
Appendices

This Appendix is in two parts: Section A presents a series of variants and extensions to our
baseline analysis, while Section B presents proofs of all claims in the paper. Within the Sec-
tion A we present: (i) the case where only misinformed agents are sophisticated, completing
the analysis in Section 4.2; (ii) a variant model in which the misinformed overvalue the public
good; (iii) an extension in which agents are heterogeneous in their sensitivity to information;
(iv) an extension in which agent incomes are drawn from a continuous distribution; (v) an
extension in which agents have non-degenerate priors and update beliefs according to Bayes’
Rule; and (vi) an extension with a voting rule that selects a focal policy whenever Condorcet
cycles arise.

A Extensions and Variants

A.1 Equilibrium when Only Misinformed Agents are Sophisti-
cated

In this subsection, we complete the analysis in Section 4.2 by considering the third case, where
the misinformed are sophisticated and the informed are myopic. The equilibrium, here, is
analogous to that in the first part of Proposition 3, since the condition τLM ≤ τHI = τHI is
trivially satisfied.

Similar to Section 4.2.2, the misinformed (both rich and poor) perceive themselves to benefit
from learning, as it transfers political power from the informed rich to the misinformed poor
(who demand less of the public good). However, unlike in that section, the informed rich do
not perceive learning as detrimental to their interests, as they are myopic. Thus, when only
the misinformed are sophisticated, no faction will actively seek to prevent learning.

We know that the equilibrium policy in the static baseline is τHI . If τ † ≤ τHI , then the static
equilibrium will automatically generate learning, and so there will be no distortion in the
dynamic game. By contrast, if τ † > τHI , then the misinformed may seek to upwardly distort
policy to induce learning that would otherwise not happen. Naturally, their willingness to
do so depends on a trade-off between the first period cost of distorting against the perceived
second period benefit from having political power shift in their favor.
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As before, let τLM denote the highest policy (i.e. the most distorted policy) acceptable to
the misinformed poor that induces learning, assuming that the static benchmark policy τHI
does not. τLM is formally characterized by equation (4) in section 4.2.2.

Proposition 4. Suppose the divergence in beliefs is large (i.e. AI

AM
> yH

yL
), and that only

misinformed agents are sophisticated. Then there exists τ̃ , with τHI ≤ τ̃ < τLM such that
the equilibrium first period policy is given by:

τ ∗1 (τ
†) =



τHI if τ † ≤ τHI

τ † if τHI < τ † < τ̃

No Majority Winner if τ̃ < τ † ≤ τLM

τHI if τ † > τLM

The behavior of the equilibrium is analogous to that in Proposition 3, and is accordingly
summarized in the left panel of Figure 3. The possibility of strategic policy making arises
when τ † ∈ (τHI , τLM); otherwise the static benchmark will obtain. When strategic incentives
are at play, there are two possibilities. When the distortion necessary to induce learning is
small (formally if τ † < τ̃), then τ † is a stable policy. By contrast, when this distortion is large,
policy becomes unstable. To see why, note that a (majority) coalition of the misinformed
and the informed poor will support replacing τHI with τ † whenever τ † ≤ τLM . If τ † is not
too large (i.e. τ † < τ̃), this policy will be stable. By contrast, if τ † > τ̃ so that the required
distortion is large, then a (majority) coalition of the misinformed poor and the informed rich
will support replacing τ † with some τ ′ < τHI which does not induce learning, but implies a
much lower first period policy distortion. And a majority coalition of the informed would
replace this policy with τHI . A Condorcet cycle exists.

We end this subsection by noting, as in the previous cases, that the insights here are robust to
allowing some of the misinformed to be myopic or some of the informed to be sophisticated.
All that is required is that the measure of sophisticated misinformed poor is sufficiently large
that they, along with informed poor, jointly constitute a majority.

A.2 Agents Overvalue the Public Good

Crucial to our baseline analysis was the assumption that misinformed agents undervalued
the public good. What if they instead overvalued it, so that AM > AI? With this change,
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there will neither be policy distortion, nor will policy evolve endogenously. And this will be
true regardless of any assumptions we make about which agents are sophisticated.

To see why, notice that (depending on whether the divergence in beliefs is high or not, relative
to the difference in incomes) there are two possible arrangements of effective incomes: (i)
xHI < xLI < xHM < xLM , or (ii) xHI < xHM < xLI < xLM . Then, since the informed are
a majority, and the poor are a majority, in both cases the median effective income earner
must be an informed poor agent.

Two insights are worth noting. First, if all agents are myopic, then the first period policy
will be τLI — the static ideal policy of the informed poor. Moreover, this policy will repeat
in the second period, regardless of whether the policy begets learning or not. (The informed
poor will be pivotal either way.) Though learning affects the beliefs of various agents in the
polity, it does not affect the beliefs (or identity) of the median voter. Hence, there is no
natural tendency for policy to evolve.

Second, sophistication will not change this basic dynamic. If the informed agents are so-
phisticated, they understand that learning has no dynamic effect on policy, so despite their
sophistication, they express the same preferences as if they were myopic. By contrast, the
misinformed agents, when sophisticated, may see an incentive to upwardly distort policy to
beget learning and shift political power away from the informed poor (whom they perceive
to be misinformed). But such policies will never be majority winners, since the informed
agents (who together constitute a majority) will always prefer a policy closer to τLI . Thus,
the informed poor’s ideal policy will be the majority winner, no matter whether agents are
sophisticated or myopic (or any mixture of the two).

What is going on? The underlying tension between the policy preferences of the rich and
poor is unchanged — the rich want fewer public goods than the poor. However, when the
misinformed overvalue the public good, they demand more of it — effectively behaving as if
they were poorer than they are. The misinformed poor and the informed rich are no longer
natural allies — in fact, they seek to pull policy in opposite directions. This secures (rather
than undermines) the political power of the informed poor.

In the analysis so far, we have retained the assumptions that informed agents constitute
a majority, and that the poor have a higher demand for the public good than the rich.
Modifying these assumptions can generate different dynamics. First, suppose that the opti-
mistically misinformed constitute a majority, and for concreteness, suppose the informed are
sophisticated and the misinformed are naive. If so, it may be that a misinformed poor agent
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is pivotal in the first period, and will seek to implement their (perceived) ideal stage policy.
If that policy begets learning, then the informed poor (who have a lower demand) will be
pivotal in the second period. There will be policy reversal rather than policy momentum.
Several recent examples, where a policy was implemented with majority support only to be
subsequently rolled back or regretted, plausibly fit this scenario — amongst them, the ‘war
on terror’ in the 2000s and Brexit.

Second, suppose that the informed are a majority, but that the poor have a lower demand
for the policy than the rich. (When the policy in question relates to provision of public
goods this might seem implausible, but in other contexts, the eagerness for reform may
be switched. For example, the rich might have a greater incentive to support policies that
expand the military industrial complex than the poor.) Again, suppose that the misinformed
are optimistic. Then, the ordering of ideal policies is either τLI < τHI < τLM < τHM or
τLI < τLM < τHI < τHM , which is exactly the opposite ordering that arose in Section 4. In
the stage game with optimistically misinformed agents, the informed rich are able to enjoy a
higher policy than they would under the complete information benchmark. Thus, mirroring
the logic from that section, equilibria may arise in which the informed rich strategically
under-provide the policy, to prevent learning and a future roll-back of policy.

A.3 Heterogeneous Sensitivities to Information

Amongst the starker features of our baseline model was the assumption that all agents were
equally sensitive to information, sharing a common learning parameter µ. In this section,
we show that this assumption was entirely benign, and that all of our results will continue
to hold even if we allowed agents to be heterogeneously sensitive to information.

We adapt our baseline in the following way: Each agent is now characterized by a triple
(y, A, µ), where y ∈ {yL, yH} is the agent’s income, A ∈ {AI , AM} is the agent’s belief (either
correct or incorrect) with AM < AI , and µ > 0 is the agent’s sensitivity to information. Let
ϕi denote the proportion of agents that that have income yi where i ∈ {L,H}, and let γi
denote the proportion of agents with income yi that are initially correctly informed. As in
the baseline model, we assume that ϕL > 1

2
, γi > 1

2
for each i, but that ϕLγL < 1

2
. This

ensures that a majority of agents are poor, and a majority are initially informed, but the
informed poor are a minority. Additionally, suppose each agent’s information sensitivity µ

is a draw from a (possibly income contingent) continuous distribution Fi(µ) with positive
support.
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Given a first period policy τ , the set of misinformed agents who update their beliefs are
those with µ < M(τ) = (AI − AM) ln(τy). In the baseline, learning was all-or-nothing —
either all misinformed agents learned, or none did. Now, generically, a fraction Fi(M(τ)) of
misinformed agents with income yi will learn, given a policy τ . Moreover, the larger is τ ,
the greater the measure of agents who will learn.

In the baseline model, we showed that a sophisticated group of agents may have an incentive
to manipulate policy to either ensure or prevent learning, in order to affect which group
had political power in the second period. That basic incentive continues to exist here.
For concreteness, suppose that the informed rich are initially pivotal, and suppose that
misinformed agents are myopic. Let τ † denote the threshold policy beyond which sufficiently
many misinformed agents will learn, and the informed poor will become pivotal. τ † is defined
implicitly by:

ϕL[γL + (1− γL)FL(M(τ †))] =
1

2

In the baseline analysis τ † was the threshold policy beyond which all misinformed agents
would learn (which ensured that the informed poor would become pivotal). In the extension,
τ † is now the threshold policy beyond which just enough of the misinformed agents would
have learned, to effectuate a transfer of political power to the informed poor. The all-or-
nothing feature of our baseline analysis kept the analysis simple, but nothing turned on
the assumption that all, rather than most, agents learned. With partial learning, what is
important is that either sufficiently few agents learn (if the goal is to prevent a transfer of
power) or that sufficiently many agents learn (if the goal to ensure the transfer). Having
identified τ †, all the results from the baseline analysis continue to hold exactly. For example,
as in Proposition 2.A, the informed rich will trade-off the future benefit of retaining political
power against the current loss from distorting policy, and thus only distort if τ † is close
enough to τHI .

A.4 Continuous Distribution of Incomes

Another stark feature of our baseline model was the assumption that there were only two
income types. In this section, we show that this assumption is again benign, and that our
results will continue to hold even if incomes were drawn from a continuous distribution.

We adapt the model in Appendix A.3 in the following way. As before, each agent is either
correctly informed or misinformed, having beliefs A ∈ {AI , AM} with AM < AI . As in the
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baseline, all agents share a common sensitivity to information µ > 0. In the extension,
each agent’s income y is an independent draw from a continuous (possibly belief-contingent)
distribution Fj(y) with support on (a subset of) the positive reals, where j ∈ {I,M}. (This
allows for the income distributions to differ between the (initially) informed and misin-
formed.) Let γ > 1

2
denote the proportion of agents who are (initially) informed. Then

F (y) = γFI(y) + (1− γ)FM(y) is the unconditional distribution of incomes.

Let ymed denote the median income earner; F (ymed) = 1
2
. Let G(x) denote the distribution of

effective incomes. Recall that the effective income of an informed agent is simply their true
income, whilst a misinformed agent with income y has effective income x = AI

AM
y. Then:

G(x) = γFI(x) + (1 − γ)FM

(
xAM

AI

)
. Notice that G(x) ≤ F (x) for all x; G first order

stochastically dominates F , so that the distribution of effective incomes is ‘higher’ than the
distribution of true incomes. Let xmed denote the median effective income; G(xmed) = 1

2
.

Stochastic dominance implies that xmed > ymed. As we will see, the political contest reduces
to one between agents with effective incomes above xmed and below ymed, respectively. Thus
xmed and ymed will take the roles of yH and yL from the baseline model.

For concreteness, we focus on the scenario analogous to Section 4.2.1, in which the informed
are sophisticated and the misinformed are myopic; where the slippery slope dynamic was
most likely to arise. As in the baseline model, learning is all-or-nothing; either all misin-
formed agents learn (regardless of income) or none do. Political power initially rests with
agents with effective income xmed. However, if there is learning, a type (ymed, AI) agent will
become pivotal. This creates a strategic incentive for informed agents with higher incomes
to manipulate policy, to prevent learning and political power from shifting.

Denote by τx = τ ∗(xmed, AI) the ideal stage policy of agents with effective income xmed, and
similarly define τy = τ ∗(ymed, AI). These are analogous to τHI and τLI in the baseline model.

Proposition 5. There exist thresholds τ̃2 ≤ τ̃1 < τx such that:

τ ∗1 (τ
†) =



τx if τ † ≤ τ̃2

No Majority Winner if τ̃2 < τ † ≤ τ̃1

τ † if τ̃1 < τ † ≤ τx

τx if τ † > τx

If τ̃2 = τ̃1, then policy is never unstable.

Proposition 5 is identical to Propositions 2.A and 2.B. When τ † > τx, the pivotal agent can
implement her stage-game ideal policy without fear of inducing learning. When τ † ≤ τ̃2,
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the distortion required to prevent learning is so large as to deter the pivotal sophisticated
agent from behaving strategically; instead, she implements her ideal stage policy and cedes
political power. Strategic voting occurs when τ † ∈ (τ̃2, τx). If so, a coalition of the (effective)
rich would prefer to prevent learning by implementing τ † than to implement the stage-game
ideal τx and cede political power. Indeed, if τ † ∈ (τ̃1, τx) so that the require distortion is
small, this policy is the stable equilibrium policy. However, when the necessary distortion
is larger, a different coalition will replace τ † with a more moderate policy τ ′ ∈ (τ †, τx) that
induces learning. (This is analogous to the situation that arises in Proposition 2.B when
τ † < τLM .) This will generate a Condorcet cycle, and unstable policy making.

A.5 Non-Degenerate Priors

In the baseline model, we considered a stark information environment in which the agents’
beliefs were concentrated at a single point. In this section, we show that the key insights of
the model will continue to hold in a more standard Bayesian setting, where agents’ beliefs
are represented by a non-degenerate prior distribution.

We modify the baseline setup (with two income groups, two information types, and common
sensitivity to information) in the following way: Let FI(A) and FM(A) be continuous cu-
mulative distribution functions that represent the (non-degenerate) beliefs of informed and
misinformed agents, respectively, about the value of the public good A.1 Let AI denote the
true value of A. We assume that the true belief AI is in the support of both distributions.
Further, suppose that EFI

[A] = AI and EFM
[A] = AM < AI , so that the informed have

unbiased beliefs, whereas the misinformed have beliefs that are systematically downwardly
biased.2 This mirrors the setup in the baseline model.

Start with the stage game. Since A enters each agent’s preferences linearly, expected stage
utility is simply the utility associated with the agent’s expected belief. We have:

EFj
[v(τ ; yi, A)] = (1− τ)yi + EFj

[A] ln(τy) = v(τ ; yi, Aj)

where i ∈ {H,L} and j ∈ {I,M}. Thus, the stage preferences in a game with non-degenerate
beliefs are identical to those in a game with degenerate beliefs (concentrated at the mean
of the non-degenerate distribution). Moreover, since unsophisticated agents express stage

1. These beliefs may themselves be interim beliefs, after the receipt of an (unmodeled) signal about A,
where the informed types receive an unbiased signal and the misinformed types receive a pessimistic one.

2. To be clear, as the modeler, we understand that the average belief of the informed agents coincides
with the truth. But the informed agents themselves do not know this. They merely assign some probability
to this being the case.
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game preferences in the first period, and all agents express stage game preferences in the
second period, those preferences remain unchanged from the baseline.

Now introduce learning. We adopt a learning dynamic that is close in spirit to that in the
baseline. We retain our assumption that agents do not learn from acquaintance unless the
policy generates salient differences from what the agent was expecting, given her prior. Thus,
a type j ∈ {I,M} agent will learn if:

|AI − EFj
[A]| ln(τy) > µ

Moreover, since there is a one-to-one relationship between the true A and an agent’s actual
utility, we assume that, in observing her true utility, the agent perfectly learns the true value
of A. Thus, when learning occurs, it is complete, and the agent’s posterior places all weight
on AI . By contrast, if the policy does not generate salient utility differences, then the agent
retains her prior belief.3 With these assumptions, it is clear that the informed will never
learn (though they will always have correct beliefs on average), whilst the misinformed will
learn whenever the policy τ lies above the threshold τ † from the baseline model. Indeed, all
of the Section 3 results will continue to hold in this setting.

So far, modifying to a Bayesian framework has not affected our results. Differences arise
when we consider the preferences and incentives for sophisticated agents in the first period.
For concreteness, take the case most amenable to generating a slippery slope dynamic —
where misinformed agents are myopic and informed agents are sophisticated. The fact that
the informed agents do not know the true A precisely introduces two complications.

The first complication is that informed agents may have an incentive to distort policy to
make their own learning more likely. This incentive is strongest for the informed poor, since
learning both facilitates the transfer of political power in their direction, and enables future
policy to be more finely tailored to the true A. By contrast, for the informed rich, these
incentives are in conflict. Retaining the spirit of the baseline model, we assume that learning
poses a net harm to the informed rich. Notice that the benefit of a more finely tailored policy
will be strongest when the true A is far from what the informed agents expect. It suffices,
then, to restrict the beliefs of the informed to be sufficiently concentrated around AI , so
that the informed rich put probability zero on learning being beneficial.4 Additionally, we

3. An alternative assumption would be that the agent learns that the true A lies within an interval around
E[A]; formally that A ∈

[
EFj

[A]− µ
τy , EFj

[A] + µ
τy

]
. But this alternative assumption violates the spirit of

the story that agents are inattentive to policies that are roughly consistent with their prior beliefs.
4. Formally, let the support of FI be [A,A] (with AI < AI < AI). We assume that

v
(

EFI
[A]

yH
; yH , EFI

[A]
)
≥ v

(
A
yL

; yH , A
)

for all A ∈ [A,A]. Hence, no matter what is learned ex post, the the
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suppose µ is sufficiently large that, for any policy that might be implemented in equilibrium,
the informed agents will not foresee themselves directly updating their beliefs.5 Thus, as in
the baseline model, the role of learning is entirely focused on updating by the misinformed.

The second complication is that, within this framework, learning by the misinformed gener-
ates a role-reversal — the (initially) misinformed will perfectly learn A, whilst the (initially)
informed, will continue to be uncertain about its true value. Moreover, although the (ini-
tially) informed do not directly learn themselves, since they are sophisticated, they will
observe that the (initially) misinformed have learned through their changing behavior. How
then should we assess the preferences of the (initially) informed? Should they continue to as-
sess policies according to their prior? (That would require some sort of myopia on their part.)
Or should they update their beliefs according to how they observe the (initially) misinformed
change their behavior? We take the latter approach, assuming that whenever the informed
agents notice that the misinformed have learned, that they update beliefs themselves.

With these assumptions, we are ready to characterize the optimal behavior of the informed
rich. Define A†(τ) = AM + µ

ln(τy)
. Given a policy τ , the misinformed will learn if A >

A†(τ). Since the (initially) informed do not know A precisely, they will not know whether
a given policy τ will induce learning or not (i.e. whether the true A will lie above or below
A†(τ)). From their perspective, learning by the (initially) misinformed will appear stochastic.
Accordingly, the (initially) informed will choose policies assessing the likely second period
outcomes that will follow.

The expected lifetime utility of the informed rich from a generic policy τ is:

v(τ ; yH , AI)+β

(∫ max{AI ,A
†(τ)}

AI

v(τLI ; yH , AI)dFI(A) +

∫ AI

min{A†(τ),AI}
v(τHI ; yH , AI)dFI(A)

)
(1)

This expression is in three parts. The first part represents first period utility given a policy τ .
The second and third terms (enclosed by parentheses) represent the expected second period
utility, where the first period policy either does or does not induce learning.

The first order condition is:

−yH +
AI
τ

− β∆(yH , A
†(τ))︸ ︷︷ ︸

<0

·
(
− µ

τ [ln(τy)]2

)
︸ ︷︷ ︸

<0

fI(A
†(τ)) = 0

informed rich always do better to retain political power and implement their ex ante ideal policy, than to
cede political power, and have a more finely tailored policy implemented by the informed poor.

5. It suffices that µ > max{AI −AI , AI −AI} ln
(
AI

y
yL

)
.
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where ∆(yH , A) = A[ln(τ(yL, A)) − ln(τ(yH , AI))] − (τ(yL, A) − τ(yH , AI)]yH is the utility
loss that the informed rich suffer after learning that the true value of public goods is A.

The first order condition is in two parts. The first two terms represent the net marginal
benefit (to first period utility) of increasing τ . The third term represents the contribution
to second period utility. It is itself the product of two terms. The first, β∆(yH , A

†), is the
discounted loss that the informed rich suffer from learning if the true A is A†. The second
is the probability that a marginal increase in τ will induce learning. Notice that β∆(yH , A)

was precisely the loss from learning that the informed rich suffered in the baseline model;
the only difference here is that it is received probabilistically. It is straightforward to see
that the second period component of marginal utility is weakly negative — hence, as in the
baseline model, fear of the slippery slope will induce the informed rich to support policies
below their stage game ideal, to strategically (though stochastically) prevent learning.

Let τ(µ) and τ(µ) be implicitly defined by the conditions: A†(τ) = AI and A†(τ) = AI . τ is
the highest policy for which learning will definitely not occur, and τ is the lowest policy for
which it definitely will. If τ ∈ (τ , τ), then informed rich will be uncertain whether learning
will occur or not.

Let τ̂(µ) be the solution to the problem in (5), where τ is constrained to be in the interval
τ ∈ [τ(µ), τ(µ)]. We can show that τ̂ < τHI whenever A†(τHI) < A. Define µ = (AI −
AM) ln(τHIy). Finally, to avoid the problem of Condorcet cycles that arose in Proposition
2.B, we suppose that τ ≥ τLM . (This is analogous to the assumption in Proposition 2.A that
τHI ≥ τLM .)

Proposition 6. Suppose that informed agents are sophisticated and that the (average) di-
vergence in beliefs is large so that the the informed rich are initially pivotal. There exists a
threshold µ < (AI − AM) ln(τHIy) such that the equilibrium first period policy satisfies:

τ ∗1 =


τHI if µ < µ

τ̂(µ) if µ ∈ (µ, µ)

τHI if µ > µ

Proposition 6 mirrors Proposition 2.A from Section 4.2.1. If at their ideal stage policy, the
informed rich believe that learning will definitely not occur, then they will provide their
ideal policy τHI . Analogous to Proposition 2.A, this will occur if either µ (or analogously
τ † in Proposition 2.A) is sufficiently high. If at their ideal policy, learning is guaranteed,
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and the distortion needed to prevent (or reduce the chance of) learning is sufficiently large,
then the informed rich will provide their stage-ideal policy and concede political power. For
intermediate cases, the informed rich will downwardly skew policy, to reduce (though not
necessarily eliminate) the probability of learning and transfer of political power. Finally, if
we allowed τ < τLM , then similar to Proposition 2.B, a Condorcet cycle may exist.

The purpose of this section was to demonstrate that our baseline results would broadly con-
tinue to hold under a more standard learning technology. Clearly, given the above analysis,
our baseline results were not merely an artifact of our special learning technology – they
capture a dynamic that remains present under alternative modelling assumptions. Natu-
rally, there are opportunities to modify the learning technology in other ways. For example,
rather than observing her true utility, we might instead posit that agents receive one of three
signals: either utility is roughly what was expected, that it was significantly below what was
expected, or that it was significantly above what was expected. This would make learning
more coarse. And the complications we discussed above about what the sophisticated agents
impute about what is learned by the misinformed will manifest even more strongly. Never-
theless, we expect that the underlying dynamic that we highlight will continue to be present,
though perhaps muddied by these other considerations.

A.6 Plugging Condorcet Holes

In our baseline model, the preferences of sophisticated agents were not always single-peaked,
and this occasionally resulted in the emergence of Condorcet cycles. In this section, we
explore methods that identify a clear equilibrium policy even when a Condorcet winner fails
to exist. We focus on ‘Condorcet methods’: those that select the majority winner whenever
it exists.6 Thus, these results will always agree with our baseline results whenever those
predicted a stable equilibrium policy.

For concreteness, we consider the scenario in Proposition 2B, where the informed are so-
phisticated and the misinformed are not, and where τ † < τLM < τHI . As before, assume
that both the informed rich and misinformed poor strictly prefer τ † to τHI . If so, then by
Proposition 2B, we know that no majority winner exists.

6. A different approach would be to introduce probabilistic voting (see Lindbeck and Weibull (1987) and
Persson and Tabellini (1999)). However, the equilibrium policy with probabilistic voting need not coincide
with the majority winner when it exists. Moreover, given the discontinuities in the lifetime utilities of
sophisticated agents, equilibria in pure strategies are not guaranteed to exist.
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The methods we consider will require voters to provide a ranking over a set of alternatives,
rather than merely vote for their most preferred policy — which is a departure from the
baseline model. (In particular, the behavior of political parties within the election mechanism
becomes less clear.) In the analysis that follows, we assume that voters always sincerely rank
the available outcomes. To simplify the analysis, we will assume that the misinformed rich
are a negligible fraction of the voting population (though the methods do not rely on this
assumption in any crucial way).

Condorcet methods are typically sensitive to the set of policies that voters are invited to
rank. We focus on methods that satisfy the Generalized Condorcet criterion (or Smith
criterion), which requires that the chosen policy lie within the top cycle7. Additionally, we
focus on methods that are insensitive to the inclusion or exclusion of policies outside the top
cycle (i.e. which satisfy the Independence of Smith-Dominated Alternatives property). In
general, these methods will remain sensitive to the inclusion or exclusion of various policies
within the top-cycle. For the purposes of this analysis, we will take the set of alternatives to
be τ ∈ [τ †, τHI ]. The alternatives in this set form a strict subset of the top-cycle, however,
our chosen set is reasonable in that it is the convex hull of the three ‘focal’ policies that
generated the Condorcet cycle — τ †, τLM , and τHI .

We consider two well studied methods. First is the ‘ranked pairs’ method (see Tideman
(1987)), which works as follows: (i) for each pair of outcomes, calculate the ‘strength of
victory’ (i.e. excess support) for the majority preferred outcome; (ii) sort the pairs by
strength of victory; (iii) build the social ranking, starting with the pair with the largest
strength of victory, and ignoring subsequent pairs that would introduce an intransitive cycle.
In effect, the ranked pairs method generates a transitive social preference by removing from
comparison the majority preferred pairs that have the lowest support and whose inclusion
would induce a Condorcet cycle.

Applied to our model, the highest ranked outcome that emerges from the ranked pairs
method corresponds to the most preferred policy (within the alternative set [τ †, τHI ]) of the
most populous group in the polity.8 If the informed rich are the largest group, the ranked
pairs method selects the policy τ †; if the informed poor are largest, then the policy τHI is
selected; and if the misinformed poor are most sizeable, then the policy is τLM .

The second method that we study is Tideman’s Alternative, which is essentially a method

7. The top cycle is the smallest set of policies having the property that every policy within the set is
majority preferred to every policy outside the set. Let τHI > τHI be the policy defined by v(τ ; yH , AI) =
v(τ †; yH , AI). The top cycle is [τ †, τHI ].

8. Full details for how this result was computed are available by request from the authors.
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of instant run-off voting. Votes are distributed amongst the various alternatives according
to each voter’s highest preference; a plurality losing policy is eliminated and votes are redis-
tributed by (the affected voters’) next highest available preference. The procedure repeats
until a single alternative remains.

In the context of our model, all but the three ‘focal’ policies are immediately eliminated
(since they are not the most preferred policies of any voter). Then, the policy that survives
the run-off procedure will be the second highest ranked policy (amongst these three) of the
least popular group. (Intuitively, when that group is eliminated, its votes will be reallocated
by their second preference, which is sufficient to give one of the two remaining outcomes
a majority.) Hence, if the informed rich are smallest, Tideman’s Alternative selects τHI ; if
the informed poor are smallest, the procedure selects τLM ; and if the misinformed poor are
smallest, it selects τ †.

Several points are worth noting. First, though the methods contemplated a continuum of
alternatives, the highest ranked policy selected by each method coincided with one of the
three ‘focal’ policies that generated the Condorcet cycle. Second, for each method, the
solution is sensitive to group size. Each of the focal policies can be rationalized for an
appropriately chosen population profile of voters. Indeed, small changes in the relative sizes
of the groups can produce dramatic changes in the selected policy. Third, even fixing the
population profile, the variant methods are not guaranteed to select the same policy, and
will often disagree. Thus, though these methods can serve as a refinement tool that selects
a policy when a Condorcet cycle arises, the policy selected by any given method need not
stand out as an obviously best policy.

B Proofs

Proof of Proposition 1. Recall that the ranking of stage game ideal policies is τHM <

τHI < τLM < τLI , and that all myopic agents, as well as the sophisticated misinformed
agents (since ∆(y, AM) = 0), have single-peaked preferences. The sophisticated informed
agents have potentially non-single-peaked preferences. However, the preferences of the so-
phisticated informed rich are strictly decreasing whenever τ ≥ τHI , while the preferences of
the sophisticated informed poor are strictly increasing whenever τ ≤ τLI

It suffices to show that τLM is a majority winner in the first period. Take any policy τ < τLM .
Then all poor agents, whether informed or not, and whether sophisticated or not — a
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majority — strictly prefer τLM to τ , since they have increasing utility in this region. Similarly,
all agents other than the informed poor — a majority — strictly prefer τLM to any τ > τLM ,
since utility is strictly decreasing in this region for those agents. Hence τLM is the majority
winner.

Proof of Propositions 2.A and 2.B. The ranking of stage game ideal policies is now:
τHM < τLM < τHI < τLI . Let τHI < τHI be the lowest policy that the informed rich will
accept that prevents learning. This satisfies:

v(τHI ; yH , AI) + βv(τHI ; yH , AI) = v(τHI ; yH , AI) + βv(τLI ; yH , AI)

It is easily verified that τHI is the solution to:

1−
(
τHI
τHI

)
+ ln

(
τHI
τHI

)
= β

[
1− τLI

τHI
+ ln

(
τLI
τHI

)]
Let tHI denote the first period policy that maximizes the informed rich’s lifetime utility. By
construction, we know that:

tHI =

τ † if τ † ∈ [τHI , τHI ]

τHI if τ † < τHI or τ † > τHI

Recall that the informed poor have strictly increasing utility in the region τ ≤ τLI , and that
tHI ≤ τHI < τLI . It follows that, for any τ < tHI , tHI is strictly preferred to τ by both the
informed poor and the informed rich — who together constitute a majority.

Suppose tHI ≥ τLM . (In particular, this will be true if tHI = τHI .) Recall that all misinformed
agents have single-peaked preferences. Then, for any τ > tHI , tHI is preferred to τ by
the informed rich and all misinformed agents (since τHM < τLM ≤ tHI) — who together
constitute a majority. If so, then tHI is a majority winner.

Suppose instead that tHI < τLM . (This requires that tHI = τ †, which in turn requires that
τ † ∈ (τHI , τLM).) Then tHI cannot be majority preferred since τLM is preferred to it by both
the informed and misinformed poor (who together constitute a majority). But τLM cannot
be majority preferred since τHI is preferred to it by both the informed poor and the informed
rich (who together constitute a majority). Can τHI be majority preferred? Clearly there is
no policy τ > τHI that is preferred to τHI by a majority. The informed rich prefer τ † to τHI .
If the misinformed poor also prefer τ † to τHI , then τHI cannot be majority preferred. This
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requires that:

v(τ †; yL, AM) ≥ v(τHI ; yL, AM)

Let τLM(β) be the lowest policy that the misinformed poor would accept in preference to τHI ,
if the former prevented learning and the latter did not. (It will prove useful to define τLM
for generic β, though of course, in this proposition, we take β = 0, so that the misinformed
poor are indifferent to whether there is learning or not.) We have:

τHI
τLM

(
1− τLM(β)

τHI

)
+ ln

(
τLM(β)

τHI

)
= β

[
τHI
τLM

− 1 + ln

(
τLM
τHI

)]

By assumption, the informed rich prefer τ † to τHI since τ † ∈ (τHI , τLM). If, in addition, τ † ≥
τLM , then the misinformed poor will prefer τ † to τHI . Hence, if τ † ∈ (max{τHI , τLM}, τLM),
then a majority prefer τ † to τHI and so there is no majority winner. (Instead, we have found
a Condorcet cycle.) By contrast, if τ † < max{τHI , τLM}, then τHI is a majority winner.

Proof of Proposition 4. 9 We first note that if τ is a majority winner, then τ ∈
[τHI ,max{τHI , τ †}]. To see this, note that τHI is preferred to any τ < τHI by all informed
agents — a majority. Similarly, the informed rich and the misinformed agents — who
together constitute a majority — prefer max{τHI , τ †} to any larger policy τ . (For the in-
formed rich, this is straightforward to see since their utility is decreasing beyond τHI and
τHI ≤ max{τHI , τ †}. Similarly, the utility of the misinformed poor is decreasing beyond
max{τLM , τ †}, and τLM < τHI .)

If τ † ≤ τHI , it follows immediately that τHI is the majority winner. Next, suppose that
τ † > τHI . Misinformed agents may be willing to support such a policy given that it induces
learning and τHI does not. Let τLM > τHI be the highest policy that the misinformed poor
will accept that induces learning, in preference to τHI which does not. This satisfies:

v(τLM ; yL, AM) + βv(τLM ; yL, AM) = v(τHI ; yL, AM) + βv(τHI ; yL, AM)

Simplifying, we have that τLM is the solution to:
τHI
τLM

(
1− τLM

τHI

)
+ ln

(
τLM
τHI

)
= β

[
1− τHI

τLM
+ ln

(
τHI
τLM

)]

9. The proof of Proposition 3 builds on the proof of Proposition 4, so we present this proof first.

15



If τ † > τLM , then τHI is preferred to τ †, and indeed to all τ > τHI , by both the informed
rich and the misinformed poor. If so, τHI is the majority winner.

Suppose instead that τ † ∈ (τHI , τLM). Then both the informed and misinformed poor — a
majority — will prefer τ † to τHI , so that τHI cannot be a majority winner. Is τ † a majority
winner? We have previously shown that τ † is majority preferred to any τ > τ †. For a policy
τ ′ < τ † to be majority preferred to τ †, it must be that τ ′ is strictly preferred to τ † by both
the informed rich and the misinformed poor.

Let τ̃HI(τ †; β) < τHI denote the lowest policy (not inducing learning) that the informed rich
would accept in preference to τ †. (As before, it will be helpful for future reference to allow
τ̃HI to be a function of β. But in this context, we know that β = 0 for the informed rich.)
This satisfies:

v(τ̃HI ; yH , AI) + βv(τHI ; yH , AI) = v(τ †; yH , AI) + βv(τLI ; yH , AI)

Simplifying, we have that τ̃HI is the solution to:
τ † − τ̃HI
τHI

+ ln

(
τ̃HI
τ †

)
= β

[
1− τLI

τHI
+ ln

(
τLI
τHI

)]
(2)

It is straightforward to show, by the implicit function theorem, that ∂τ̃HI

∂τ†
< 0. The further

to the right of τHI is τ †, the greater will be the range of policies to the left of τHI that the
informed rich would be willing to accept instead. Additionally, τ̃HI ↑ τHI as τ † ↓ τHI .

Similarly, let τ̃LM(τ †; β) > τLM denote the highest policy (not inducing learning) that the
misinformed poor would accept in preference to τ †. This satisfies:

v(τ̃LM ; yL, AM) + βv(τHI ; yL, AM) = v(τ †; yL, AM) + βv(τLM ; yL, AM)

Simplifying, we have that τ̃LM is the solution to:
τ † − τ̃LM
τLM

+ ln

(
τ̃LM
τ †

)
= β

[
τHI
τLM

− 1 + ln

(
τLM
τHI

)]
(3)

Again, by the implicit function theorem, ∂τ̃LM

∂τ†
> 0. The further to the right of τHI is τ †, the

greater will be the range of policies to the right of τLM that the misinformed poor would be
willing to accept instead. Additionally, τ̃LM < τHI when τ † = τHI .

If τ̃HI(τ †) < τ̃LM(τ †), then any policy τ ′ ∈ (τ̃HI , τ̃LM) is majority preferred to τ † (since
it is preferred by the informed rich and the misinformed poor). Moreover, this generates
a Condorcet cycle, since τHI is preferred to any such τ ′ by a majority (i.e. the informed
agents), τ † is preferred to τHI by a majority (i.e. the poor agents), and τ ′ is preferred to
τ † by a majority (i.e. the informed rich and the misinformed poor). By contrast, if the
condition is not met, then τ † is a majority winner.
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Finally, since τ̃LM(τ †) < τ̃HI(τ
†) when τ † = τHI , and since ∂τ̃HI

∂τ†
< 0 and ∂τ̃LM

∂τ†
> 0, then

there exists some τ̃ s.t. τ̃LM(τ̃) = τ̃HI(τ̃), and the condition τ̃HI(τ
†) < τ̃LM(τ †) is satisfied

only if τ † > τ̃ .

Proof of Proposition 3. First, suppose that τ † ≥ τHI . Then, the lifetime preferences of
the (sophisticated) informed rich are single-peaked and achieve a maximum at τHI — which
is qualitatively similar to what their preferences would be were they myopic. Then, by the
same logic as in the proof of Proposition 4, if τ † > τLM , the majority preferred policy will
be τHI . If τ † ∈ [τHI , τLM ], then a majority winner will exist only if τ̃HI(τ †) ≥ τ̃LM(τ †), and
if so, the majority winner will be τ †.

The only potential difference from the proof of Proposition 4 is in the behavior of the
functions τ̃HI(τ †) and τ̃LM(τ †), defined by equations (6) and (7) above. In particular, since
the informed rich are now sophisticated, τ̃HI should be calculated using β > 0. It remains the
case that ∂τ̃HI

∂τ†
< 0 and ∂τ̃LM

∂τ†
> 0. However, now τ̃HI(τHI) = τHI < τHI (where τHI is defined

by equation (2) in the proof of Proposition 2.A). Also, by construction, τ̃LM(τHI) = τLM

(where τLM > τLM is defined by equation (2) in the proof of Proposition 2.B, though now
with β > 0). Hence, if τHM ≤ τLM , then τ̃HI(τ

†) ≤ τ̃LM(τ †) for all τ † ≥ τHI , and so there
will be no majority winner. By contrast, if τHM > τLM , then there will exist τ̃ > τHI s.t.
τ̃HI(τ

†) > τ̃LM(τ †) whenever τ † < τ̃ . If so, τ † will be the majority winner, and if not, a
Condorcet cycle will exist.

Next, suppose τ † < τHI . Now, the informed rich may have an incentive to strategically
manipulate policy to prevent learning, whilst the misinformed may seek to do so to induce
learning. Let us explicitly differentiate these. For some small ε > 0, let τ †− = τ †−ε denote the
highest policy that prevents learning, and τ †+ = τ † + ε denote the lowest policy that induces
it. The informed agents (who constitute a majority) will prefer τ †− to any policy τ < τ †−. The
poor agents (who constitute a majority) must prefer τ †+ to τ †−, since they perceive learning
as beneficial, and the informed agents will prefer τHI to any τ ∈ [τ †+, τHI). Hence, no policy
τ < τHI can be majority winning. Moreover, the informed rich and the misinformed agents
(who constitute a majority) prefer τHI to any τ > τHI . The only candidate to be a majority
winner is τHI .

We must check if there is a policy τ ′ that defeats τHI in a pair-wise contest. Given the above
reasoning, if such a policy exists, it must be that τ ′ ≤ τ †−, and the coalition supporting it must
include both the informed rich and the misinformed poor. Then, by construction, τ ′ ≥ τHI
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(which guarantees that the informed rich prefer it to τHI) and that τ ′ ≤ τLM (which is
required for the misinformed poor prefer it to τHI). Hence, there will be no majority winner
(and thus a Condorcet cycle will exist) if τHI ≤ τLM . Else, τHI will be a majority winner.

Proof of Proposition 5. Recall, in the second period, the median effective agent is pivotal
and will have their ideal policy implemented, in equilibrium. Thus, the second period policy
will be τy = AI

ymed
if there is learning, and τx =

AI

xmed
if there isn’t. τx < τy since xmed > ymed.

We begin by quantifying the benefit of learning for informed agents. We have:

∆(y) = v(τy; y, AI)− v(τx; y, AI)

= AI

[(
1− xmed

ymed

)
y

xmed
+ ln

(
xmed
ymed

)]

Clearly, ∆(y) is continuous and strictly decreasing in y. Using the fact that ln(x) < x−1 for
any x ̸= 1, we have ∆(ymed) > 0 and ∆(xmed) < 0. Then, by the intermediate value theorem,
there exists a unique threshold ỹ ∈ (xmed, ymed) s.t. ∆(ỹ) = 0 and ∆(y) > 0 whenever y < ỹ.

Suppose τ † > τx. Then preferences are single peaked for all sophisticated agents with
y ≥ xmed (as well as for all naive agents). Hence all agents with effective income at least
as large as xmed prefer τx to any τ ′ > τx. Furthermore, utility is strictly increasing in τ on
the interval (0, τx) for all agents with effective income y ≤ xmed (a majority). Hence τx is
majority preferred to any τ ′ ̸= τx. Hence τx is a majority winner.

Suppose instead that τ † < τx. The proof here is more complicated. We proceed in 4 steps.
First, we show that, if there is a majority winner, it must either be τ † or τx. Second, we
provide conditions under which τ † is guaranteed to be the majority winner. Third, we provide
conditions under which τx is guaranteed to be the majority winner. Finally, we explore cases
where there is possibly no majority winner.

Step 1: Let y(τ †) = AI

τ†
be the income for which τ † is stage optimal, and note that y(τ †) >

xmed. All agents with effective income x < y(τ †) prefer τ † to τ ′ < τ †, since neither choice
induces learning and τ † is closer to their ideal. Since y(τ †) > xmed and G(xmed) =

1
2
, then

G(y(τ †)) > 1
2
, and so a τ † is majority preferred to every τ ′ < τ †.

Similarly, τx is preferred to τ ′ > τx by all agents with effective income x ≥ xmed (a majority),
and τx is preferred to τ ′ ∈ (τ †, τx) by all agents with effective income x ≤ xmed (a majority).
Hence, if there is a majority winner, it must either be τ † or τx.
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Step 2: Let us consider when τ † is majority preferred. Since ∆(y) < 0 for sophisticated
agents with y > ỹ, these agents will be willing to distort policy from their stage ideal to
prevent learning. Then τ † will be the globally optimal policy for a sophisticated agent if:

ϕ(y; τ †) = v(τ †; y, AI)− v

(
AI
y
, y, AI

)
− β∆(y) ≥ 0

It is easily verified that ∂ϕ
∂y

= AI

y
− τ † − β ∂∆(y)

∂y
. Now, ∆′(y) < 0 and, by construction,

AI

y
− τ † > 0 whenever y < y(τ †). Hence ∂ϕ

∂y
> 0 whenever y < y(τ †). Furthermore, ϕ(ỹ) < 0

(since ∆(ỹ) = 0), and ϕ(y(τ †)) > 0. Hence, by the intermediate value theorem, there exists
ŷ(τ †) ∈ (ỹ, y(τ †)) s.t. ϕ(ŷ(τ †); τ †) = 0. Additionally, ∂ϕ

∂τ†
= y(τ †) − y > 0 for y < y(τ †).

Then, by the implicit function theorem, ŷ(τ †) is strictly decreasing in τ †. [Intuitively, the
smaller the distortion needed to prevent learning, the less rich an agent needs to make policy
distortion optimal.]

Let τ be defined implicitly by ŷ(τ) = xmed. Since ŷ(τx) < xmed, and ŷ is a strictly decreasing
function, it must be that τ < τx.

Now, τ † is preferred to any τ ′ > τ † by each informed agent with y > ŷ(τ †) and by each
misinformed agent with y > AM

τ†
= AM

AI
y(τ †). The measure of such agents is:

ρ(τ †) = 1− γFI(ŷ(τ
†))− (1− γ)FM

(
AM
AI

y(τ †)

)

Since y(τ †) and ŷ(τ †) are both strictly decreasing in τ †, ρ(τ †) is strictly increasing in τ †.
Now, if τ † = τx, then y(τ †) = xmed and ŷ(τ †) < xmed. Then:

ρ(τx) = 1− γFI(ŷ(τx))− (1− γ)FM

(
AM
AI

xmed

)
> 1− γFI(xmed)− (1− γ)FMFM

(
AM
AI

xmed

)
= 1−G(xmed) =

1

2

By contrast, if τ † = τ , then y(τ †) > xmed and ŷ(τ †) = xmed. Then:

ρ(τx) = 1− γFI(xmed)− (1− γ)FM

(
AM
AI

y(τ)

)
< 1− γFI(xmed)− (1− γ)FM

(
AM
AI

xmed

)
= 1−G(xmed) =

1

2

Then, by the intermediate value theorem, there exists t̃1 ∈ (τ , τx) s.t. ρ(t̃1) = 1
2
. Moreover,
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whenever τ † > t̃1, ρ(τ †) > 1
2
, and so τ † is majority preferred to any τ ′ > τ †. If so, τ † must

be a majority winner.

Step 3: When is τx is majority preferred? Take any policy τ ′ ∈ (τ †, τx]. Denote y(τ ′) as the
income for which τ ′ is stage optimal. By construction, xmed ≤ y(τ ′) < y(τ †).

An informed agent will prefer τ ′ to τ † if:

ψI(y; τ
†, τ ′) = v(τ †; y, AI)− v(τ ′; y, AI)− β∆(y) ≤ 0

Similarly, a misinformed agent will prefer τ ′ to τ † if:

ψM(y; τ †, τ ′) = v(τ †; y, AM)− v(τ ′; y, AM) ≤ 0

Notice that ψI(y; τ †, τ ′) ≥ ϕ(y; τ †), where the inequality is strict unless y = y(τ ′). (This fol-
lows because v(τ ′; y, AI) ≤ v

(
AI

y
; y, AI

)
.) Now, ∂ψI(y)

∂y
= (τ ′− τ †)−β(τx− τy) > 0. Further-

more, ψI(ỹ) < 0 (since ỹ < y(τ ′) < y(τ †) and ∆(ỹ) = 0) and ψI(ŷ(τ †)) > 0 (since ψI(ŷ(τ †)) >
ϕ(ŷ(τ †)) = 0). Hence, by the intermediate value theorem, there exists yI(τ †, τ ′) ∈ (ỹ, ŷ(τ †))

s.t. ψI(yI(τ
†, τ ′); τ †, τ ′) = 0, and ψ(y; τ †, τ ′) < 0 whenever y < yI(τ

†, τ ′). Similarly, there
exists xM(τ †, τ ′) ∈ (y(τ ′), y(τ †)) s.t. ψM

(
AM

AI
xM(τ †, tau′); τ †, τ ′

)
= 0 and ψM(y; τ †, τ ′) < 0

whenever y < AM

AI
xM(τ †, τ ′).

The measure of agents who prefer τ ′ to τ † is:

r(τ †, τ ′) = γFI(yI(τ
†, τ ′)) + (1− γ)FM

(
AM
AI

xM(τ †, τ ′)

)
Now, since yI(τ †, τ ′) and xM(τ †, τ ′) are both strictly decreasing in τ † (for fixed τ ′), r(τ †, τ ′)
is strictly decreasing in τ †.

Now take τ ′ = τx. If τ † = t̃1, then:

r(t̃1, τx) = γFI(yI(t̃1, τx)) + (1− γ)FM

(
AM
AI

xM(t̃1, τx)

)
< γFI(ŷ(t̃1)) + (1− γ)FM

(
AM
AI

y(t̃1)

)
= 1− ρ(t̃1) =

1

2

where we use the fact that yI(τ †, τx) < ŷ(τ †) and xM(τ †, τx) < y(τ †). By contrast, if τ † = τ ,
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then y(τ †) > xmed and ŷ(τ †) = xmed. Then:

r(τ̃ , τx) = γFI(yI(τ , τx)) + (1− γ)FM

(
AM
AI

xM(τ , τx)

)
> γFI(xmed) + (1− γ)FM

(
AM
AI

xmed

)
= G(xmed) =

1

2

where we make use of the fact that yI(τ , τx) = xmed (by construction) and that y(τ) > xmed.
Then, by the intermediate value theorem, there exists τ̃2 ∈ (τ , t̃1) s.t. r(τ̃2) = 1

2
. Moreover,

whenever τ † < τ̃2, r(τ †, τx) > 1
2
, and so τx is majority preferred to any τ †. Moreover, since

this coalition of voters prefers τ † to any τ ′ < τ †, it must be that τx is majority preferred to
any τ ′ < τ †. If so, τx must be a majority winner.

Step 4: What if τ † ∈ (τ̃2, t̃1)? Then, a majority prefer τ † to τx, so τx cannot be a majority
winner. However, a majority of agents also have an ideal policy above τ † (since τ̃1 was
constructed to have the property that exactly half of agents had ideal policy weakly below
this when τ † = t̃1). However, this does not guarantee that there is a policy in (τ †, τx) that is
majority preferred to τ †. If such a policy exists, then, a Condorcet cycle exists, and policy
is unstable. If not, then τ † remains the equilibrium policy.

The measure of agents who prefer τ ′ > τ † to τ † is r(τ †, τ ′). Let R(τ †) = supτ ′∈(τ ′,τx] r(τ
†, τ ′).

When τ † = t̃1, we know that r(t̃1, τ ′) < 1
2

for all relevant τ ′. Hence R(t̃1) ≤ 1
2
. Since r(τ †, τ ′)

is strictly decreasing in τ † for each τ ′, then R(τ †) must be strictly decreasing in τ †. Define
τ̃1 = max{τ † |R(τ †) ≥ 1

2
}. Clearly τ̃1 ≤ t̃1. If τ † < τ̃1, then a majority coalition exists

that will replace τ † with some τ ′ > τ †. We know that τ̃1 ≥ τ̃2, since a majority will replace
τ † ≤ τ̃2 with τx. Hence, there will be policy instability when τ † ∈ (τ̃2, τ̃1).

Proof of Proposition 6. The informed rich will implement the policy that maximizes
their expected lifetime utility. First, suppose A†(τHI) ≥ AI . Then there will be no learning
if the informed rich implement their stage optimal utility. Hence τ ∗ = τHI is optimal. This
requires that µ > (AI − AM) ln(τHIy) = µ.

Next, suppose A†(τHI) ∈ (AI , AI). Then, the lifetime utility of the informed rich is decreasing
at τ = τHI . The optimal policy must satisfy τ ∗ < τHI . Define τ(µ) = 1

y
exp { µ

A−AM
} and

τ(µ) = 1
y
exp { µ

A−AM
}. By construction A†(τ(µ)) = AI and A†(τ(µ)) = AI . Then, since

AI < A†(τHI) < AI , it must be that τ(µ) < τHI < τ(µ). τ(µ) is the highest policy for
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which learning is guaranteed to not occur, and τ(µ) is the lowest policy for which learning
is guaranteed to occur. The informed rich never have an incentive to propose τ < τ(µ).

The optimal policy is the solution to:

max
τ∈[τ ,τ ]

v(τ ; yH , AI) + β

(∫ A†(τ)

A

v(τHI ; yH , AI)dFI(A) +

∫ A

A†(τ)

v(τHI ; yH , AI)dFI(A)

)
Let τ̂(µ) be the solution to this problem. As noted, τ̂(µ) < τHI . If τ̂µ) ∈ (τ , τHI), then it
will be characterized by the first order conditions. However, there may be a corner solution
at τ .

Finally, suppose A†(τHI) ≤ AI , so that the ideal stage game policy guarantees that learning
will occur. Let τ̂(µ) < τHI denote the optimal solution to the problem:

max
τ∈[τ ,τ ]

v(τ ; yH , AI) + β

(∫ A†(τ)

A

v(τHI ; yH , AI)dFI(A) +

∫ A

A†(τ)

v(τHI ; yH , AI)dFI(A)

)

The informed rich face a choice between implementing the distorted policy τ̂(µ) (which
potentially avoids the transfer of power) or implementing the stage ideal policy τHI and
conceding power to the informed poor. Let V̂ (µ) denote the expected lifetime utility of the
informed rich under policy τ̂(µ). It is optimal to distort policy provided that:

V̂ (µ) ≥ v(τHI ; yH , AI) + EFI

[
v

(
A

yL
, yH , A

)]
Notice that the right hand side of this inequality is constant in µ. The left-hand side is
increasing in µ since the necessary first period distortion becomes smaller as µ increases.
Hence, there exists a threshold µ s.t. the distortionary policy is preferred whenever µ > µ.
Moreover, since distortion is optimal when A†(τHI) = A, µ < (AI − AM) ln(τHIy).

Finally, we need to ensure that the ideal policy of the informed rich has the support of a
majority coalition. It suffices to assume that the ideal stage game policy of the misinformed
poor lies below the lowest policy that the informed rich would want to implement: i.e.
τLM ≤ τ̂(µ). This condition is guaranteed to hold if τLM ≤ τ(µ).
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