < 1250 = w→

To violate WARP, we must have,

p0xx
→
+ p0yy

→
= 10y→ +

2500≃ 18y→

3
↑ w0

= 1000

y→ ↑ 125

3

Since x→ ⇒ 0, y→ ⇒ 0,

=⇐ y→ → [0,
125

3
]

1



2. (2016 Prelim 1)

(a) By Walras Law,

pa · xa
= wa

=⇐ xa
1 + xa

2 + 2x3
a = 13

=⇐ x3
a = 4

Similarly,

=⇐ x3
b = 8

Then,

pa · xb > wa

pb · xa < wb

Satisfies WARP.

(b) Now,

pa · xa
= wa

=⇐ 10 + xa
2 + xa

3 = 20

=⇐ xa
3 = 10≃ xa

2

And,

pb · xb
= wb

=⇐ 10 + xb
2 + 2xb

3 = 30

=⇐ xb
3 = 10≃ 1

2
xb
2

Since xa ↘= xb, we must have at least one of the following two scenarios to hold to satisfy WARP.

1) pa · xb > wa
=⇐ xb

2 > 10

2) pb · xa > wb
=⇐ xa

2 < 10

Since xa
3 ⇒ 0 and xb

3 ⇒ 0, we also know (3),

0 ↑ xa
2 ↑ 10

0 ↑ x2
b ↑ 20

Finally, putting all the information together,

(xa
2 , x

b
2) → [0, 10)↓ [0, 20] ⇑ [0, 10]↓ (10, 20]

Where [0, 10)↓ [0, 20] comes from adding cases (2) and (3), and [0, 10]↓ (10, 20] comes from adding cases

(1) and (3).
1

1Another way to think about it is: (1 → 2) ↑ 3 = (1 ↑ 3) → (2 ↑ 3)
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Exercises

Preference and Utility Representation

1. (2014 Prelim 1) A consumer has preference on R2
+ which can be represented by the utility function

u = x3y2. Is u concave? Is it quasi concave? Is there a concave utility function representing the

consumer’s preferences?

Optimization and Comparative Statics

2. (2007 Prelim 1) There are two goods, x = (x1, x2) ≜ R2
+. A consumer has the utility function

U(x) = u1 (x1) + u2 (x2) where each ui is twice continuously di!erentiable with u⌐
i (xi) > 0 and

u⌐⌐
i (xi) < 0 for all xi ≜ R1

+. Each ui also satisfies the condition: limxi→0 u
⌐
i (xi) = +⨼ Assume

that prices of both goods are strictly positive, each pi > 0, and wealth is strictly positive, w > 0.

(The conditions in this problem are su”cient to guarantee that the optimal bundle of goods x⨽

is interior, i.e. x⨽ ∈ 0. So you can ignore inequality constraints of the form x ∋ 0.)

(a) Write the consumer’s problem as a constrained optimization problem and display the first

order conditions for this optimization problem.

(b) Show that if wealth increases, then the demand for good 1 increases.

(c) What is the sign of the e!ect of a change in the price of good 1 on the consumer’s demand

for good 1? Show your work.

1
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Review

(Potential) Properties of ↭:

1. Rational + continuous

2. Strong monotonicity
=→ Weak version: local non-satiation (LNS)

3. Convexity

(Potential) Properties of u(.)

1. Continuity

2. (Quasi-) Concave

Relationship between properties of ↭ and u(.)

1. Continuous+Rational ↭ =→ ↑ continuous u(.) representing ↭.

2. Monotonic ↭ =→ u(.) is nondecreasing1.

3. Convex ↭ (+ LNS) =→ ↓u(.) representing ↭, u(.) is quasi-concave.

Let the hessian of u be Hu(x). We also have,

convex u(.) ↔→ Hu(x) P.S.D ↓x

concave u(.) ↔→ Hu(x) N.S.D ↓x

Properties of indirect utility function

1. V (p, w) is continuous in (p, w).

2. Non-increasing in p. Strictly increasing in w.

3. HoD 0.

The Bordered Hessian

The bordered Hessian is a determinant-based tool used to verify second-order conditions for constrained
optimization problems. Specifically, it applies to problems of the form:

max f(x1, x2, . . . , xn)

s.t. g(x1, x2, . . . , xn) = 0,

where f is the objective function, and g is the constraint.
To construct the bordered Hessian, follow these steps:

1Strong Monotonicity → Strictly Increasing

1



1. Compute the Lagrangian:

L(x1, x2, . . . , xn,ω) = f(x1, x2, . . . , xn) + ωg(x1, x2, . . . , xn).

2. Form the bordered Hessian matrix H, which has the following structure:

H =

[
0 ↗g

→

↗g ↗2L

]
,

where:

• ↗g is the gradient of the constraint function g,

• ↗2L is the Hessian matrix of the Lagrangian with respect to x1, x2, . . . , xn.

The bordered Hessian is evaluated at the candidate solution (x↑
,ω

↑). For a maximization problem:

• The (n+ 1)-th leading principal minor of H (the determinant of the upper-left (n+ 1)↘ (n+ 1) submatrix)
must alternate in sign:

(≃1)k det(Hk) > 0, for k = 2, 4, . . . , n+ 1,

where Hk is the k-th leading principal minor of H.

• For minimization problems, all even-order leading principal minors must be positive.

Example

Consider the problem:
max f(x1, x2) = x1x2, s.t. g(x1, x2) = x1 + x2 ≃ 1 = 0.

1. Compute the Lagrangian:
L(x1, x2,ω) = x1x2 + ω(x1 + x2 ≃ 1).

2. Compute the gradients:

↗g =

[
1
1

]
, ↗2L =

[
0 1
1 0

]
.

3. Form the bordered Hessian:

H =




0 1 1
1 0 1
1 1 0



 .

4. Check the minors for second-order conditions.

Conditions for Quasiconcavity and Concavity Based on the Bordered Hessian

1. Quasiconcavity

For a di!erentiable function f(x1, x2, . . . , xn), quasiconcavity is determined by the signs of the determinants of the
bordered Hessian minors:

• Necessary condition: The (n+ 1)-th bordered Hessian minor, denoted by Hn+1, alternates in sign:

(≃1)k det(Hk) ⇐ 0, for k = 2, 4, . . . , n+ 1.

• Su!cient condition: The (n+ 1)-th bordered Hessian minor alternates in sign strictly:

(≃1)k det(Hk) > 0, for k = 2, 4, . . . , n+ 1.

2. Concavity

For a twice-di!erentiable function f(x1, x2, . . . , xn), concavity requires that the bordered Hessian determinants
satisfy the following conditions:

• Necessary condition: The bordered Hessian determinants for all even k must be non-positive:

det(Hk) ⇒ 0, for k = 2, 4, . . . , n+ 1.

• Su!cient condition: The bordered Hessian determinants for all even k must be strictly negative:

det(Hk) < 0, for k = 2, 4, . . . , n+ 1.



Exercises

Preference and utility representation

u(x, y) = x
3
y
2

The gradient of u(x, y) is the vector of partial derivatives with respect to x and y. Compute:

εu

εx
= 3x2

y
2
,

εu

εy
= 2x3

y

Thus, the gradient is:

↗u(x, y) =

[ωu
ωx
ωu
ωy

]
=

[
3x2

y
2

2x3
y

]

The Hessian of u(x, y) is the matrix of second-order partial derivatives. Compute:

ε
2
u

εx2
= 6xy2,

ε
2
u

εy2
= 2x3

,
ε
2
u

εxεy
=

ε
2
u

εyεx
= 6x2

y

The Hessian matrix is:

Hu(x, y) =

[
ω2u
ωx2

ω2u
ωxωy

ω2u
ωyωx

ω2u
ωy2

]
=

[
6xy2 6x2

y

6x2
y 2x3

]

The bordered Hessian is constructed for a two-variable function as:

Hb =




0 ωu

ωx
ωu
ωy

ωu
ωx

ω2u
ωx2

ω2u
ωxωy

ωu
ωy

ω2u
ωyωx

ω2u
ωy2



 =




0 3x2

y
2 2x3

y

3x2
y
2 6xy2 6x2

y

2x3
y 6x2

y 2x3





Compute the principal minors of Hb:

• First minor (H1):
det(H1) = 0.

• Second minor (H2):

det(H2) =

∣∣∣∣
0 3x2

y
2

3x2
y
2 6xy2

∣∣∣∣ = 0

• Third minor (H3):

det(H3) =

∣∣∣∣∣∣

0 3x2
y
2 2x3

y

3x2
y
2 6xy2 6x2

y

2x3
y 6x2

y 2x3

∣∣∣∣∣∣

Expanding along the first row:

det(H3) = ≃3x2
y
2

∣∣∣∣
6xy2 6x2

y

6x2
y 2x3

∣∣∣∣

Compute the determinant of the 2↘ 2 matrix:

det

[
6xy2 6x2

y

6x2
y 2x3

]
= 6xy2 · 2x3 ≃ 6x2

y · 6x2
y = 12x4

y
2 ≃ 36x4

y
2 = ≃24x4

y
2

Substituting back:
det(H3) = ≃3x2

y
2(≃24x4

y
2) = 72x6

y
4

For concavity:

• H2 ⇒ 0: Fails because det(H2) = 0.

• H3 ⇒ 0: Fails because det(H3) = 72x6
y
4
> 0

Therefore, u(x, y) is not concave.
For quasiconcavity:

• H2 ⇐ 0: Holds because det(H2) = 0.

• H3 ⇐ 0: Holds because det(H3) = 72x6
y
4
> 0

Thus, u(x, y) is quasiconcave.



Optimization and Comparative Statics

(a)
max
x1,x2

u1(x1) + u2(x2) subject to: p1x1 + p2x2 ⇒ w.

The Lagrangian for this problem is:

L = u1(x1) + u2(x2)≃ ω (p1x1 + p2x2 ≃ w) .

The first-order conditions are:

εL
εx1

: u
↓
1(x

↑
1)≃ ω

↑
p1 = 0, (1)

εL
εx2

: u
↓
2(x

↑
2)≃ ω

↑
p2 = 0, (2)

εL
εω

: p1x
↑
1 + p2x

↑
2 = w (3)

(b) We are interested in dx→
1

dw . Di!erentiating the FOCs with respect to w, we get,

u
↓↓(x↑

1)
dx

↑
1

dw
≃ dω

↑

dw
p1 = 0

u
↓↓(x↑

2)
dx

↑
2

dw
≃ dω

↑

dw
p2 = 0

p1
dx

↑
1

dw
+ p2

dx
↑
2

dw
= 1

In matrix form, 


≃p1 u

↓↓
1 0

≃p2 0 u
↓↓
2

0 p1 p2









ωε→

ωw
ωx→

1
ωw
ωx→

2
ωw



 =




0
0
1





Solving the system we get,
dx

↑
1

dw
=

p1u
↓↓
2

p
2
1u

↓↓
2 + p

2
2u

↓↓
1

> 0

Because,
p1u

↓↓
2 < 0 and p

2
1u

↓↓
2 + p

2
2u

↓↓
1 < 0

(c) We are interested in dx→
1

dp1
. We use a similar approach as before, and take derivative of the FOCs with respect

to p1.

u
↓↓(x↑

1)
dx

↑
1

dp1
≃ dω

↑

dp1
p1 ≃ ω

↑ = 0

u
↓↓(x↑

2)
dx

↑
2

dp1
≃ dω

↑

dp1
p2 = 0

p1
dx

↑
1

dp1
+ x

↑
1 + p2

dx
↑
2

dp1
= 1

In matrix form,



≃p1 u

↓↓
1 0

≃p2 0 u
↓↓
2

0 p1 p2









ωε→

ωp1
ωx→

1
ωp1
ωx→

2
ωp2



 =




ω
↑

0
≃x

↑
1





Solving the system we get,
dx

↑
1

dp1
=

≃u
↓↓
2x

↑
1p1 + ω

↑
p
2
2

p
2
1u

↓↓
2 + u

↓↓
1p

2
2

< 0

Because,
p
2
1u

↓↓
2 + u

↓↓
1p

2
2 < 0 and ≃ u

↓↓
2x

↑
1p1 + ω

↑
p
2
2 > 0
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Exercises

Consumer Theory

1. (2009 Prelim 1) There are three goods with quantities denoted by x = (x1, x2, x3) ≜ R3
+. A

consumer’s preferences can be represented by the utility function u(x) = x1x
1/2
2 x

1/2
3 . The prices

of the goods are represented by p ≜ R3
++ and the consumer has wealth w > 0.

(a) Write the consumer’s decision problem as a constrained optimization problem.

(b) Find the consumer’s demand functions for the three goods.

Now suppose that in addition to using money to purchase goods the consumer also has to provide

coupons in order to make a purchase. The purchase of y ∈ 0 units of any good requires y coupons.

The consumer has an endowment of c > 0 coupons.

(c) Write the consumer’s new decision problem as a constrained optimization problem.

(d) Is it possible that at a solution to the consumer’s problem he has some left-over coupons?

That is, can the coupon constraint ever be non-binding?

(e) Suppose that p = (1, 1, 1). Find the consumer’s demands for the three goods.

1



2. (2023 Prelim 1) A NGO (non-government organization) has a budget (amount of money that it

can spend) T > 0 that it must allocate across n activities such that ⨅n
i=1 ei = T , where ei ∈ 0 is

the expenditure on activity i. Let B(e), where e = (e1, ..., en), be the benefit from expenditure e

on activities. Assume that B ⌐ Rn
+ → R1

is strictly increasing, strictly concave and smooth. The

NGO’s objective is to chose e to maximize the benefit obtained from e. Let V (T ) be the value

of the NGO’s decision problem; that is,V (T ) is the maximum benefit that can obtained from a

budget of T .

(a) Show that the value of the decision problem is strictly increasing in T . For this part of the

problem do not assume that V (T ) is di!erentiable.

(b) Let e⨼(T ) be the solution to the decision problem. Assume that the value of the decision

problem and the solution are di!erentiable, and that e⨼(T ) >> 0 for any T > 0. We are

interested in how the value of the decision problem changes as the budget changes. Compute

dV (T )
dT

. Is this derivative equal to
ωB(e⨼(T ))

ωei
? Explain carefully.

(c) Now suppose that that there are only two activities and that B(e) = ⨅2
i=1 bi(ei) where

each b(ei) is strictly increasing, strictly concave and smooth. Suppose that because of some

new ine”ciency in activity one that the benefit from spending e1 on activity one changes

to b(ωe1), where 0 < ω < 1. The benefit functions for the other activities are unchanged.

What happens to the optimal choice of e1? Explain carefully.

2
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Assumptions

1. u(.) represents ↭ and is continuous.

2. ↭ satisfies local non satiation. (LNS)

3. ↭ is strictly convex.

Expenditure minimization problem (EMP)

min
x

p · x such that u(x) → ū

Hicksian demand: h(p, ū)

1. If inf u(x) ↑ ū ↑ supu(x) then there exist h→ that solves the EMP. (Extreme Value Theorem)

2. h(p, ū) is homogeneous of degree 0 (HoD0) in price (p).

3. u(h(p, ū)) = ū. (LNS)

4. h(p, ū) is a well-defined function and it is continuous. (↭ strictly convex + Berge’s Theorem of the Maximum)

Expenditure function: e(p, ū)

1. Continuous in (p, ū).

2. Nondecreasing in p and strinctly increasing in ū.

3. HoD 1 in p.

4. Concave in p.

Roadmap

Figure 1: MWG chapter 3. Roadmap.

1



Exercises

(2009 Prelim 1)

(a)

max
x1,x2,x3

x1x
1
2
2 x

1
2
3

Subject to
p1x1 + p2x2 + p3x3 ↑ w

(b) To find the consumer’s demand functions we first notice that u(.) is increasing in each good, so it satisfies
LNS and therefore the constraint must be binding. Since all monotonic transformations preserve the order of
↭, solving the problem in (a) is equivalent to,

max
x1,x2,x3

log(x1) +
1

2
log(x2) +

1

2
log(x3)

Subject to
p1x1 + p2x2 + p3x3 = w

Our Lagrangian is,

L(x,ω) = log(x1) +
1

2
log(x2) +

1

2
log(x3) + ω(w ↓ p1x1 ↓ p2x2 ↓ p3x3)

And our first order conditions give,
εL(x,ω)

εx1
=

1

x1
↓ ωp1 = 0

εL(x,ω)
εx2

=
1

2x2
↓ ωp2 = 0

εL(x,ω)
εx3

=
1

2x3
↓ ωp3 = 0

εL(x,ω)
εω

= w ↓ p1x1 ↓ p2x2 ↓ p3x3 = 0

From here we obtain,

x2 =
p1
p2

x1

2

x3 =
p1
p3

x1

2

Substituting in the budget constraint,

w = p1x1 +
p1x1

2
+

p1x1

2

Solving the system of equations we get,

=↔ x1(p, w) =
w

2p1

=↔ x2(p, w) =
w

4p2

=↔ x1(p, w) =
w

4p3

To confirm that these are indeed our walrasian demand functions, we can check the corner solution or
compute the Hessian of u(x) and see if it is negative semidefinite.
Since neither of x1, x2, x3 equals 0, then the answer above is the Walrasian Demand.



(c) With the addition of the coupon component, the problem becomes,

max
x1,x2,x3

x1x
1
2
2 x

1
2
3

Subject to
p1x1 + p2x2 + p3x3 ↑ w (Budget constraint)

x1 + x2 + x3 ↑ c (Coupon constraint)

(d) Yes, for c big enough. Assume p = (1, 1, 1), and c > w, then the problem becomes

max
x1,x2,x3

x1x
1
2
2 x

1
2
3

Subject to
x1 + x2 + x3 ↑ w (Budget constraint)

x1 + x2 + x3 < c (Coupon constraint)

The leftover coupons will be c↓ w.

(e) Since the budget constraint and coupon constraint are ”parallel”, if c > w, then we only need to use the
budget constraint. Otherwise, if c ↑ w, we use the coupon constraint.
For example, if c > w, we just need to replace p = (1, 1, 1) in the Walrasian demand we found in (a).

(2023 Prelim 1)

(a) The problem is

V (T ) = max
e

B(e) subject to
n∑

i=1

ei = T

Let T2 > T1. Denote e(T1) as the maximizer under T1. Then there exist 0 < ϑ < T2↑T1
n such that∑n

i=1(ei + ϑ) = T1 + nϑ < T2. Since B is strictly increasing,

B(e+ ϑ) > B(e(T1))

Also since
∑n

i=1(ei + ϑ) < T2,
V (T2) → B(e+ ϑ) > B(e(T1)) = V (T1)

(b) The problem is

V (T ) = max
e

B(e) subject to
n∑

i=1

ei = T

Since all the conditions are met, we can use the lagrangian method to solve this problem. The lagrangian is,

L = B(e) + ω(T ↓
n∑

i=1

ei)

And the first order condition is,

εL
εei

=
εB(e)

εei
↓ ω = 0 =↔ εB(e)

εei
= ω→

In optimal, by the Envelope Theorem,

dV (T )

dT
=

dL(e→(T ))
dT

= ω→ =
εB(e)

εei



(c) The problem is
V (T ) = max

e
b1(ϖe1) + b2(e2) subject to e1 + e2 = T

=↔ max
e1↓0

b1(ϖe1) + b2(T ↓ e1)

The first order condition gives,
ϖb↔1(ϖe

→
1(ϖ))↓ b↔2(T ↓ e→1(ϖ)) = 0

We want to know how does e→1 changes when a decrease from 1 to ϖ happens. For this we compute the
derivative with respect to ϖ on the FOC,

b↔1(ϖe
→
1(ϖ)) + ϖb↔↔1(ϖe

→
1(ϖ))(e

→
1(ϖ) + ϖe→

→

1 (ϖ)) + b↔↔2(T ↓ e→1(ϖ))e
→→

1 (ϖ) = 0

We group terms and get,
εe→1(ϖ)

εϖ
= ↓b↔1(ϖe

→
1(ϖ)) + ϖb↔↔1(ϖe

→
1(ϖ))e

→
1(ϖ)

ϖ2b↔↔1(ϖe
→
1(ϖ)) + b↔↔2(T ↓ e→1(ϖ))

Since each bi is strictly increasing and strictly concave, we know b↔(.) > 0 and b↔↔(.) < 0. From here we obtain

that the denominator of ωe↑1(ε)
ωε must be negative, but the sign of the numerator,

b↔1(ϖe
→
1(ϖ)) + ϖb↔↔1(ϖe

→
1(ϖ))e

→
1(ϖ), remains undetermined. Therefore the sign of ωe↑1(ε)

ωε is undetermined.
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Welfare: Say we have a price and wealth change from (p, w) to (p→, w→). The compensating variation (CV) and
equivalent variation (EV) are defined as follows,

CV = e(p→, u→)→ e(p(→, u)

EV = e(p, u→)→ e(p, u)

Where u = v(p, w) and u→ = v(p→, w→).
The equivalent variation can be thought of as the dollar amount that the consumer would be indi!erent about
accepting in lieu of the price change, that is, it is the change in her wealth that would be equivalent to the price
change in terms of its welfare impact (so it is negative if the price change would make the consumer worse o!).

The compensating variation, on the other hand, measures the net revenue of a planner who must compensate the
consumer for the price change after it occurs, bringing her back to her original utility level u. (Hence, the
compensatating variation is negative if the planner would have to pay the consumer a positive level of
compensation because the price change makes her worse o!.)

Special case: Only price of good 1 changes (by t) while other prices and wealth remain unchanged.

CV = e(p→, u→)→ e(p→, u)

Since e(p→, u→) = e(p, u) = w and h1(p, u) =
ωe(p,u)
ωp1

,

CV = e(p, u)→ e(p→, u)

=

∫ p1

p→
1

h1(t, p↑1, u)dt

Where p↑1 = (p2, p3, ..., pn) ahd h1 is the hicksian demand for good 1.
Following the same logic we get,

EV =

∫ p1

p→
1

h1(t, p↑1, u
→)dt

Proposition

Let x1 be a normal good, i.e. ωx1
ωw ↑ 0, if only p1 changes, then EV ↑ CV .

Proof

Assume without loss of generality (WLOG) that p→1 > p1. To show EV ↑ CV , it su”ces to prove:

h1(t, p↑1, u
→) ↓ h1(t, p↑1, u) for all t.

Recall that u = v(p, w) ↑ u→ = v(p→, w→). By the properties of the Hicksian demand function:

h1(p, u) = x1(p, e(p, u)).

1



Di!erentiating h1(p, u) with respect to u:

ωh1(p, u)

ωu
=

ωx1(p, e(p, u))

ωw
· ωe(p, u)

ωu
.

Since:

1. ωx1(p,e(p,u))
ωw ↑ 0 (normal good assumption)

2. ωe(p,u)
ωu > 0 (monotonicity of expenditure with respect to utility)

ωh1(p, u)

ωu
↑ 0.

Thus, h1(p, u) is increasing in u. Since u ↑ u→, it follows that:

h1(t, p↑1, u
→) ↓ h1(t, p↑1, u) for all t.

Therefore, integrating over [p1, p→1]:

∫ p→
1

p1

h1(t, p↑1, u
→) dt ↓

∫ p→
1

p1

h1(t, p↑1, u) dt

→
∫ p1

p→
1

h1(t, p↑1, u
→) dt ↓ →

∫ p1

p→
1

h1(t, p↑1, u) dt

∫ p1

p→
1

h1(t, p↑1, u
→) dt ↑

∫ p1

p→
1

h1(t, p↑1, u) dt

which implies:
EV ↑ CV.

Remark

If ωxi
ωw = 0, then CV=EV when pi changes.

Example: Quasi-linear utility, u(x1, x2) = x1 + f(x2).
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1. Solving problems with continuum of inputs

Suppose a single-output firm takes as input a continuum of commodities j ≜ [0, 1]. The production

function is

f(z) = ⨅ 1

0
z(j)ωdj

where ω ≜ (0, 1). Find the unconditional input demand function x(j, p, w) where w ⌐ [0, 1] → R+
is a

continuous function integrable on [0, 1].

2. A question from a past Q exam

A firm produces output y using the production function y = xω
1 x

ε
2 where x1, x2 ∈ 0 are inputs and

ω,ε > 0, ω + ε < 1. Input prices are wi > 0 for input i. The output price will be either p1 > 0 or

p2 > 0. The probability of output price p1 is ϑ where 0 < ϑ < 1, and of course the probability of output

price p2 is 1 ⨼ ϑ. This firm chooses output to maximize expected profit and it knows the production

function, input prices, and distribution of output prices.

(a) Suppose that the firm has to choose how much to produce before knowing the realization of the

output price. What is the optimal output?

(b) Suppose that the firm first observes the realization of the output price and then decides how

much to produce. How much will it produce if the price is p1; how much will it produce if the

price is p2?

(c) Is the following conjecture true or false: If ω+ε = 1
2
, then the expectation of the outputs in part

(b) equals the output in part (a). Explain briefly.

(d) Generally, is the expectation of the profits in part (b) greater than, equal to, or less than the

profit in part (a)? Explain briefly. [Do not assume that ω + ε = 1
2
.]

1



3. The cost function

Suppose a firm has constant marginal cost and C(w, 0) = 0. What do we know about the firm’s

production function? Give examples of at least three widely-used classes of production functions

that could generate such a cost function.

2
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Cost Minimization Problem (CMP)

cost function c(w, q) = min
z

w · z subject to f(z) = q

Conditional input demand: z(w, q)

Properties of the cost function:

1. c(w,q) is HoD1 in w.

2. c(w,q) is nondecreasing in q if we assume free disposal.

3. c(w,q) is concave in w.

4. If f(z) is HoD k, then c(w,q) is HoD 1
k in q.

Profit Maximization Problem (PMP)

ω(p, w) = max
x

pf(x)→ wx

Where x(p, w) is the input demand and y(p, w) is the output supply.

Properties:

1. Nondecreasing in p and nonincreasing in wi for all i.

2. HoD 1 in (p, w).

3. Convex in (p, w).

4. Continuous on R1
++ x Rn

++

Derivatives

1. ωε(p,w)
ωp = f(x(p, w)) = y(p, w)

2. ωε(p,w)
ωwi

= →xi(p, w)

3. ωc(w,q)
ωwi

= zi(w, q)

4. ωc(w,q)
ωq = MC(Marginal Cost)

1



Exercises

Solving problems with continuum of inputs

The problem is,

ω(p, w) = max
z(j)

pf(z)→
∫ 1

0
w(j)z(j)dj

Given the production function f(z) =
∫ 1
0 z(j)ϑ dj, the profit maximization problem becomes

ω(p, w) = max
z(j)

[
p

∫ 1

0
z(j)ϑ dj →

∫ 1

0
w(j)z(j) dj

]
.

Simplifying,

ω(p, w) = max
z(j)

∫ 1

0
[pz(j)ϑ → w(j)z(j)] dj.

The problem is separable1, so the maximization for each z(j) can be solved independently,

max
z(j)

[pz(j)ϑ → w(j)z(j)] .

Taking the derivative with respect to z(j) and setting it to zero (FOC),

ε

εz(j)
[pz(j)ϑ → w(j)z(j)] = 0,

pϑz(j)ϑ→1 → w(j) = 0.

Solving for z(j):

z(j) =

(
w(j)

pϑ

) 1
ω→1

= x(j, p, w).

To confirm a maximum, check the second derivative:

ε2

εz(j)2
[pz(j)ϑ → w(j)z(j)] = pϑ(ϑ→ 1)z(j)ϑ→2.

Since ϑ ↑ (0, 1), the term (ϑ→ 1) < 0, so the second derivative is negative, confirming a maximum.

Extra (not required): The optimal allocation is:

z↑(j) =

(
w(j)

pϑ

) 1
ω→1

.

Substitute z↑(j) into the profit function:

ω(p, w) =

∫ 1

0
[p (z↑(j))ϑ → w(j)z↑(j)] dj.

Substitute z↑(j) explicitly. First, compute (z↑(j))ϑ:

(z↑(j))ϑ =

(
w(j)

pϑ

) ω
ω→1

.

And:
1For an optimization problem, separability means that the objective function can be expressed as a sum (or integral) of terms, each

depending only on a single variable (or a small subset of variables). This property allows the optimization over all variables to be broken
down into independent subproblems that can be solved separately for each variable.
The objective function is separable because: The term pz(j)ω → w(j)z(j) depends only on z(j) for a fixed j. There is no interaction
between z(j) and z(k) for j ↑= k.



w(j)z↑(j) = w(j)

(
w(j)

pϑ

) 1
ω→1

.

Thus:

ω(p, w) =

∫ 1

0

[
p

(
w(j)

pϑ

) ω
ω→1

→ w(j)

(
w(j)

pϑ

) 1
ω→1

]
dj.

Simplify further to compute the explicit profit if w(j) is specified.

A question from a past Q exam

(a) The problem is
Ep[ω(p, w)] = max

x
Ep[px

ϑ
1 x

ϖ
2 → w1x1 → w2x2]

= max
x

Ep[p]x
ϑ
1 x

ϖ
2 → w1x1 → w2x2

Where E[p] = ϖp1 + (1→ ϖ)p2.

The FOCs are,
x1: ϑE(p)xϑ→1

1 xϖ
2 = w1

x2: ϱE(p)xϑ
1 x

ϖ→1
2 = w2

Then,

x↑
1 = E(p)

1
1→ω→ε ϑ

1→ε
1→ω→ε ϱ

ε
1→ω→ε w

ε→1
1→ω→ε

1 w
→ε

1→ω→ε

2

x↑
2 = E(p)

1
1→ω→ε ϑ

ω
1→ω→ε ϱ

1→ω
1→ω→ε w

→ω
1→ω→ε

1 w
ω→1

1→ω→ε

2

And the optimal output is,

q(E(p), w) = f(x↑) = E(p)
ω+ε

1→ω→ε ϑ
ω

1→ω→ε ϱ
ε

1→ω→ε w
→ω

1→ω→ε

1 w
ε

1→ω→ε

2

(b) In this case we replace E(p) = p1 and E(p) = p2 respectively, and get,

q(p1, w) = f(x↑) = p
ω+ε

1→ω→ε

1 ϑ
ω

1→ω→ε ϱ
ε

1→ω→ε w
→ω

1→ω→ε

1 w
ε

1→ω→ε

2

q(p2, w) = f(x↑) = p
ω+ε

1→ω→ε

2 ϑ
ω

1→ω→ε ϱ
ε

1→ω→ε w
→ω

1→ω→ε

1 w
ε

1→ω→ε

2

(c) Let g(w) = ϑ
ω

1→ω→ε ϱ
ε

1→ω→ε w
→ω

1→ω→ε

1 w
ε

1→ω→ε

2 , and ϑ+ ϱ = 1
2 , then,

=↓ ϑ+ ϱ

1→ ϑ→ ϱ
= 1

=↓ q(E(p), w) = E(p)ϑ
ω

1→ω→ε ϱ
ε

1→ω→ε w
→ω

1→ω→ε

1 w
ε

1→ω→ε

2

= (ϖp1 + (1→ ϖ)p2)ϑ
ω

1→ω→ε ϱ
ε

1→ω→ε w
→ω

1→ω→ε

1 w
ε

1→ω→ε

2

= ϖq(p1, w) + (1→ ϖ)q(p2, w)

Therefore, the expectation of the outputs in part (b) equals the output in part (a).

(d) By a) we have Ep[ω(p, w)] = ω(ϖp1 + (1→ ϖ)p2, w).
By expected b) we have ϖq(p1, w) + (1→ ϖ)q(p2, w)
Since the profit function is convex in (p, w), it is convex in p, and we can apply Jensen’s inequality to
conclude,

(a) ↔ expected (b)



The Cost Function

We are given C(w, q)|q=0= C(w, 0) = 0 and Marginal Cost = ωC(w,q)
ωq = k.

Now we take integral back on q,
=↓ C(w, q) = kq + T (w)

Given our initial condition C(w, 0) = T (w) = 0,

=↓ C(w, q)kq

Which means that it is HoD1 in q. Therefore, the production function is HoD1 in (p, w).
Some examples are:

1. Cobb-Douglas

f(x1, ..., xn) = !n
i=1x

ϖi
i where

n∑

i=1

ϱi = 1

2. Leontief
f(x1, ..., xn) = min{ϱ1x1, ...,ϱnxn}

3. Constant Elasticity of Substitution (CES)

f(x1, ..., xn) = (
n∑

i=1

ϱix
r
i )

1
r
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Output market power

A monopolist can produce di!erent versions of a good with di!erent quality levels. The constant

marginal cost of producing quality v goods is cv2 with c<1. The monopolist is selling to a continuum

of consumers with types ω distributed uniformly on [0, 1]. The types reflect vertical heterogeneity in

tastes: a type ω consumer gets utility ωv ⌐ p if she buys one unit of a quality v good at price p and

zero utility if she does not buy. (Assume that consumers always buy at most one unit.)

(a) Suppose first that the monopolist’s quality level v is fixed. Solve for the monopolist’s price and

its profits as a function of c and v.

(b) What quality level would the firm choose in the model of part (a) if v were a choice variable?

(c) What quality level would a social planner choose if the social planner had the ability to choose

both v and p? Discuss how this compares with the outcome of part (b) and how we can think

about this outcome in light of standard results on a monopolist’s choice of product quality.

Input market power

A firm can produce a good with production function f(x1, x2) = logx1 + logx2. The output price is p

and input prices are w1 and w2, where all prices are fixed to the firm.

(a) Find the input demand function of the producer.

(b) Now suppose the firm has market power in input market, and the price vector of inputs is now

(w1 + x2
1, w2 + 2x2) (assume w1 and w2 are the same fixed number in part (a)). Write out the

equations that input demand must satisfy and compare it with the answer in part (a).

1
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Profit Maximization without market power

ω(p, w) = max
z

pf(z)→ w · z

First order condition gives,

(MRS)
fi(z)

fj(z)
=

wi

wj

Also,

ω(p, w) = max
z

p · f(z)→ w · z

= max
q,z

p · q → w · z s.t. q = f(z)

= max
q

p · q →min
z

w · z s.t. q = f(z)

Where CMP: minz w · z s.t. q = f(z). So the profit maximization problem can be defined in two steps:

1. Find the cheapest way to produce q

2. Choose optimal q to maximize profit

Profit Maximization with market power
Your output a!ects the price, p→(q) ↑ 0.

max
q

p(q)q → c(w, q)

First order condition gives,

MR = p(q) + p→(q)q =
d

dq
c(w, q) = MC

In optimal, p↑ > MC
We want to choose less q since p(q) is decreasing in q.

Profit Maximization with input market power

max
z

p · f(z)→ w(z) · z

First order condition gives,

pf →
(z) = w(z) + w→

(z) · z

Since w→
(z) ↓ 0

pf →
(z) > w(z)

(Notice that pf →
(z) = w(z) in competitive markets) In this scenario, choose less z and produce less.

1



Exercises

Output market power

(a) First we find the demand function.

For a fixed p, v consumer will buy if and only if its utility from buying is positive. This means that,

Consumer will buy ↔↗ εv → p ↓ 0

Since we need ε ↓ p
v and we know ε ↘ [0, 1], our demand function becomes D(p, v) = 1→ p

v .

Our maximization problem becomes,

ω(p, w) = max
p

p ·D(p)→ cv2D(p)

= max
p

(p→ cv2)(1→ p

v
)

And our first order condition is,

1→ 2p

v
+ cv = 0

Since
ωε2(p)

ωp < 0, the FOC give us the optimal value for p. That is,

p↑ =
1

2
(v + cv2)

Notice that if p↑ ↓ v no one will buy and ω↑
= 0. On the other hand, if p↑ < v, ω↑

=
1
4v(1 + cv)2 → cv2

(b) If v is a choice variable, we have the following problem,

ω(p, w) = max
p,v

p ·D(p)→ cv2D(p)

= max
p,v

(p→ cv2)(1→ p

v
)

Our first order conditions are,

ϑω

ϑp
= 1→ 2p

v
+ cv = 0

ϑω

ϑv
= cp+

p2

v2
→ 2cv = 0

Replacing p↑ from (a) in our FOC for v, we get,

3c2v2 → 4cv + 1 = 0

(cv → 1)(3cv → 1) = 0

=↗ v =
1

c
or v =

1

3c

Since the profit for each unit has to be positive, that is, p→ cv2 =
v↓cv2

2 > 0,

=↗ v↑ =
1

3c

(c) Social Planner’s Problem

max
p,v

TS(p, v) = max
p,v

∫ 1

p
v

(
εv → cv2

)
dε

Where the consumer buys the good only if ε ↓ p
v , the utility is εv, the marginal cost of the producer is cv2

and εv → cv2 is the surplus of selling to type ε. Then,

TS(p, v) =
1

2
vε2 → cv2ε|1p

v



=
1

2
v → 1

2

p2

v
→ cv2 + cvp

The first order conditions give,

ϑTS

ϑp
= →p

v
+ cv = 0

ϑTS

ϑv
=

1

2
+

1

2

p2

v2
→ 2cv + cp = 0

We solve for p↑ and get the following equation in terms of v,

3c2v2 → 4cv + 1 = 0

=↗ v↑ =
1

3c
or v↑ =

1

c

=↗ p↑ =
1

9c
or p↑ =

1

c

=↗ TS↑
=

2

27
c or TS↑

= 0

Since
2
27c > 0, we choose v↑ =

1
3c and there is no distortion in quality.

Input market power

(a) The profit maximization problem can be written as,

ω(p, w) = max
x1,x2

p(log(x1) + log(x2))→ w1x1 → w2x2

The first order conditions give,
p

x1
→ w1 = 0 =↗ x↑

1 =
p

w1

p

x2
→ w2 = 0 =↗ x↑

2 =
p

w2

(b) The problem becomes,

ω(p, w) = max
x1,x2

p(log(x1) + log(x2))→ (w1 + x2
1)x1 → (w2 + 2x2)x2

The first order conditions give,
p

x1
→ (w1 + x2

1)→ x1(2x1) = 0

p

x2
→ (w2 + 2x2)→ 2 = 0

From here we conclude that,
p

x1
= w1 + x2

1 + 2x2
1 > w1

p

x2
= w2 + 4x2 > w2

Therefore, both x↑
1, x

↑
2 decrease.
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Exercises

1. [2016 Prelim 2] The set of prizes is X = {⌐1, 0,+1} and a probability on these prizes is denoted

by p = (p1, p2, p3). An individual strictly prefers a ”small gamble”, p = (1/8, 3/4, 1/8), to cer-

tainty, p = (0, 1, 0). However, the individual strictly prefers certainty to the ”large gamble”,

p = (1/2, 0, 1/2). Do this person’s preferences have an objective expected utility representation?

Explain.

2. [2014 June Q] An individual has to decide how much of her wealth w > 0 to invest in a risky

asset. This asset will have positive rate of return r with probability p, or a negative rate of

return l with probability 1 ⌐ p. So if the individual invests x dollars in the risk asset, the

with probability p her wealth will be w ⌐ x + (1 + r)x and with probability 1 ⌐ p her wealth

will be w ⌐ x + (1 + l)x. Assume that the asset has a strictly positive expected rate of return

pr + (1 ⌐ p)l > 0. Feasible investments in the risky asset are x ≜ 0. Assume that this individual

is an expected utility maximizer with Bernoulli payo! function u(w) with u⨼ > 0 and u⨼⨼ < 0 for

all non-negative wealths.

a. Show that the individual will invest a positive amount of wealth x > 0 in the risky asset.

b. It seems reasonable to suppose that as an individual’s wealth increases he would invest

more in the risk asset. Whether this is true or not depends on how the individual’s risk

aversion changes as their wealth changes. What is this relationship? This is, under what

conditions on risk aversion does investment in the risky asset increase as wealth increases?

[Hint: Absolute Risk Aversion of utility function u(⨽) at X is equal to ⌐u⨼⨼(x)/u⨼(x)]
3. [2022 Prelim 2] An individual has initial wealth w⋋

and Bernoulli utility function ln(w), where
w is wealth. The individual can invest initial wealth in any fractions in two projects: A and

B. Any initial wealth not invested in A or B disappears. Let ω be the fraction of initial wealth

invested in project A and 1 ⌐ ω be the fraction of initial wealth invested in project B. Exactly

one of these projects will succeed; the other project fails and has payo! 0. With probability ε

project B fails and project A succeeds and pays o! pA > 0 dollars for every dollar invested in it.

With probability 1 ⌐ ε, project A fails and project B succeeds and pays o! pB > 0 dollars for

1



every dollar invested in it. [For example, if project A succeeds then an individual who invested

ωw⋋
in project A will have wealth w = ωw⋋pA.]

a. Find the optimal value of ω.

b. How does increasing pA a!ect the amount invested in project A? Why?

c. Another individual is o!ered the same projects as above. This individual has Bernoulli

utility for wealth ln(w1/2). Is this individual more risk averse than the one above? How

does this individual’s optimal investment rule compare to the one in (1)?

2
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In Section notes

Uncertainty and Objective Expected Utility

Define ↭ on P probability distribution

1. Suppose ↭ on X. Then there will be limitations. It is not possible to incorporate risk preferences.

2. Incorporate ↭ on X

(a) p1 = (1, 0, 0) ↭ p2 = (0, 1, 0) =→ x1 ↭ x2

If ↭ are rational and continuous, then there exists V : P ↑ R such that V (p) represents ↭.

If ↭ are rational, continuous and independent, then there exists U : X ↑ R such that V (p) =
∑

x p(x)u(x). Here
u(x) is often called a Bernoulli utility function and V (p) a Von Neumann-Morgenstern Objective Expected Utility.

Note that independence means: ↓p, q ↔ P ↓ω ↔ [0, 1], p ↭ q ↗→ ωp+ (1↘ ω)r ↭ q + (1↘ ω)r.

Remark: If V (.) and U(.) both represent ↭, then there exists a positive a!ne transformation between V and U .
This also holds for their associated Bernoulli utility functions.

Exercises

2016 Prelim 2

We are given,

(
1

8
,
3

4
,
1

8
) ↭ (0, 1, 0)

(0, 1, 0) ↭ (
1

2
, 0,

1

2
)

Assuming we have an objective utility representation,

1

8
u(x1) +

3

4
u(x2) +

1

8
u(x3) > u(x2)

u(x2) >
1

2
u(x1) +

1

2
u(x3)

Since 2u(x2) > u(x1) + U(x3),
1

8
(u(x1) + u(x3)) +

3

4
u(x2) > u(x2)

=→ 1

4
u(x2) +

3

4
u(x2) > u(x2)

But this is a contradiction. Therefore, we cannot have an objective utility representation with these preferences.

1



2014 June Q

(a) The problem is,
EU(x) = max

x
pu(w ↘ x+ (1 + r)x) + (1↘ p)u(w ↘ x+ (1 + l)x)

To show that the individual will invest a positive amount of wealth x > 0 in the risky asset, it su!ces to show
that ωEU(x)

ωx |x=0> 0. We observe that,

εEU(x)

εx
= pu→(w ↘ x+ (1 + r)x)(r) + (1↘ p)u→(w ↘ x+ (1 + l)x)(l)

Then,
εEU(x)

εx
|x=0= u→(w)[pr + (1↘ p)l]

By assumption, pr + (1↘ p)l > 0 (actuarially favorable) and u→(w) > 0, so ωEU(x)
ωx |x=0> 0.

Takeaway: A risk-averse agent always wants to invest a positive amount in actuarially favorable assets.

(b) When does ωx→

ωw > 0?
Firstly, characterize x↑,

x↑ = argmaxEU(x)

The first-order condition of the maximization problem in (a) gives,

εEU(x↑)

εx
= pu→(w ↘ x↑ + (1 + r)x↑)(r) + (1↘ p)u→(w ↘ x↑ + (1 + l)x↑)(l) = 0

Now we take derivative with respect to w in the FOC,

pu→→(w + rx↑)(r)(1 + r
εx↑

εw
) + (1↘ p)u→→(w + lx↑)(l)(1 + l

εx↑

εw
) = 0

=→ εx↑

εw
= ↘ pu→→(w + rx↑)r + (1↘ p)u→→(w + lx↑)l

pu→→(w + rx↑)r2 + (1↘ p)u→→(w + lx↑)l2

Since p > 0, u→→(.) < 0, we have that pu→→(w + rx↑)r2 + (1↘ p)u→→(w + lx↑)l2 < 0. So,

εx↑

εw
↗→ pu→→(w + rx↑)r + (1↘ p)u→→(w + lx↑)l > 0

↗→ u→→(w + rx↑)

u→→(w + lx↑)
< ↘ (1↘ p)l

pr

↗→ u→→(w + rx↑)

u→→(w + lx↑)

u→(w + lx↑)

u→(w + rx↑)
< ↘ (1↘ p)l

pr

u→(w + lx↑)

u→(w + rx↑)

↗→ A(w + rx↑)

A(w + lx↑)
< ↘ (1↘ p)l

pr

u→(w + lx↑)

u→(w + rx↑)

Where A(.) is the coe!cient of absolute risk aversion.

Since by the FOC ↘ (1↓p)l
pr

u↑(w+lx→)
u↑(w+rx→) = 1,

=→ A(w + rx↑) < A(w + lx↑)

Where r ≃ 0, l ⇐ 0 and A(.) is decreasing.

2022 Prelim 2

(a) The problem is,
EU(x) = max

ε
ωln(wϑpA) + (1↘ ω)ln(w(1↘ ϑ)pB)

The first order condition gives,
εEU(x)

εϑ
=

ω

ϑ
↘ 1↘ ω

1↘ ϑ
= 0

Since for the second order condition we have ω2EU(x)
ωε2 ⇐ 0,

=→ ϑ↑ = ω



(b) Increasing pA does not a”ect the amount invested in project A, since the optimal amount ϑ↑ only depends on
ω.

(c) Since ln(w
1
2 ) = 1

2 ln(w) is just a monotonic transformation of our original Bernoulli utility function, we stay
with the same preferences as before.
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Exercises

Subjective Expected Utility

1. (2014 Final) An individual who has initial wealth w > 0 is o!ered an opportunity to invest in a

project with an uncertain return. If the project is successful, which occurs if state S happens, then

each dollar invested in the project pays a total return of R > 0. If the project is a failure, which occurs

if state F happens, then the payo! on the project is 0. Exactly one of the two states S and F will

occur. The individual can buy as many or as few shares of the project that he wants at price p > 0

per share. Let x be the number of shares purchased. We will also assume that the individual can “go

short” in the project; that is, he can choose a negative value for x. If he goes short, then for every

share he is short he receives p now and must pay R if state S occurs and 0 if state F occurs. The

individual is a subjective expected utility maximizer who likes money and who is risk averse.

(a) Write the individual’s decision problem as a maximization problem.

(b) Suppose that the individual chooses x = 0. What can you say about his subjective probabilities

of states S and F relative to p and R ?

(c) Suppose now that “going short” is prohibited. That is, the individual’s choice must satisfy x ≜ 0.

Suppose that some new individual chooses x = 0; we are not looking at a choice made by the

individual who chose 0 even when “going short” was allowed, this is the choice made by a new

risk averse, subjective expected utility maximizer who likes money. What can you say about this

new individual’s subjective probabilities of states S and F relative to p and R ?

1
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In Section notes

Savage’s Subjective Expected Utility

(.) X: set of outcomes

(.) S: set of states

(.) F: set of acts {f |f : S → X}

(.) P: Distribution over states (prior)

(.) ↭: preference relation over F

(.) u : X → R. Utility function.

(.) A = 2
S
. Set of all possible subsets of S.

Example:

S = {1, 2, 3}

A = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, ↑}

Where 1 ↓ S is a sample, and {1, 2} ↓ A is an event.

Some definitions

1. ↔h, f ↓ F ,

f |Ah(s) =
{
f(s) s ↓ A

h(s) s ↗↓ A

2. ↔x, y ↓ X,

xAy =

{
x s ↓ A

y s ↗↓ A

3. ↔f, g ↓ F , f ↭A g, if for some k, f |Ak ↭A g|Ak.

4. Event A is null if ↔f, g ↓ F , f ↭A g.

5. Sets are ordered A ↭ B if and only if there exist an outcome x ↘ y such that xAy ↭ xBy.

Savage Axioms:

P1 The preference relation ↭ on F is rational (complete and transitive).

P2 If f |Ah ↘ g|Ah, then f |Ak ↘ g|Ak ↔k ↓ F .

1



(.) Preferences on acts only depend on where they di!er. Example:

S = {sunny(w1), rainy(w2)}

X = {hiking, sleeping, working}

f =

{
hiking w1

sleeping w2

g =

{
working w1

hiking w2

q =

{
sleeping w1

sleeping w2

If A = {w1}, f |Ag ↘ g|Ag =≃ f |Aq ↘ g|Aq

P3 ↔x, y ↓ X, A non-null, x ↭A y ⇐≃ x ↭ y

P4 For outcomes x ↘ y, x→ ↘ y→ and sets A,B:

xAy ↭ xBy ⇐≃ x→Ay→ ↭ x→By→

Note that xAy ↭ xBy =≃ A ↭ B.

P5 There exist outcomes x ↘ y.

P6 (Small-event continuity) If f ↭ g then for any consequence x there is a partition of S such that on each Si,

f |Sih ↭ g and f ↭ g|Sih.

P7 If f and g are acts and A is an event such that f(s) ↭A g for every s ↓ A, then f ↭A g; and if f ↭A g(s) for
every s ↓ A, then f ↭B g.

If ↭ satisfies axioms P1-P5, we get the theorem that establishes the existence of a SEU,

f ↭ g ⇐≃
∫

u(f(s))dp ⇒
∫

u(g(s))dp

Exercises

Subjective Expected Utility

2014 Final

(a) The individual’s decision problem is,

SEU(x) = max
x↑R

ω(S)u(w ⇑ px+Rx) + (1⇑ ω(S))u(w ⇑ px)

Notice that SEU(X) is concave in x. Since ris averse ⇐≃ u(.) is concave. That also means that

E(U(x)) ⇓ U(E(X)) (Jensen’s Inequality).

(b) From the problem we can infer that x = 0 is optimal.

=≃ εSEU(x)

εx
|x=0= 0

u→
(w ⇑ px+Rx)ω(S)(R⇑ p)⇑ u→

(w ⇑ px)(1⇑ ω(S))p|x=0= 0

=≃ u→
(w)

u→(w)
=

(1⇑ ω(S))p

ω(S)(R⇑ p)

=≃ ω(S) =
p

R



(c) Assuming that ”going short” is prohibited. That is, x ⇒ 0, a new individual that chooses 0 means,

εSEU(x)

εx
|x=0⇓ 0

=≃ ω(S) ⇓ p

R

Otherwise, if
ωSEU(x)

ωx |x=0> 0, we can choose x > 0 and increase our subjective expected utility. Meaning that

x = 0 is not the maximizer.
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Exercises

1. (Qualifying 2022). An individual is o!ered an opportunity to bet on the toss of a coin. The

individual begins with wealth w̄ > 0. If she guesses correctly (the coin lands heads and she

guessed heads or the coin lands tails and she guessed tails), her wealth increases to ωw̄ and if

she guesses wrong her wealth declines to εw̄, where 0 < ε < 1 < ω. Her payo! function for any

amount of wealth, w, is u(w) = ln(w). The individual does not know the probability of heads

(or tails). It could be either 1/3 or 2/3. Lets call the state in which probability of heads is 2/3
state H and the state in which the probability of heads is 1/3 state T . [Note that H and T do

not refer to outcomes of a coin toss. They are states of the world in which heads is more likely

(state H) or heads is less likely (state T ).]

a. Suppose that this person is a subjective expected utility maximizer and that she believes

that the probability of state H is 1/2. The probability of state T is also 1/2. For what

values of ε and ω would she be just indi!erent between accepting and rejecting the bet?

b. Suppose now that this person does not know the probability of states H or T . She does not

have a probability on these states. Instead, this individual is an ambiguity averse decision

maker (of the Gilboa-Schmeidler type). For what values of ε and ω would she be just

indi!erent between accepting and rejecting the bet?

c. One of your colleagues states that: In part (a) your answer would have been una!ected by

changing the probability of heads in state H to 9/10 and probability of heads in state T

to 1/10. (And of course keeping the subjective probability of state H at 1/2.) But for the

ambiguity averse agent in part (b) this change would change the answer to question (b).

That is, changing the probability of heads in state H to 9/10 and probability of heads in

state T to 1/10 would change the answers for an ambiguity averse agent.

Is your colleague’s claim correct? Explain. It is not enough to just repeat the equations

as an explanation. You need to provide an explanation in words of why your colleague’s

observation is correct or incorrect.

1



2. (Final 2021)

a. An individual is o!ered an opportunity to bet on the flip of a coin. The outcome of the

flip will be Heads or Tails. If the individual bets on H and H occurs or T and T occurs

the individual wins $1, if the bet is on H and T occurs or if it is on T and H occurs the

individual loses $1. So a correct bet wins $1 and an incorrect bet loses $1. If the individual

does not bet there is no change in wealth. The probability of H occurring is 1/3 in state

A and 3/4 in state B. The individual does not know the true state. This individual is a

subjective expected utility maximizer with probability of 1/2 on each of the states, A and

B. The individual is risk neutral, i.e., the utility function defined on wealth, w, is u(w) = w.

Will the individual bet and if so will the bet be on H or on T ? Explain or prove your answer.

b. In the setup of the problem above suppose that the individual is Gilboa-Schmeidler ambigu-

ity averse person. Everything is the same as the setup above except that the individual does

not have a prior on states and is ambiguity averse rather than being a SEU maximizer. The

range of probabilities on state A that the individual consider to be possible is [1/3, 2/3].
Will this individual bet? Explain or prove your answer.

2
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In Section notes

Subjective Expected Utility: Anscombe-Aumann

1. S: States.

2. X: Outcomes.

3. P: All possible distributions over X.

4. H: acts1 = {h|h : S → P}.

5. ω: prior/belief over states.

SEU: one belief ω ↑ !(S) = P

SEU(h) =
∑

s→S

ω(s)
∑

x→X

h(x|s)u(x)

Objective: maxh SEU(h).

Beyond SEU (Gilboa-Schmeidler type)

We only have a set of beliefs Q. We want to max-min the utility.

max
h

{min
ω→Q

[
∑

s→S

ω(s)
∑

x→X

h(x|s)u(x)]}

Exercises

(Qualifying 2022)

We know

- h: bet on head

- t: bet on tail

- n: do not bet

We define our states as S = {H,T}, and our acts as, Acts = {h, t, n}. Then,

P (head|H) =
2

3

P (tail|T ) = 2

3

(a) If ω(T ) = ω(H) = 1
2 , we have the following scenarios,

1Reminder that in in the Savage famework, h : S → X

1



1) Accept bet on head:

SEU(h) = ω(H)[P (head|H)u(εw) + P (tail|H)u(ϑw)] + ω(T )[P (head|T )u(εw) + P (tail|T )u(ϑw)]

SEU(h) =
1

2
[
2

3
ln(εw) +

1

3
ln(ϑw)] +

1

2
[
1

3
ln(εw) +

2

3
ln(ϑw)]

=
1

2
ln(εϑw2)

2) Accept bet on tail:

SEU(t) =
1

2
[
1

3
ln(εw) +

2

3
ln(ϑw)] +

1

2
[
2

3
ln(εw) +

1

3
ln(ϑw)]

=
1

2
ln(εϑw2)

3) Do not bet:
SEU(n) = u(w) = ln(w)

Therefore, the person would be indi”erent between accepting and rejecting the bet when,

SEU(n) = max{SEU(t), SEU(h)}

Which means,

ln(w) =
1

2
ln(εϑw2)

=↓ ϑε = 1

(b) Now the individual is an ambiguity averse decision maker (Gilboa-Schmeidler type). This means that the
individual wants to minimize uncertainty by analizing the worst case scenario. The problem becomes,

SEU(h) = min
ω(H)→[0,1]

ω(H)[
2

3
ln(εw) +

1

3
ln(ϑw)] + (1↔ ω(H))[

1

3
ln(εw) +

2

3
ln(ϑw)]

=
1

3
ln(εw) +

2

3
ln(ϑw)

That is the case when ω(H) = 0. Similarly,

SEU(t) =
1

3
ln(εw) +

2

3
ln(ϑw)

And,
SEU(n) = ln(w)

Therefore, the person would be indi”erent between accepting and rejecting the bet when,

SEU(n) = max{SEU(t), SEU(h)}

Which means,

ln(w) =
1

3
ln(εw) +

2

3
ln(ϑw)

=↓ (ϑ2
ε)

1
3 = 1

=↓ ϑ
2
ε = 1

(c) If we change ω(H) from 1
2 to 1

9 in part (a), we get,

SEU(h) =
1

2
[
9

10
ln(εw) +

1

10
ln(ϑw)] +

1

2
[
1

10
ln(εw) +

9

10
ln(ϑw)]

=
1

2
ln(εϑw2)



And indi”erence between betting and not betting implies,

ϑε = 1

Which is the same result as we got in part (a).
Now, if we change ω(H) from 1

2 to 1
9 in part (b), we get,

SEU(h) =
1

10
ln(εw) +

9

10
ln(ϑw)

And indi”erence implies,
ϑ
9
ε = 1

Which is larger than the result we got in part (b). This happens because now the worst case scenario
”becomes worst” in the sense that it is more likely to happen.

(Final 2021)

(a) If ω(A) = ω(B) = 1
2 , we have the following scenarios,

1) Accept bet on head:

SEU(H) = ω(A)[P (head|A)u(w+1)+P (tail|A)u(w↔1)]+ω(B)[P (head|B)u(w+1)+P (tail|B)u(w↔1)]

SEU(H) =
1

2
[
1

3
(w + 1) +

2

3
(w ↔ 1)] +

1

2
[
3

4
(w + 1) +

1

4
(w ↔ 1)]

SEU(H) = w +
1

12
2) Accept bet on tail:

SEU(T ) = ω(A)[P (head|A)u(w↔1)+P (tail|A)u(w+1)]+ω(B)[P (head|B)u(w↔1)+P (tail|B)u(w+1)]

SEU(T ) =
1

2
[
1

3
(w ↔ 1) +

2

3
(w + 1)] +

1

2
[
3

4
(w ↔ 1) +

1

4
(w + 1)]

SEU(T ) = w ↔ 1

12
3) Do not bet:

SEU(n) = u(w) = w

Since,

SEU(n) = w < w +
1

12
= max{SEU(H), SEU(T )}

The individual will bet. Specifically, on H.

(b) Now that the individual is a Gilboa-Schmeidler ambiguity averse person2, the problem becomes,

SEU(H) = min
ω(A)→[1/3,2/3]

ω(A)[
1

3
(w + 1) +

2

3
(w ↔ 1)] + (1↔ ω(A))[

3

4
(w + 1) +

1

4
(w ↔ 1)]

The expression is minimized when ω(A) = 2/3,

SEU(H) =
2

3
[
1

3
(w + 1) +

2

3
(w ↔ 1)] +

1

3
[
3

4
(w + 1) +

1

4
(w ↔ 1)]

= w ↔ 1

18
And,

SEU(T ) = min
ω(A)→[1/3,2/3]

ω(A)[
1

3
(w ↔ 1) +

2

3
(w + 1)] + (1↔ ω(A))[

3

4
(w ↔ 1) +

1

4
(w + 1)]

= w ↔ 2

9
Since,

SEU(n) = w > w ↔ 1

18
= max{SEU(H), SEU(T )}

The individual will not bet.

2The person analyzes worst case scenario.



ECON 6090 - TA Section 11

Feiyu Wang & Yuxuan Ma

November 15, 2024

Exercise - MWG 6.C.15

Assume that, in a world with uncertainty, there are two assets. The first is a riskless asset that pays

1 dollar. The second pays amounts a and b with probabilities of ω and 1⌐ ω, respectively. Denote the

demand for the two assets by (x1, x2).
Suppose that a decision maker’s preferences satisfy the axioms of expected utility theory and that he

is a risk averter. The decision maker’s wealth is 1, and so are the prices of the assets. Therefore, the

decision maker’s budget constraint is given by

x1 + x2 = 1, x1, x2 ≜ [0, 1]
a. Give a simple necessary condition (involving a and b only) for the demand for the riskless asset

to be strictly positive.

b. Give a simple necessary condition (involving a, b and ω only) for the demand for the risky asset

to be strictly positive.

c. From now on assume the conditions in (a) and (b) are satisfied. Write down the first order

conditions for utility maximization in this asset demand problem.

d. Assume that a < 1. Show by analyzing the first order conditions that dx1

da
∈ 0.

e. Which sign do you conjecture for dx1

dω
? Give an economic interpretation.

f. Can you prove your conjecture in (e) by analyzing the first order condition?

1
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Exercise

MWG 6.C.15

The problem can be written as,

max
x1,x2

EU(x1, x2) = maxx1,x2ωu(x1 + ax2) + (1→ ω)u(x1 + bx2)

Subject to

x1 + x2 = 1

x1, x2 ↑ [0, 1]

If we substitute x1 = 1→ x2, we get,

max
x2→[0,1]

EU(x1, x2) = maxx2→[0,1]ωu(1→ x2 + ax2) + (1→ ω)u(1→ x2 + bx2)

(a) Since the decision maker is a risk averter, u↑↑
(.) ↓ 0.

εEU(x2)

εx2
= ωu↑

(1→ x2 + ax2)(a→ 1) + (1→ ω)u↑
(1→ x2 + bx2)(b→ 1)

ε2EU(x2)

εx2
2

= ωu↑↑
(1→ x2 + ax2)(a→ 1)

2
+ (1→ ω)u↑↑

(1→ x2 + bx2)(b→ 1)
2 ↓ 0

One necessary condition for the demand for the riskless asset to be strictly positive is,

εEU(x2)

εx2
|x2=1< 0

Therefore,

εEU(x2)

εx2
|x2=1= ωu↑

(1→ x2 + ax2)(a→ 1) + (1→ ω)u↑
(1→ x2 + bx2)(b→ 1)|x2=1< 0

=↔ ωu↑
(a)(a→ 1) + (1→ ω)u↑

(b)(b→ 1) < 0

Being a su!cient and necessary condition due to concavity.

Alternatively, a simple necessary condition is min{a, b} < 1.

(b) One necessary condition for the demand of the risky asset to be strictly positive is,

εEU(x2)

εx2
|x2=0> 0

=↔ ω(a→ 1) + (1→ ω)(b→ 1) > 0

(c) First order condition for the utility maximization,

εEU(x2)

εx2
= ωu↑

(1→ x2 + ax2)(a→ 1) + (1→ ω)u↑
(1→ x2 + bx2)(b→ 1) = 0

1



(d) Notice that x1 = 1→ x2 =↔ dx1 = →dx2, so,

dx1

da
↓ 0 ↗↔ dx2

da
↘ 0

Then,

d

da

(
ωu↑

(1→ x2 + ax2)(a→ 1) + (1→ ω)u↑
(1→ x2 + bx2)(b→ 1)

)
= 0

ω(a→ 1)u↑↑
(1→ x2 + ax2)(→

dx2

da
+ x2 + a

dx2

da
) + ωu↑

(1→ x2 + ax2) + (1→ ω)u↑↑
(1→ x2 + bx2)(b→ 1)

2 dx2

da
= 0

=↔ dx2

da
= → ω(a→ 1)u↑↑

(1→ x2 + ax2)x2 + ωu↑
(1→ x2 + ax2)

ω(a→ 1)2u↑↑(1→ x2 + ax2) + (1→ ω)u↑↑(1→ x2 + bx2)(b→ 1)2

A particular analysis of the signs of the ratio above taking into account that u↑↑
(.) ↓ 0 and a < 1, gives,

dx2

da
↘ 0

(e) Since ω is the probability of getting a payment of a on the risky asset, and we know a < 1, the larger pi gets,
the more we will invest in the riskless asset instead, therefore

dx1
dω > 0.

(f) In this case we take derivative of ω on FOC.

u↑
(1→ x2 + ax2)(a→ 1) + ω(a→ 1)u↑↑

(1→ x2 + ax2)(→
dx2

dω
+ a

dx2

dω
)→ (b→ 1)u↑

(1→ x2 + bx2)

+(1→ ω)(b→ 1)u↑↑
(1→ x2 + bx2)(→

dx2

dω
+ b

dx2

dω
) = 0

u↑
(1→ x2 + ax2)(a→ 1)→ (b→ 1)u↑

(1→ x2 + bx2) + ω(a→ 1)
2u↑↑

(1→ x2 + ax2)
dx2

dω

+(1→ ω)(b→ 1)
2u↑↑

(1→ x2 + bx2)
dx2

dω
= 0

[
(1→ω)(b→1)

2u↑↑
(1→x2+bx2)+ω(a→1)

2u↑↑
(1→x2+ax2)

]
dx2

dω
= (b→1)u↑

(1→x2+bx2)→u↑
(1→x2+ax2)(a→1)

=↔ dx2

dω
=

(b→ 1)u↑
(1→ x2 + bx2)→ u↑

(1→ x2 + ax2)(a→ 1)

(1→ ω)(b→ 1)2u↑↑(1→ x2 + bx2) + ω(a→ 1)2u↑↑(1→ x2 + ax2)

=↔ dx2

dω
↓ 0

=↔ dx1

dω
> 0


